research communications
The crystal structures, Hirshfeld surface analyses and energy frameworks of 8-{1-[3-(cyclopent-1-en-1-yl)benzyl]piperidin-4-yl}-2-methoxyquinoline and 8-{4-[3-(cyclopent-1-en-1-yl)benzyl]piperazin-1-yl}-2-methoxyquinoline
aChemistry Department, King Fahd University of Petroleum and Minerals, Dhahran-31261, Saudi Arabia, and bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: helen.stoeckli-evans@unine.ch
The title compounds, 8-{1-[3-(cyclopent-1-en-1-yl)benzyl]piperidin-4-yl}-2-methoxyquinoline, C27H30N2O (I), and 8-{4-[3-(cyclopent-1-en-1-yl)benzyl]piperazin-1-yl}-2-methoxyquinoline, C26H29N3O (II), differ only in the nature of the central six-membered ring: piperidine in I and piperazine in II. They are isoelectronic (CH cf. N) and isotypic; they both crystallize in the triclinic P with very similar unit-cell parameters. Both molecules have a curved shape and very similar conformations. In the biaryl group, the phenyl ring is inclined to the cyclopentene mean plane (r.m.s. deviations = 0.089 Å for I and 0.082 Å for II) by 15.83 (9) and 13.82 (6)° in I and II, respectively, and by 67.68 (6) and 69.47 (10)°, respectively, to the mean plane of the quinoline moiety (r.m.s. deviations = 0.034 Å for I and 0.038 Å for II). The piperazine ring in I and the piperidine ring in II have chair conformations. In the crystals of both compounds, molecules are linked by C—H⋯π interactions, forming chains in I and ribbons in II, both propagating along the b-axis direction. The principal contributions to the overall Hirshfeld surfaces involve H⋯H contacts at 67.5 and 65.9% for I and II, respectively. The major contribution to the intermolecular interactions in the crystals is from dispersion forces (Edis), reflecting the absence of classical hydrogen bonds.
1. Chemical context
Compounds combining dopamine D2 receptor blockade with serotonin 5-HT1A receptor activation rather than antagonism for the treatment of Schizophrenia have been developed by a number of researchers (Newman-Tancredi et al., 2007; Jones & McCreary, 2008). One such drug, Adoprazine(c), was found to combine both dopamine D2 antagonist (blockade) and serotonin 5-HT1A agonist (activation) properties (Feenstra et al., 2001, 2006). A similar compound structurally, Bifeprunox(c), is a partial agonist at dopamine D2 receptors in vitro, and shows serotonin 5-HT1A agonist properties (Newman-Tancredi et al., 2005; Cosi et al., 2006). Unfortunately, development of Adoprazine(c) was stopped at the Phase II clinical trials for insufficient therapeutical efficacy, and the FDA refused a licence for Bifeprunox(c) for the same reason.
Ullah and collaborators have synthesized a series of compounds that are analogues of Adoprazine(c) and Bifeprunox(c) (Ullah, 2012, 2014a,b; Ullah & Al-Shaheri, 2012). They have examined rat-cloned dopamine D2 and human-cloned serotonin 5-HT1A receptor properties of more than forty compounds (Ghani et al., 2014; Ullah, 2014a,b), including the title compounds, 8-{1-[3-(cyclopent-1-en-1-yl)benzyl]piperidin-4-yl}-2-methoxyquinoline (I) and 8-{4-[3-(cyclopent-1-en-1-yl)benzyl]piperazin-1-yl}-2-methoxyquinoline (II). The D2 receptor binding assay of compounds I and II gave Ki = 524 nM for I and 12.2 nM for II. In the 5-HT1A receptor binding assay, Ki = 2.13 nM for I and 0.97 nM for II (Ghani et al., 2014). Replacing the piperidine ring in I with a piperazine ring in II, also present in Adoprazine(c) and Bifeprunox(c), has a significant effect and appears to be favourable for higher binding affinity.
The II is compared to that of 8-[4-([1,1′-biphenyl]-3-ylmethyl)piperazin-1-yl]-2-methoxyquinoline (III), where the 3-(cyclopent-1-en-1-yl)benzyl unit in II has been replaced by a 1,1′-biphenyl unit in III (Ullah & Altaf, 2014).
of2. Structural commentary
The molecular structures of compounds I and II are shown in Figs. 1 and 2, respectively. They have very similar conformations, as illustrated by the view of their structural overlap, shown in Fig. 3. Both compounds crystallize in the triclinic P with very similar unit-cell parameters in spite of replacing the piperidine ring in I with a piperazine ring in II; they are isotypic and isoelectronic (CH cf. N). Both molecules have a curved shape, and the piperidine ring (C = N2/C10–C14) in I and the piperazine ring (C′ = N2/N3/C10–C13) in II have chair conformations.
In the biaryl group, the phenyl ring (D = C16–C21 in I and C15–C20 in II) is inclined to the cyclopentene ring mean plane (E = C22–C26, r.m.s. deviation = 0.089 Å for I and E = C21–C25, r.m.s. deviation = 0.082 Å for II) by 15.83 (9) and 13.82 (16)°, respectively. The same ring D is inclined to the mean plane of the quinoline moiety (r.m.s. deviation = 0.034 Å for I and 0.038 Å for II) by 67.68 (6) and 69.47 (10)°, respectively. In the cyclopentene rings, the double bonds C22=C26 in I and C21=C25 in II are 1.381 (2) and 1.365 (4) Å, respectively, while bonds C22—C23 and C21—C22 are 1.450 (2) and 1.457 (4) Å, respectively. These values fall within the limits of those observed for the structures of 40 compounds in the Cambridge Structural Database (CSD, Version 5.42, last update February 2021; Groom et al., 2016), viz. C=C varies from ca 1.268 to 1.417 Å, while the adjacent substituted C—C bond varies from ca 1.391 to 1.534 Å (see supporting information file S1).
In compound III, the 3-(cyclopent-1-en-1-yl)benzyl unit in II has been replaced by a 1,1′-biphenyl group (supporting information file S2; Fig. S1). The conformation of the molecules differs considerably, as illustrated in the view of their structural overlap (Fig. 4). The molecule has an S-shape and torsion angles C12—N3—C14—C15 and N3—C14—C15—C16 are, respectively, −172.77 (16) and 61.9 (3)°, compared to −67.4 (3) and −43.2 (3) ° in II. As in II, the central piperazine ring (C′) has a chair conformation. The two rings of the biphenyl unit (rings D and E′) are relatively coplanar with a dihedral angle of 3.84 (12)°. Phenyl ring D is inclined to the mean plane of the quinoline ring system(r.m.s. deviation = 0.021 Å) by 68.94 (10)°, compared to 69.47 (10)° in II.
3. Supramolecular features
In the crystals of I and II, molecules are linked by C—H⋯π interactions (Tables 1 and 2, respectively). In I, a single C—H⋯π interaction links the molecules, forming chains propagating along the b-axis direction (Fig. 5). In II, two C—H⋯π interactions link the molecules, forming ribbons propagating along the b-axis direction (Fig. 6). There are no other significant directional inter-atomic contacts present in either crystal structure.
|
|
In the crystal of III, molecules are linked by C—H⋯O hydrogen bonds, forming chains along the [100] direction. The chains are linked by two C—H⋯π interactions, forming slabs lying parallel to the ab plane (supporting information file S2; Table S1 and Fig. S2). Here too, there are no other significant directional inter-atomic contacts present in the crystal structure.
4. Hirshfeld surface analysis and two-dimensional fingerprint plots
The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were performed with CrystalExplorer17 (Turner et al., 2017) following the protocol of Tiekink and collaborators (Tan et al., 2019).
The Hirshfeld surfaces are colour-mapped with the normalized contact distance, dnorm, varying from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii). The Hirshfeld surfaces (HS) of I, II and III mapped over dnorm are given in Fig. 7. The most significant short contacts in the crystal structures of all three compounds are given in Table 3. It is evident from the small red spots in Fig. 7a and b that there are only weak contacts present in the crystals of compounds I and II. The slightly larger red spots in Fig. 7c concern the Car—H⋯Omethoxy hydrogen bonds in the of III (supporting information Table S2).
