research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The crystal structures, Hirshfeld surface analyses and energy frameworks of 8-{1-[3-(cyclo­pent-1-en-1-yl)benz­yl]piperidin-4-yl}-2-meth­­oxy­quinoline and 8-{4-[3-(cyclo­pent-1-en-1-yl)benz­yl]piperazin-1-yl}-2-meth­­oxy­quinoline

CROSSMARK_Color_square_no_text.svg

aChemistry Department, King Fahd University of Petroleum and Minerals, Dhahran-31261, Saudi Arabia, and bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: helen.stoeckli-evans@unine.ch

Edited by A. S. Batsanov, University of Durham, England (Received 5 February 2021; accepted 5 March 2021; online 9 March 2021)

The title compounds, 8-{1-[3-(cyclo­pent-1-en-1-yl)benz­yl]piperidin-4-yl}-2-meth­oxy­quinoline, C27H30N2O (I), and 8-{4-[3-(cyclo­pent-1-en-1-yl)benz­yl]piperazin-1-yl}-2-meth­oxy­quinoline, C26H29N3O (II), differ only in the nature of the central six-membered ring: piperidine in I and piperazine in II. They are isoelectronic (CH cf. N) and isotypic; they both crystallize in the triclinic space group P[\overline{1}] with very similar unit-cell parameters. Both mol­ecules have a curved shape and very similar conformations. In the biaryl group, the phenyl ring is inclined to the cyclo­pentene mean plane (r.m.s. deviations = 0.089 Å for I and 0.082 Å for II) by 15.83 (9) and 13.82 (6)° in I and II, respectively, and by 67.68 (6) and 69.47 (10)°, respectively, to the mean plane of the quinoline moiety (r.m.s. deviations = 0.034 Å for I and 0.038 Å for II). The piperazine ring in I and the piperidine ring in II have chair conformations. In the crystals of both compounds, mol­ecules are linked by C—H⋯π inter­actions, forming chains in I and ribbons in II, both propagating along the b-axis direction. The principal contributions to the overall Hirshfeld surfaces involve H⋯H contacts at 67.5 and 65.9% for I and II, respectively. The major contribution to the inter­molecular inter­actions in the crystals is from dispersion forces (Edis), reflecting the absence of classical hydrogen bonds.

1. Chemical context

Compounds combining dopamine D2 receptor blockade with serotonin 5-HT1A receptor activation rather than antagonism for the treatment of Schizophrenia have been developed by a number of researchers (Newman-Tancredi et al., 2007[Newman-Tancredi, A., Cussac, D. & Depoortere, R. (2007). Curr. Opin. Investig. Drugs, 8, 539-554.]; Jones & McCreary, 2008[Jones, C. A. & McCreary, A. C. (2008). Neuropharmacology, 55, 1056-1065.]). One such drug, Adoprazine(c), was found to combine both dopamine D2 antagonist (blockade) and serotonin 5-HT1A agonist (activation) properties (Feenstra et al., 2001[Feenstra, R. W., de Moes, J., Hofma, J. J., Kling, H., Kuipers, W., Long, S. K., Tulp, M. T. M., van der Heyden, J. A. M. & Kruse, C. G. (2001). Bioorg. Med. Chem. Lett. 11, 2345-2349.], 2006[Feenstra, R. W., van den Hoogenband, A., Stroomer, C. N. J., van Stuivenberg, H. H., Tulp, M. T. M., Long, S. K., van der Heyden, J. A. M. & Kruse, C. G. (2006). Chem. Pharm. Bull. 54, 1326-1330.]). A similar compound structurally, Bifeprunox(c), is a partial agonist at dopamine D2 receptors in vitro, and shows serotonin 5-HT1A agonist properties (Newman-Tancredi et al., 2005[Newman-Tancredi, A., Assié, M.-B., Leduc, N., Ormière, A.-M., Danty, N. & Cosi, C. (2005). Int. J. Neuropsychopharmacol. 8, 341-356.]; Cosi et al., 2006[Cosi, C., Carilla-Durand, E., Assié, M.-B., Ormiere, A. M., Maraval, M., Leduc, N. & Newman-Tancredi, A. (2006). Eur. J. Pharmacol. 535, 135-144.]). Unfortunately, development of Adoprazine(c) was stopped at the Phase II clinical trials for insufficient therapeutical efficacy, and the FDA refused a licence for Bifeprunox(c) for the same reason.

Ullah and collaborators have synthesized a series of compounds that are analogues of Adoprazine(c) and Bifeprunox(c) (Ullah, 2012[Ullah, N. (2012). Z. Naturforsch. Teil B, 67, 75-84.], 2014a[Ullah, N. (2014a). Med. Chem. 10, 484-496.],b[Ullah, N. (2014b). J. Enzyme Inhib. Med. Chem. 29, 281-291.]; Ullah & Al-Shaheri, 2012[Ullah, N. & Al-Shaheri, A. A. Q. (2012). Z. Naturforsch. Teil B, 67, 253-262.]). They have examined rat-cloned dopamine D2 and human-cloned serotonin 5-HT1A receptor properties of more than forty compounds (Ghani et al., 2014[Ghani, U., Ullah, N., Ali, S. A. & Al-Muallem, H. A. (2014). Asian J. Chem. 26, 8258-8362.]; Ullah, 2014a[Ullah, N. (2014a). Med. Chem. 10, 484-496.],b[Ullah, N. (2014b). J. Enzyme Inhib. Med. Chem. 29, 281-291.]), including the title compounds, 8-{1-[3-(cyclo­pent-1-en-1-yl)benz­yl]piperidin-4-yl}-2-meth­oxy­quinoline (I) and 8-{4-[3-(cyclo­pent-1-en-1-yl)benz­yl]piperazin-1-yl}-2-meth­oxy­quinoline (II). The D2 receptor binding assay of compounds I and II gave Ki = 524 nM for I and 12.2 nM for II. In the 5-HT1A receptor binding assay, Ki = 2.13 nM for I and 0.97 nM for II (Ghani et al., 2014[Ghani, U., Ullah, N., Ali, S. A. & Al-Muallem, H. A. (2014). Asian J. Chem. 26, 8258-8362.]). Replacing the piperidine ring in I with a piperazine ring in II, also present in Adoprazine(c) and Bifeprunox(c), has a significant effect and appears to be favourable for higher binding affinity.

[Scheme 1]

The crystal structure of II is compared to that of 8-[4-([1,1′-biphen­yl]-3-ylmeth­yl)piperazin-1-yl]-2-meth­oxy­quinoline (III), where the 3-(cyclo­pent-1-en-1-yl)benzyl unit in II has been replaced by a 1,1′-biphenyl unit in III (Ullah & Altaf, 2014[Ullah, N. & Altaf, M. (2014). Crystallogr. Rep. 59, 1057-1062.]).

2. Structural commentary

The mol­ecular structures of compounds I and II are shown in Figs. 1[link] and 2[link], respectively. They have very similar conformations, as illustrated by the view of their structural overlap, shown in Fig. 3[link]. Both compounds crystallize in the triclinic space group P[\overline{1}] with very similar unit-cell parameters in spite of replacing the piperidine ring in I with a piperazine ring in II; they are isotypic and isoelectronic (CH cf. N). Both mol­ecules have a curved shape, and the piperidine ring (C = N2/C10–C14) in I and the piperazine ring (C′ = N2/N3/C10–C13) in II have chair conformations.

[Figure 1]
Figure 1
A view of the mol­ecular structure of I, with atom labelling. The displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
A view of the mol­ecular structure of II, with atom labelling. The displacement ellipsoids are drawn at the 50% probability level.
[Figure 3]
Figure 3
A view of the structural overlap of compounds I and II (red); r.m.s. deviation 0.002 Å (Mercury; Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]). The O and N atoms are shown as balls.

In the biaryl group, the phenyl ring (D = C16–C21 in I and C15–C20 in II) is inclined to the cyclo­pentene ring mean plane (E = C22–C26, r.m.s. deviation = 0.089 Å for I and E = C21–C25, r.m.s. deviation = 0.082 Å for II) by 15.83 (9) and 13.82 (16)°, respectively. The same ring D is inclined to the mean plane of the quinoline moiety (r.m.s. deviation = 0.034 Å for I and 0.038 Å for II) by 67.68 (6) and 69.47 (10)°, respectively. In the cyclo­pentene rings, the double bonds C22=C26 in I and C21=C25 in II are 1.381 (2) and 1.365 (4) Å, respectively, while bonds C22—C23 and C21—C22 are 1.450 (2) and 1.457 (4) Å, respectively. These values fall within the limits of those observed for the structures of 40 compounds in the Cambridge Structural Database (CSD, Version 5.42, last update February 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), viz. C=C varies from ca 1.268 to 1.417 Å, while the adjacent substituted C—C bond varies from ca 1.391 to 1.534 Å (see supporting information file S1).

In compound III, the 3-(cyclo­pent-1-en-1-yl)benzyl unit in II has been replaced by a 1,1′-biphenyl group (supporting information file S2; Fig. S1). The conformation of the mol­ecules differs considerably, as illustrated in the view of their structural overlap (Fig. 4[link]). The mol­ecule has an S-shape and torsion angles C12—N3—C14—C15 and N3—C14—C15—C16 are, respectively, −172.77 (16) and 61.9 (3)°, compared to −67.4 (3) and −43.2 (3) ° in II. As in II, the central piperazine ring (C′) has a chair conformation. The two rings of the biphenyl unit (rings D and E′) are relatively coplanar with a dihedral angle of 3.84 (12)°. Phenyl ring D is inclined to the mean plane of the quinoline ring system(r.m.s. deviation = 0.021 Å) by 68.94 (10)°, compared to 69.47 (10)° in II.

[Figure 4]
Figure 4
A view of the structural overlap of compounds II (red) and III (blue; Ullah & Altaf, 2014[Ullah, N. & Altaf, M. (2014). Crystallogr. Rep. 59, 1057-1062.]); r.m.s. deviation 0.071 Å (Mercury; Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]). The O and N atoms are shown as balls.

3. Supra­molecular features

In the crystals of I and II, mol­ecules are linked by C—H⋯π inter­actions (Tables 1[link] and 2[link], respectively). In I, a single C—H⋯π inter­action links the mol­ecules, forming chains propagating along the b-axis direction (Fig. 5[link]). In II, two C—H⋯π inter­actions link the mol­ecules, forming ribbons propagating along the b-axis direction (Fig. 6[link]). There are no other significant directional inter-atomic contacts present in either crystal structure.

Table 1
Hydrogen-bond geometry (Å, °) for I[link]

CgB is the centroid of ring C4–C9.

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯CgBi 0.95 2.97 3.661 (2) 131
Symmetry code: (i) x, y+1, z.

Table 2
Hydrogen-bond geometry (Å, °) for II[link]

CgB is the centroid of ring C4-C9.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13B⋯CgBi 0.99 2.95 3.757 (3) 140
C17—H17⋯CgBii 0.95 2.93 3.602 (3) 129
Symmetry codes: (i) [-x, -y, -z]; (ii) x, y+1, z.
[Figure 5]
Figure 5
A view along the a axis of the crystal packing of I. The C—H⋯π inter­actions are shown as dashed lines (see Table 1[link]). Only the H atoms involved in these inter­actions have been included.
[Figure 6]
Figure 6
A view along the a axis of the crystal packing of II. The C—H⋯π inter­actions are shown as dashed lines (see Table 2[link]). Only the H atoms involved in these inter­actions have been included.

In the crystal of III, mol­ecules are linked by C—H⋯O hydrogen bonds, forming chains along the [100] direction. The chains are linked by two C—H⋯π inter­actions, forming slabs lying parallel to the ab plane (supporting information file S2; Table S1 and Fig. S2). Here too, there are no other significant directional inter-atomic contacts present in the crystal structure.

4. Hirshfeld surface analysis and two-dimensional fingerprint plots

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were performed with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net]) following the protocol of Tiekink and collaborators (Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]).

The Hirshfeld surfaces are colour-mapped with the normalized contact distance, dnorm, varying from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii). The Hirshfeld surfaces (HS) of I, II and III mapped over dnorm are given in Fig. 7[link]. The most significant short contacts in the crystal structures of all three compounds are given in Table 3[link]. It is evident from the small red spots in Fig. 7[link]a and b that there are only weak contacts present in the crystals of compounds I and II. The slightly larger red spots in Fig. 7[link]c concern the Car—H⋯Ometh­oxy hydrogen bonds in the crystal structure of III (supporting information Table S2).

Table 3
Table 3[link]. Short contacts (Å) in the crystal structures of compounds I, II and IIIa

Atom1 Atom2 Length Length − VdW Symm. op. 1 Symm. op. 2
I          
H11B H11B 2.187 −0.213 x, y, z 1 − x, 1 − y, −z
C9 H19 2.827 −0.073 x, y, z x, −1 + y, z
H2 C19 2.834 −0.066 x, y, z −1 + x, −1 + y, z
C3 H11A 2.843 −0.057 x, y, z −1 + x, y, z
C2 H11A 2.865 −0.035 x, y, z −1 + x, y, z
H2 C20 2.904 0.004 x, y, z −1 + x, −1 + y, z
           
II          
H10A H10A 2.076 −0.324 x, y, z 1 − x, −y, −z
H2 C18 2.824 −0.076 x, y, z −1 + x, −1 + y, z
C8 H18 2.824 −0.076 x, y, z x, −1 + y, z
C9 H18 2.867 −0.033 x, y, z x, −1 + y, z
C10 H10A 2.866 −0.034 x, y, z 1 − x, −y, −z
C3 H10B 2.878 −0.022 x, y, z −1 + x, y, z
C1 C11 3.403 0.003 x, y, z −1 + x, y, z
           
IIIa          
O1 H24 2.514 −0.206 x, y, z −1 + x, y, z
C4 H27B 2.741 −0.159 x, y, z x, −1 + y, z
C21 H5 2.826 −0.074 x, y, z 2 − x, 1 − y, 2 − z
H12A C27 2.845 −0.055 x, y, z [{3\over 2}] − x, −[{1\over 2}] + y, [{3\over 2}] − z
O1 H14B 2.722 0.002 x, y, z [{3\over 2}] − x, −[{1\over 2}] + y, [{3\over 2}] − z
Note: (a) Ullah & Altaf (2014[Ullah, N. & Altaf, M. (2014). Crystallogr. Rep. 59, 1057-1062.]).
[Figure 7]
Figure 7
The Hirshfeld surfaces of compounds (a) I, (b) II and (c) III, mapped over dnorm in the colour ranges of −0.1177 to 1.5125, −0.2113 to 1.3756 and −0.1475 to 1.8614 au., respectively.

The percentage contributions of inter-atomic contacts to the HS for all three compounds are compared in Table 4[link]. The two-dimensional fingerprint plots for compounds I, II and III are shown in Fig. 8[link]. They reveal, as expected in the absence of classical hydrogen bonds, that the principal contributions to the overall HS surface involve H⋯H contacts at 67.5, 65.9 and 58.2%, respectively.

Table 4
Principal percentage contributions of inter-atomic contacts to the Hirshfeld surfaces of I, II and IIIa

Contact I II IIIa
H⋯H 67.5 65.9 58.2
C⋯H/H⋯C 25.2 25.8 33.6
O⋯H/H⋯O 4.5 4.5 4.5
N⋯H/H⋯N 2.5 3.5 2.1
C⋯C 0.2 0.2 0.2
C⋯N 0 0 1.3
C⋯O 0.1 0.1 0.1
Note: (a) Ullah & Altaf (2014[Ullah, N. & Altaf, M. (2014). Crystallogr. Rep. 59, 1057-1062.]).
[Figure 8]
Figure 8
The full two-dimensional fingerprint plots for compounds (a) I, (b) II and (c) III, and those delineated into H⋯H, C⋯H/H⋯C, O⋯H/H⋯O and N⋯H/H⋯N contacts.

The second most important contribution to the HS is from the C⋯H/H⋯C contacts at 25.2, 25.8 and 33.6%, for I, II and III, respectively, which are related to the presence of C—H⋯π inter­actions (see Tables 1[link], 2[link] and S1). These are followed by O⋯H/H⋯O contacts at 4.5% for each compound. These two contributions are particularly significant for III, as indicated by the pair of sharp spikes for the delineated C⋯H/H⋯C and O⋯H/H⋯O contacts shown in Fig. 8[link]c.

The N⋯H/H⋯N contacts contribute, respectively, 2.5, 3.5 and 2.1%. The C⋯N contacts contribute even less; 1.3% in III but 0% in I and II. The C⋯C and C⋯O contacts contribute very little for all three structures.

The fact that compounds I and II are isoelectronic and isotypic is reflected in their almost identical Hirshfeld surfaces (Fig. 7[link]a and b), contributions of the inter-atomic contacts to the HS (Table 4[link]), fingerprint plots (Fig. 8[link]a and b), and energy frameworks (Fig. 9[link]a and b).

[Figure 9]
Figure 9
The energy frameworks calculated for (a) I and (b) II, both viewed along the b axis direction, and (c) III, viewed along the a-axis direction, showing the electrostatic potential forces (Eele), the dispersion forces (Edis) and the total energy diagrams (Etot).

5. Energy frameworks

A comparison of the energy frameworks calculated for I, II and III, showing the electrostatic potential forces (Eele), the dispersion forces (Edis) and the total energy diagrams (Etot), are shown in Fig. 9[link]. The energies were obtained by using the wave function at the HF/3-2IG level of theory. The cylindrical radii are proportional to the relative strength of the corres­ponding energies (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net]; Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]). They have been adjusted to the same scale factor of 80 with a cut-off value of 5 kJ mol−1 within a radius of 6 Å of a central reference mol­ecule. It can be seen that for all three compounds, the major contribution to the inter­molecular inter­actions is from dispersion forces (Edis), reflecting the absence of classical hydrogen bonds in the crystals.

The colour-coded inter­action mappings within a radius of 6 Å of a central reference mol­ecule for all three compounds are given in the supporting information file S3. Full details of the various contributions to the total energy (Etot) are also included there.

6. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, last update February 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 2-meth­oxy­quinolines gave 53 hits. In the majority of cases, the meth­oxy group (atoms Car–O–C) lies close to the mean plane of the quinoline ring, with dihedral angles varying from 0 to ca 8.51°. In compounds I, II and III the same dihedral angles are 7.24 (16), 7.1 (2) and 1.98 (19)°, respectively. A search for 2-meth­oxy­quinolines with a piperidine or piperazine ring in the 8-position gave only one hit, viz. for compound III (CSD refcode: AKUXIQ; Ullah & Altaf, 2014[Ullah, N. & Altaf, M. (2014). Crystallogr. Rep. 59, 1057-1062.]).

7. Synthesis and crystallization

The synthesis of compounds I, II and III have been reported [I (Ullah & Al-Shaheri, 2012[Ullah, N. & Al-Shaheri, A. A. Q. (2012). Z. Naturforsch. Teil B, 67, 253-262.]), compound 3e in that paper; II and III (Ullah, 2012[Ullah, N. (2012). Z. Naturforsch. Teil B, 67, 75-84.]), compounds 3e and 3a, respectively, in that paper]. Colourless crystals of I and II were obtained by slow evaporation of solutions in di­chloro­methane and methanol; ratios (8:3) and (8.5:1.5), respectively.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. For both compounds, the C-bound H atoms were included in calculated positions and refined as riding on the parent atom: C—H = 0.95–0.99 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and Uiso(H) = 1.2Ueq(C) for other H atoms.

Table 5
Experimental details

  I II
Crystal data
Chemical formula C27H30N2O C26H29N3O
Mr 398.53 399.52
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 173 173
a, b, c (Å) 7.7099 (7), 11.2838 (10), 12.9539 (13) 7.9142 (8), 10.9051 (13), 12.8896 (14)
α, β, γ (°) 89.413 (8), 79.094 (7), 82.270 (7) 87.271 (9), 79.290 (8), 82.206 (9)
V3) 1096.41 (18) 1082.7 (2)
Z 2 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.07 0.08
Crystal size (mm) 0.45 × 0.37 × 0.25 0.45 × 0.40 × 0.19
 
Data collection
Diffractometer Stoe IPDS 2 Stoe IPDS 2
Absorption correction Multi-scan (MULABS; Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) Multi-scan (MULABS; Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.])
Tmin, Tmax 0.897, 1.000 0.793, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 14097, 4138, 2585 11304, 4088, 2187
Rint 0.038 0.080
(sin θ/λ)max−1) 0.609 0.610
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.084, 0.83 0.056, 0.121, 0.90
No. of reflections 4138 4088
No. of parameters 273 273
No. of restraints 0 1
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.31, −0.19 0.28, −0.17
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2009[Stoe & Cie. (2009). X-AREA & X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.], Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA (Stoe & Cie, 2009); data reduction: X-RED32 (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2020) and Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

8-{1-[3-(Cyclopent-1-en-1-yl)benzyl]piperidin-4-yl}-2-methoxyquinoline (I) top
Crystal data top
C27H30N2OZ = 2
Mr = 398.53F(000) = 428
Triclinic, P1Dx = 1.207 Mg m3
a = 7.7099 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.2838 (10) ÅCell parameters from 8113 reflections
c = 12.9539 (13) Åθ = 1.6–26.1°
α = 89.413 (8)°µ = 0.07 mm1
β = 79.094 (7)°T = 173 K
γ = 82.270 (7)°Block, colourless
V = 1096.41 (18) Å30.45 × 0.37 × 0.25 mm
Data collection top
STOE IPDS 2
diffractometer
4138 independent reflections
Radiation source: fine-focus sealed tube2585 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.038
φ + ω scansθmax = 25.6°, θmin = 1.8°
Absorption correction: multi-scan
(MULABS; Spek, 2020)
h = 99
Tmin = 0.897, Tmax = 1.000k = 1313
14097 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0484P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.83(Δ/σ)max < 0.001
4138 reflectionsΔρmax = 0.31 e Å3
273 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: (SHELXL2018/3; Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0094 (16)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.31520 (16)0.30564 (11)0.39378 (9)0.0592 (3)
N10.09673 (16)0.31466 (10)0.24743 (9)0.0366 (3)
N20.39949 (15)0.61267 (9)0.18470 (8)0.0279 (3)
C10.2350 (2)0.26704 (14)0.29519 (13)0.0446 (4)
C20.3120 (2)0.17738 (15)0.25111 (16)0.0533 (5)
H20.4097400.1437210.2908140.064*
C30.2430 (2)0.14117 (14)0.15136 (16)0.0514 (5)
H30.2934070.0819580.1196240.062*
C40.0953 (2)0.19087 (12)0.09322 (13)0.0398 (4)
C50.0161 (2)0.15780 (13)0.01128 (13)0.0445 (4)
H50.0653660.1020910.0478700.053*
C60.1305 (2)0.20515 (13)0.06017 (13)0.0429 (4)
H60.1825210.1829770.1309420.051*
C70.2054 (2)0.28677 (12)0.00641 (11)0.0361 (3)
H70.3092980.3175640.0414400.043*
C80.13307 (19)0.32336 (11)0.09513 (11)0.0303 (3)
C90.02281 (19)0.27612 (11)0.14589 (11)0.0338 (3)
C100.21444 (18)0.40881 (11)0.15518 (10)0.0291 (3)
H100.1919570.3849320.2305970.035*
C110.41514 (18)0.40490 (11)0.12068 (11)0.0322 (3)
H11A0.4742510.3223240.1267940.039*
H11B0.4429080.4280670.0460580.039*
C120.48648 (19)0.48939 (11)0.18812 (11)0.0323 (3)
H12A0.4670980.4620370.2617620.039*
H12B0.6164500.4869660.1630340.039*
C130.20593 (18)0.61870 (12)0.21814 (11)0.0323 (3)
H13A0.1496840.7023280.2136740.039*
H13B0.1784610.5943160.2924390.039*
C140.12757 (19)0.53857 (11)0.15092 (11)0.0332 (3)
H14A0.1476020.5659160.0772840.040*
H14B0.0025950.5436820.1767200.040*
C150.47093 (19)0.68831 (11)0.25299 (10)0.0310 (3)
H15A0.6023930.6783910.2317620.037*
H15B0.4421300.6603630.3261540.037*
C160.40022 (18)0.81994 (11)0.25048 (10)0.0289 (3)
C170.38518 (19)0.87725 (12)0.15602 (11)0.0339 (3)
H170.4169420.8331370.0915940.041*
C180.3239 (2)0.99862 (12)0.15611 (11)0.0371 (4)
H180.3140631.0372130.0915450.045*
C190.27704 (19)1.06377 (12)0.24901 (11)0.0352 (3)
H190.2349291.1467600.2477120.042*
C200.29069 (18)1.00935 (11)0.34499 (11)0.0303 (3)
C210.35196 (18)0.88669 (11)0.34328 (10)0.0296 (3)
H210.3607820.8478430.4078590.036*
C220.24386 (19)1.07783 (13)0.44478 (11)0.0353 (3)
C230.2242 (2)1.02292 (14)0.54733 (12)0.0479 (4)
H23A0.3394770.9787960.5576190.057*
H23B0.1355860.9660880.5537960.057*
C240.1619 (2)1.12327 (15)0.62848 (13)0.0535 (5)
H24A0.2341421.1149060.6843690.064*
H24B0.0351061.1226680.6611470.064*
C250.1867 (3)1.23818 (16)0.56826 (15)0.0723 (6)
H25A0.0783701.2976500.5856030.087*
H25B0.2892651.2733370.5849980.087*
C260.2204 (2)1.20096 (14)0.45501 (13)0.0526 (5)
H260.2250711.2546550.3978960.063*
C270.2468 (3)0.40355 (19)0.43470 (14)0.0682 (6)
H27C0.3213350.4297850.5026370.102*
H27B0.2481480.4699810.3853970.102*
H27A0.1242840.3778440.4440350.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0465 (7)0.0720 (8)0.0567 (8)0.0146 (6)0.0006 (6)0.0222 (6)
N10.0313 (7)0.0348 (6)0.0441 (8)0.0057 (5)0.0078 (6)0.0124 (6)
N20.0288 (6)0.0232 (5)0.0319 (6)0.0030 (5)0.0068 (5)0.0030 (5)
C10.0350 (9)0.0479 (9)0.0511 (10)0.0067 (7)0.0087 (8)0.0216 (8)
C20.0372 (10)0.0484 (10)0.0812 (14)0.0197 (8)0.0207 (9)0.0316 (9)
C30.0460 (10)0.0363 (9)0.0805 (13)0.0133 (8)0.0292 (10)0.0149 (8)
C40.0372 (9)0.0248 (7)0.0633 (11)0.0061 (6)0.0240 (8)0.0107 (7)
C50.0550 (11)0.0267 (7)0.0599 (11)0.0050 (7)0.0318 (9)0.0018 (7)
C60.0550 (11)0.0321 (8)0.0446 (9)0.0025 (7)0.0190 (8)0.0044 (7)
C70.0442 (9)0.0273 (7)0.0384 (8)0.0051 (6)0.0115 (7)0.0012 (6)
C80.0343 (8)0.0212 (6)0.0366 (8)0.0025 (6)0.0112 (6)0.0035 (6)
C90.0359 (9)0.0242 (7)0.0433 (9)0.0029 (6)0.0138 (7)0.0081 (6)
C100.0339 (8)0.0239 (7)0.0295 (7)0.0046 (6)0.0054 (6)0.0016 (5)
C110.0334 (8)0.0235 (7)0.0387 (8)0.0013 (6)0.0064 (6)0.0022 (6)
C120.0305 (8)0.0268 (7)0.0390 (8)0.0003 (6)0.0074 (6)0.0005 (6)
C130.0297 (8)0.0267 (7)0.0388 (8)0.0008 (6)0.0038 (6)0.0035 (6)
C140.0307 (8)0.0258 (7)0.0433 (8)0.0026 (6)0.0081 (7)0.0019 (6)
C150.0365 (8)0.0280 (7)0.0298 (7)0.0045 (6)0.0092 (6)0.0019 (6)
C160.0291 (8)0.0269 (7)0.0327 (7)0.0069 (6)0.0083 (6)0.0023 (6)
C170.0397 (9)0.0324 (7)0.0311 (8)0.0066 (6)0.0094 (6)0.0036 (6)
C180.0451 (9)0.0324 (8)0.0381 (8)0.0083 (7)0.0170 (7)0.0053 (6)
C190.0373 (9)0.0262 (7)0.0454 (9)0.0049 (6)0.0159 (7)0.0001 (6)
C200.0250 (7)0.0295 (7)0.0379 (8)0.0059 (6)0.0080 (6)0.0051 (6)
C210.0295 (8)0.0292 (7)0.0319 (8)0.0066 (6)0.0083 (6)0.0010 (6)
C220.0297 (8)0.0356 (8)0.0416 (8)0.0007 (6)0.0113 (7)0.0080 (6)
C230.0545 (11)0.0502 (10)0.0390 (9)0.0037 (8)0.0108 (8)0.0090 (7)
C240.0506 (11)0.0626 (11)0.0459 (10)0.0050 (9)0.0063 (8)0.0198 (8)
C250.0945 (16)0.0519 (11)0.0676 (13)0.0138 (11)0.0228 (12)0.0270 (10)
C260.0671 (12)0.0368 (9)0.0506 (10)0.0005 (8)0.0076 (9)0.0114 (7)
C270.0631 (13)0.0942 (15)0.0441 (10)0.0159 (12)0.0017 (9)0.0036 (10)
Geometric parameters (Å, º) top
O1—C11.358 (2)C13—H13B0.9900
O1—C271.433 (2)C14—H14A0.9900
N1—C11.3060 (19)C14—H14B0.9900
N1—C91.3804 (19)C15—C161.5140 (18)
N2—C151.4631 (16)C15—H15A0.9900
N2—C121.4649 (16)C15—H15B0.9900
N2—C131.4656 (17)C16—C211.3873 (18)
C1—C21.416 (2)C16—C171.3951 (18)
C2—C31.346 (2)C17—C181.3873 (19)
C2—H20.9500C17—H170.9500
C3—C41.420 (2)C18—C191.379 (2)
C3—H30.9500C18—H180.9500
C4—C51.407 (2)C19—C201.3966 (19)
C4—C91.416 (2)C19—H190.9500
C5—C61.360 (2)C20—C211.4001 (18)
C5—H50.9500C20—C221.4721 (19)
C6—C71.405 (2)C21—H210.9500
C6—H60.9500C22—C261.381 (2)
C7—C81.3723 (19)C22—C231.450 (2)
C7—H70.9500C23—C241.518 (2)
C8—C91.424 (2)C23—H23A0.9900
C8—C101.5137 (19)C23—H23B0.9900
C10—C111.5220 (19)C24—C251.522 (3)
C10—C141.5310 (18)C24—H24A0.9900
C10—H101.0000C24—H24B0.9900
C11—C121.5214 (19)C25—C261.495 (2)
C11—H11A0.9900C25—H25A0.9900
C11—H11B0.9900C25—H25B0.9900
C12—H12A0.9900C26—H260.9500
C12—H12B0.9900C27—H27C0.9800
C13—C141.5175 (19)C27—H27B0.9800
C13—H13A0.9900C27—H27A0.9800
C1—O1—C27116.01 (13)C10—C14—H14A109.6
C1—N1—C9117.41 (13)C13—C14—H14B109.6
C15—N2—C12109.07 (10)C10—C14—H14B109.6
C15—N2—C13110.40 (10)H14A—C14—H14B108.1
C12—N2—C13110.58 (10)N2—C15—C16114.10 (11)
N1—C1—O1119.14 (15)N2—C15—H15A108.7
N1—C1—C2124.76 (16)C16—C15—H15A108.7
O1—C1—C2116.10 (15)N2—C15—H15B108.7
C3—C2—C1118.13 (16)C16—C15—H15B108.7
C3—C2—H2120.9H15A—C15—H15B107.6
C1—C2—H2120.9C21—C16—C17118.61 (12)
C2—C3—C4120.47 (16)C21—C16—C15119.97 (12)
C2—C3—H3119.8C17—C16—C15121.41 (12)
C4—C3—H3119.8C18—C17—C16120.03 (13)
C5—C4—C9119.15 (14)C18—C17—H17120.0
C5—C4—C3123.76 (15)C16—C17—H17120.0
C9—C4—C3117.07 (15)C19—C18—C17120.64 (13)
C6—C5—C4120.36 (14)C19—C18—H18119.7
C6—C5—H5119.8C17—C18—H18119.7
C4—C5—H5119.8C18—C19—C20120.86 (13)
C5—C6—C7120.26 (15)C18—C19—H19119.6
C5—C6—H6119.9C20—C19—H19119.6
C7—C6—H6119.9C19—C20—C21117.63 (12)
C8—C7—C6122.03 (15)C19—C20—C22121.62 (12)
C8—C7—H7119.0C21—C20—C22120.75 (12)
C6—C7—H7119.0C16—C21—C20122.23 (12)
C7—C8—C9117.94 (13)C16—C21—H21118.9
C7—C8—C10122.77 (13)C20—C21—H21118.9
C9—C8—C10119.28 (12)C26—C22—C23110.50 (13)
N1—C9—C4122.07 (14)C26—C22—C20125.83 (14)
N1—C9—C8117.72 (13)C23—C22—C20123.61 (13)
C4—C9—C8120.20 (14)C22—C23—C24106.97 (14)
C8—C10—C11114.28 (11)C22—C23—H23A110.3
C8—C10—C14112.62 (11)C24—C23—H23A110.3
C11—C10—C14108.35 (11)C22—C23—H23B110.3
C8—C10—H10107.1C24—C23—H23B110.3
C11—C10—H10107.1H23A—C23—H23B108.6
C14—C10—H10107.1C23—C24—C25105.45 (14)
C12—C11—C10110.69 (11)C23—C24—H24A110.7
C12—C11—H11A109.5C25—C24—H24A110.7
C10—C11—H11A109.5C23—C24—H24B110.7
C12—C11—H11B109.5C25—C24—H24B110.7
C10—C11—H11B109.5H24A—C24—H24B108.8
H11A—C11—H11B108.1C26—C25—C24104.67 (14)
N2—C12—C11111.93 (11)C26—C25—H25A110.8
N2—C12—H12A109.2C24—C25—H25A110.8
C11—C12—H12A109.2C26—C25—H25B110.8
N2—C12—H12B109.2C24—C25—H25B110.8
C11—C12—H12B109.2H25A—C25—H25B108.9
H12A—C12—H12B107.9C22—C26—C25110.74 (15)
N2—C13—C14111.93 (11)C22—C26—H26124.6
N2—C13—H13A109.2C25—C26—H26124.6
C14—C13—H13A109.2O1—C27—H27C109.5
N2—C13—H13B109.2O1—C27—H27B109.5
C14—C13—H13B109.2H27C—C27—H27B109.5
H13A—C13—H13B107.9O1—C27—H27A109.5
C13—C14—C10110.27 (11)H27C—C27—H27A109.5
C13—C14—H14A109.6H27B—C27—H27A109.5
C9—N1—C1—O1177.72 (13)C13—N2—C12—C1157.05 (14)
C9—N1—C1—C21.3 (2)C10—C11—C12—N257.40 (15)
C27—O1—C1—N14.3 (2)C15—N2—C13—C14178.41 (11)
C27—O1—C1—C2174.73 (14)C12—N2—C13—C1457.62 (14)
N1—C1—C2—C32.6 (2)N2—C13—C14—C1058.07 (15)
O1—C1—C2—C3176.38 (14)C8—C10—C14—C13176.30 (12)
C1—C2—C3—C40.9 (2)C11—C10—C14—C1356.28 (15)
C2—C3—C4—C5179.87 (15)C12—N2—C15—C16176.08 (11)
C2—C3—C4—C91.8 (2)C13—N2—C15—C1662.24 (15)
C9—C4—C5—C61.5 (2)N2—C15—C16—C21137.35 (13)
C3—C4—C5—C6176.80 (14)N2—C15—C16—C1743.88 (18)
C4—C5—C6—C70.6 (2)C21—C16—C17—C180.3 (2)
C5—C6—C7—C81.3 (2)C15—C16—C17—C18178.47 (14)
C6—C7—C8—C90.1 (2)C16—C17—C18—C190.1 (2)
C6—C7—C8—C10178.45 (13)C17—C18—C19—C200.2 (2)
C1—N1—C9—C41.77 (19)C18—C19—C20—C210.5 (2)
C1—N1—C9—C8177.04 (12)C18—C19—C20—C22179.07 (14)
C5—C4—C9—N1178.34 (13)C17—C16—C21—C200.7 (2)
C3—C4—C9—N13.28 (19)C15—C16—C21—C20178.14 (13)
C5—C4—C9—C82.9 (2)C19—C20—C21—C160.8 (2)
C3—C4—C9—C8175.50 (12)C22—C20—C21—C16178.83 (13)
C7—C8—C9—N1178.98 (12)C19—C20—C22—C2614.8 (2)
C10—C8—C9—N12.42 (18)C21—C20—C22—C26164.79 (15)
C7—C8—C9—C42.19 (18)C19—C20—C22—C23168.27 (15)
C10—C8—C9—C4176.41 (12)C21—C20—C22—C2312.2 (2)
C7—C8—C10—C1127.88 (18)C26—C22—C23—C246.9 (2)
C9—C8—C10—C11150.65 (12)C20—C22—C23—C24175.72 (14)
C7—C8—C10—C1496.33 (16)C22—C23—C24—C2512.1 (2)
C9—C8—C10—C1485.14 (15)C23—C24—C25—C2612.6 (2)
C8—C10—C11—C12177.56 (11)C23—C22—C26—C251.4 (2)
C14—C10—C11—C1255.98 (14)C20—C22—C26—C25175.90 (16)
C15—N2—C12—C11178.62 (11)C24—C25—C26—C229.0 (2)
Hydrogen-bond geometry (Å, º) top
CgB is the centroid of ring C4–C9.
D—H···AD—HH···AD···AD—H···A
C18—H18···CgBi0.952.973.661 (2)131
Symmetry code: (i) x, y+1, z.
8-{4-[3-(Cyclopent-1-en-1-yl)benzyl]piperazin-1-yl}-2-methoxyquinoline (II) top
Crystal data top
C26H29N3OZ = 2
Mr = 399.52F(000) = 428
Triclinic, P1Dx = 1.226 Mg m3
a = 7.9142 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.9051 (13) ÅCell parameters from 5129 reflections
c = 12.8896 (14) Åθ = 1.6–26.0°
α = 87.271 (9)°µ = 0.08 mm1
β = 79.290 (8)°T = 173 K
γ = 82.206 (9)°Plate, colourless
V = 1082.7 (2) Å30.45 × 0.40 × 0.19 mm
Data collection top
STOE IPDS 2
diffractometer
4088 independent reflections
Radiation source: fine-focus sealed tube2187 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.080
φ + ω scansθmax = 25.7°, θmin = 1.6°
Absorption correction: multi-scan
(MULABS; Spek, 2020)
h = 99
Tmin = 0.793, Tmax = 1.000k = 1313
11304 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.048P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.90(Δ/σ)max < 0.001
4088 reflectionsΔρmax = 0.28 e Å3
273 parametersΔρmin = 0.17 e Å3
1 restraintExtinction correction: (SHELXL2018/3; Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0086 (15)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3136 (2)0.18899 (19)0.38520 (16)0.0549 (6)
N10.0986 (2)0.18024 (19)0.23968 (17)0.0372 (5)
N20.2088 (2)0.09810 (17)0.14688 (15)0.0294 (5)
N30.3825 (2)0.10378 (18)0.18985 (15)0.0300 (5)
C10.2363 (3)0.2276 (2)0.2863 (2)0.0427 (7)
C20.3174 (3)0.3156 (3)0.2433 (3)0.0510 (8)
H20.4162460.3478200.2825980.061*
C30.2487 (3)0.3524 (3)0.1439 (3)0.0529 (8)
H30.3009370.4106990.1121400.063*
C40.0990 (3)0.3048 (2)0.0861 (2)0.0409 (7)
C50.0181 (4)0.3422 (2)0.0161 (2)0.0476 (7)
H50.0686080.3973630.0524710.057*
C60.1322 (4)0.2996 (2)0.0632 (2)0.0451 (7)
H60.1867150.3255690.1320450.054*
C70.2067 (3)0.2173 (2)0.0102 (2)0.0371 (6)
H70.3122810.1893110.0439110.045*
C80.1314 (3)0.1759 (2)0.08928 (19)0.0318 (6)
C90.0260 (3)0.2196 (2)0.1392 (2)0.0349 (6)
C100.3949 (3)0.0970 (2)0.11133 (19)0.0332 (6)
H10A0.4163980.0595100.0393960.040*
H10B0.4545290.1829760.1083900.040*
C110.4666 (3)0.0238 (2)0.1859 (2)0.0343 (6)
H11A0.4472820.0623450.2575280.041*
H11B0.5931160.0249470.1618680.041*
C120.1955 (3)0.1034 (2)0.22687 (19)0.0326 (6)
H12A0.1364380.1895350.2292070.039*
H12B0.1750820.0671280.2992880.039*
C130.1208 (3)0.0294 (2)0.1546 (2)0.0348 (6)
H13A0.0045020.0284110.1818730.042*
H13B0.1336040.0693340.0834200.042*
C140.4552 (3)0.1769 (2)0.25913 (19)0.0330 (6)
H14A0.5831810.1648050.2390810.040*
H14B0.4246700.1460220.3328040.040*
C150.3914 (3)0.3132 (2)0.25410 (19)0.0301 (6)
C160.3790 (3)0.3747 (2)0.1577 (2)0.0356 (6)
H160.4087530.3299330.0940360.043*
C170.3238 (3)0.5002 (2)0.1546 (2)0.0400 (7)
H170.3167550.5411600.0885550.048*
C180.2787 (3)0.5671 (2)0.2464 (2)0.0377 (6)
H180.2402960.6533060.2427790.045*
C190.2891 (3)0.5089 (2)0.3440 (2)0.0332 (6)
C200.3453 (3)0.3813 (2)0.34630 (19)0.0328 (6)
H200.3522360.3402090.4123300.039*
C210.2444 (3)0.5783 (2)0.4432 (2)0.0383 (6)
C220.2269 (4)0.5194 (3)0.5478 (2)0.0570 (8)
H22A0.3395970.4743840.5590380.068*
H22B0.1412300.4597750.5556610.068*
C230.1659 (4)0.6226 (3)0.6270 (2)0.0613 (9)
H23A0.0433280.6200570.6606530.074*
H23B0.2378170.6146000.6827910.074*
C240.1860 (5)0.7410 (3)0.5641 (3)0.0821 (11)
H24A0.2836980.7796440.5806560.098*
H24B0.0786920.8003260.5796630.098*
C250.2211 (4)0.7042 (3)0.4504 (3)0.0595 (8)
H250.2263010.7606840.3917740.071*
C260.2422 (4)0.0916 (3)0.4257 (2)0.0677 (10)
H26C0.3150150.0643090.4927730.102*
H26B0.2379220.0218770.3748660.102*
H26A0.1246410.1218970.4373270.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0422 (10)0.0650 (15)0.0550 (13)0.0133 (10)0.0015 (10)0.0136 (11)
N10.0304 (11)0.0367 (13)0.0449 (14)0.0063 (9)0.0091 (10)0.0088 (11)
N20.0300 (10)0.0256 (11)0.0329 (12)0.0053 (8)0.0051 (9)0.0015 (9)
N30.0299 (10)0.0270 (11)0.0339 (12)0.0045 (8)0.0062 (9)0.0046 (10)
C10.0364 (15)0.0389 (17)0.0523 (19)0.0057 (12)0.0106 (13)0.0166 (15)
C20.0345 (15)0.0446 (18)0.078 (2)0.0162 (13)0.0175 (15)0.0184 (17)
C30.0448 (16)0.0356 (17)0.087 (2)0.0114 (13)0.0326 (16)0.0077 (17)
C40.0406 (15)0.0266 (15)0.061 (2)0.0037 (12)0.0267 (14)0.0055 (14)
C50.0604 (18)0.0298 (16)0.061 (2)0.0014 (13)0.0353 (16)0.0038 (15)
C60.0587 (18)0.0335 (16)0.0455 (17)0.0027 (13)0.0208 (14)0.0048 (14)
C70.0440 (14)0.0301 (15)0.0383 (16)0.0041 (11)0.0106 (12)0.0025 (13)
C80.0397 (14)0.0217 (14)0.0360 (15)0.0039 (11)0.0129 (12)0.0018 (12)
C90.0367 (14)0.0255 (14)0.0439 (16)0.0004 (11)0.0156 (12)0.0071 (13)
C100.0296 (13)0.0285 (14)0.0397 (15)0.0029 (10)0.0013 (11)0.0051 (12)
C110.0302 (13)0.0325 (15)0.0396 (16)0.0016 (11)0.0064 (11)0.0022 (12)
C120.0283 (12)0.0285 (14)0.0397 (15)0.0014 (10)0.0032 (11)0.0050 (12)
C130.0338 (13)0.0267 (14)0.0438 (16)0.0025 (11)0.0076 (12)0.0005 (12)
C140.0379 (13)0.0317 (15)0.0303 (14)0.0050 (11)0.0074 (11)0.0024 (12)
C150.0297 (12)0.0262 (14)0.0363 (15)0.0058 (10)0.0086 (11)0.0046 (12)
C160.0419 (14)0.0340 (16)0.0332 (15)0.0062 (11)0.0113 (12)0.0023 (13)
C170.0487 (16)0.0367 (16)0.0388 (16)0.0092 (13)0.0184 (13)0.0087 (13)
C180.0388 (14)0.0277 (15)0.0500 (17)0.0053 (11)0.0159 (13)0.0008 (14)
C190.0266 (12)0.0329 (15)0.0418 (16)0.0071 (10)0.0073 (11)0.0070 (13)
C200.0339 (13)0.0350 (15)0.0319 (15)0.0091 (11)0.0095 (11)0.0009 (12)
C210.0369 (14)0.0375 (16)0.0418 (17)0.0018 (11)0.0113 (12)0.0086 (13)
C220.076 (2)0.051 (2)0.0433 (18)0.0013 (16)0.0137 (15)0.0124 (16)
C230.068 (2)0.063 (2)0.0516 (19)0.0022 (16)0.0085 (16)0.0237 (18)
C240.113 (3)0.054 (2)0.077 (3)0.010 (2)0.018 (2)0.029 (2)
C250.076 (2)0.0426 (19)0.054 (2)0.0021 (16)0.0013 (16)0.0145 (16)
C260.063 (2)0.087 (3)0.051 (2)0.0196 (19)0.0029 (16)0.0046 (19)
Geometric parameters (Å, º) top
O1—C11.367 (3)C13—H13A0.9900
O1—C261.430 (4)C13—H13B0.9900
N1—C11.302 (3)C14—C151.506 (3)
N1—C91.378 (3)C14—H14A0.9900
N2—C81.420 (3)C14—H14B0.9900
N2—C101.460 (3)C15—C201.395 (3)
N2—C131.468 (3)C15—C161.397 (3)
N3—C111.457 (3)C16—C171.380 (3)
N3—C141.466 (3)C16—H160.9500
N3—C121.468 (3)C17—C181.383 (3)
C1—C21.410 (4)C17—H170.9500
C2—C31.352 (4)C18—C191.394 (3)
C2—H20.9500C18—H180.9500
C3—C41.424 (4)C19—C201.403 (3)
C3—H30.9500C19—C211.477 (3)
C4—C51.407 (4)C20—H200.9500
C4—C91.421 (3)C21—C251.365 (4)
C5—C61.361 (4)C21—C221.457 (4)
C5—H50.9500C22—C231.524 (4)
C6—C71.404 (3)C22—H22A0.9900
C6—H60.9500C22—H22B0.9900
C7—C81.379 (3)C23—C241.502 (5)
C7—H70.9500C23—H23A0.9900
C8—C91.423 (3)C23—H23B0.9900
C10—C111.511 (3)C24—C251.504 (4)
C10—H10A0.9900C24—H24A0.9900
C10—H10B0.9900C24—H24B0.9900
C11—H11A0.9900C25—H250.9500
C11—H11B0.9900C26—H26C0.9800
C12—C131.508 (3)C26—H26B0.9800
C12—H12A0.9900C26—H26A0.9800
C12—H12B0.9900
C1—O1—C26116.1 (2)C12—C13—H13B109.4
C1—N1—C9117.0 (2)H13A—C13—H13B108.0
C8—N2—C10114.96 (19)N3—C14—C15113.2 (2)
C8—N2—C13113.51 (18)N3—C14—H14A108.9
C10—N2—C13109.68 (18)C15—C14—H14A108.9
C11—N3—C14110.95 (18)N3—C14—H14B108.9
C11—N3—C12108.63 (18)C15—C14—H14B108.9
C14—N3—C12110.84 (18)H14A—C14—H14B107.8
N1—C1—O1118.5 (2)C20—C15—C16118.5 (2)
N1—C1—C2125.8 (3)C20—C15—C14120.3 (2)
O1—C1—C2115.6 (2)C16—C15—C14121.2 (2)
C3—C2—C1117.3 (3)C17—C16—C15120.3 (2)
C3—C2—H2121.3C17—C16—H16119.9
C1—C2—H2121.3C15—C16—H16119.9
C2—C3—C4120.9 (3)C16—C17—C18120.9 (3)
C2—C3—H3119.5C16—C17—H17119.6
C4—C3—H3119.5C18—C17—H17119.6
C5—C4—C9119.8 (2)C17—C18—C19120.5 (2)
C5—C4—C3123.6 (3)C17—C18—H18119.8
C9—C4—C3116.5 (3)C19—C18—H18119.8
C6—C5—C4120.2 (3)C18—C19—C20118.1 (2)
C6—C5—H5119.9C18—C19—C21121.7 (2)
C4—C5—H5119.9C20—C19—C21120.2 (2)
C5—C6—C7120.1 (3)C15—C20—C19121.7 (2)
C5—C6—H6119.9C15—C20—H20119.1
C7—C6—H6119.9C19—C20—H20119.1
C8—C7—C6122.1 (2)C25—C21—C22110.7 (3)
C8—C7—H7119.0C25—C21—C19125.7 (3)
C6—C7—H7119.0C22—C21—C19123.6 (2)
C7—C8—N2123.2 (2)C21—C22—C23106.6 (3)
C7—C8—C9118.3 (2)C21—C22—H22A110.4
N2—C8—C9118.4 (2)C23—C22—H22A110.4
N1—C9—C4122.4 (2)C21—C22—H22B110.4
N1—C9—C8118.2 (2)C23—C22—H22B110.4
C4—C9—C8119.4 (2)H22A—C22—H22B108.6
N2—C10—C11110.24 (19)C24—C23—C22105.4 (3)
N2—C10—H10A109.6C24—C23—H23A110.7
C11—C10—H10A109.6C22—C23—H23A110.7
N2—C10—H10B109.6C24—C23—H23B110.7
C11—C10—H10B109.6C22—C23—H23B110.7
H10A—C10—H10B108.1H23A—C23—H23B108.8
N3—C11—C10110.41 (19)C23—C24—C25105.3 (3)
N3—C11—H11A109.6C23—C24—H24A110.7
C10—C11—H11A109.6C25—C24—H24A110.7
N3—C11—H11B109.6C23—C24—H24B110.7
C10—C11—H11B109.6C25—C24—H24B110.7
H11A—C11—H11B108.1H24A—C24—H24B108.8
N3—C12—C13110.67 (19)C21—C25—C24110.5 (3)
N3—C12—H12A109.5C21—C25—H25124.8
C13—C12—H12A109.5C24—C25—H25124.8
N3—C12—H12B109.5O1—C26—H26C109.5
C13—C12—H12B109.5O1—C26—H26B109.5
H12A—C12—H12B108.1H26C—C26—H26B109.5
N2—C13—C12111.01 (19)O1—C26—H26A109.5
N2—C13—H13A109.4H26C—C26—H26A109.5
C12—C13—H13A109.4H26B—C26—H26A109.5
N2—C13—H13B109.4
C9—N1—C1—O1178.8 (2)C12—N3—C11—C1059.9 (2)
C9—N1—C1—C20.1 (4)N2—C10—C11—N360.3 (3)
C26—O1—C1—N14.6 (3)C11—N3—C12—C1358.6 (2)
C26—O1—C1—C2174.5 (2)C14—N3—C12—C13179.3 (2)
N1—C1—C2—C31.6 (4)C8—N2—C13—C12173.4 (2)
O1—C1—C2—C3177.4 (2)C10—N2—C13—C1256.5 (3)
C1—C2—C3—C40.8 (4)N3—C12—C13—N257.6 (3)
C2—C3—C4—C5177.9 (3)C11—N3—C14—C15171.8 (2)
C2—C3—C4—C91.1 (4)C12—N3—C14—C1567.4 (3)
C9—C4—C5—C61.7 (4)N3—C14—C15—C20137.7 (2)
C3—C4—C5—C6175.0 (3)N3—C14—C15—C1643.2 (3)
C4—C5—C6—C70.5 (4)C20—C15—C16—C170.6 (3)
C5—C6—C7—C80.7 (4)C14—C15—C16—C17178.6 (2)
C6—C7—C8—N2176.5 (2)C15—C16—C17—C180.5 (4)
C6—C7—C8—C90.6 (4)C16—C17—C18—C190.4 (3)
C10—N2—C8—C719.3 (3)C17—C18—C19—C200.4 (3)
C13—N2—C8—C7108.1 (3)C17—C18—C19—C21179.0 (2)
C10—N2—C8—C9156.7 (2)C16—C15—C20—C190.6 (3)
C13—N2—C8—C975.9 (3)C14—C15—C20—C19178.6 (2)
C1—N1—C9—C42.0 (3)C18—C19—C20—C150.5 (3)
C1—N1—C9—C8175.7 (2)C21—C19—C20—C15178.9 (2)
C5—C4—C9—N1179.5 (2)C18—C19—C21—C2512.9 (4)
C3—C4—C9—N12.6 (3)C20—C19—C21—C25166.5 (3)
C5—C4—C9—C81.9 (3)C18—C19—C21—C22170.0 (2)
C3—C4—C9—C8175.1 (2)C20—C19—C21—C2210.7 (3)
C7—C8—C9—N1178.5 (2)C25—C21—C22—C237.0 (3)
N2—C8—C9—N12.4 (3)C19—C21—C22—C23175.5 (2)
C7—C8—C9—C40.7 (3)C21—C22—C23—C2411.4 (3)
N2—C8—C9—C4175.4 (2)C22—C23—C24—C2511.3 (4)
C8—N2—C10—C11173.2 (2)C22—C21—C25—C240.3 (4)
C13—N2—C10—C1157.5 (2)C19—C21—C25—C24177.1 (3)
C14—N3—C11—C10178.03 (19)C23—C24—C25—C217.6 (4)
Hydrogen-bond geometry (Å, º) top
CgB is the centroid of ring C4-C9.
D—H···AD—HH···AD···AD—H···A
C13—H13B···CgBi0.992.953.757 (3)140
C17—H17···CgBii0.952.933.602 (3)129
Symmetry codes: (i) x, y, z; (ii) x, y+1, z.
Table 3. Short contacts (Å) in the crystal structures of compounds I, II and IIIa top
Atom1Atom2LengthLength - VdWSymm. op. 1Symm. op. 2
I
H11BH11B2.187-0.213x, y, z1 - x, 1 - y, -z
C9H192.827-0.073x, y, zx, -1 + y, z
H2C192.834-0.066x, y, z-1 + x, -1 + y, z
C3H11A2.843-0.057x, y, z-1 + x, y, z
C2H11A2.865-0.035x, y, z-1 + x, y, z
H2C202.9040.004x, y, z-1 + x, -1 + y, z
II
H10AH10A2.076-0.324x, y, z1 - x, -y, -z
H2C182.824-0.076x, y, z-1 + x, -1 + y, z
C8H182.824-0.076x, y, zx, -1 + y, z
C9H182.867-0.033x, y, zx, -1 + y, z
C10H10A2.866-0.034x, y, z1 - x, -y, -z
C3H10B2.878-0.022x, y, z-1 + x, y, z
C1C113.4030.003x, y, z-1 + x, y, z
IIIa
O1H242.514-0.206x, y, z-1 + x, y, z
C4H27B2.741-0.159x, y, zx, -1 + y, z
C21H52.826-0.074x, y, z2 - x, 1 - y, 2 - z
H12AC272.845-0.055x, y, z3/2 - x, -1/2 + y, 3/2 - z
O1H14B2.7220.002x, y, z3/2 - x, -1/2 + y, 3/2 - z
Note: (a) Ullah & Altaf (2014).
Principal percentage contributions of inter-atomic contacts to the Hirshfeld surfaces of I, II and IIIa top
ContactIIIIIIa
H···H67.565.958.2
C···H/H···C25.225.833.6
O···H/H···O4.54.54.5
N···H/H···N2.53.52.1
C···C0.20.20.2
C···N001.3
C···O0.10.10.1
Note: (a) Ullah & Altaf (2014).
 

Acknowledgements

HSE is grateful to the University of Neuchâtel for their support over the years.

References

First citationCosi, C., Carilla-Durand, E., Assié, M.-B., Ormiere, A. M., Maraval, M., Leduc, N. & Newman-Tancredi, A. (2006). Eur. J. Pharmacol. 535, 135–144.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFeenstra, R. W., de Moes, J., Hofma, J. J., Kling, H., Kuipers, W., Long, S. K., Tulp, M. T. M., van der Heyden, J. A. M. & Kruse, C. G. (2001). Bioorg. Med. Chem. Lett. 11, 2345–2349.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFeenstra, R. W., van den Hoogenband, A., Stroomer, C. N. J., van Stuivenberg, H. H., Tulp, M. T. M., Long, S. K., van der Heyden, J. A. M. & Kruse, C. G. (2006). Chem. Pharm. Bull. 54, 1326–1330.  Web of Science CrossRef CAS Google Scholar
First citationGhani, U., Ullah, N., Ali, S. A. & Al-Muallem, H. A. (2014). Asian J. Chem. 26, 8258–8362.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJones, C. A. & McCreary, A. C. (2008). Neuropharmacology, 55, 1056–1065.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationNewman-Tancredi, A., Assié, M.-B., Leduc, N., Ormière, A.-M., Danty, N. & Cosi, C. (2005). Int. J. Neuropsychopharmacol. 8, 341–356.  Web of Science PubMed CAS Google Scholar
First citationNewman-Tancredi, A., Cussac, D. & Depoortere, R. (2007). Curr. Opin. Investig. Drugs, 8, 539–554.  Web of Science PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie. (2009). X-AREA & X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net  Google Scholar
First citationUllah, N. (2012). Z. Naturforsch. Teil B, 67, 75–84.  CrossRef CAS Google Scholar
First citationUllah, N. (2014a). Med. Chem. 10, 484–496.  Web of Science CrossRef CAS PubMed Google Scholar
First citationUllah, N. (2014b). J. Enzyme Inhib. Med. Chem. 29, 281–291.  Web of Science CrossRef CAS PubMed Google Scholar
First citationUllah, N. & Al-Shaheri, A. A. Q. (2012). Z. Naturforsch. Teil B, 67, 253–262.  CrossRef CAS Google Scholar
First citationUllah, N. & Altaf, M. (2014). Crystallogr. Rep. 59, 1057–1062.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds