research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Different patterns of supra­molecular aggregation in three amides containing N-(benzo[d]thia­zol­yl) substituents

crossmark logo

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570 006, India, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore-574199, India, cInstitute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Strasse 2, D-64287 Darmstadt, Germany, and dSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, UK
*Correspondence e-mail: yathirajan@hotmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 2 April 2021; accepted 4 April 2021; online 9 April 2021)

Crystal structures are reported for three amides containing N-benzo[d]thia­zole substituents. In N-(benzo[d]thia­zol-6-yl)-3-bromo­benzamide, C14H9BrN2OS, where the two ring systems are nearly parallel to one another [dihedral angle = 5.8 (2)°], the mol­ecules are linked by N—H⋯O and C—H⋯N hydrogen bonds to form ribbons of R33(19) rings, which are linked into sheets by short Br⋯Br inter­actions [3.5812 (6) Å]. N-(6-Meth­oxy­benzo[d]thia­zol-2-yl)-2-nitro­benzamide, C15H11N3O4S, crystallizes with Z′ = 2 in space group Pna21: the dihedral angles between the ring systems [46.43 (15) and 66.35 (13)°] are significantly different in the independent mol­ecules and a combination of two N—H⋯N and five C—H⋯O hydrogen bonds links the mol­ecules into a three-dimensional network. The mol­ecules of 5-cyclo­propyl-N-(6-meth­oxy­ben­zo[d]thia­zol-2-yl)­isoxazole-3-carboxamide, C15H13N3O3S, exhibit two forms of disorder, in the meth­oxy group and in the cyclo­propyl­isoxazole unit; symmetry-related pairs of mol­ecules are linked into dimers by pairwise N—H⋯N hydrogen bonds. Comparisons are made with the structures of some related compounds.

1. Chemical context

Compounds containing the benzo[d]thia­zole unit exhibit a wide range of biological and medicinal activities, which have been reviewed by Henary et al. (2013[Henary, M., Paranjpe, S. & Owens, E. A. (2013). Heterocycl. Commun. 19, 89-99.]). Notable examples include the presence of the benzo[d]thia­zole nucleus in firefly luciferin, (4S)-2-(6-hy­droxy­benzo[d]thia­zol-2-yl)-4,5-di­hydro­thia­zole-4-carb­oxy­lic acid (White et al., 1963[White, E. H., McCapra, F. & Field, G. F. (1963). J. Am. Chem. Soc. 85, 337-343.]), action as potent and selective human adenosine A3 receptor antagonists (Jung et al., 2004[Jung, K.-Y., Kim, S.-K., Gao, Z.-G., Gross, A. S., Melman, N., Jacobson, K. A. & Kim, Y.-C. (2004). Bioorg. Med. Chem. 12, 613-623.]) and cholinesterase inhibitors (Imramovský et al., 2013[Imramovský, A., Pejchal, V., Štěpánková, Š., Vorčáková, K., Jampílek, J., Vančo, J., Šimůnek, P., Královec, K., Brůčková, L., Mandíková, J. & Trejtnar, F. (2013). Bioorg. Med. Chem. 21, 1735-1748.]). In addition, applications in Green Chemistry have very recently been reviewed (Gao et al., 2020[Gao, K., Liu, J., Zuo, K., Feng, X. & Gao, Y. (2020). Molecules, 25, 1675-1690.]).

Against this diverse background, we report here the synthesis and structures of three carboxamides containing the benzo[d]thia­zole nucleus, namely: N-(benzo[d]thia­zol-6-yl)-3-bromo­benzamide (I)[link], N-(6-meth­oxy­benzo[d]thia­zol-2-yl)-2-nitro­benzamide (II)[link] and N-(6-meth­oxy­benzo[d]thia­zol-2-yl)-5-cyclo­propyl­isoxazole-3-carboxamide (III)[link]. Compounds (I)–(III) were prepared in yields exceeding 85% by the reaction of an amino-substituted benzo[d]thia­zole with an acid chloride in the presence of tri­ethyl­amine.

[Scheme 1]

2. Structural commentary

In compound (I)[link], the amide unit occupies position 6 of the benzo[d]thia­zole unit, whereas in compounds (II)[link] and (III)[link], the amide unit is linked to the bicyclic system at position 2. In (I)[link], (Fig. 1[link]) the thia­zole ring and the brominated aryl ring are almost parallel, with a dihedral angle between them of 5.8 (2)°. However, these rings are not coplanar, as both ring systems in compound (I)[link] are twisted out of the plane of the central amide spacer unit.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Compound (II)[link] crystallizes with Z′ = 2, but a search for possible additional crystallographic symmetry revealed none. The different conformations of the two independent mol­ecules (Fig. 2[link]) confirm the absence of additional symmetry. For example, the dihedral angle between the thia­zole ring and the nitrated phenyl ring is 46.43 (15)° in mol­ecule 1 containing atom S111, but 66.35 (13)° in mol­ecule 2 containing atom S211. Similarly, the dihedral angles between the nitro groups and the adjacent aryl rings are 34.5 (2) and 17.9 (2)° in mol­ecules 1 and 2, respectively.

[Figure 2]
Figure 2
The structures of the two independent mol­ecules in (II)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

The mol­ecule of compound (III)[link] exhibits two forms of disorder. The cyclo­propyl­isoxazole unit is disordered over two sets of atomic sites, with occupancies 0.549 (5) and 0.451 (5), where the two orientations of the isoxazole ring are approximately related by small rotations about the N—C and C—C bonds involving atom C31 (Fig. 3[link]). Of more inter­est is the disorder of the meth­oxy groups, where the site occupancies are constrained by short non-bonded contacts with adjacent mol­ecules. Thus, the atomic site C18 in the mol­ecule at (x, y, z) is only 1.840 (8) Å from the corresponding site in the mol­ecule at (2 − x, y, 1.5 − z): hence, only one of these sites can be occupied and this, in turn, limits this site occupancy in each mol­ecule to a maximum value of 0.5. Similarly, the atomic site C19 at (x, y, z) is only 1.921 (9) Å from the corresponding site in the mol­ecule at (2 − x, 1 − y, 1 − z), again limiting the site occupancy to a maximum value of 0.5. Hence the site occupancy for each orientation of the meth­oxy group must each be exactly 0.5.

[Figure 3]
Figure 3
The mol­ecular structure of (III)[link], showing the atom-labelling scheme and the disorder of the cyclo­propyl­isoxazole fragment, where the major disorder component, with occupancy 0.549 (5), is drawn using full lines and the minor disorder component of this fragment, with occupancy 0.451 (5), is drawn using broken lines. The atomic sites O16, O17, C18 and C19 and the associated H atoms all have occupancy 0.5 (see Section 2). Displacement ellipsoids are drawn at the 30% probability level.

In each of the independent meth­oxy groups in compound (II)[link], and for each orientation of the meth­oxy group in compound (III)[link], the two exocyclic C—C—O angles differ by ca 10%, as is generally found in planar, or nearly planar, alk­oxy­arenes (Seip & Seip, 1973[Seip, H. M. & Seip, R. (1973). Acta Chem. Scand. 27, 4024-4027.]; Ferguson et al., 1996[Ferguson, G., Glidewell, C. & Patterson, I. L. J. (1996). Acta Cryst. C52, 420-423.]). In compounds (II)[link] and (III)[link], the maximum displacement of any meth­oxy C atoms from the plane of the adjacent aryl ring is 0.144 (9) Å for atom C218 in compound (II)[link].

3. Supra­molecular features

The supra­molecular assembly of compound (I)[link] is built up from N—H⋯O and C—H⋯N hydrogen bonds (Table 1[link]). Mol­ecules related by translation are linked by N—H⋯O hydrogen bonds to form a C(4) (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]; Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) chain, of the type very commonly found in simple amides (Fun et al., 2011a[Fun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011a). Acta Cryst. E67, o2926-o2927.],b[Fun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011b). Acta Cryst. E67, o2941-o2942.]; Praveen et al., 2011[Praveen, A. S., Jasinski, J. P., Golen, J. A., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1826.]; Fun, Quah et al., 2012[Fun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o2463.]; Fun, Shahani et al., 2012[Fun, H.-K., Shahani, T., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o519.]; Praveen et al., 2013a[Praveen, A. S., Yathirajan, H. S., Jasinski, J. P., Keeley, A. C., Narayana, B. & Sarojini, B. K. (2013a). Acta Cryst. E69, o900-o901.],b[Praveen, A. S., Yathirajan, H. S., Jasinski, J. P., Keeley, A. C., Narayana, B. & Sarojini, B. K. (2013b). Acta Cryst. E69, o996-o997.]; Nayak et al., 2014[Nayak, P. S., Jasinski, J. P., Golen, J. A., Narayana, B., Kaur, M., Yathirajan, H. S. & Glidewell, C. (2014). Acta Cryst. C70, 889-894.]): in (I)[link], this chain runs parallel to the [010] direction (Fig. 4[link]). In addition, mol­ecules that are related by the 21 screw axis along (0.5, y, 0.25) are linked by C—H⋯N hydrogen bonds to form a C(6) chain, also running parallel to the [010] direction. The combination of these two chain motifs generates a ribbon of R33(19) rings along [010] (Fig. 4[link]). Also running through the unit cell is a second ribbon of this type, related to the first by inversion, and containing mol­ecules that are related by the 21 screw axis along (0.5, y, 0.75). Also present in the structure of compound (I)[link] are two inter­molecular Br⋯Br contacts that are shorter than the van der Waals radii sum of 3.74 Å (Rowland & Taylor, 1996[Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391.]). Atom Br3 in the mol­ecule at (x, y, z) makes contacts with the corresponding atoms at (2 − x, 0.5 + y, 1.5 − z) and (2 − x, −0.5 + y, 1.5 − z), with Br⋯Br distances of 3.5812 (6) Å in each case; however, the C—Br⋯Br angles are 92.64 (18) and 166.44 (10)°, respectively (Fig. 5[link]), which are consistent with the angular preferences found for such contacts from database analyses (Ramasubbu et al., 1986[Ramasubbu, N., Parthasarathy, R. & Murray-Rust, P. (1986). J. Am. Chem. Soc. 108, 4308-4314.]). The effects of these halogen bonds (Cavallo et al., 2016[Cavallo, G., Metrangolo, P., Milan, R., Pilati, T., Priimagi, T., Resnati, G. & Teraneo, G. (2016). Chem. Rev. 116, 2378-2601.]) are twofold: firstly to generate a chain running parallel to the [010] direction (Fig. 5[link]) and thence to link the hydrogen-bonded ribbons into sheets lying parallel to the (10[\overline{1}]) plane (Fig. 6[link]).

Table 1
Hydrogen bonds and short inter­molecular contacts(Å, °)

Cg1 represents the centroid of the ring C13A/C17A/C117/C116/C115/C114

Compound D—H⋯A D—H H⋯A DA D—H⋯A
(I) N11—H11⋯O11i 0.90 (4) 1.97 (3) 2.840 (4) 164 (3))
  C12—H12⋯N13ii 0.93 2.62 3.512 (6) 161
           
(II) N111—H111⋯N213 0.82 (4) 2.19 (4) 2.981 (5) 165 (4)
  N211—H211⋯N113 0.86 (4) 2.17 (4) 2.992 (5) 162 (4)
  C13—H13⋯O211iii 0.93 2.53 3.408 (7) 158
  C25—H25⋯O211iv 0.93 2.44 3.349 (6) 165
  C115—H115⋯O221iv 0.93 2.45 3.353 (7) 163
  C117—H117⋯O111v 0.93 2.44 3.236 (5) 144
  C217—H217⋯O122vi 0.93 2.51 3.412 (6) 164
  C16—H16⋯Cg1vii 0.93 2.84 3.484 (6) 128
           
(III) N31—H31⋯N13viii 0.82 (3) 2.19 (3) 3.003 (3) 173 (2)
  C17—H17⋯O1Aix 0.93 2.51 3.293 (7) 142
  C17—H17⋯N2Aix 0.93 2.55 3.440 (19) 160
  C63—H63B⋯O31Ax 0.97 2.58 3.440 (18) 148
Symmetry codes: (i) x, −1 + y, z; (ii) 1 − x, [{1\over 2}] + y, [{1\over 2}] − z; (iii) [{3\over 2}] − x, [{1\over 2}] + y, −[{1\over 2}] − z; (iv) x, y, 1 + z; (v) 1 − x, 1 − y, [{1\over 2}] + z; (vi) [{3\over 2}] − x, −[{1\over 2}] + y, −[{1\over 2}] − z; (vii) x, y, −1 + z; (viii) 1 − x, y, [{1\over 2}] − z; (ix) [{1\over 2}] + x, [{3\over 2}] − y, [{1\over 2}] + z; (x) [{1\over 2}] − x, [{3\over 2}] − y, 1 − z.
[Figure 4]
Figure 4
Part of the crystal structure of (I)[link] showing the formation of a ribbon of R33(19) rings running parallel to [010] and built from N—H⋯O and C—H⋯N hydrogen bonds. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms not involved in the motifs shown have been omitted.
[Figure 5]
Figure 5
Part of the crystal structure of (I)[link], showing a chain along ([010] containing two independent Br⋯Br inter­actions (shown as dashed lines). For the sake of clarity, the H atoms and the unit-cell outline have been omitted. The Br atoms marked with an asterisk (*), a hash (#), a dollar sign ($) or an ampersand (&) are at the symmetry positions (2 − x, [{1\over 2}] + y, [{3\over 2}] − z), (2 − x, −[{1\over 2}] + y, [{3\over 2}] − z), (x, 1 + y, z) and (x, −1 + y, z), respectively.
[Figure 6]
Figure 6
A projection along [010] of part of the crystal structure of (I)[link] showing how the Br⋯Br inter­actions (dashed lines) link the hydrogen-bonded ribbons into sheets lying parallel to (10[\overline{1}]).

The two independent mol­ecules of compound (II)[link] are linked by two N—H⋯N hydrogen bonds and five C—H⋯O hydrogen bonds (Table 1[link]), but the N—H⋯O hydrogen bonds typical of amides are absent. The hydrogen bonds generate a three-dimensional network, whose formation can readily be analysed in terms of a number of simple sub-structures (Ferguson et al., 1998a[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129-138.],b[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139-150.]; Gregson et al., 2000[Gregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39-57.]). In the simplest of the sub-structures, the two N—H⋯N hydrogen bonds link the mol­ecules within the selected asymmetric unit to form a dimer, and the other sub-structures follow the different ways in which these dimers can be linked. The C—H⋯O hydrogen bonds involving atoms C25 and C115 link the dimers into a chain of alternating R22(8) R33(18) rings running parallel to the [001] direction (Fig. 7[link]); this chain is weakly reinforced by a C—H⋯π(arene) inter­action (Table 1[link]). In the third sub-structure, the C—H⋯O hydrogen bonds involving atoms C13 and C217 link the dimers into a chain of rings containing C44(24) chains and running parallel to the [010] direction (Fig. 8[link]). The combination of the chains along [010] and [001] generates a sheet lying parallel to (100) in the domain 0.5 < x < 1.0. A second sheet of the type, related to the first by the 21 screw axes, lies in the domain 0 < x < 0.5, and sheets of this type are linked by the C—H⋯O hydrogen bond in involving atom C117, so forming a three-dimensional network: indeed, it is possible to identify a complex chain running parallel to the [100] direction, which defines the linkage of the (100) sheets (Fig. 9[link]).

[Figure 7]
Figure 7
Part of the crystal structure of (II)[link] showing the formation of a chain of R22(8) and R33(18) rings running parallel to [001] and built from N—H⋯N and C—H⋯O hydrogen bonds. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms not involved in the motifs shown have been omitted.
[Figure 8]
Figure 8
Part of the crystal structure of (II)[link] showing the formation of a chain of rings running parallel to [010] and built from N—H⋯N and C—H⋯O hydrogen bonds. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms not involved in the motifs shown have been omitted.
[Figure 9]
Figure 9
Part of the crystal structure of (II)[link] showing the formation of a chain of rings running parallel to [100] and built from N—H⋯N and C—H⋯O hydrogen bonds. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms not involved in the motifs shown have been omitted.

Analysis of the supra­molecular aggregation in compound (III)[link] is complicated by the disorder of the isoxazole ring, since atoms O1A and N2A in the major disorder form act as hydrogen bond acceptors, but atoms O1B and N2B in the minor disorder form do not. As in (II)[link], the N—H⋯O hydrogen bonds typical of amides are absent from the structure of (III)[link]. Mol­ecules of (III)[link] that are related by a twofold rotation axis are linked into cyclic R22(8) dimers. There is also present an asymmetric three-centre C—H⋯(N,O) system having atoms O1A and N2A as the acceptors: if these sites had full occupancy, this inter­action would generate a chain of rings running parallel to the [101] direction (Fig. 10[link]). However, because of the disorder, this chain is punctuated rather than continuous.

[Figure 10]
Figure 10
Part of the crystal structure of (III)[link] showing the formation of a chain of rings running parallel to the [101] direction. For the sake of clarity, the methyl groups, the minor disorder component and the H atoms which are not involved in the motif shown have all been omitted.

4. Database survey

N-(Benzo[d]thia­zol-2-yl)-3-bromo­benzamide (IV) [CSD (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) refcode SUQTAC; Odame et al., 2020[Odame, F., Woodcock, G., Hosten, E. C., Lobb, K. & Tshentu, Z. R. (2020). J. Organomet. Chem. 922, 121359.]] is a positional isomer of compound (I)[link], with the amide substituent as position 2 of the benzo­thia­zole unit, rather than at position 6 as in (I)[link]. In contrast to compound (I)[link], but consistent with compounds (II)[link] and (III)[link], where the amide units are also linked to the heterocycle at position 6, the structure of (IV) contains no N—H⋯O hydrogen bonds: instead, inversion-related pairs of mol­ecules are linked by pairwise N—H⋯N hydrogen bonds to form cyclic, centrosymmetric R22(8) dimers. By contrast with (I)[link], there are no short Br⋯Br contacts in the structure of (IV).

In the simple amine 2-amino-6-methyl­benzo[d]thia­zole, which crystallizes with Z′ = 2 in space group P[\overline{1}] (GINBIP; Saeed et al., 2007[Saeed, A., Rafique, H. & Bolte, M. (2007). Acta Cryst. E63, o4247.]), the mol­ecules are linked into complex chains by a combination of three N—H⋯N hydrogen bonds and one N—H⋯π(arene) hydrogen bond, while in the closely related 2-amino-6-nitro­benzo[d]thia­zole (TIJLUT; Glidewell et al., 2001[Glidewell, C., Low, J. N., McWilliam, S. A., Skakle, J. M. S. & Wardell, J. L. (2001). Acta Cryst. C57, 1209-1211.]), inversion-related mol­ecules are once again linked by pairwise N—H⋯N hydrogen bonds to form R22(8) dimers, which are further linked by a three-centre N—H⋯(O,O) system to form a three-dimensional network.