The percentage contributions of inter-atomic contacts to the HS for all three compounds are compared in Table 4. The two-dimensional fingerprint plots for compounds I, II and III are shown in Fig. 8. They reveal, as expected in the absence of classical hydrogen bonds, that the principal contributions to the overall HS surface involve H⋯H contacts at 67.5, 65.9 and 58.2%, respectively.
|
The second most important contribution to the HS is from the C⋯H/H⋯C contacts at 25.2, 25.8 and 33.6%, for I, II and III, respectively, which are related to the presence of C—H⋯π interactions (see Tables 1, 2 and S1). These are followed by O⋯H/H⋯O contacts at 4.5% for each compound. These two contributions are particularly significant for III, as indicated by the pair of sharp spikes for the delineated C⋯H/H⋯C and O⋯H/H⋯O contacts shown in Fig. 8c.
The N⋯H/H⋯N contacts contribute, respectively, 2.5, 3.5 and 2.1%. The C⋯N contacts contribute even less; 1.3% in III but 0% in I and II. The C⋯C and C⋯O contacts contribute very little for all three structures.
The fact that compounds I and II are isoelectronic and isotypic is reflected in their almost identical Hirshfeld surfaces (Fig. 7a and b), contributions of the inter-atomic contacts to the HS (Table 4), fingerprint plots (Fig. 8a and b), and energy frameworks (Fig. 9a and b).
5. Energy frameworks
A comparison of the energy frameworks calculated for I, II and III, showing the electrostatic potential forces (Eele), the dispersion forces (Edis) and the total energy diagrams (Etot), are shown in Fig. 9. The energies were obtained by using the wave function at the HF/3-2IG level of theory. The cylindrical radii are proportional to the relative strength of the corresponding energies (Turner et al., 2017; Tan et al., 2019). They have been adjusted to the same scale factor of 80 with a cut-off value of 5 kJ mol−1 within a radius of 6 Å of a central reference molecule. It can be seen that for all three compounds, the major contribution to the intermolecular interactions is from dispersion forces (Edis), reflecting the absence of classical hydrogen bonds in the crystals.
The colour-coded interaction mappings within a radius of 6 Å of a central reference molecule for all three compounds are given in the supporting information file S3. Full details of the various contributions to the total energy (Etot) are also included there.
6. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.42, last update February 2021; Groom et al., 2016) for 2-methoxyquinolines gave 53 hits. In the majority of cases, the methoxy group (atoms Car–O–C) lies close to the mean plane of the quinoline ring, with dihedral angles varying from 0 to ca 8.51°. In compounds I, II and III the same dihedral angles are 7.24 (16), 7.1 (2) and 1.98 (19)°, respectively. A search for 2-methoxyquinolines with a piperidine or piperazine ring in the 8-position gave only one hit, viz. for compound III (CSD refcode: AKUXIQ; Ullah & Altaf, 2014).
7. Synthesis and crystallization
The synthesis of compounds I, II and III have been reported [I (Ullah & Al-Shaheri, 2012), compound 3e in that paper; II and III (Ullah, 2012), compounds 3e and 3a, respectively, in that paper]. Colourless crystals of I and II were obtained by slow evaporation of solutions in dichloromethane and methanol; ratios (8:3) and (8.5:1.5), respectively.
8. Refinement
Crystal data, data collection and structure . For both compounds, the C-bound H atoms were included in calculated positions and refined as riding on the parent atom: C—H = 0.95–0.99 Å with Uiso(H) = 1.5Ueq(C-methyl) and Uiso(H) = 1.2Ueq(C) for other H atoms.
details are summarized in Table 5
|
Supporting information
https://doi.org/10.1107/S2056989021002474/zv2005sup1.cif
contains datablocks I, II, Global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021002474/zv2005Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989021002474/zv2005IIsup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021002474/zv2005Isup4.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989021002474/zv2005IIsup5.cml
CSD search and analysis in Mercury of cyclopentene rings. DOI: https://doi.org/10.1107/S2056989021002474/zv2005sup6.pdf
Details concerning compound III. DOI: https://doi.org/10.1107/S2056989021002474/zv2005sup7.pdf
Colour-coded interaction mappings for compounds I, II and III. DOI: https://doi.org/10.1107/S2056989021002474/zv2005sup8.pdf
For both structures, data collection: X-AREA (Stoe & Cie, 2009); cell
X-AREA (Stoe & Cie, 2009); data reduction: X-RED32 (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2020) and Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015), PLATON (Spek, 2020) and publCIF (Westrip, 2010).C27H30N2O | Z = 2 |
Mr = 398.53 | F(000) = 428 |
Triclinic, P1 | Dx = 1.207 Mg m−3 |
a = 7.7099 (7) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.2838 (10) Å | Cell parameters from 8113 reflections |
c = 12.9539 (13) Å | θ = 1.6–26.1° |
α = 89.413 (8)° | µ = 0.07 mm−1 |
β = 79.094 (7)° | T = 173 K |
γ = 82.270 (7)° | Block, colourless |
V = 1096.41 (18) Å3 | 0.45 × 0.37 × 0.25 mm |
STOE IPDS 2 diffractometer | 4138 independent reflections |
Radiation source: fine-focus sealed tube | 2585 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.038 |
φ + ω scans | θmax = 25.6°, θmin = 1.8° |
Absorption correction: multi-scan (MULABS; Spek, 2020) | h = −9→9 |
Tmin = 0.897, Tmax = 1.000 | k = −13→13 |
14097 measured reflections | l = −15→15 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.035 | H-atom parameters constrained |
wR(F2) = 0.084 | w = 1/[σ2(Fo2) + (0.0484P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.83 | (Δ/σ)max < 0.001 |
4138 reflections | Δρmax = 0.31 e Å−3 |
273 parameters | Δρmin = −0.18 e Å−3 |
0 restraints | Extinction correction: (SHELXL2018/3; Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0094 (16) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | −0.31520 (16) | 0.30564 (11) | 0.39378 (9) | 0.0592 (3) | |
N1 | −0.09673 (16) | 0.31466 (10) | 0.24743 (9) | 0.0366 (3) | |
N2 | 0.39949 (15) | 0.61267 (9) | 0.18470 (8) | 0.0279 (3) | |
C1 | −0.2350 (2) | 0.26704 (14) | 0.29519 (13) | 0.0446 (4) | |
C2 | −0.3120 (2) | 0.17738 (15) | 0.25111 (16) | 0.0533 (5) | |
H2 | −0.409740 | 0.143721 | 0.290814 | 0.064* | |
C3 | −0.2430 (2) | 0.14117 (14) | 0.15136 (16) | 0.0514 (5) | |
H3 | −0.293407 | 0.081958 | 0.119624 | 0.062* | |
C4 | −0.0953 (2) | 0.19087 (12) | 0.09322 (13) | 0.0398 (4) | |
C5 | −0.0161 (2) | 0.15780 (13) | −0.01128 (13) | 0.0445 (4) | |
H5 | −0.065366 | 0.102091 | −0.047870 | 0.053* | |
C6 | 0.1305 (2) | 0.20515 (13) | −0.06017 (13) | 0.0429 (4) | |
H6 | 0.182521 | 0.182977 | −0.130942 | 0.051* | |
C7 | 0.2054 (2) | 0.28677 (12) | −0.00641 (11) | 0.0361 (3) | |
H7 | 0.309298 | 0.317564 | −0.041440 | 0.043* | |
C8 | 0.13307 (19) | 0.32336 (11) | 0.09513 (11) | 0.0303 (3) | |
C9 | −0.02281 (19) | 0.27612 (11) | 0.14589 (11) | 0.0338 (3) | |
C10 | 0.21444 (18) | 0.40881 (11) | 0.15518 (10) | 0.0291 (3) | |
H10 | 0.191957 | 0.384932 | 0.230597 | 0.035* | |
C11 | 0.41514 (18) | 0.40490 (11) | 0.12068 (11) | 0.0322 (3) | |
H11A | 0.474251 | 0.322324 | 0.126794 | 0.039* | |
H11B | 0.442908 | 0.428067 | 0.046058 | 0.039* | |
C12 | 0.48648 (19) | 0.48939 (11) | 0.18812 (11) | 0.0323 (3) | |
H12A | 0.467098 | 0.462037 | 0.261762 | 0.039* | |
H12B | 0.616450 | 0.486966 | 0.163034 | 0.039* | |
C13 | 0.20593 (18) | 0.61870 (12) | 0.21814 (11) | 0.0323 (3) | |
H13A | 0.149684 | 0.702328 | 0.213674 | 0.039* | |
H13B | 0.178461 | 0.594316 | 0.292439 | 0.039* | |
C14 | 0.12757 (19) | 0.53857 (11) | 0.15092 (11) | 0.0332 (3) | |
H14A | 0.147602 | 0.565916 | 0.077284 | 0.040* | |
H14B | −0.002595 | 0.543682 | 0.176720 | 0.040* | |
C15 | 0.47093 (19) | 0.68831 (11) | 0.25299 (10) | 0.0310 (3) | |
H15A | 0.602393 | 0.678391 | 0.231762 | 0.037* | |
H15B | 0.442130 | 0.660363 | 0.326154 | 0.037* | |
C16 | 0.40022 (18) | 0.81994 (11) | 0.25048 (10) | 0.0289 (3) | |
C17 | 0.38518 (19) | 0.87725 (12) | 0.15602 (11) | 0.0339 (3) | |
H17 | 0.416942 | 0.833137 | 0.091594 | 0.041* | |
C18 | 0.3239 (2) | 0.99862 (12) | 0.15611 (11) | 0.0371 (4) | |
H18 | 0.314063 | 1.037213 | 0.091545 | 0.045* | |
C19 | 0.27704 (19) | 1.06377 (12) | 0.24901 (11) | 0.0352 (3) | |
H19 | 0.234929 | 1.146760 | 0.247712 | 0.042* | |
C20 | 0.29069 (18) | 1.00935 (11) | 0.34499 (11) | 0.0303 (3) | |
C21 | 0.35196 (18) | 0.88669 (11) | 0.34328 (10) | 0.0296 (3) | |
H21 | 0.360782 | 0.847843 | 0.407859 | 0.036* | |
C22 | 0.24386 (19) | 1.07783 (13) | 0.44478 (11) | 0.0353 (3) | |
C23 | 0.2242 (2) | 1.02292 (14) | 0.54733 (12) | 0.0479 (4) | |
H23A | 0.339477 | 0.978796 | 0.557619 | 0.057* | |
H23B | 0.135586 | 0.966088 | 0.553796 | 0.057* | |
C24 | 0.1619 (2) | 1.12327 (15) | 0.62848 (13) | 0.0535 (5) | |
H24A | 0.234142 | 1.114906 | 0.684369 | 0.064* | |
H24B | 0.035106 | 1.122668 | 0.661147 | 0.064* | |
C25 | 0.1867 (3) | 1.23818 (16) | 0.56826 (15) | 0.0723 (6) | |
H25A | 0.078370 | 1.297650 | 0.585603 | 0.087* | |
H25B | 0.289265 | 1.273337 | 0.584998 | 0.087* | |
C26 | 0.2204 (2) | 1.20096 (14) | 0.45501 (13) | 0.0526 (5) | |
H26 | 0.225071 | 1.254655 | 0.397896 | 0.063* | |
C27 | −0.2468 (3) | 0.40355 (19) | 0.43470 (14) | 0.0682 (6) | |
H27C | −0.321335 | 0.429785 | 0.502637 | 0.102* | |
H27B | −0.248148 | 0.469981 | 0.385397 | 0.102* | |
H27A | −0.124284 | 0.377844 | 0.444035 | 0.102* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0465 (7) | 0.0720 (8) | 0.0567 (8) | −0.0146 (6) | −0.0006 (6) | 0.0222 (6) |
N1 | 0.0313 (7) | 0.0348 (6) | 0.0441 (8) | −0.0057 (5) | −0.0078 (6) | 0.0124 (6) |
N2 | 0.0288 (6) | 0.0232 (5) | 0.0319 (6) | −0.0030 (5) | −0.0068 (5) | −0.0030 (5) |
C1 | 0.0350 (9) | 0.0479 (9) | 0.0511 (10) | −0.0067 (7) | −0.0087 (8) | 0.0216 (8) |
C2 | 0.0372 (10) | 0.0484 (10) | 0.0812 (14) | −0.0197 (8) | −0.0207 (9) | 0.0316 (9) |
C3 | 0.0460 (10) | 0.0363 (9) | 0.0805 (13) | −0.0133 (8) | −0.0292 (10) | 0.0149 (8) |
C4 | 0.0372 (9) | 0.0248 (7) | 0.0633 (11) | −0.0061 (6) | −0.0240 (8) | 0.0107 (7) |
C5 | 0.0550 (11) | 0.0267 (7) | 0.0599 (11) | −0.0050 (7) | −0.0318 (9) | −0.0018 (7) |
C6 | 0.0550 (11) | 0.0321 (8) | 0.0446 (9) | −0.0025 (7) | −0.0190 (8) | −0.0044 (7) |
C7 | 0.0442 (9) | 0.0273 (7) | 0.0384 (8) | −0.0051 (6) | −0.0115 (7) | −0.0012 (6) |
C8 | 0.0343 (8) | 0.0212 (6) | 0.0366 (8) | −0.0025 (6) | −0.0112 (6) | 0.0035 (6) |
C9 | 0.0359 (9) | 0.0242 (7) | 0.0433 (9) | −0.0029 (6) | −0.0138 (7) | 0.0081 (6) |
C10 | 0.0339 (8) | 0.0239 (7) | 0.0295 (7) | −0.0046 (6) | −0.0054 (6) | 0.0016 (5) |
C11 | 0.0334 (8) | 0.0235 (7) | 0.0387 (8) | −0.0013 (6) | −0.0064 (6) | −0.0022 (6) |
C12 | 0.0305 (8) | 0.0268 (7) | 0.0390 (8) | −0.0003 (6) | −0.0074 (6) | −0.0005 (6) |
C13 | 0.0297 (8) | 0.0267 (7) | 0.0388 (8) | −0.0008 (6) | −0.0038 (6) | −0.0035 (6) |
C14 | 0.0307 (8) | 0.0258 (7) | 0.0433 (8) | −0.0026 (6) | −0.0081 (7) | −0.0019 (6) |
C15 | 0.0365 (8) | 0.0280 (7) | 0.0298 (7) | −0.0045 (6) | −0.0092 (6) | −0.0019 (6) |
C16 | 0.0291 (8) | 0.0269 (7) | 0.0327 (7) | −0.0069 (6) | −0.0083 (6) | −0.0023 (6) |
C17 | 0.0397 (9) | 0.0324 (7) | 0.0311 (8) | −0.0066 (6) | −0.0094 (6) | −0.0036 (6) |
C18 | 0.0451 (9) | 0.0324 (8) | 0.0381 (8) | −0.0083 (7) | −0.0170 (7) | 0.0053 (6) |
C19 | 0.0373 (9) | 0.0262 (7) | 0.0454 (9) | −0.0049 (6) | −0.0159 (7) | −0.0001 (6) |
C20 | 0.0250 (7) | 0.0295 (7) | 0.0379 (8) | −0.0059 (6) | −0.0080 (6) | −0.0051 (6) |
C21 | 0.0295 (8) | 0.0292 (7) | 0.0319 (8) | −0.0066 (6) | −0.0083 (6) | 0.0010 (6) |
C22 | 0.0297 (8) | 0.0356 (8) | 0.0416 (8) | −0.0007 (6) | −0.0113 (7) | −0.0080 (6) |
C23 | 0.0545 (11) | 0.0502 (10) | 0.0390 (9) | −0.0037 (8) | −0.0108 (8) | −0.0090 (7) |
C24 | 0.0506 (11) | 0.0626 (11) | 0.0459 (10) | −0.0050 (9) | −0.0063 (8) | −0.0198 (8) |
C25 | 0.0945 (16) | 0.0519 (11) | 0.0676 (13) | 0.0138 (11) | −0.0228 (12) | −0.0270 (10) |
C26 | 0.0671 (12) | 0.0368 (9) | 0.0506 (10) | 0.0005 (8) | −0.0076 (9) | −0.0114 (7) |
C27 | 0.0631 (13) | 0.0942 (15) | 0.0441 (10) | −0.0159 (12) | 0.0017 (9) | 0.0036 (10) |
O1—C1 | 1.358 (2) | C13—H13B | 0.9900 |
O1—C27 | 1.433 (2) | C14—H14A | 0.9900 |
N1—C1 | 1.3060 (19) | C14—H14B | 0.9900 |
N1—C9 | 1.3804 (19) | C15—C16 | 1.5140 (18) |
N2—C15 | 1.4631 (16) | C15—H15A | 0.9900 |
N2—C12 | 1.4649 (16) | C15—H15B | 0.9900 |
N2—C13 | 1.4656 (17) | C16—C21 | 1.3873 (18) |
C1—C2 | 1.416 (2) | C16—C17 | 1.3951 (18) |
C2—C3 | 1.346 (2) | C17—C18 | 1.3873 (19) |
C2—H2 | 0.9500 | C17—H17 | 0.9500 |
C3—C4 | 1.420 (2) | C18—C19 | 1.379 (2) |
C3—H3 | 0.9500 | C18—H18 | 0.9500 |
C4—C5 | 1.407 (2) | C19—C20 | 1.3966 (19) |
C4—C9 | 1.416 (2) | C19—H19 | 0.9500 |
C5—C6 | 1.360 (2) | C20—C21 | 1.4001 (18) |
C5—H5 | 0.9500 | C20—C22 | 1.4721 (19) |
C6—C7 | 1.405 (2) | C21—H21 | 0.9500 |
C6—H6 | 0.9500 | C22—C26 | 1.381 (2) |
C7—C8 | 1.3723 (19) | C22—C23 | 1.450 (2) |
C7—H7 | 0.9500 | C23—C24 | 1.518 (2) |
C8—C9 | 1.424 (2) | C23—H23A | 0.9900 |
C8—C10 | 1.5137 (19) | C23—H23B | 0.9900 |
C10—C11 | 1.5220 (19) | C24—C25 | 1.522 (3) |
C10—C14 | 1.5310 (18) | C24—H24A | 0.9900 |
C10—H10 | 1.0000 | C24—H24B | 0.9900 |
C11—C12 | 1.5214 (19) | C25—C26 | 1.495 (2) |
C11—H11A | 0.9900 | C25—H25A | 0.9900 |
C11—H11B | 0.9900 | C25—H25B | 0.9900 |
C12—H12A | 0.9900 | C26—H26 | 0.9500 |
C12—H12B | 0.9900 | C27—H27C | 0.9800 |
C13—C14 | 1.5175 (19) | C27—H27B | 0.9800 |
C13—H13A | 0.9900 | C27—H27A | 0.9800 |
C1—O1—C27 | 116.01 (13) | C10—C14—H14A | 109.6 |
C1—N1—C9 | 117.41 (13) | C13—C14—H14B | 109.6 |
C15—N2—C12 | 109.07 (10) | C10—C14—H14B | 109.6 |
C15—N2—C13 | 110.40 (10) | H14A—C14—H14B | 108.1 |
C12—N2—C13 | 110.58 (10) | N2—C15—C16 | 114.10 (11) |
N1—C1—O1 | 119.14 (15) | N2—C15—H15A | 108.7 |
N1—C1—C2 | 124.76 (16) | C16—C15—H15A | 108.7 |
O1—C1—C2 | 116.10 (15) | N2—C15—H15B | 108.7 |
C3—C2—C1 | 118.13 (16) | C16—C15—H15B | 108.7 |
C3—C2—H2 | 120.9 | H15A—C15—H15B | 107.6 |
C1—C2—H2 | 120.9 | C21—C16—C17 | 118.61 (12) |
C2—C3—C4 | 120.47 (16) | C21—C16—C15 | 119.97 (12) |
C2—C3—H3 | 119.8 | C17—C16—C15 | 121.41 (12) |
C4—C3—H3 | 119.8 | C18—C17—C16 | 120.03 (13) |
C5—C4—C9 | 119.15 (14) | C18—C17—H17 | 120.0 |
C5—C4—C3 | 123.76 (15) | C16—C17—H17 | 120.0 |
C9—C4—C3 | 117.07 (15) | C19—C18—C17 | 120.64 (13) |
C6—C5—C4 | 120.36 (14) | C19—C18—H18 | 119.7 |
C6—C5—H5 | 119.8 | C17—C18—H18 | 119.7 |
C4—C5—H5 | 119.8 | C18—C19—C20 | 120.86 (13) |
C5—C6—C7 | 120.26 (15) | C18—C19—H19 | 119.6 |
C5—C6—H6 | 119.9 | C20—C19—H19 | 119.6 |
C7—C6—H6 | 119.9 | C19—C20—C21 | 117.63 (12) |
C8—C7—C6 | 122.03 (15) | C19—C20—C22 | 121.62 (12) |
C8—C7—H7 | 119.0 | C21—C20—C22 | 120.75 (12) |
C6—C7—H7 | 119.0 | C16—C21—C20 | 122.23 (12) |
C7—C8—C9 | 117.94 (13) | C16—C21—H21 | 118.9 |
C7—C8—C10 | 122.77 (13) | C20—C21—H21 | 118.9 |
C9—C8—C10 | 119.28 (12) | C26—C22—C23 | 110.50 (13) |
N1—C9—C4 | 122.07 (14) | C26—C22—C20 | 125.83 (14) |
N1—C9—C8 | 117.72 (13) | C23—C22—C20 | 123.61 (13) |
C4—C9—C8 | 120.20 (14) | C22—C23—C24 | 106.97 (14) |
C8—C10—C11 | 114.28 (11) | C22—C23—H23A | 110.3 |
C8—C10—C14 | 112.62 (11) | C24—C23—H23A | 110.3 |
C11—C10—C14 | 108.35 (11) | C22—C23—H23B | 110.3 |
C8—C10—H10 | 107.1 | C24—C23—H23B | 110.3 |
C11—C10—H10 | 107.1 | H23A—C23—H23B | 108.6 |
C14—C10—H10 | 107.1 | C23—C24—C25 | 105.45 (14) |
C12—C11—C10 | 110.69 (11) | C23—C24—H24A | 110.7 |
C12—C11—H11A | 109.5 | C25—C24—H24A | 110.7 |
C10—C11—H11A | 109.5 | C23—C24—H24B | 110.7 |
C12—C11—H11B | 109.5 | C25—C24—H24B | 110.7 |
C10—C11—H11B | 109.5 | H24A—C24—H24B | 108.8 |
H11A—C11—H11B | 108.1 | C26—C25—C24 | 104.67 (14) |
N2—C12—C11 | 111.93 (11) | C26—C25—H25A | 110.8 |
N2—C12—H12A | 109.2 | C24—C25—H25A | 110.8 |
C11—C12—H12A | 109.2 | C26—C25—H25B | 110.8 |
N2—C12—H12B | 109.2 | C24—C25—H25B | 110.8 |
C11—C12—H12B | 109.2 | H25A—C25—H25B | 108.9 |
H12A—C12—H12B | 107.9 | C22—C26—C25 | 110.74 (15) |
N2—C13—C14 | 111.93 (11) | C22—C26—H26 | 124.6 |
N2—C13—H13A | 109.2 | C25—C26—H26 | 124.6 |
C14—C13—H13A | 109.2 | O1—C27—H27C | 109.5 |
N2—C13—H13B | 109.2 | O1—C27—H27B | 109.5 |
C14—C13—H13B | 109.2 | H27C—C27—H27B | 109.5 |
H13A—C13—H13B | 107.9 | O1—C27—H27A | 109.5 |
C13—C14—C10 | 110.27 (11) | H27C—C27—H27A | 109.5 |
C13—C14—H14A | 109.6 | H27B—C27—H27A | 109.5 |
C9—N1—C1—O1 | −177.72 (13) | C13—N2—C12—C11 | 57.05 (14) |
C9—N1—C1—C2 | 1.3 (2) | C10—C11—C12—N2 | −57.40 (15) |
C27—O1—C1—N1 | 4.3 (2) | C15—N2—C13—C14 | −178.41 (11) |
C27—O1—C1—C2 | −174.73 (14) | C12—N2—C13—C14 | −57.62 (14) |
N1—C1—C2—C3 | −2.6 (2) | N2—C13—C14—C10 | 58.07 (15) |
O1—C1—C2—C3 | 176.38 (14) | C8—C10—C14—C13 | 176.30 (12) |
C1—C2—C3—C4 | 0.9 (2) | C11—C10—C14—C13 | −56.28 (15) |
C2—C3—C4—C5 | −179.87 (15) | C12—N2—C15—C16 | 176.08 (11) |
C2—C3—C4—C9 | 1.8 (2) | C13—N2—C15—C16 | −62.24 (15) |
C9—C4—C5—C6 | 1.5 (2) | N2—C15—C16—C21 | 137.35 (13) |
C3—C4—C5—C6 | −176.80 (14) | N2—C15—C16—C17 | −43.88 (18) |
C4—C5—C6—C7 | 0.6 (2) | C21—C16—C17—C18 | 0.3 (2) |
C5—C6—C7—C8 | −1.3 (2) | C15—C16—C17—C18 | −178.47 (14) |
C6—C7—C8—C9 | −0.1 (2) | C16—C17—C18—C19 | −0.1 (2) |
C6—C7—C8—C10 | 178.45 (13) | C17—C18—C19—C20 | 0.2 (2) |
C1—N1—C9—C4 | 1.77 (19) | C18—C19—C20—C21 | −0.5 (2) |
C1—N1—C9—C8 | −177.04 (12) | C18—C19—C20—C22 | 179.07 (14) |
C5—C4—C9—N1 | 178.34 (13) | C17—C16—C21—C20 | −0.7 (2) |
C3—C4—C9—N1 | −3.28 (19) | C15—C16—C21—C20 | 178.14 (13) |
C5—C4—C9—C8 | −2.9 (2) | C19—C20—C21—C16 | 0.8 (2) |
C3—C4—C9—C8 | 175.50 (12) | C22—C20—C21—C16 | −178.83 (13) |
C7—C8—C9—N1 | −178.98 (12) | C19—C20—C22—C26 | −14.8 (2) |
C10—C8—C9—N1 | 2.42 (18) | C21—C20—C22—C26 | 164.79 (15) |
C7—C8—C9—C4 | 2.19 (18) | C19—C20—C22—C23 | 168.27 (15) |
C10—C8—C9—C4 | −176.41 (12) | C21—C20—C22—C23 | −12.2 (2) |
C7—C8—C10—C11 | −27.88 (18) | C26—C22—C23—C24 | 6.9 (2) |
C9—C8—C10—C11 | 150.65 (12) | C20—C22—C23—C24 | −175.72 (14) |
C7—C8—C10—C14 | 96.33 (16) | C22—C23—C24—C25 | −12.1 (2) |
C9—C8—C10—C14 | −85.14 (15) | C23—C24—C25—C26 | 12.6 (2) |
C8—C10—C11—C12 | −177.56 (11) | C23—C22—C26—C25 | 1.4 (2) |
C14—C10—C11—C12 | 55.98 (14) | C20—C22—C26—C25 | −175.90 (16) |
C15—N2—C12—C11 | 178.62 (11) | C24—C25—C26—C22 | −9.0 (2) |
CgB is the centroid of ring C4–C9. |
D—H···A | D—H | H···A | D···A | D—H···A |
C18—H18···CgBi | 0.95 | 2.97 | 3.661 (2) | 131 |
Symmetry code: (i) x, y+1, z. |
C26H29N3O | Z = 2 |
Mr = 399.52 | F(000) = 428 |
Triclinic, P1 | Dx = 1.226 Mg m−3 |
a = 7.9142 (8) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.9051 (13) Å | Cell parameters from 5129 reflections |
c = 12.8896 (14) Å | θ = 1.6–26.0° |
α = 87.271 (9)° | µ = 0.08 mm−1 |
β = 79.290 (8)° | T = 173 K |
γ = 82.206 (9)° | Plate, colourless |
V = 1082.7 (2) Å3 | 0.45 × 0.40 × 0.19 mm |
STOE IPDS 2 diffractometer | 4088 independent reflections |
Radiation source: fine-focus sealed tube | 2187 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.080 |
φ + ω scans | θmax = 25.7°, θmin = 1.6° |
Absorption correction: multi-scan (MULABS; Spek, 2020) | h = −9→9 |
Tmin = 0.793, Tmax = 1.000 | k = −13→13 |
11304 measured reflections | l = −15→15 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.056 | H-atom parameters constrained |
wR(F2) = 0.121 | w = 1/[σ2(Fo2) + (0.048P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.90 | (Δ/σ)max < 0.001 |
4088 reflections | Δρmax = 0.28 e Å−3 |
273 parameters | Δρmin = −0.17 e Å−3 |
1 restraint | Extinction correction: (SHELXL2018/3; Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0086 (15) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | −0.3136 (2) | −0.18899 (19) | 0.38520 (16) | 0.0549 (6) | |
N1 | −0.0986 (2) | −0.18024 (19) | 0.23968 (17) | 0.0372 (5) | |
N2 | 0.2088 (2) | −0.09810 (17) | 0.14688 (15) | 0.0294 (5) | |
N3 | 0.3825 (2) | 0.10378 (18) | 0.18985 (15) | 0.0300 (5) | |
C1 | −0.2363 (3) | −0.2276 (2) | 0.2863 (2) | 0.0427 (7) | |
C2 | −0.3174 (3) | −0.3156 (3) | 0.2433 (3) | 0.0510 (8) | |
H2 | −0.416246 | −0.347820 | 0.282598 | 0.061* | |
C3 | −0.2487 (3) | −0.3524 (3) | 0.1439 (3) | 0.0529 (8) | |
H3 | −0.300937 | −0.410699 | 0.112140 | 0.063* | |
C4 | −0.0990 (3) | −0.3048 (2) | 0.0861 (2) | 0.0409 (7) | |
C5 | −0.0181 (4) | −0.3422 (2) | −0.0161 (2) | 0.0476 (7) | |
H5 | −0.068608 | −0.397363 | −0.052471 | 0.057* | |
C6 | 0.1322 (4) | −0.2996 (2) | −0.0632 (2) | 0.0451 (7) | |
H6 | 0.186715 | −0.325569 | −0.132045 | 0.054* | |
C7 | 0.2067 (3) | −0.2173 (2) | −0.0102 (2) | 0.0371 (6) | |
H7 | 0.312281 | −0.189311 | −0.043911 | 0.045* | |
C8 | 0.1314 (3) | −0.1759 (2) | 0.08928 (19) | 0.0318 (6) | |
C9 | −0.0260 (3) | −0.2196 (2) | 0.1392 (2) | 0.0349 (6) | |
C10 | 0.3949 (3) | −0.0970 (2) | 0.11133 (19) | 0.0332 (6) | |
H10A | 0.416398 | −0.059510 | 0.039396 | 0.040* | |
H10B | 0.454529 | −0.182976 | 0.108390 | 0.040* | |
C11 | 0.4666 (3) | −0.0238 (2) | 0.1859 (2) | 0.0343 (6) | |
H11A | 0.447282 | −0.062345 | 0.257528 | 0.041* | |
H11B | 0.593116 | −0.024947 | 0.161868 | 0.041* | |
C12 | 0.1955 (3) | 0.1034 (2) | 0.22687 (19) | 0.0326 (6) | |
H12A | 0.136438 | 0.189535 | 0.229207 | 0.039* | |
H12B | 0.175082 | 0.067128 | 0.299288 | 0.039* | |
C13 | 0.1208 (3) | 0.0294 (2) | 0.1546 (2) | 0.0348 (6) | |
H13A | −0.004502 | 0.028411 | 0.181873 | 0.042* | |
H13B | 0.133604 | 0.069334 | 0.083420 | 0.042* | |
C14 | 0.4552 (3) | 0.1769 (2) | 0.25913 (19) | 0.0330 (6) | |
H14A | 0.583181 | 0.164805 | 0.239081 | 0.040* | |
H14B | 0.424670 | 0.146022 | 0.332804 | 0.040* | |
C15 | 0.3914 (3) | 0.3132 (2) | 0.25410 (19) | 0.0301 (6) | |
C16 | 0.3790 (3) | 0.3747 (2) | 0.1577 (2) | 0.0356 (6) | |
H16 | 0.408753 | 0.329933 | 0.094036 | 0.043* | |
C17 | 0.3238 (3) | 0.5002 (2) | 0.1546 (2) | 0.0400 (7) | |
H17 | 0.316755 | 0.541160 | 0.088555 | 0.048* | |
C18 | 0.2787 (3) | 0.5671 (2) | 0.2464 (2) | 0.0377 (6) | |
H18 | 0.240296 | 0.653306 | 0.242779 | 0.045* | |
C19 | 0.2891 (3) | 0.5089 (2) | 0.3440 (2) | 0.0332 (6) | |
C20 | 0.3453 (3) | 0.3813 (2) | 0.34630 (19) | 0.0328 (6) | |
H20 | 0.352236 | 0.340209 | 0.412330 | 0.039* | |
C21 | 0.2444 (3) | 0.5783 (2) | 0.4432 (2) | 0.0383 (6) | |
C22 | 0.2269 (4) | 0.5194 (3) | 0.5478 (2) | 0.0570 (8) | |
H22A | 0.339597 | 0.474384 | 0.559038 | 0.068* | |
H22B | 0.141230 | 0.459775 | 0.555661 | 0.068* | |
C23 | 0.1659 (4) | 0.6226 (3) | 0.6270 (2) | 0.0613 (9) | |
H23A | 0.043328 | 0.620057 | 0.660653 | 0.074* | |
H23B | 0.237817 | 0.614600 | 0.682791 | 0.074* | |
C24 | 0.1860 (5) | 0.7410 (3) | 0.5641 (3) | 0.0821 (11) | |
H24A | 0.283698 | 0.779644 | 0.580656 | 0.098* | |
H24B | 0.078692 | 0.800326 | 0.579663 | 0.098* | |
C25 | 0.2211 (4) | 0.7042 (3) | 0.4504 (3) | 0.0595 (8) | |
H25 | 0.226301 | 0.760684 | 0.391774 | 0.071* | |
C26 | −0.2422 (4) | −0.0916 (3) | 0.4257 (2) | 0.0677 (10) | |
H26C | −0.315015 | −0.064309 | 0.492773 | 0.102* | |
H26B | −0.237922 | −0.021877 | 0.374866 | 0.102* | |
H26A | −0.124641 | −0.121897 | 0.437327 | 0.102* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0422 (10) | 0.0650 (15) | 0.0550 (13) | −0.0133 (10) | −0.0015 (10) | 0.0136 (11) |
N1 | 0.0304 (11) | 0.0367 (13) | 0.0449 (14) | −0.0063 (9) | −0.0091 (10) | 0.0088 (11) |
N2 | 0.0300 (10) | 0.0256 (11) | 0.0329 (12) | −0.0053 (8) | −0.0051 (9) | −0.0015 (9) |
N3 | 0.0299 (10) | 0.0270 (11) | 0.0339 (12) | −0.0045 (8) | −0.0062 (9) | −0.0046 (10) |
C1 | 0.0364 (15) | 0.0389 (17) | 0.0523 (19) | −0.0057 (12) | −0.0106 (13) | 0.0166 (15) |
C2 | 0.0345 (15) | 0.0446 (18) | 0.078 (2) | −0.0162 (13) | −0.0175 (15) | 0.0184 (17) |
C3 | 0.0448 (16) | 0.0356 (17) | 0.087 (2) | −0.0114 (13) | −0.0326 (16) | 0.0077 (17) |
C4 | 0.0406 (15) | 0.0266 (15) | 0.061 (2) | −0.0037 (12) | −0.0267 (14) | 0.0055 (14) |
C5 | 0.0604 (18) | 0.0298 (16) | 0.061 (2) | −0.0014 (13) | −0.0353 (16) | −0.0038 (15) |
C6 | 0.0587 (18) | 0.0335 (16) | 0.0455 (17) | 0.0027 (13) | −0.0208 (14) | −0.0048 (14) |
C7 | 0.0440 (14) | 0.0301 (15) | 0.0383 (16) | −0.0041 (11) | −0.0106 (12) | −0.0025 (13) |
C8 | 0.0397 (14) | 0.0217 (14) | 0.0360 (15) | −0.0039 (11) | −0.0129 (12) | 0.0018 (12) |
C9 | 0.0367 (14) | 0.0255 (14) | 0.0439 (16) | −0.0004 (11) | −0.0156 (12) | 0.0071 (13) |
C10 | 0.0296 (13) | 0.0285 (14) | 0.0397 (15) | −0.0029 (10) | −0.0013 (11) | −0.0051 (12) |
C11 | 0.0302 (13) | 0.0325 (15) | 0.0396 (16) | −0.0016 (11) | −0.0064 (11) | −0.0022 (12) |
C12 | 0.0283 (12) | 0.0285 (14) | 0.0397 (15) | −0.0014 (10) | −0.0032 (11) | −0.0050 (12) |
C13 | 0.0338 (13) | 0.0267 (14) | 0.0438 (16) | −0.0025 (11) | −0.0076 (12) | −0.0005 (12) |
C14 | 0.0379 (13) | 0.0317 (15) | 0.0303 (14) | −0.0050 (11) | −0.0074 (11) | −0.0024 (12) |
C15 | 0.0297 (12) | 0.0262 (14) | 0.0363 (15) | −0.0058 (10) | −0.0086 (11) | −0.0046 (12) |
C16 | 0.0419 (14) | 0.0340 (16) | 0.0332 (15) | −0.0062 (11) | −0.0113 (12) | −0.0023 (13) |
C17 | 0.0487 (16) | 0.0367 (16) | 0.0388 (16) | −0.0092 (13) | −0.0184 (13) | 0.0087 (13) |
C18 | 0.0388 (14) | 0.0277 (15) | 0.0500 (17) | −0.0053 (11) | −0.0159 (13) | −0.0008 (14) |
C19 | 0.0266 (12) | 0.0329 (15) | 0.0418 (16) | −0.0071 (10) | −0.0073 (11) | −0.0070 (13) |
C20 | 0.0339 (13) | 0.0350 (15) | 0.0319 (15) | −0.0091 (11) | −0.0095 (11) | 0.0009 (12) |
C21 | 0.0369 (14) | 0.0375 (16) | 0.0418 (17) | −0.0018 (11) | −0.0113 (12) | −0.0086 (13) |
C22 | 0.076 (2) | 0.051 (2) | 0.0433 (18) | 0.0013 (16) | −0.0137 (15) | −0.0124 (16) |
C23 | 0.068 (2) | 0.063 (2) | 0.0516 (19) | 0.0022 (16) | −0.0085 (16) | −0.0237 (18) |
C24 | 0.113 (3) | 0.054 (2) | 0.077 (3) | 0.010 (2) | −0.018 (2) | −0.029 (2) |
C25 | 0.076 (2) | 0.0426 (19) | 0.054 (2) | 0.0021 (16) | −0.0013 (16) | −0.0145 (16) |
C26 | 0.063 (2) | 0.087 (3) | 0.051 (2) | −0.0196 (19) | 0.0029 (16) | −0.0046 (19) |
O1—C1 | 1.367 (3) | C13—H13A | 0.9900 |
O1—C26 | 1.430 (4) | C13—H13B | 0.9900 |
N1—C1 | 1.302 (3) | C14—C15 | 1.506 (3) |
N1—C9 | 1.378 (3) | C14—H14A | 0.9900 |
N2—C8 | 1.420 (3) | C14—H14B | 0.9900 |
N2—C10 | 1.460 (3) | C15—C20 | 1.395 (3) |
N2—C13 | 1.468 (3) | C15—C16 | 1.397 (3) |
N3—C11 | 1.457 (3) | C16—C17 | 1.380 (3) |
N3—C14 | 1.466 (3) | C16—H16 | 0.9500 |
N3—C12 | 1.468 (3) | C17—C18 | 1.383 (3) |
C1—C2 | 1.410 (4) | C17—H17 | 0.9500 |
C2—C3 | 1.352 (4) | C18—C19 | 1.394 (3) |
C2—H2 | 0.9500 | C18—H18 | 0.9500 |
C3—C4 | 1.424 (4) | C19—C20 | 1.403 (3) |
C3—H3 | 0.9500 | C19—C21 | 1.477 (3) |
C4—C5 | 1.407 (4) | C20—H20 | 0.9500 |
C4—C9 | 1.421 (3) | C21—C25 | 1.365 (4) |
C5—C6 | 1.361 (4) | C21—C22 | 1.457 (4) |
C5—H5 | 0.9500 | C22—C23 | 1.524 (4) |
C6—C7 | 1.404 (3) | C22—H22A | 0.9900 |
C6—H6 | 0.9500 | C22—H22B | 0.9900 |
C7—C8 | 1.379 (3) | C23—C24 | 1.502 (5) |
C7—H7 | 0.9500 | C23—H23A | 0.9900 |
C8—C9 | 1.423 (3) | C23—H23B | 0.9900 |
C10—C11 | 1.511 (3) | C24—C25 | 1.504 (4) |
C10—H10A | 0.9900 | C24—H24A | 0.9900 |
C10—H10B | 0.9900 | C24—H24B | 0.9900 |
C11—H11A | 0.9900 | C25—H25 | 0.9500 |
C11—H11B | 0.9900 | C26—H26C | 0.9800 |
C12—C13 | 1.508 (3) | C26—H26B | 0.9800 |
C12—H12A | 0.9900 | C26—H26A | 0.9800 |
C12—H12B | 0.9900 | ||
C1—O1—C26 | 116.1 (2) | C12—C13—H13B | 109.4 |
C1—N1—C9 | 117.0 (2) | H13A—C13—H13B | 108.0 |
C8—N2—C10 | 114.96 (19) | N3—C14—C15 | 113.2 (2) |
C8—N2—C13 | 113.51 (18) | N3—C14—H14A | 108.9 |
C10—N2—C13 | 109.68 (18) | C15—C14—H14A | 108.9 |
C11—N3—C14 | 110.95 (18) | N3—C14—H14B | 108.9 |
C11—N3—C12 | 108.63 (18) | C15—C14—H14B | 108.9 |
C14—N3—C12 | 110.84 (18) | H14A—C14—H14B | 107.8 |
N1—C1—O1 | 118.5 (2) | C20—C15—C16 | 118.5 (2) |
N1—C1—C2 | 125.8 (3) | C20—C15—C14 | 120.3 (2) |
O1—C1—C2 | 115.6 (2) | C16—C15—C14 | 121.2 (2) |
C3—C2—C1 | 117.3 (3) | C17—C16—C15 | 120.3 (2) |
C3—C2—H2 | 121.3 | C17—C16—H16 | 119.9 |
C1—C2—H2 | 121.3 | C15—C16—H16 | 119.9 |
C2—C3—C4 | 120.9 (3) | C16—C17—C18 | 120.9 (3) |
C2—C3—H3 | 119.5 | C16—C17—H17 | 119.6 |
C4—C3—H3 | 119.5 | C18—C17—H17 | 119.6 |
C5—C4—C9 | 119.8 (2) | C17—C18—C19 | 120.5 (2) |
C5—C4—C3 | 123.6 (3) | C17—C18—H18 | 119.8 |
C9—C4—C3 | 116.5 (3) | C19—C18—H18 | 119.8 |
C6—C5—C4 | 120.2 (3) | C18—C19—C20 | 118.1 (2) |
C6—C5—H5 | 119.9 | C18—C19—C21 | 121.7 (2) |
C4—C5—H5 | 119.9 | C20—C19—C21 | 120.2 (2) |
C5—C6—C7 | 120.1 (3) | C15—C20—C19 | 121.7 (2) |
C5—C6—H6 | 119.9 | C15—C20—H20 | 119.1 |
C7—C6—H6 | 119.9 | C19—C20—H20 | 119.1 |
C8—C7—C6 | 122.1 (2) | C25—C21—C22 | 110.7 (3) |
C8—C7—H7 | 119.0 | C25—C21—C19 | 125.7 (3) |
C6—C7—H7 | 119.0 | C22—C21—C19 | 123.6 (2) |
C7—C8—N2 | 123.2 (2) | C21—C22—C23 | 106.6 (3) |
C7—C8—C9 | 118.3 (2) | C21—C22—H22A | 110.4 |
N2—C8—C9 | 118.4 (2) | C23—C22—H22A | 110.4 |
N1—C9—C4 | 122.4 (2) | C21—C22—H22B | 110.4 |
N1—C9—C8 | 118.2 (2) | C23—C22—H22B | 110.4 |
C4—C9—C8 | 119.4 (2) | H22A—C22—H22B | 108.6 |
N2—C10—C11 | 110.24 (19) | C24—C23—C22 | 105.4 (3) |
N2—C10—H10A | 109.6 | C24—C23—H23A | 110.7 |
C11—C10—H10A | 109.6 | C22—C23—H23A | 110.7 |
N2—C10—H10B | 109.6 | C24—C23—H23B | 110.7 |
C11—C10—H10B | 109.6 | C22—C23—H23B | 110.7 |
H10A—C10—H10B | 108.1 | H23A—C23—H23B | 108.8 |
N3—C11—C10 | 110.41 (19) | C23—C24—C25 | 105.3 (3) |
N3—C11—H11A | 109.6 | C23—C24—H24A | 110.7 |
C10—C11—H11A | 109.6 | C25—C24—H24A | 110.7 |
N3—C11—H11B | 109.6 | C23—C24—H24B | 110.7 |
C10—C11—H11B | 109.6 | C25—C24—H24B | 110.7 |
H11A—C11—H11B | 108.1 | H24A—C24—H24B | 108.8 |
N3—C12—C13 | 110.67 (19) | C21—C25—C24 | 110.5 (3) |
N3—C12—H12A | 109.5 | C21—C25—H25 | 124.8 |
C13—C12—H12A | 109.5 | C24—C25—H25 | 124.8 |
N3—C12—H12B | 109.5 | O1—C26—H26C | 109.5 |
C13—C12—H12B | 109.5 | O1—C26—H26B | 109.5 |
H12A—C12—H12B | 108.1 | H26C—C26—H26B | 109.5 |
N2—C13—C12 | 111.01 (19) | O1—C26—H26A | 109.5 |
N2—C13—H13A | 109.4 | H26C—C26—H26A | 109.5 |
C12—C13—H13A | 109.4 | H26B—C26—H26A | 109.5 |
N2—C13—H13B | 109.4 | ||
C9—N1—C1—O1 | −178.8 (2) | C12—N3—C11—C10 | 59.9 (2) |
C9—N1—C1—C2 | 0.1 (4) | N2—C10—C11—N3 | −60.3 (3) |
C26—O1—C1—N1 | 4.6 (3) | C11—N3—C12—C13 | −58.6 (2) |
C26—O1—C1—C2 | −174.5 (2) | C14—N3—C12—C13 | 179.3 (2) |
N1—C1—C2—C3 | −1.6 (4) | C8—N2—C13—C12 | 173.4 (2) |
O1—C1—C2—C3 | 177.4 (2) | C10—N2—C13—C12 | −56.5 (3) |
C1—C2—C3—C4 | 0.8 (4) | N3—C12—C13—N2 | 57.6 (3) |
C2—C3—C4—C5 | 177.9 (3) | C11—N3—C14—C15 | 171.8 (2) |
C2—C3—C4—C9 | 1.1 (4) | C12—N3—C14—C15 | −67.4 (3) |
C9—C4—C5—C6 | 1.7 (4) | N3—C14—C15—C20 | 137.7 (2) |
C3—C4—C5—C6 | −175.0 (3) | N3—C14—C15—C16 | −43.2 (3) |
C4—C5—C6—C7 | −0.5 (4) | C20—C15—C16—C17 | 0.6 (3) |
C5—C6—C7—C8 | −0.7 (4) | C14—C15—C16—C17 | −178.6 (2) |
C6—C7—C8—N2 | 176.5 (2) | C15—C16—C17—C18 | −0.5 (4) |
C6—C7—C8—C9 | 0.6 (4) | C16—C17—C18—C19 | 0.4 (3) |
C10—N2—C8—C7 | −19.3 (3) | C17—C18—C19—C20 | −0.4 (3) |
C13—N2—C8—C7 | 108.1 (3) | C17—C18—C19—C21 | 179.0 (2) |
C10—N2—C8—C9 | 156.7 (2) | C16—C15—C20—C19 | −0.6 (3) |
C13—N2—C8—C9 | −75.9 (3) | C14—C15—C20—C19 | 178.6 (2) |
C1—N1—C9—C4 | 2.0 (3) | C18—C19—C20—C15 | 0.5 (3) |
C1—N1—C9—C8 | −175.7 (2) | C21—C19—C20—C15 | −178.9 (2) |
C5—C4—C9—N1 | −179.5 (2) | C18—C19—C21—C25 | −12.9 (4) |
C3—C4—C9—N1 | −2.6 (3) | C20—C19—C21—C25 | 166.5 (3) |
C5—C4—C9—C8 | −1.9 (3) | C18—C19—C21—C22 | 170.0 (2) |
C3—C4—C9—C8 | 175.1 (2) | C20—C19—C21—C22 | −10.7 (3) |
C7—C8—C9—N1 | 178.5 (2) | C25—C21—C22—C23 | 7.0 (3) |
N2—C8—C9—N1 | 2.4 (3) | C19—C21—C22—C23 | −175.5 (2) |
C7—C8—C9—C4 | 0.7 (3) | C21—C22—C23—C24 | −11.4 (3) |
N2—C8—C9—C4 | −175.4 (2) | C22—C23—C24—C25 | 11.3 (4) |
C8—N2—C10—C11 | −173.2 (2) | C22—C21—C25—C24 | 0.3 (4) |
C13—N2—C10—C11 | 57.5 (2) | C19—C21—C25—C24 | −177.1 (3) |
C14—N3—C11—C10 | −178.03 (19) | C23—C24—C25—C21 | −7.6 (4) |
CgB is the centroid of ring C4-C9. |
D—H···A | D—H | H···A | D···A | D—H···A |
C13—H13B···CgBi | 0.99 | 2.95 | 3.757 (3) | 140 |
C17—H17···CgBii | 0.95 | 2.93 | 3.602 (3) | 129 |
Symmetry codes: (i) −x, −y, −z; (ii) x, y+1, z. |
Atom1 | Atom2 | Length | Length - VdW | Symm. op. 1 | Symm. op. 2 |
I | |||||
H11B | H11B | 2.187 | -0.213 | x, y, z | 1 - x, 1 - y, -z |
C9 | H19 | 2.827 | -0.073 | x, y, z | x, -1 + y, z |
H2 | C19 | 2.834 | -0.066 | x, y, z | -1 + x, -1 + y, z |
C3 | H11A | 2.843 | -0.057 | x, y, z | -1 + x, y, z |
C2 | H11A | 2.865 | -0.035 | x, y, z | -1 + x, y, z |
H2 | C20 | 2.904 | 0.004 | x, y, z | -1 + x, -1 + y, z |
II | |||||
H10A | H10A | 2.076 | -0.324 | x, y, z | 1 - x, -y, -z |
H2 | C18 | 2.824 | -0.076 | x, y, z | -1 + x, -1 + y, z |
C8 | H18 | 2.824 | -0.076 | x, y, z | x, -1 + y, z |
C9 | H18 | 2.867 | -0.033 | x, y, z | x, -1 + y, z |
C10 | H10A | 2.866 | -0.034 | x, y, z | 1 - x, -y, -z |
C3 | H10B | 2.878 | -0.022 | x, y, z | -1 + x, y, z |
C1 | C11 | 3.403 | 0.003 | x, y, z | -1 + x, y, z |
IIIa | |||||
O1 | H24 | 2.514 | -0.206 | x, y, z | -1 + x, y, z |
C4 | H27B | 2.741 | -0.159 | x, y, z | x, -1 + y, z |
C21 | H5 | 2.826 | -0.074 | x, y, z | 2 - x, 1 - y, 2 - z |
H12A | C27 | 2.845 | -0.055 | x, y, z | 3/2 - x, -1/2 + y, 3/2 - z |
O1 | H14B | 2.722 | 0.002 | x, y, z | 3/2 - x, -1/2 + y, 3/2 - z |
Note: (a) Ullah & Altaf (2014). |
Contact | I | II | IIIa |
H···H | 67.5 | 65.9 | 58.2 |
C···H/H···C | 25.2 | 25.8 | 33.6 |
O···H/H···O | 4.5 | 4.5 | 4.5 |
N···H/H···N | 2.5 | 3.5 | 2.1 |
C···C | 0.2 | 0.2 | 0.2 |
C···N | 0 | 0 | 1.3 |
C···O | 0.1 | 0.1 | 0.1 |
Note: (a) Ullah & Altaf (2014). |
Acknowledgements
HSE is grateful to the University of Neuchâtel for their support over the years.
References
Cosi, C., Carilla-Durand, E., Assié, M.-B., Ormiere, A. M., Maraval, M., Leduc, N. & Newman-Tancredi, A. (2006). Eur. J. Pharmacol. 535, 135–144. Web of Science CrossRef PubMed CAS Google Scholar
Feenstra, R. W., de Moes, J., Hofma, J. J., Kling, H., Kuipers, W., Long, S. K., Tulp, M. T. M., van der Heyden, J. A. M. & Kruse, C. G. (2001). Bioorg. Med. Chem. Lett. 11, 2345–2349. Web of Science CrossRef PubMed CAS Google Scholar
Feenstra, R. W., van den Hoogenband, A., Stroomer, C. N. J., van Stuivenberg, H. H., Tulp, M. T. M., Long, S. K., van der Heyden, J. A. M. & Kruse, C. G. (2006). Chem. Pharm. Bull. 54, 1326–1330. Web of Science CrossRef CAS Google Scholar
Ghani, U., Ullah, N., Ali, S. A. & Al-Muallem, H. A. (2014). Asian J. Chem. 26, 8258–8362. CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Jones, C. A. & McCreary, A. C. (2008). Neuropharmacology, 55, 1056–1065. Web of Science CrossRef PubMed CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Newman-Tancredi, A., Assié, M.-B., Leduc, N., Ormière, A.-M., Danty, N. & Cosi, C. (2005). Int. J. Neuropsychopharmacol. 8, 341–356. Web of Science PubMed CAS Google Scholar
Newman-Tancredi, A., Cussac, D. & Depoortere, R. (2007). Curr. Opin. Investig. Drugs, 8, 539–554. Web of Science PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Stoe & Cie. (2009). X-AREA & X-RED32. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. Web of Science CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net Google Scholar
Ullah, N. (2012). Z. Naturforsch. Teil B, 67, 75–84. CrossRef CAS Google Scholar
Ullah, N. (2014a). Med. Chem. 10, 484–496. Web of Science CrossRef CAS PubMed Google Scholar
Ullah, N. (2014b). J. Enzyme Inhib. Med. Chem. 29, 281–291. Web of Science CrossRef CAS PubMed Google Scholar
Ullah, N. & Al-Shaheri, A. A. Q. (2012). Z. Naturforsch. Teil B, 67, 253–262. CrossRef CAS Google Scholar
Ullah, N. & Altaf, M. (2014). Crystallogr. Rep. 59, 1057–1062. Web of Science CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.