5. Synthesis and crystallization

All reagents were obtained commercially and all were used as received. For the synthesis of compound (I)[link], a solution of tri­ethyl­amine (1.11 g, 0.01 mol) in dry toluene (5 ml) was added to a mixture of 6-amino­benzo[d]thia­zole (1.50 g, 0.01 mol) and 3-bromo­benzoyl chloride (2.18 g, 0.01 mol) in dry toluene (20 ml), and the resulting mixture was heated under reflux for 4 h. When the reaction was complete, as indicated by TLC monitoring, the mixture was cooled to room temperature and the tri­ethyl­ammonium chloride was removed by filtration. The solvent was then removed under reduced pressure and the resulting solid product was washed with water and then crystallized from ethanol solution. Yield 86%, m.p. 439–441 K: IR (cm−1) 3125 (N—H), 1667 (C=O), 1616 (C=N); NMR (CDCl3) δ(1H) 7.90 (s, 1H, thia­zole), 8.21 (s, 1H), NH), 6.8–7.9 (m, 7H, aromatic); MS (70 eV) m/z 335/333, relative intensities 1:1 (M+ + 1). Compound (II)[link] was prepared in a similar manner, using 2-amino-6-meth­oxy­benzo[d]thia­zole (1.80 g, 0.01 mol) and 2-nitro­benzoyl chloride (1.85 g, 0.01 mol). Yield 87%, m.p. 468–470 K; IR (cm−1) 3150 (N—H), 1681 (C=O), 1615 (C=N), 1560 and 1346 (nitro); NMR (CDCl3) δ(1H) 3.80 (s, 3H, OMe), 7.2–8.6 (m, 7H, aromatic), 8.10 (s, 1H, NH); MS (70 eV) m/z 330 (M+ + 1). Compound (III)[link] was similarly prepared using 2-amino-6-meth­oxy­benzo[d]thia­zole (1.80 g, 0.01 mol) and 5-cyclo­propyl­isoxazole-3-carboxyl­chloride (1.71 g, 0.01mol). Yield 88%, m.p. 453 K: IR (cm−1) 3120 (N—H), 1676 (C=O), 1625 (C=N); NMR (DMSO-d6) δ(1H) 0.2–2.1 (m, 5H, cyclo­prop­yl), 3.83 (s, 3H, OMe), 6.90 (s, 1H, H-17), 7.20 (d, 1H, J = 7.4 Hz) and 7.46 (d, 1H, J = 7.4 Hz) ((H-14 and H-15), 7.80 (s, 1H, H-4); MS (70 eV) m/z 316 (M+ + 1).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. One bad outlier reflection (0,23,3) was omitted from the final refinement of compound (II)[link]. All H atoms, apart from those in the disordered components of compound (III)[link], were located in difference maps. The H atoms bonded to C atoms were treated as riding atoms in geometrically idealized positions, with C—H distances of 0.93 Å (aromatic and heterocyclic), 0.96 Å (CH3), 0.97 Å (CH2) or 0.98 Å (aliphatic C—H) and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups, which were allowed to rotate but not to tilt, and 1.2 for all other H atoms bonded to C atoms. For the H atoms bonded to N atoms, the atomic coordinates were refined with Uiso(H) = 1.2Ueq(N), giving the N—H distances shown in Table 1[link]. For the disordered methyl group in compound N3, the site occupancies were fixed at 0.5 (see Section 2, above): when these occupancies were refined, the resulting values were 0.504 (7) and 0.496 (7), much as expected. For each of the disordered fragments in (III)[link], the corresponding bonded distances and the 1,3 non-bonded distances were restrained to be equal, subject to s.u. values of 0.01 and 0.02 Å, respectively. In addition, the anisotropic displacement parameters for corresponding pairs of atoms in the 3-cyclo­propyl-5-carbonyl­oxazole fragments were constrained to be equal. Subject to these conditions, the occupancies of this disordered fragment refined to 0.549 (5) and 0.451 (5). The correct orientation of the structure of the crystal of compound (II)[link] chosen for data collection relative to the polar axis direction was established by means of the Flack x parameter (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]); x = 0.02 (5), calculated (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) using 708 quotients of the type [(I+) − (I)]/[(I+) + (I)].

Table 2
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula C14H9BrN2OS C15H11N3O4S C15H13N3O3S
Mr 333.19 329.33 315.34
Crystal system, space group Monoclinic, P21/c Orthorhombic, Pna21 Monoclinic, C2/c
Temperature (K) 296 296 296
a, b, c (Å) 24.221 (1), 4.9481 (3), 10.9981 (6) 20.085 (2), 20.165 (2), 7.3220 (6) 18.720 (1), 11.5255 (8), 14.7905 (9)
α, β, γ (°) 90, 95.371 (5), 90 90, 90, 90 90, 115.52 (1), 90
V3) 1312.31 (12) 2965.5 (5) 2879.8 (4)
Z 4 8 8
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 3.28 0.24 0.24
Crystal size (mm) 0.50 × 0.36 × 0.08 0.50 × 0.12 × 0.10 0.30 × 0.20 × 0.10
 
Data collection
Diffractometer Oxford Diffraction Xcalibur CCD Oxford Diffraction Xcalibur CCD Oxford Diffraction Xcalibur CCD
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.])
Tmin, Tmax 0.168, 0.769 0.787, 0.976 0.908, 0.976
No. of measured, independent and observed [I > 2σ(I)] reflections 4839, 2805, 2170 8012, 4784, 2969 5937, 3118, 1730
Rint 0.031 0.040 0.038
(sin θ/λ)max−1) 0.656 0.661 0.656
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.123, 1.03 0.049, 0.075, 1.05 0.056, 0.119, 1.02
No. of reflections 2805 4784 3118
No. of parameters 175 423 268
No. of restraints 0 1 26
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.00, −0.73 0.19, −0.22 0.23, −0.24
Absolute structure Flack x parameter (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.02 (5)
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

For all structures, data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b) and PLATON (Spek, 2020).

N-(Benzo[d]thiazol-6-yl)-3-bromobenzamide (I) top
Crystal data top
C14H9BrN2OSF(000) = 664
Mr = 333.19Dx = 1.686 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 24.221 (1) ÅCell parameters from 2805 reflections
b = 4.9481 (3) Åθ = 2.5–27.8°
c = 10.9981 (6) ŵ = 3.28 mm1
β = 95.371 (5)°T = 296 K
V = 1312.31 (12) Å3Plate, colourless
Z = 40.50 × 0.36 × 0.08 mm
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
2805 independent reflections
Radiation source: Enhance (Mo) X-ray Source2170 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 27.8°, θmin = 2.5°
Absorption correction: multi-scan
(CrysalisRed; Oxford Diffraction, 2009)
h = 3124
Tmin = 0.168, Tmax = 0.769k = 46
4839 measured reflectionsl = 1014
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0826P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2805 reflectionsΔρmax = 1.00 e Å3
175 parametersΔρmin = 0.73 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.82689 (14)0.5633 (6)0.8202 (3)0.0285 (7)
C20.86414 (13)0.3673 (6)0.7894 (3)0.0292 (7)
H20.85880.27730.71500.035*
C30.90946 (13)0.3081 (7)0.8714 (3)0.0300 (7)
Br30.96192 (2)0.05035 (8)0.82512 (3)0.04011 (16)
C40.91689 (15)0.4331 (7)0.9832 (3)0.0387 (8)
H40.94680.38661.03830.046*
C50.88018 (16)0.6257 (8)1.0131 (3)0.0422 (9)
H50.88550.71191.08840.051*
C60.83486 (14)0.6942 (7)0.9320 (3)0.0375 (8)
H60.81010.82660.95250.045*
C110.77814 (13)0.6452 (7)0.7322 (3)0.0307 (7)
O110.76470 (12)0.8823 (5)0.7208 (3)0.0490 (7)
N110.75247 (12)0.4425 (6)0.6688 (3)0.0327 (6)
H110.7634 (15)0.274 (7)0.689 (3)0.039*
S110.55928 (5)0.8448 (3)0.49883 (12)0.0659 (4)
C120.53824 (18)0.6976 (10)0.3595 (4)0.0604 (12)
H120.50480.74470.31630.072*
N130.57051 (15)0.5206 (8)0.3178 (3)0.0594 (10)
C13A0.61798 (16)0.4886 (8)0.4010 (3)0.0421 (9)
C140.66075 (17)0.3153 (10)0.3870 (3)0.0530 (11)
H140.66030.20730.31770.064*
C150.70478 (16)0.3012 (8)0.4767 (3)0.0455 (9)
H150.73360.18000.46870.055*
C160.70600 (14)0.4690 (7)0.5795 (3)0.0310 (7)
C170.66363 (14)0.6445 (7)0.5954 (3)0.0375 (8)
H170.66450.75520.66390.045*
C17A0.61882 (14)0.6514 (8)0.5046 (3)0.0397 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0266 (16)0.0218 (16)0.0363 (16)0.0008 (13)0.0016 (12)0.0046 (14)
C20.0307 (17)0.0245 (16)0.0313 (16)0.0011 (13)0.0026 (12)0.0009 (13)
C30.0270 (16)0.0284 (17)0.0338 (16)0.0008 (14)0.0008 (12)0.0076 (14)
Br30.0313 (2)0.0432 (3)0.0450 (2)0.01066 (16)0.00006 (14)0.00559 (16)
C40.040 (2)0.045 (2)0.0296 (16)0.0045 (17)0.0045 (14)0.0042 (16)
C50.047 (2)0.046 (2)0.0321 (18)0.0028 (18)0.0032 (15)0.0062 (16)
C60.038 (2)0.035 (2)0.0389 (18)0.0046 (16)0.0054 (14)0.0022 (16)
C110.0263 (17)0.0246 (16)0.0404 (18)0.0033 (14)0.0011 (13)0.0048 (14)
O110.0486 (17)0.0207 (12)0.0733 (19)0.0058 (11)0.0175 (13)0.0014 (12)
N110.0316 (16)0.0199 (14)0.0444 (16)0.0061 (12)0.0078 (12)0.0036 (13)
S110.0404 (6)0.0748 (8)0.0777 (8)0.0279 (6)0.0188 (5)0.0133 (7)
C120.038 (2)0.077 (3)0.062 (3)0.013 (2)0.0154 (18)0.006 (2)
N130.039 (2)0.087 (3)0.049 (2)0.0027 (19)0.0172 (16)0.0004 (19)
C13A0.036 (2)0.054 (2)0.0348 (18)0.0020 (17)0.0072 (15)0.0039 (16)
C140.045 (2)0.069 (3)0.043 (2)0.008 (2)0.0041 (16)0.016 (2)
C150.036 (2)0.047 (2)0.052 (2)0.0107 (18)0.0015 (16)0.0086 (19)
C160.0284 (17)0.0274 (17)0.0358 (17)0.0020 (14)0.0047 (13)0.0043 (14)
C170.0339 (19)0.0341 (18)0.0426 (19)0.0060 (16)0.0063 (14)0.0040 (16)
C17A0.0290 (18)0.041 (2)0.047 (2)0.0100 (16)0.0061 (14)0.0043 (17)
Geometric parameters (Å, º) top
C1—C61.387 (4)N11—H110.90 (4)
C1—C21.388 (5)S11—C17A1.727 (4)
C1—C111.510 (4)S11—C121.730 (5)
C2—C31.385 (4)C12—N131.287 (6)
C2—H20.9300C12—H120.9300
C3—C41.373 (5)N13—C13A1.410 (5)
C3—Br31.903 (3)C13A—C141.365 (6)
C4—C51.364 (5)C13A—C17A1.394 (5)
C4—H40.9300C14—C151.385 (5)
C5—C61.390 (5)C14—H140.9300
C5—H50.9300C15—C161.400 (5)
C6—H60.9300C15—H150.9300
C11—O111.221 (4)C16—C171.368 (5)
C11—N111.341 (4)C17—C17A1.405 (4)
N11—C161.429 (4)C17—H170.9300
C6—C1—C2120.2 (3)C17A—S11—C1288.6 (2)
C6—C1—C11118.6 (3)N13—C12—S11117.6 (3)
C2—C1—C11121.2 (3)N13—C12—H12121.2
C3—C2—C1118.8 (3)S11—C12—H12121.2
C3—C2—H2120.6C12—N13—C13A109.3 (4)
C1—C2—H2120.6C14—C13A—C17A120.1 (3)
C4—C3—C2121.2 (3)C14—C13A—N13125.4 (4)
C4—C3—Br3120.4 (2)C17A—C13A—N13114.5 (4)
C2—C3—Br3118.4 (2)C13A—C14—C15119.6 (4)
C5—C4—C3119.8 (3)C13A—C14—H14120.2
C5—C4—H4120.1C15—C14—H14120.2
C3—C4—H4120.1C14—C15—C16120.1 (3)
C4—C5—C6120.6 (3)C14—C15—H15120.0
C4—C5—H5119.7C16—C15—H15120.0
C6—C5—H5119.7C17—C16—C15121.4 (3)
C1—C6—C5119.4 (3)C17—C16—N11121.5 (3)
C1—C6—H6120.3C15—C16—N11117.1 (3)
C5—C6—H6120.3C16—C17—C17A117.6 (3)
O11—C11—N11124.0 (3)C16—C17—H17121.2
O11—C11—C1120.6 (3)C17A—C17—H17121.2
N11—C11—C1115.4 (3)C13A—C17A—C17121.2 (3)
C11—N11—C16125.9 (3)C13A—C17A—S11110.0 (3)
C11—N11—H11117 (2)C17—C17A—S11128.8 (3)
C16—N11—H11117 (2)
C6—C1—C2—C30.8 (5)C12—N13—C13A—C17A0.3 (6)
C11—C1—C2—C3177.2 (3)C17A—C13A—C14—C150.4 (7)
C1—C2—C3—C42.2 (5)N13—C13A—C14—C15179.2 (4)
C1—C2—C3—Br3177.3 (2)C13A—C14—C15—C161.7 (7)
C2—C3—C4—C52.2 (5)C14—C15—C16—C171.6 (6)
Br3—C3—C4—C5177.3 (3)C14—C15—C16—N11179.6 (4)
C3—C4—C5—C60.8 (6)C11—N11—C16—C1739.9 (5)
C2—C1—C6—C50.5 (5)C11—N11—C16—C15142.2 (4)
C11—C1—C6—C5178.6 (3)C15—C16—C17—C17A0.3 (6)
C4—C5—C6—C10.5 (6)N11—C16—C17—C17A178.1 (3)
C6—C1—C11—O1139.0 (5)C14—C13A—C17A—C171.0 (6)
C2—C1—C11—O11139.0 (4)N13—C13A—C17A—C17179.4 (4)
C6—C1—C11—N11141.9 (3)C14—C13A—C17A—S11179.1 (3)
C2—C1—C11—N1140.0 (4)N13—C13A—C17A—S110.6 (5)
O11—C11—N11—C160.2 (6)C16—C17—C17A—C13A1.0 (6)
C1—C11—N11—C16179.2 (3)C16—C17—C17A—S11179.0 (3)
C17A—S11—C12—N130.3 (4)C12—S11—C17A—C13A0.5 (3)
S11—C12—N13—C13A0.0 (6)C12—S11—C17A—C17179.5 (4)
C12—N13—C13A—C14179.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O11i0.90 (4)1.97 (3)2.840 (4)164 (3)
C12—H12···N13ii0.932.623.512 (6)161
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1/2, z+1/2.
N-(6-Methoxybenzo[d]thiazol-2-yl)-2-nitrobenzamide (II) top
Crystal data top
C15H11N3O4SDx = 1.475 Mg m3
Mr = 329.33Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 4785 reflections
a = 20.085 (2) Åθ = 2.9–28.8°
b = 20.165 (2) ŵ = 0.24 mm1
c = 7.3220 (6) ÅT = 296 K
V = 2965.5 (5) Å3Needle, yellow
Z = 80.50 × 0.12 × 0.10 mm
F(000) = 1360
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
4784 independent reflections
Radiation source: Enhance (Mo) X-ray Source2969 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω scansθmax = 28.0°, θmin = 2.9°
Absorption correction: multi-scan
(CrysalisRed; Oxford Diffraction, 2009)
h = 2225
Tmin = 0.787, Tmax = 0.976k = 2523
8012 measured reflectionsl = 39
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.049 w = 1/[σ2(Fo2) + (0.019P)2 + 0.5603P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.075(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.19 e Å3
4784 reflectionsΔρmin = 0.22 e Å3
423 parametersAbsolute structure: Flack x parameter (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.02 (5)
Primary atom site location: difference Fourier map
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.6647 (2)0.4210 (2)0.1128 (7)0.0416 (11)
C120.7079 (3)0.4721 (2)0.0750 (7)0.0485 (13)
C130.7447 (3)0.4762 (3)0.0845 (8)0.0585 (15)
H130.77290.51190.10540.070*
C140.7386 (3)0.4264 (3)0.2113 (8)0.0633 (15)
H140.76170.42860.32120.076*
C150.6983 (3)0.3734 (3)0.1744 (7)0.0578 (15)
H150.69580.33870.25760.069*
C160.6612 (3)0.3706 (2)0.0159 (7)0.0494 (13)
H160.63340.33440.00500.059*
C1110.6168 (3)0.4224 (3)0.2709 (7)0.0491 (13)
O1110.5820 (2)0.47044 (17)0.3001 (5)0.0719 (11)
N1110.6129 (2)0.36582 (19)0.3718 (6)0.0468 (12)
H1110.642 (2)0.339 (2)0.348 (7)0.056*
N1210.7207 (2)0.5232 (2)0.2121 (8)0.0714 (15)
O1210.7199 (3)0.5076 (2)0.3713 (7)0.1044 (17)
O1220.7336 (2)0.57908 (19)0.1580 (7)0.1033 (16)
S1110.52655 (6)0.42259 (6)0.61418 (19)0.0495 (3)
C1120.5731 (2)0.3570 (2)0.5239 (6)0.0394 (12)
N1130.57191 (18)0.30181 (16)0.6124 (6)0.0433 (9)
C13A0.5335 (2)0.3086 (2)0.7691 (7)0.0410 (12)
C1140.5238 (2)0.2610 (2)0.9031 (7)0.0498 (13)
H1140.54210.21890.88920.060*
C1150.4873 (2)0.2755 (3)1.0550 (7)0.0549 (15)
H1150.48150.24341.14470.066*
C1160.4585 (2)0.3382 (2)1.0778 (7)0.0512 (13)
C1170.4667 (2)0.3862 (2)0.9472 (7)0.0459 (13)
H1170.44740.42780.96030.055*
C17A0.5048 (2)0.3705 (2)0.7939 (6)0.0421 (12)
O1160.42262 (18)0.34579 (18)1.2344 (5)0.0687 (11)
C1180.3883 (3)0.4068 (3)1.2602 (7)0.0763 (18)
H18A0.36050.40371.36650.115*
H18B0.36130.41591.15510.115*
H18C0.42000.44191.27650.115*
C210.5587 (2)0.10314 (18)0.6179 (7)0.0356 (10)
C220.4907 (2)0.09346 (19)0.6067 (7)0.0391 (11)
C230.4527 (3)0.0724 (2)0.7525 (7)0.0475 (13)
H230.40710.06580.74000.057*
C240.4839 (3)0.0612 (2)0.9165 (7)0.0506 (14)
H240.45920.04721.01680.061*
C250.5511 (3)0.0706 (2)0.9332 (7)0.0524 (14)
H250.57170.06311.04510.063*
C260.5889 (3)0.0912 (2)0.7851 (6)0.0449 (13)
H260.63460.09710.79790.054*
C2110.6042 (2)0.1170 (2)0.4589 (6)0.0404 (12)
O2110.61896 (16)0.07405 (15)0.3509 (4)0.0478 (9)
N2110.6313 (2)0.17844 (19)0.4542 (5)0.0428 (10)
H2110.617 (2)0.210 (2)0.522 (5)0.051*
N2210.4558 (2)0.1058 (2)0.4325 (6)0.0519 (11)
O2210.48494 (19)0.13925 (18)0.3175 (5)0.0705 (12)
O2220.4004 (2)0.0816 (2)0.4107 (6)0.0818 (13)
S2110.70172 (6)0.15015 (5)0.14183 (17)0.0474 (3)
C2120.6797 (2)0.1980 (2)0.3302 (6)0.0372 (12)
N2130.71002 (18)0.25434 (17)0.3486 (5)0.0384 (9)
C23A0.7553 (2)0.2629 (2)0.2067 (6)0.0375 (12)
C2140.7983 (2)0.3165 (2)0.1862 (6)0.0449 (13)
H2140.80000.34980.27390.054*
C2150.8381 (2)0.3192 (2)0.0346 (7)0.0488 (14)
H2150.86830.35390.02290.059*
C2160.8344 (2)0.2713 (2)0.1031 (7)0.0468 (13)
C2170.7948 (2)0.2163 (2)0.0808 (6)0.0463 (13)
H2170.79420.18250.16710.056*
C27A0.7560 (2)0.2131 (2)0.0749 (6)0.0393 (12)
O2160.87332 (17)0.28389 (17)0.2525 (5)0.0614 (10)
C2180.8728 (3)0.2358 (3)0.3963 (7)0.0652 (15)
H28A0.90290.24940.49110.098*
H28B0.82860.23210.44530.098*
H28C0.88660.19350.34890.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.047 (3)0.038 (2)0.040 (3)0.000 (2)0.002 (3)0.007 (3)
C120.058 (3)0.039 (3)0.049 (3)0.000 (3)0.004 (3)0.003 (2)
C130.055 (4)0.055 (4)0.066 (4)0.004 (3)0.005 (3)0.013 (3)
C140.061 (4)0.082 (4)0.048 (3)0.001 (4)0.002 (3)0.010 (3)
C150.058 (4)0.069 (4)0.047 (3)0.002 (3)0.008 (3)0.009 (3)
C160.046 (3)0.050 (3)0.053 (3)0.001 (3)0.011 (3)0.002 (3)
C1110.054 (4)0.044 (3)0.049 (3)0.003 (3)0.001 (3)0.002 (3)
O1110.097 (3)0.048 (2)0.071 (3)0.026 (2)0.021 (2)0.0119 (19)
N1110.052 (3)0.035 (3)0.054 (3)0.006 (2)0.007 (2)0.000 (2)
N1210.083 (4)0.050 (3)0.081 (4)0.005 (3)0.001 (3)0.006 (3)
O1210.159 (5)0.088 (4)0.066 (3)0.017 (3)0.020 (3)0.016 (3)
O1220.136 (4)0.047 (2)0.127 (4)0.024 (3)0.019 (3)0.014 (3)
S1110.0575 (8)0.0389 (6)0.0519 (8)0.0095 (6)0.0048 (8)0.0053 (7)
C1120.036 (3)0.037 (3)0.045 (3)0.001 (2)0.001 (2)0.004 (2)
N1130.048 (2)0.030 (2)0.052 (2)0.0026 (18)0.003 (2)0.004 (2)
C13A0.039 (3)0.034 (3)0.050 (3)0.004 (2)0.000 (3)0.000 (2)
C1140.055 (4)0.032 (3)0.062 (4)0.001 (3)0.003 (3)0.003 (3)
C1150.059 (4)0.045 (3)0.060 (4)0.007 (3)0.008 (3)0.013 (2)
C1160.053 (3)0.043 (3)0.057 (4)0.003 (3)0.001 (3)0.003 (3)
C1170.051 (3)0.036 (3)0.051 (3)0.002 (3)0.003 (3)0.003 (2)
C17A0.043 (3)0.033 (3)0.050 (3)0.003 (2)0.005 (3)0.003 (2)
O1160.087 (3)0.060 (3)0.060 (2)0.007 (2)0.028 (2)0.008 (2)
C1180.087 (5)0.071 (4)0.071 (4)0.014 (4)0.027 (4)0.002 (3)
C210.037 (3)0.030 (2)0.040 (3)0.007 (2)0.002 (3)0.002 (2)
C220.048 (3)0.034 (3)0.035 (3)0.006 (2)0.002 (3)0.005 (2)
C230.041 (3)0.045 (3)0.056 (4)0.004 (3)0.006 (3)0.001 (3)
C240.062 (4)0.045 (3)0.045 (3)0.000 (3)0.013 (3)0.006 (2)
C250.071 (4)0.046 (3)0.040 (3)0.004 (3)0.009 (3)0.001 (3)
C260.043 (3)0.050 (3)0.042 (3)0.005 (3)0.008 (3)0.003 (3)
C2110.043 (3)0.038 (3)0.040 (3)0.002 (3)0.006 (3)0.002 (2)
O2110.060 (2)0.0379 (18)0.045 (2)0.0039 (17)0.0096 (18)0.0089 (15)
N2110.051 (3)0.035 (2)0.043 (3)0.004 (2)0.009 (2)0.0040 (19)
N2210.052 (3)0.047 (3)0.057 (3)0.010 (2)0.012 (3)0.001 (2)
O2210.077 (3)0.080 (3)0.054 (2)0.005 (2)0.007 (2)0.027 (2)
O2220.058 (3)0.092 (3)0.096 (3)0.005 (3)0.035 (2)0.017 (2)
S2110.0530 (8)0.0404 (7)0.0487 (8)0.0104 (6)0.0091 (7)0.0073 (7)
C2120.041 (3)0.032 (3)0.039 (3)0.002 (2)0.002 (2)0.002 (2)
N2130.037 (2)0.034 (2)0.044 (2)0.0061 (19)0.008 (2)0.0021 (18)
C23A0.035 (3)0.032 (3)0.045 (3)0.002 (2)0.006 (2)0.003 (2)
C2140.041 (3)0.045 (3)0.049 (3)0.003 (3)0.004 (3)0.005 (2)
C2150.043 (3)0.048 (3)0.055 (4)0.014 (3)0.004 (3)0.005 (3)
C2160.039 (3)0.056 (3)0.046 (3)0.003 (3)0.007 (3)0.007 (3)
C2170.051 (3)0.043 (3)0.045 (3)0.003 (3)0.003 (3)0.005 (2)
C27A0.034 (3)0.037 (3)0.047 (3)0.006 (2)0.004 (2)0.002 (2)
O2160.063 (3)0.068 (3)0.053 (2)0.017 (2)0.012 (2)0.0009 (19)
C2180.058 (4)0.088 (4)0.050 (3)0.010 (3)0.011 (3)0.002 (3)
Geometric parameters (Å, º) top
C11—C121.374 (6)C21—C221.382 (5)
C11—C161.389 (6)C21—C261.388 (6)
C11—C1111.507 (7)C21—C2111.507 (6)
C12—C131.384 (6)C22—C231.379 (6)
C12—N1211.461 (6)C22—N2211.477 (6)
C13—C141.373 (7)C23—C241.373 (6)
C13—H130.9300C23—H230.9300
C14—C151.367 (7)C24—C251.370 (6)
C14—H140.9300C24—H240.9300
C15—C161.381 (7)C25—C261.387 (6)
C15—H150.9300C25—H250.9300
C16—H160.9300C26—H260.9300
C111—O1111.214 (5)C211—O2111.209 (5)
C111—N1111.361 (6)C211—N2111.354 (5)
N111—C1121.383 (6)N211—C2121.388 (6)
N111—H1110.81 (4)N211—H2110.86 (4)
N121—O1211.207 (6)N221—O2221.225 (5)
N121—O1221.223 (5)N221—O2211.228 (5)
S111—C17A1.739 (5)S211—C2121.740 (4)
S111—C1121.749 (5)S211—C27A1.744 (4)
C112—N1131.288 (5)C212—N2131.296 (5)
N113—C13A1.389 (6)N213—C23A1.391 (5)
C13A—C17A1.387 (5)C23A—C27A1.392 (6)
C13A—C1141.387 (6)C23A—C2141.393 (6)
C114—C1151.364 (6)C214—C2151.368 (6)
C114—H1140.9300C214—H2140.9300
C115—C1161.400 (6)C215—C2161.399 (6)
C115—H1150.9300C215—H2150.9300
C116—O1161.364 (6)C216—O2161.368 (5)
C116—C1171.370 (6)C216—C2171.374 (6)
C117—C17A1.395 (6)C217—C27A1.383 (6)
C117—H1170.9300C217—H2170.9300
O116—C1181.422 (5)O216—C2181.432 (6)
C118—H18A0.9600C218—H28A0.9600
C118—H18B0.9600C218—H28B0.9600
C118—H18C0.9600C218—H28C0.9600
C12—C11—C16116.4 (5)C22—C21—C26117.4 (4)
C12—C11—C111123.0 (5)C22—C21—C211125.5 (4)
C16—C11—C111120.1 (4)C26—C21—C211116.6 (4)
C11—C12—C13123.4 (5)C23—C22—C21123.0 (5)
C11—C12—N121120.1 (5)C23—C22—N221117.3 (4)
C13—C12—N121116.3 (5)C21—C22—N221119.7 (4)
C14—C13—C12118.7 (5)C24—C23—C22118.4 (5)
C14—C13—H13120.7C24—C23—H23120.8
C12—C13—H13120.7C22—C23—H23120.8
C15—C14—C13119.3 (5)C25—C24—C23120.3 (5)
C15—C14—H14120.3C25—C24—H24119.8
C13—C14—H14120.3C23—C24—H24119.8
C14—C15—C16121.3 (5)C24—C25—C26120.8 (5)
C14—C15—H15119.4C24—C25—H25119.6
C16—C15—H15119.4C26—C25—H25119.6
C15—C16—C11120.8 (5)C25—C26—C21120.1 (5)
C15—C16—H16119.6C25—C26—H26119.9
C11—C16—H16119.6C21—C26—H26119.9
O111—C111—N111122.7 (5)O211—C211—N211122.7 (5)
O111—C111—C11121.2 (5)O211—C211—C21121.4 (4)
N111—C111—C11116.0 (5)N211—C211—C21115.6 (4)
C111—N111—C112125.3 (4)C211—N211—C212123.9 (4)
C111—N111—H111113 (4)C211—N211—H211122 (3)
C112—N111—H111121 (4)C212—N211—H211114 (3)
O121—N121—O122123.8 (5)O222—N221—O221124.2 (5)
O121—N121—C12118.5 (5)O222—N221—C22118.5 (5)
O122—N121—C12117.7 (5)O221—N221—C22117.3 (4)
C17A—S111—C11287.9 (2)C212—S211—C27A88.7 (2)
N113—C112—N111121.8 (4)N213—C212—N211120.7 (4)
N113—C112—S111117.0 (4)N213—C212—S211116.7 (3)
N111—C112—S111121.1 (4)N211—C212—S211122.6 (3)
C112—N113—C13A109.9 (4)C212—N213—C23A109.7 (4)
C17A—C13A—C114118.2 (4)N213—C23A—C27A115.8 (4)
C17A—C13A—N113115.3 (4)N213—C23A—C214125.6 (4)
C114—C13A—N113126.4 (4)C27A—C23A—C214118.6 (4)
C115—C114—C13A120.2 (5)C215—C214—C23A118.8 (4)
C115—C114—H114119.9C215—C214—H214120.6
C13A—C114—H114119.9C23A—C214—H214120.6
C114—C115—C116120.9 (5)C214—C215—C216121.8 (5)
C114—C115—H115119.6C214—C215—H215119.1
C116—C115—H115119.6C216—C215—H215119.1
O116—C116—C117124.8 (5)O216—C216—C217125.1 (4)
O116—C116—C115114.8 (5)O216—C216—C215114.7 (4)
C117—C116—C115120.3 (5)C217—C216—C215120.1 (4)
C116—C117—C17A117.9 (4)C216—C217—C27A117.5 (4)
C116—C117—H117121.1C216—C217—H217121.2
C17A—C117—H117121.1C27A—C217—H217121.2
C13A—C17A—C117122.5 (4)C217—C27A—C23A122.9 (4)
C13A—C17A—S111109.9 (4)C217—C27A—S211128.2 (4)
C117—C17A—S111127.6 (4)C23A—C27A—S211108.9 (3)
C116—O116—C118117.7 (4)C216—O216—C218117.3 (4)
O116—C118—H18A109.5O216—C218—H28A109.5
O116—C118—H18B109.5O216—C218—H28B109.5
H18A—C118—H18B109.5H28A—C218—H28B109.5
O116—C118—H18C109.5O216—C218—H28C109.5
H18A—C118—H18C109.5H28A—C218—H28C109.5
H18B—C118—H18C109.5H28B—C218—H28C109.5
C16—C11—C12—C132.6 (7)C26—C21—C22—C230.5 (6)
C111—C11—C12—C13169.6 (5)C211—C21—C22—C23171.1 (4)
C16—C11—C12—N121172.8 (4)C26—C21—C22—N221179.6 (4)
C111—C11—C12—N12115.0 (7)C211—C21—C22—N2218.8 (6)
C11—C12—C13—C140.9 (8)C21—C22—C23—C240.7 (7)
N121—C12—C13—C14174.7 (5)N221—C22—C23—C24179.3 (4)
C12—C13—C14—C152.0 (8)C22—C23—C24—C250.3 (7)
C13—C14—C15—C163.1 (8)C23—C24—C25—C260.3 (7)
C14—C15—C16—C111.3 (8)C24—C25—C26—C210.6 (7)
C12—C11—C16—C151.5 (7)C22—C21—C26—C250.2 (6)
C111—C11—C16—C15170.9 (4)C211—C21—C26—C25172.6 (4)
C12—C11—C111—O11147.8 (7)C22—C21—C211—O21173.2 (6)
C16—C11—C111—O111124.1 (5)C26—C21—C211—O21198.5 (5)
C12—C11—C111—N111135.1 (5)C22—C21—C211—N211111.9 (5)
C16—C11—C111—N11153.0 (7)C26—C21—C211—N21176.5 (5)
O111—C111—N111—C1124.1 (8)O211—C211—N211—C2122.0 (7)
C11—C111—N111—C112178.8 (4)C21—C211—N211—C212172.8 (4)
C11—C12—N121—O12133.1 (8)C23—C22—N221—O22218.2 (6)
C13—C12—N121—O121142.7 (6)C21—C22—N221—O222161.7 (4)
C11—C12—N121—O122148.9 (5)C23—C22—N221—O221162.7 (4)
C13—C12—N121—O12235.4 (7)C21—C22—N221—O22117.4 (6)
C111—N111—C112—N113179.8 (5)C211—N211—C212—N213170.5 (4)
C111—N111—C112—S1115.0 (7)C211—N211—C212—S21110.9 (6)
C17A—S111—C112—N1131.6 (4)C27A—S211—C212—N2131.8 (4)
C17A—S111—C112—N111173.9 (4)C27A—S211—C212—N211176.9 (4)
N111—C112—N113—C13A173.7 (4)N211—C212—N213—C23A179.2 (4)
S111—C112—N113—C13A1.8 (5)S211—C212—N213—C23A0.4 (5)
C112—N113—C13A—C17A1.1 (6)C212—N213—C23A—C27A3.3 (5)
C112—N113—C13A—C114176.2 (5)C212—N213—C23A—C214177.4 (4)
C17A—C13A—C114—C1150.5 (7)N213—C23A—C214—C215177.2 (4)
N113—C13A—C114—C115176.7 (4)C27A—C23A—C214—C2152.0 (6)
C13A—C114—C115—C1160.7 (8)C23A—C214—C215—C2162.8 (7)
C114—C115—C116—O116179.1 (4)C214—C215—C216—O216174.8 (4)
C114—C115—C116—C1170.1 (8)C214—C215—C216—C2176.3 (7)
O116—C116—C117—C17A179.8 (4)O216—C216—C217—C27A176.7 (4)
C115—C116—C117—C17A0.7 (7)C215—C216—C217—C27A4.5 (7)
C114—C13A—C17A—C1170.3 (7)C216—C217—C27A—C23A0.4 (7)
N113—C13A—C17A—C117177.9 (4)C216—C217—C27A—S211179.4 (4)
C114—C13A—C17A—S111177.6 (4)N213—C23A—C27A—C217175.6 (4)
N113—C13A—C17A—S1110.1 (5)C214—C23A—C27A—C2173.7 (7)
C116—C117—C17A—C13A0.9 (7)N213—C23A—C27A—S2114.5 (5)
C116—C117—C17A—S111176.6 (4)C214—C23A—C27A—S211176.2 (3)
C112—S111—C17A—C13A0.8 (3)C212—S211—C27A—C217176.8 (4)
C112—S111—C17A—C117177.0 (5)C212—S211—C27A—C23A3.4 (4)
C117—C116—O116—C1183.3 (7)C217—C216—O216—C2180.3 (7)
C115—C116—O116—C118175.8 (4)C215—C216—O216—C218178.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N111—H111···N2130.82 (4)2.19 (4)2.981 (5)165 (4)
N211—H211···N1130.86 (4)2.17 (4)2.992 (5)162 (4)
C13—H13···O211i0.932.533.408 (7)158
C25—H25···O211ii0.932.443.349 (6)165
C115—H115···O221ii0.932.453.353 (7)163
C117—H117···O111iii0.932.443.236 (5)144
C217—H217···O122iv0.932.513.412 (6)164
C16—H16···Cg1v0.932.843.484 (6)128
Symmetry codes: (i) x+3/2, y+1/2, z1/2; (ii) x, y, z+1; (iii) x+1, y+1, z+1/2; (iv) x+3/2, y1/2, z1/2; (v) x, y, z1.
5-Cyclopropyl-N-(6-methoxybenzo[d]thiazol-2-yl)isoxazole-3-carboxamide (III) top
Crystal data top
C15H13N3O3SF(000) = 1312
Mr = 315.34Dx = 1.455 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 18.720 (1) ÅCell parameters from 3118 reflections
b = 11.5255 (8) Åθ = 2.9–27.8°
c = 14.7905 (9) ŵ = 0.24 mm1
β = 115.52 (1)°T = 296 K
V = 2879.8 (4) Å3Block, colourless
Z = 80.30 × 0.20 × 0.10 mm
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
3118 independent reflections
Radiation source: Enhance (Mo) X-ray Source1730 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω scansθmax = 27.8°, θmin = 2.9°
Absorption correction: multi-scan
(CrysalisRed; Oxford Diffraction, 2009)
h = 2419
Tmin = 0.908, Tmax = 0.976k = 159
5937 measured reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.056H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0504P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
3118 reflectionsΔρmax = 0.23 e Å3
268 parametersΔρmin = 0.24 e Å3
26 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C31B0.45159 (15)0.6697 (2)0.4342 (2)0.0494 (7)0.451 (5)
O31B0.4916 (12)0.682 (3)0.5246 (5)0.056 (3)0.451 (5)
O1B0.2557 (4)0.7800 (10)0.2806 (7)0.0511 (13)0.451 (5)
N2B0.3373 (6)0.766 (3)0.3053 (16)0.0495 (13)0.451 (5)
C3B0.3650 (8)0.703 (4)0.387 (3)0.0441 (12)0.451 (5)
C4B0.3059 (8)0.673 (4)0.417 (2)0.0492 (13)0.451 (5)
H4B0.31140.62720.47130.059*0.451 (5)
C5B0.2392 (4)0.7242 (13)0.3499 (8)0.0446 (17)0.451 (5)
C510.1558 (4)0.7226 (8)0.3338 (5)0.057 (2)0.451 (5)
H510.14640.68240.38600.068*0.451 (5)
C520.0910 (5)0.7088 (8)0.2300 (6)0.055 (3)0.451 (5)
H52A0.10580.70770.17470.066*0.451 (5)
H52B0.04670.65930.22140.066*0.451 (5)
C530.0996 (4)0.8175 (6)0.2835 (5)0.067 (2)0.451 (5)
H53A0.06020.83570.30770.080*0.451 (5)
H53B0.11940.88410.26110.080*0.451 (5)
C31A0.45159 (15)0.6697 (2)0.4342 (2)0.0494 (7)0.549 (5)
O31A0.4786 (9)0.655 (2)0.5251 (4)0.056 (3)0.549 (5)
O1A0.2719 (3)0.8029 (8)0.2617 (5)0.0511 (13)0.549 (5)
N2A0.3533 (5)0.778 (2)0.2975 (13)0.0495 (13)0.549 (5)
C3A0.3683 (6)0.710 (4)0.374 (2)0.0441 (12)0.549 (5)
C4A0.3025 (6)0.690 (3)0.3936 (17)0.0492 (13)0.549 (5)
H4A0.30020.64710.44550.059*0.549 (5)
C5A0.2435 (3)0.7473 (10)0.3203 (7)0.0446 (17)0.549 (5)
C610.1581 (3)0.7625 (6)0.2904 (5)0.058 (2)0.549 (5)
H610.13520.83510.25540.069*0.549 (5)
C620.1039 (5)0.6592 (7)0.2597 (6)0.067 (3)0.549 (5)
H62A0.05110.66960.20640.080*0.549 (5)
H62B0.12720.58360.26130.080*0.549 (5)
C630.1224 (3)0.7162 (6)0.3547 (4)0.068 (2)0.549 (5)
H63A0.15690.67570.41530.082*0.549 (5)
H63B0.08090.76160.36050.082*0.549 (5)
N310.48732 (12)0.6444 (2)0.37429 (16)0.0474 (6)
H310.4615 (16)0.637 (2)0.314 (2)0.057*
S110.63319 (4)0.63305 (6)0.53535 (5)0.0480 (2)
C120.56815 (13)0.6228 (2)0.40899 (18)0.0404 (6)
N130.59782 (12)0.59878 (19)0.34675 (15)0.0460 (6)
C13A0.68009 (15)0.5844 (2)0.39970 (19)0.0436 (6)
C140.73158 (16)0.5543 (2)0.3582 (2)0.0556 (8)
H140.71240.54050.28980.067*
C150.81099 (17)0.5452 (3)0.4194 (2)0.0581 (8)
H150.84540.52320.39210.070*
C170.79097 (14)0.5970 (2)0.5647 (2)0.0490 (7)
H170.81060.61130.63300.059*
C17A0.71007 (14)0.6035 (2)0.50220 (19)0.0406 (6)
C16A0.84091 (15)0.5684 (2)0.5213 (2)0.0528 (7)0.5
O160.9220 (6)0.552 (5)0.577 (3)0.065 (7)0.5
C180.9590 (3)0.5892 (5)0.6867 (4)0.0638 (16)0.5
H18A1.01560.58730.71240.096*0.5
H18B0.94240.53690.72460.096*0.5
H18C0.94220.66650.69220.096*0.5
C16B0.84091 (15)0.5684 (2)0.5213 (2)0.0528 (7)0.5
O170.9206 (5)0.576 (5)0.581 (3)0.061 (6)0.5
C190.9693 (3)0.5307 (6)0.5324 (4)0.0719 (19)0.5
H19A1.02430.53660.57800.108*0.5
H19B0.95910.57530.47330.108*0.5
H19C0.95610.45090.51430.108*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C31B0.0317 (14)0.065 (2)0.0495 (16)0.0006 (13)0.0160 (13)0.0014 (15)
O31B0.024 (5)0.096 (10)0.0478 (12)0.009 (3)0.0161 (11)0.0036 (15)
O1B0.030 (3)0.072 (4)0.055 (3)0.008 (2)0.0215 (15)0.0136 (19)
N2B0.023 (3)0.068 (5)0.059 (3)0.002 (5)0.019 (3)0.0044 (17)
C3B0.0288 (15)0.053 (4)0.049 (6)0.001 (2)0.0146 (14)0.002 (3)
C4B0.0340 (18)0.053 (8)0.062 (9)0.0033 (16)0.022 (3)0.017 (4)
C5B0.0375 (19)0.055 (5)0.051 (5)0.002 (2)0.028 (2)0.004 (4)
C510.039 (4)0.084 (7)0.058 (5)0.002 (5)0.032 (4)0.011 (5)
C520.033 (4)0.058 (7)0.077 (6)0.007 (4)0.026 (4)0.005 (5)
C530.043 (4)0.058 (5)0.103 (6)0.002 (3)0.035 (4)0.007 (5)
C31A0.0317 (14)0.065 (2)0.0495 (16)0.0006 (13)0.0160 (13)0.0014 (15)
O31A0.024 (5)0.096 (10)0.0478 (12)0.009 (3)0.0161 (11)0.0036 (15)
O1A0.030 (3)0.072 (4)0.055 (3)0.008 (2)0.0215 (15)0.0136 (19)
N2A0.023 (3)0.068 (5)0.059 (3)0.002 (5)0.019 (3)0.0044 (17)
C3A0.0288 (15)0.053 (4)0.049 (6)0.001 (2)0.0146 (14)0.002 (3)
C4A0.0340 (18)0.053 (8)0.062 (9)0.0033 (16)0.022 (3)0.017 (4)
C5A0.0375 (19)0.055 (5)0.051 (5)0.002 (2)0.028 (2)0.004 (4)
C610.028 (3)0.074 (5)0.074 (5)0.007 (3)0.024 (3)0.013 (4)
C620.035 (4)0.087 (7)0.079 (5)0.011 (5)0.025 (4)0.018 (6)
C630.039 (4)0.109 (6)0.067 (4)0.001 (4)0.033 (3)0.000 (4)
N310.0273 (11)0.0672 (16)0.0421 (12)0.0001 (11)0.0096 (10)0.0008 (13)
S110.0288 (3)0.0700 (5)0.0427 (4)0.0041 (3)0.0131 (3)0.0019 (4)
C120.0298 (13)0.0478 (17)0.0410 (13)0.0009 (12)0.0127 (11)0.0001 (13)
N130.0367 (12)0.0544 (15)0.0441 (12)0.0048 (10)0.0146 (10)0.0003 (11)
C13A0.0395 (15)0.0444 (17)0.0486 (16)0.0060 (13)0.0204 (13)0.0046 (13)
C140.0545 (18)0.064 (2)0.0533 (17)0.0134 (15)0.0280 (15)0.0053 (15)
C150.0493 (18)0.067 (2)0.071 (2)0.0172 (15)0.0378 (16)0.0107 (17)
C170.0335 (14)0.0581 (19)0.0534 (16)0.0036 (13)0.0168 (13)0.0011 (14)
C17A0.0321 (13)0.0413 (16)0.0490 (15)0.0024 (11)0.0180 (12)0.0013 (12)
C16A0.0331 (15)0.0533 (19)0.073 (2)0.0085 (13)0.0232 (15)0.0127 (16)
O160.038 (6)0.081 (17)0.067 (8)0.012 (4)0.014 (5)0.001 (8)
C180.039 (3)0.064 (4)0.070 (4)0.001 (3)0.006 (3)0.011 (3)
C16B0.0331 (15)0.0533 (19)0.073 (2)0.0085 (13)0.0232 (15)0.0127 (16)
O170.031 (5)0.084 (18)0.069 (7)0.013 (4)0.022 (5)0.008 (7)
C190.032 (3)0.113 (6)0.074 (4)0.009 (3)0.026 (3)0.003 (4)
Geometric parameters (Å, º) top
C31B—O31B1.227 (7)C62—H62B0.9700
C31B—N311.352 (3)C63—H63A0.9700
C31B—C3B1.512 (6)C63—H63B0.9700
O1B—C5B1.353 (6)N31—C121.395 (3)
O1B—N2B1.419 (6)N31—H310.82 (3)
N2B—C3B1.310 (6)S11—C121.740 (2)
C3B—C4B1.401 (6)S11—C17A1.742 (2)
C4B—C5B1.350 (7)C12—N131.293 (3)
C4B—H4B0.9300N13—C13A1.405 (3)
C5B—C511.474 (7)C13A—C17A1.389 (3)
C51—C531.477 (7)C13A—C141.391 (3)
C51—C521.499 (7)C14—C151.371 (4)
C51—H510.9800C14—H140.9300
C52—C531.454 (8)C15—C16A1.389 (4)
C52—H52A0.9700C15—H150.9300
C52—H52B0.9700C17—C16A1.383 (3)
C53—H53A0.9700C17—C17A1.395 (3)
C53—H53B0.9700C17—H170.9300
O1A—C5A1.357 (5)C16A—O161.393 (8)
O1A—N2A1.412 (5)O16—C181.52 (4)
N2A—C3A1.308 (6)C18—C18i1.840 (10)
C3A—C4A1.399 (5)C18—H18A0.9600
C4A—C5A1.342 (6)C18—H18B0.9600
C4A—H4A0.9300C18—H18C0.9600
C5A—C611.473 (6)O17—C191.48 (4)
C61—C631.478 (6)C19—C19ii1.920 (11)
C61—C621.503 (7)C19—H19A0.9600
C61—H610.9800C19—H19B0.9600
C62—C631.451 (7)C19—H19C0.9600
C62—H62A0.9700
O31B—C31B—N31119.8 (12)C62—C63—C6161.8 (4)
O31B—C31B—C3B120.3 (12)C62—C63—H63A117.6
N31—C31B—C3B119.0 (14)C61—C63—H63A117.6
C5B—O1B—N2B108.9 (5)C62—C63—H63B117.6
C3B—N2B—O1B104.8 (5)C61—C63—H63B117.6
N2B—C3B—C4B112.0 (5)H63A—C63—H63B114.7
N2B—C3B—C31B119.2 (7)C31B—N31—C12124.2 (2)
C4B—C3B—C31B128.8 (7)C31B—N31—H31120.8 (19)
C5B—C4B—C3B105.5 (6)C12—N31—H31114.9 (19)
C5B—C4B—H4B127.3C12—S11—C17A87.99 (11)
C3B—C4B—H4B127.3N13—C12—N31120.4 (2)
C4B—C5B—O1B108.8 (6)N13—C12—S11117.56 (18)
C4B—C5B—C51133.9 (7)N31—C12—S11121.94 (18)
O1B—C5B—C51117.1 (6)C12—N13—C13A109.4 (2)
C5B—C51—C53123.2 (8)C17A—C13A—C14119.4 (2)
C5B—C51—C52120.0 (7)C17A—C13A—N13114.9 (2)
C53—C51—C5258.5 (4)C14—C13A—N13125.8 (2)
C5B—C51—H51114.6C15—C14—C13A119.2 (3)
C53—C51—H51114.6C15—C14—H14120.4
C52—C51—H51114.6C13A—C14—H14120.4
C53—C52—C5160.0 (4)C14—C15—C16A121.1 (3)
C53—C52—H52A117.8C14—C15—H15119.4
C51—C52—H52A117.8C16A—C15—H15119.4
C53—C52—H52B117.8C16A—C17—C17A117.6 (3)
C51—C52—H52B117.8C16A—C17—H17121.2
H52A—C52—H52B114.9C17A—C17—H17121.2
C52—C53—C5161.5 (4)C13A—C17A—C17121.8 (2)
C52—C53—H53A117.6C13A—C17A—S11110.11 (18)
C51—C53—H53A117.6C17—C17A—S11128.1 (2)
C52—C53—H53B117.6C17—C16A—C15120.8 (3)
C51—C53—H53B117.6C17—C16A—O16123 (2)
H53A—C53—H53B114.7C15—C16A—O16116 (2)
C5A—O1A—N2A108.8 (4)C16A—O16—C18118 (3)
C3A—N2A—O1A103.9 (4)O16—C18—C18i151.6 (14)
N2A—C3A—C4A113.4 (5)O16—C18—H18A109.5
C5A—C4A—C3A104.2 (5)C18i—C18—H18A45.7
C5A—C4A—H4A127.9O16—C18—H18B109.5
C3A—C4A—H4A127.9C18i—C18—H18B75.2
C4A—C5A—O1A109.6 (5)H18A—C18—H18B109.5
C4A—C5A—C61135.3 (6)O16—C18—H18C109.5
O1A—C5A—C61115.1 (5)C18i—C18—H18C94.3
C5A—C61—C63119.8 (5)H18A—C18—H18C109.5
C5A—C61—C62120.0 (7)H18B—C18—H18C109.5
C63—C61—C6258.2 (4)O17—C19—C19ii178.6 (18)
C5A—C61—H61115.6O17—C19—H19A109.5
C63—C61—H61115.6C19ii—C19—H19A71.7
C62—C61—H61115.6O17—C19—H19B109.5
C63—C62—C6160.0 (3)C19ii—C19—H19B70.7
C63—C62—H62A117.8H19A—C19—H19B109.5
C61—C62—H62A117.8O17—C19—H19C109.5
C63—C62—H62B117.8C19ii—C19—H19C69.2
C61—C62—H62B117.8H19A—C19—H19C109.5
H62A—C62—H62B114.9H19B—C19—H19C109.5
C5B—O1B—N2B—C3B0 (4)C5A—C61—C62—C63108.5 (7)
O1B—N2B—C3B—C4B1 (6)C5A—C61—C63—C62108.9 (8)
O1B—N2B—C3B—C31B179 (4)O31B—C31B—N31—C124.6 (15)
O31B—C31B—C3B—N2B132 (4)C3B—C31B—N31—C12174 (2)
N31—C31B—C3B—N2B37 (6)C31B—N31—C12—N13179.8 (3)
O31B—C31B—C3B—C4B49 (6)C31B—N31—C12—S113.1 (4)
N31—C31B—C3B—C4B141 (5)C17A—S11—C12—N130.7 (2)
N2B—C3B—C4B—C5B2 (6)C17A—S11—C12—N31176.5 (2)
C31B—C3B—C4B—C5B180 (4)N31—C12—N13—C13A178.1 (2)
C3B—C4B—C5B—O1B2 (5)S11—C12—N13—C13A0.9 (3)
C3B—C4B—C5B—C51176 (3)C12—N13—C13A—C17A2.6 (3)
N2B—O1B—C5B—C4B1 (3)C12—N13—C13A—C14177.8 (3)
N2B—O1B—C5B—C51176.4 (18)C17A—C13A—C14—C150.6 (4)
C4B—C5B—C51—C53155 (3)N13—C13A—C14—C15178.9 (2)
O1B—C5B—C51—C5331.4 (18)C13A—C14—C15—C16A1.6 (4)
C4B—C5B—C51—C52135 (3)C14—C13A—C17A—C172.0 (4)
O1B—C5B—C51—C5238.5 (18)N13—C13A—C17A—C17177.5 (2)
C5B—C51—C52—C53112.8 (9)C14—C13A—C17A—S11177.3 (2)
C5B—C51—C53—C52107.4 (10)N13—C13A—C17A—S113.2 (3)
C5A—O1A—N2A—C3A0 (3)C16A—C17—C17A—C13A1.2 (4)
O1A—N2A—C3A—C4A2 (5)C16A—C17—C17A—S11177.9 (2)
N2A—C3A—C4A—C5A3 (5)C12—S11—C17A—C13A2.1 (2)
C3A—C4A—C5A—O1A2 (4)C12—S11—C17A—C17178.7 (3)
C3A—C4A—C5A—C61178 (2)C17A—C17—C16A—C151.1 (4)
N2A—O1A—C5A—C4A2 (2)C17A—C17—C16A—O16176 (3)
N2A—O1A—C5A—C61178.5 (14)C14—C15—C16A—C172.5 (5)
C4A—C5A—C61—C636 (3)C14—C15—C16A—O16178 (3)
O1A—C5A—C61—C63173.6 (9)C17—C16A—O16—C1812 (5)
C4A—C5A—C61—C6262 (3)C15—C16A—O16—C18173 (3)
O1A—C5A—C61—C62118.1 (10)C16A—O16—C18—C18i165.7 (9)
Symmetry codes: (i) x+2, y, z+3/2; (ii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N31—H31···N13iii0.82 (3)2.19 (3)3.003 (3)173 (2)
C17—H17···O1Aiv0.932.513.293 (7)142
C17—H17···N2Aiv0.932.553.440 (19)160
C63—H63B···O31Av0.972.583.440 (18)148
Symmetry codes: (iii) x+1, y, z+1/2; (iv) x+1/2, y+3/2, z+1/2; (v) x+1/2, y+3/2, z+1.
Hydrogen bonds and short intermolecular contacts(Å, °) top
Cg1 represents the centroid of the ring C13A/C17A/C117/C116/C115/C114
CompoundD—H···AD—HH···AD···AD—H···A
(I)N11—H11···O11i0.90 (4)1.97 (3)2.840 (4)164 (3))
C12—H12···N13ii0.932.623.512 (6)161
(II)N111—H111···N2130.82 (4)2.19 (4)2.981 (5)165 (4)
N211—H211···N1130.86 (4)2.17 (4)2.992 (5)162 (4)
C13—H13···O211iii0.932.533.408 (7)158
C25—H25···O211iv0.932.443.349 (6)165
C115—H115···O221iv0.932.453.353 (7)163
C117—H117···O111v0.932.443.236 (5)144
C217—H217···O122vi0.932.513.412 (6)164
C16—H16···Cg1vii0.932.843.484 (6)128
(III)N31—H31···N13viii0.82 (3)2.19 (3)3.003 (3)173 (2)
C17—H17···O1Aix0.932.513.293 (7)142
C17—H17···N2AAix0.932.553.440 (19)160
C63—H63B···O31Ax0.972.583.440 (18)148
Symmetry codes: (i) x, -1 + y, z; (ii) 1 - x, 1/2 + y, 1/2 - z; (iii) 3/2 - x, 1/2 + y, -1/2 - z; (iv) x, y, 1 + z; (v) 1 - x, 1 - y, 1/2 + z; (vi) 3/2 - x, -1/2 + y, -1/2 - z; (vii) x, y, -1 + z; (viii) 1 - x, y, 1/2 - z; (ix) 1/2 + x, 3/2 - y, 1/2 + z; (x) 1/2 - x, 3/2 - y, 1 - z.
 

Acknowledgements

NM thanks the University of Mysore for research facilities.

Funding information

HSY is grateful to the UGC, New Delhi, for the award of a BSR Faculty Fellowship for three years.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCavallo, G., Metrangolo, P., Milan, R., Pilati, T., Priimagi, T., Resnati, G. & Teraneo, G. (2016). Chem. Rev. 116, 2378–2601.  Web of Science CrossRef Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129–138.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139–150.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C. & Patterson, I. L. J. (1996). Acta Cryst. C52, 420–423.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011a). Acta Cryst. E67, o2926–o2927.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011b). Acta Cryst. E67, o2941–o2942.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o2463.  CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Shahani, T., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o519.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGao, K., Liu, J., Zuo, K., Feng, X. & Gao, Y. (2020). Molecules, 25, 1675–1690.  Web of Science CrossRef CAS Google Scholar
First citationGlidewell, C., Low, J. N., McWilliam, S. A., Skakle, J. M. S. & Wardell, J. L. (2001). Acta Cryst. C57, 1209–1211.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39–57.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHenary, M., Paranjpe, S. & Owens, E. A. (2013). Heterocycl. Commun. 19, 89–99.  CAS Google Scholar
First citationImramovský, A., Pejchal, V., Štěpánková, Š., Vorčáková, K., Jampílek, J., Vančo, J., Šimůnek, P., Královec, K., Brůčková, L., Mandíková, J. & Trejtnar, F. (2013). Bioorg. Med. Chem. 21, 1735–1748.  Web of Science PubMed Google Scholar
First citationJung, K.-Y., Kim, S.-K., Gao, Z.-G., Gross, A. S., Melman, N., Jacobson, K. A. & Kim, Y.-C. (2004). Bioorg. Med. Chem. 12, 613–623.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNayak, P. S., Jasinski, J. P., Golen, J. A., Narayana, B., Kaur, M., Yathirajan, H. S. & Glidewell, C. (2014). Acta Cryst. C70, 889–894.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOdame, F., Woodcock, G., Hosten, E. C., Lobb, K. & Tshentu, Z. R. (2020). J. Organomet. Chem. 922, 121359.  Web of Science CSD CrossRef Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPraveen, A. S., Jasinski, J. P., Golen, J. A., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1826.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPraveen, A. S., Yathirajan, H. S., Jasinski, J. P., Keeley, A. C., Narayana, B. & Sarojini, B. K. (2013a). Acta Cryst. E69, o900–o901.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationPraveen, A. S., Yathirajan, H. S., Jasinski, J. P., Keeley, A. C., Narayana, B. & Sarojini, B. K. (2013b). Acta Cryst. E69, o996–o997.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationRamasubbu, N., Parthasarathy, R. & Murray-Rust, P. (1986). J. Am. Chem. Soc. 108, 4308–4314.  CrossRef CAS Web of Science Google Scholar
First citationRowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391.  CrossRef CAS Web of Science Google Scholar
First citationSaeed, A., Rafique, H. & Bolte, M. (2007). Acta Cryst. E63, o4247.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSeip, H. M. & Seip, R. (1973). Acta Chem. Scand. 27, 4024–4027.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWhite, E. H., McCapra, F. & Field, G. F. (1963). J. Am. Chem. Soc. 85, 337–343.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds