research communications
N-(4-chlorophenyl)acetamide
and Hirshfeld surface analysis of 2-{[7-acetyl-8-(4-chlorophenyl)-4-cyano-6-hydroxy-1,6-dimethyl-5,6,7,8-tetrahydroisoquinolin-3-yl]sulfanyl}-aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bChemistry Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt, cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, dChemistry and Environmental Division, Manchester Metropolitan University, Manchester, M1 5GD, England, eChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, and fDepartment of Chemistry, Faculty of Science, Taiz University, Taiz, Yemen
*Correspondence e-mail: shaabankamel@yahoo.com
In the title molecule, C28H25Cl2N3O3S, the heterocyclic portion of the tetrahydroisoquinoline unit is planar while the cyclohexene ring adopts a twist-boat conformation. The two 4-chlorophenyl groups extend away from one side of this unit while the hydroxyl and acetyl groups extend away from the opposite side and form an intramolecular O—H⋯O hydrogen bond. The crystal packing consists of layers parallel to the bc plane. A Hirshfeld surface analysis of the indicates that the most important contributions to the crystal packing are from H⋯H (37.3%), Cl⋯H/H⋯Cl (17.6%), O⋯H/H⋯O (11.1%), C⋯H/H⋯C (10.9%) and N⋯H/H⋯N (9.7%) interactions.
Keywords: crystal structure; tetrahydroisoquinoline; hydrogen bond; twist-boat conformation; Hirshfeld surface analysis.
CCDC reference: 2075592
1. Chemical context
The tetrahydroisoquinoline motif is present in a variety of natural products, including cactus et al., 1987) and mammalian (salsoline carboxylic acid; Czarnocki et al., 1992). Biological tests indicate that tetrahydroisoquinolines can act as bronchodilators (Houston & Rodger, 1974) and anticonvulsants (Ohkubo et al., 1996; Thompson et al., 1990) and they have also shown anti-hypoxic activity (Gill et al., 1991). Based on these findings and following our interest in this area, we herein report the synthesis and of the title compound.
(peyoruvic acid; Chrzanowska2. Structural commentary
The overall conformation of the title molecule, Fig. 1, resembles that of a chair with the tetrahydroisoquinoline core forming the seat, the hydroxyl and acetyl oxygen atoms forming stubby legs and the 4-chlorophenyl group and the amide group forming the back. The N1/C5–C9 ring is essentially planar (r.m.s. deviation = 0.041 Å) with the largest deviation of 0.059 (1) Å being for atom C9. A puckering analysis (Cremer & Pople, 1975) of the C1–C5/C9 ring yielded the following parameters: QT = 0.5230 (13) Å, θ = 54.39 (14)° and φ = 96.94 (17)°. The conformation of this ring approximates a twist-boat conformation. The best planes through the C10–C15 and C23–C28 rings are inclined to the N1/C5–C9 plane by 76.05 (6) and 74.04 (6)°, respectively. The acetyl group on C2 is in an equatorial position while the hydroxyl group on C3 is axial and these are syn to one another. The C10–C15 ring attached to C1 is close to equatorial and anti with respect to both other substituents (Table 1, Fig. 1). The O2—H2A hydroxyl group is favorably oriented for forming an intramolecular hydrogen bond with O1 (Fig. 1). This was not seen for some related molecules where a stronger intermolecular interaction is favored for these O atoms (Al-Taifi et al., 2021).
3. Supramolecular features and Hirshfeld surface analysis
In the crystal, helical chains extending along the c-axis direction are formed by N3—H3⋯O3 hydrogen bonds (Table 1 and Fig. 2). Inversion-related chains pack together to form thick layers, which have the chlorine atoms on the outsides (Fig. 3). In addition, a C22—O3⋯Cg1ii interaction [C22—O3 = 1.3576 (15) Å, O3⋯Cg1ii = 3.6287 (11) Å and C22—O3⋯Cg1ii = 115.38 (8)°; symmetry code: (ii) x, − y, + z; where Cg1 is the centroid of the N1/C5-C9 ring) are also observed in the crystal structure.
The intermolecular interactions in the crystal of the title compound were investigated and visualized by performing a Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) using Crystal Explorer 17.5 (Turner et al., 2017). The Hirshfeld surface plotted over dnorm in the range −0.3918 to +1.6138 a.u. is shown in Fig. 4 with red areas indicating distances shorter (in closer contact) and blue those longer (distant contact) than the van der Waals separations. The closest contacts are listed in Table 2. The O—H⋯O and N—H⋯O hydrogen bonds are clearly shown by the dark-red circles (Tables 1 and 2; Fig. 4).
|
Fig. 5 shows the full two-dimensional fingerprint plot (McKinnon et al., 2007) and those delineated into the major contacts: H⋯H (37.3%; Fig. 5b), Cl⋯H/H⋯Cl (17.6%; Fig. 5c), O⋯H/H⋯O (11.1%; Fig. 5d), C⋯H/H⋯C (10.9%; Fig. 5e) and N⋯H/H⋯N (9.7%; Fig. 5f). The other contacts are negligible with individual contributions of less than 2.9% and are given in Table 3.
|
4. Database survey
A survey of the Cambridge Structural Database (CSD, version 5.42, November 2020; Groom et al., 2016) reveals nine comparable tetrahydroisoquinoline derivatives, 7-acetyl-8-(4-chlorophenyl)-3-(ethylsulfanyl)-6-hydroxy-1,6-dimethyl-5,6,7,8-tetrahydroisoquinoline-4-carbonitrile (refcode NAQRIJ: Mague et al., 2017), 2-methyl-1,2,3,4-tetrahydroisoquinoline trihydrate (KUGLIK: Langenohl et al., 2020), 2′-benzoyl-1′-(4-methoxyphenyl)-1-methyl-1′,5′,6′,10′b-tetrahydro-2′H-spiro[indole-3,3′-pyrrolo[2,1-a]isoquinolin]-2(1H)-one (DUSVIZ: Selvaraj et al., 2020), 2-[(7-acetyl-4-cyano-6-hydroxy-1,6-dimethyl-8-phenyl-5,6,7,8-tetrahydroisoquinolin-3-yl)sulfanyl]-N-phenylacetamide (AKIVUO: Al-Taifi et al., 2021), 3-amino-1-oxo-2,6,8-triphenyl-1,2,7,8-tetrahydroisoquinoline-4-carbonitrile (ULUTAZ: Naghiyev et al., 2021), 4-fluoro-3-(4-methoxyphenyl)-1-oxo-2-phenyl-1,2,3,4-tetrahydroisoquinoline-4-carboxylic acid (CARCOQ: Lehmann et al., 2017), 2-[3-methyl-4-phenyl-3,4-dihydroisoquinolin-2(1H)-yl]-1,2-diphenylethan-1-ol (POPYEB: Ben Ali & Retailleau, 2019), (1R,3S)-6,7-dimethoxy-3-(methoxydiphenylmethyl)-1-phenyl-1,2,3,4-tetrahydroisoquinoline (ENOCIU: Naicker et al., 2011) and 1,2,3,4-tetrahydroisoquinoline-2-sulfonamide (NIWPAL: Bouasla et al., 2008).
In the crystal of NAQRIJ, dimers form through complementary sets of inversion-related O—H⋯O and C—H⋯O hydrogen bonds. These are connected into zigzag chains along the c-axis direction by pairwise C—H⋯N interactions that also form inversion dimers. In the crystal of KUGLIK, the heterocyclic are alternately connected to the hydrogen-bonding system along the c axis, which leads to the formation of chains in this direction. The hydrogen-bonding network of the water molecules forms a water plane along the b and c axes with different ring systems (only counting the oxygen atoms) and graph-set motifs of the hydrogen-bonding network. In the crystal of DUSVIZ, molecules are linked via C—H⋯O hydrogen bonds. For the major disorder component, these form C(11) chains that propagate parallel to the a axis. In the crystal of AKIVUO, a layer structure with the layers parallel to (10) is generated by O—H⋯O and C—H⋯O hydrogen bonds. In the crystal of ULUTAZ, molecules are linked via N—H⋯O and C—H⋯N hydrogen bonds, forming a three-dimensional network. Furthermore, the crystal packing is dominated by C—H⋯π bonds with a strong interaction involving the phenyl H atoms. In the crystal of CARCOQ, molecules are linked by O—H⋯O hydrogen bonds, forming chains propagating along the a-axis direction. The chains are linked by C—H⋯F hydrogen bonds, forming layers lying parallel to the ab plane. In the crystal of POPYEB, molecules are packed in a herringbone manner parallel to (103) and (10) via weak C—H⋯O and C—H⋯π(ring) interactions. In the of ENOCIU, various C—H⋯π and C—H⋯O interactions link the molecules. In the crystal of NIWPAL, the molecules are linked by N—H⋯O intermolecular hydrogen bonds involving the sulfonamide function to form an infinite two-dimensional network parallel to the (001) plane.
5. Synthesis and crystallization
The title compound was obtained by refluxing of 7-acetyl-8-(4-chlorophenyl)-4-cyano-1,6-dimethyl-6-hydroxy-5,6,7,8-tetrahydroisoquinoline-3(2H)-thione, (0.77 g, 2 mmol) with N-(4-chlorophenyl)-2-chloroacetamide (0.40 g, 2 mmol) and (0.98 g, 12 mmol) of anhydrous sodium acetate in pure ethanol (30 ml) for 1 h as shown in Fig. 6. The product that formed during cooling was collected and recrystallized from ethanol to give good quality crystals suitable for X-ray diffraction. Yield: 1.00 g, 91%; m.p. 491–493 K.
IR: 3522 cm−1 (O—H), 3277 cm−1 (N—H), 2991, 2920 cm−1 (C—H, aliphatic), 2217 cm−1 (C≡N), 1694 (C=O, acetyl), 1666 cm−1 (C=O, amide). 1H NMR (400 MHz, DMSO-d6): δ 10.95 (s, 1H, NH); 8.17–8.24 (m, 2H, Ar-H); 7.79–7.81 (d, 2H, Ar-H); 7.26–7.32 (m, 2H, Ar-H); 7.03–7.05 (d, 2H, Ar-H); 4.88 (s, 1H, OH); 4.53–4.55 (d, 1H, CH at C-8); 4.19–4.20 (dd, 2H, SCH2); 3.24–3.29 (d, 1H, CH at C-5); 2.87–2.90 (m, 2H: CH at C-5 and CH at C-7); 2.13 (s, 3H, COCH3); 1.86 (s, 3H, CH3 attached to pyridine ring); 1.27 (s, 3H, CH3). Analysis calculated for C28H25Cl2N3O3S (554.47): C 60.65%, H 4.54%, N 7.58%, S 5.78%. Found: C 60.34%, H 4.57%, N 7.68%, S 5.97%.
6. Refinement
Crystal data, data collection and structure . All C-bound H atoms were placed in geometrically idealized positions (C—H = 0.95–1.00 Å) while those attached to O and to N were placed in locations derived from a difference map, refined for a few cycles to ensure that reasonable displacement parameters could be achieved, and then their coordinates were adjusted to give O—H = 0.87 and N—H = 0.91 Å. All H atoms were included as riding contributions with isotropic displacement parameters 1.2–1.5 times those of the parent atoms.
details are summarized in Table 4Supporting information
CCDC reference: 2075592
https://doi.org/10.1107/S2056989021003674/vm2246sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021003674/vm2246Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021003674/vm2246Isup3.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C28H25Cl2N3O3S | F(000) = 1152 |
Mr = 554.47 | Dx = 1.393 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 18.2076 (8) Å | Cell parameters from 9990 reflections |
b = 14.2859 (6) Å | θ = 2.5–29.3° |
c = 10.2713 (5) Å | µ = 0.36 mm−1 |
β = 98.245 (1)° | T = 150 K |
V = 2644.1 (2) Å3 | Column, colourless |
Z = 4 | 0.29 × 0.21 × 0.17 mm |
Bruker SMART APEX CCD diffractometer | 7143 independent reflections |
Radiation source: fine-focus sealed tube | 5685 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 29.3°, θmin = 1.8° |
φ and ω scans | h = −24→25 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −19→19 |
Tmin = 0.85, Tmax = 0.94 | l = −14→14 |
50860 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: mixed |
wR(F2) = 0.115 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0726P)2 + 0.1632P] where P = (Fo2 + 2Fc2)/3 |
7143 reflections | (Δ/σ)max = 0.001 |
337 parameters | Δρmax = 0.55 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 20 sec/frame. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 1.00 Å) while those attached to nitrogen and to oxygen were placed in locations derived from a difference map and their coordinates adjusted to give N—H = 0.91 and O—H = 0.87 %A. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. |
x | y | z | Uiso*/Ueq | ||
Cl1 | −0.02990 (2) | 0.36422 (4) | 0.33858 (4) | 0.04981 (14) | |
Cl2 | 0.06724 (2) | 0.10721 (4) | 0.37194 (6) | 0.06092 (16) | |
S1 | 0.51601 (2) | 0.33832 (2) | 0.47637 (3) | 0.02002 (9) | |
O1 | 0.18797 (6) | 0.75204 (7) | 0.15363 (11) | 0.0362 (2) | |
O2 | 0.34473 (5) | 0.71519 (6) | 0.18526 (9) | 0.0251 (2) | |
H2A | 0.306643 | 0.752176 | 0.183434 | 0.038* | |
O3 | 0.38487 (5) | 0.25324 (7) | 0.72696 (9) | 0.0266 (2) | |
N3 | 0.38125 (6) | 0.22031 (7) | 0.50946 (10) | 0.0202 (2) | |
H3 | 0.405602 | 0.226236 | 0.438511 | 0.024* | |
N1 | 0.39445 (6) | 0.43662 (7) | 0.50524 (10) | 0.0195 (2) | |
N2 | 0.54848 (7) | 0.44181 (10) | 0.16630 (12) | 0.0346 (3) | |
C1 | 0.25066 (6) | 0.57818 (8) | 0.28505 (12) | 0.0182 (2) | |
H1 | 0.250642 | 0.638103 | 0.335370 | 0.022* | |
C2 | 0.24356 (7) | 0.60275 (8) | 0.13694 (12) | 0.0192 (2) | |
H2 | 0.229573 | 0.544713 | 0.084806 | 0.023* | |
C3 | 0.31715 (7) | 0.64019 (9) | 0.09934 (12) | 0.0193 (2) | |
C4 | 0.37436 (7) | 0.56220 (9) | 0.12178 (12) | 0.0197 (2) | |
H4A | 0.362155 | 0.513961 | 0.052868 | 0.024* | |
H4AB | 0.423739 | 0.588126 | 0.112304 | 0.024* | |
C5 | 0.37853 (6) | 0.51651 (8) | 0.25450 (11) | 0.0169 (2) | |
C6 | 0.44083 (6) | 0.46236 (8) | 0.30248 (12) | 0.0175 (2) | |
C7 | 0.44414 (6) | 0.41916 (8) | 0.42543 (12) | 0.0178 (2) | |
C8 | 0.33611 (6) | 0.49192 (8) | 0.46270 (12) | 0.0189 (2) | |
C9 | 0.32273 (6) | 0.52698 (8) | 0.33326 (11) | 0.0175 (2) | |
C10 | 0.18187 (7) | 0.52296 (9) | 0.30652 (12) | 0.0210 (2) | |
C11 | 0.17522 (8) | 0.42867 (10) | 0.27233 (14) | 0.0270 (3) | |
H11 | 0.215512 | 0.397364 | 0.241791 | 0.032* | |
C12 | 0.11017 (8) | 0.37991 (11) | 0.28247 (15) | 0.0335 (3) | |
H12 | 0.105907 | 0.315681 | 0.258635 | 0.040* | |
C13 | 0.05205 (8) | 0.42535 (12) | 0.32726 (14) | 0.0331 (3) | |
C14 | 0.05739 (7) | 0.51863 (12) | 0.36358 (14) | 0.0329 (3) | |
H14 | 0.017144 | 0.549228 | 0.395275 | 0.040* | |
C15 | 0.12252 (7) | 0.56685 (10) | 0.35299 (14) | 0.0273 (3) | |
H15 | 0.126618 | 0.630890 | 0.377902 | 0.033* | |
C16 | 0.18163 (7) | 0.67507 (10) | 0.10366 (13) | 0.0249 (3) | |
C17 | 0.11592 (9) | 0.64770 (13) | 0.00686 (17) | 0.0427 (4) | |
H17A | 0.131638 | 0.636429 | −0.079127 | 0.064* | |
H17B | 0.079144 | 0.698219 | −0.000773 | 0.064* | |
H17C | 0.093878 | 0.590491 | 0.036992 | 0.064* | |
C18 | 0.30814 (8) | 0.67229 (10) | −0.04373 (13) | 0.0281 (3) | |
H18A | 0.288390 | 0.620672 | −0.101182 | 0.042* | |
H18B | 0.356492 | 0.691427 | −0.066072 | 0.042* | |
H18C | 0.273755 | 0.725379 | −0.055836 | 0.042* | |
C19 | 0.50033 (7) | 0.45056 (9) | 0.22598 (12) | 0.0216 (3) | |
C20 | 0.28761 (7) | 0.51467 (10) | 0.56440 (12) | 0.0259 (3) | |
H20A | 0.267277 | 0.577862 | 0.548872 | 0.039* | |
H20B | 0.316951 | 0.511668 | 0.652083 | 0.039* | |
H20C | 0.246849 | 0.469388 | 0.558811 | 0.039* | |
C21 | 0.48904 (7) | 0.30133 (9) | 0.63011 (12) | 0.0211 (2) | |
H21A | 0.526562 | 0.256096 | 0.671259 | 0.025* | |
H21B | 0.491187 | 0.356564 | 0.688747 | 0.025* | |
C22 | 0.41320 (7) | 0.25678 (8) | 0.62599 (12) | 0.0200 (2) | |
C23 | 0.30606 (7) | 0.19224 (9) | 0.48223 (12) | 0.0208 (2) | |
C24 | 0.28725 (8) | 0.12164 (10) | 0.38993 (13) | 0.0261 (3) | |
H24 | 0.324845 | 0.091634 | 0.349871 | 0.031* | |
C25 | 0.21356 (8) | 0.09505 (10) | 0.35639 (15) | 0.0323 (3) | |
H25 | 0.200533 | 0.046510 | 0.294129 | 0.039* | |
C26 | 0.15947 (8) | 0.13995 (11) | 0.41455 (16) | 0.0338 (3) | |
C27 | 0.17712 (8) | 0.21117 (11) | 0.50392 (15) | 0.0321 (3) | |
H27 | 0.139056 | 0.242487 | 0.541132 | 0.039* | |
C28 | 0.25087 (7) | 0.23702 (10) | 0.53944 (13) | 0.0263 (3) | |
H28 | 0.263523 | 0.285112 | 0.602558 | 0.032* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0360 (2) | 0.0749 (3) | 0.0390 (2) | −0.0295 (2) | 0.00696 (17) | 0.0015 (2) |
Cl2 | 0.0240 (2) | 0.0690 (3) | 0.0864 (4) | −0.01335 (19) | −0.0033 (2) | −0.0080 (3) |
S1 | 0.01734 (15) | 0.01972 (16) | 0.02272 (16) | 0.00206 (10) | 0.00195 (11) | 0.00332 (11) |
O1 | 0.0341 (6) | 0.0269 (5) | 0.0470 (6) | 0.0108 (4) | 0.0042 (5) | 0.0020 (5) |
O2 | 0.0255 (5) | 0.0200 (4) | 0.0296 (5) | −0.0013 (3) | 0.0039 (4) | −0.0026 (4) |
O3 | 0.0287 (5) | 0.0354 (5) | 0.0161 (4) | 0.0012 (4) | 0.0043 (4) | 0.0027 (4) |
N3 | 0.0210 (5) | 0.0238 (5) | 0.0162 (5) | −0.0028 (4) | 0.0042 (4) | −0.0008 (4) |
N1 | 0.0211 (5) | 0.0195 (5) | 0.0177 (5) | 0.0002 (4) | 0.0022 (4) | 0.0015 (4) |
N2 | 0.0323 (7) | 0.0426 (8) | 0.0314 (7) | 0.0089 (5) | 0.0125 (5) | 0.0027 (5) |
C1 | 0.0173 (5) | 0.0184 (6) | 0.0191 (6) | 0.0012 (4) | 0.0029 (4) | 0.0008 (4) |
C2 | 0.0197 (6) | 0.0187 (6) | 0.0184 (6) | 0.0017 (4) | 0.0006 (4) | 0.0021 (4) |
C3 | 0.0207 (6) | 0.0193 (6) | 0.0179 (6) | 0.0017 (4) | 0.0026 (4) | 0.0019 (4) |
C4 | 0.0209 (6) | 0.0221 (6) | 0.0164 (5) | 0.0033 (4) | 0.0043 (4) | 0.0022 (4) |
C5 | 0.0193 (5) | 0.0158 (5) | 0.0154 (5) | 0.0000 (4) | 0.0016 (4) | −0.0003 (4) |
C6 | 0.0184 (5) | 0.0163 (5) | 0.0182 (5) | −0.0002 (4) | 0.0040 (4) | −0.0008 (4) |
C7 | 0.0171 (5) | 0.0165 (5) | 0.0193 (6) | 0.0004 (4) | 0.0005 (4) | 0.0010 (4) |
C8 | 0.0199 (5) | 0.0193 (6) | 0.0178 (5) | −0.0005 (4) | 0.0031 (4) | 0.0012 (4) |
C9 | 0.0180 (5) | 0.0168 (5) | 0.0173 (5) | −0.0001 (4) | 0.0015 (4) | 0.0002 (4) |
C10 | 0.0187 (6) | 0.0252 (6) | 0.0190 (6) | 0.0004 (5) | 0.0022 (4) | 0.0031 (5) |
C11 | 0.0275 (7) | 0.0259 (7) | 0.0281 (7) | −0.0024 (5) | 0.0057 (5) | −0.0005 (5) |
C12 | 0.0367 (8) | 0.0324 (8) | 0.0309 (7) | −0.0116 (6) | 0.0034 (6) | 0.0013 (6) |
C13 | 0.0264 (7) | 0.0466 (9) | 0.0256 (7) | −0.0129 (6) | 0.0018 (5) | 0.0062 (6) |
C14 | 0.0204 (6) | 0.0488 (9) | 0.0305 (7) | 0.0008 (6) | 0.0068 (5) | 0.0044 (6) |
C15 | 0.0228 (6) | 0.0304 (7) | 0.0292 (7) | 0.0026 (5) | 0.0058 (5) | 0.0015 (5) |
C16 | 0.0217 (6) | 0.0304 (7) | 0.0229 (6) | 0.0051 (5) | 0.0041 (5) | 0.0082 (5) |
C17 | 0.0278 (8) | 0.0559 (11) | 0.0405 (9) | 0.0102 (7) | −0.0091 (7) | −0.0009 (7) |
C18 | 0.0299 (7) | 0.0321 (7) | 0.0227 (6) | 0.0062 (5) | 0.0058 (5) | 0.0106 (5) |
C19 | 0.0241 (6) | 0.0207 (6) | 0.0199 (6) | 0.0038 (5) | 0.0026 (5) | 0.0014 (5) |
C20 | 0.0270 (6) | 0.0322 (7) | 0.0195 (6) | 0.0072 (5) | 0.0068 (5) | 0.0040 (5) |
C21 | 0.0219 (6) | 0.0207 (6) | 0.0195 (6) | 0.0004 (4) | −0.0012 (5) | 0.0025 (5) |
C22 | 0.0234 (6) | 0.0178 (6) | 0.0181 (6) | 0.0031 (4) | 0.0010 (4) | 0.0029 (4) |
C23 | 0.0222 (6) | 0.0218 (6) | 0.0182 (6) | −0.0023 (5) | 0.0023 (4) | 0.0043 (5) |
C24 | 0.0278 (7) | 0.0265 (7) | 0.0238 (6) | −0.0036 (5) | 0.0025 (5) | −0.0012 (5) |
C25 | 0.0324 (7) | 0.0308 (7) | 0.0318 (7) | −0.0082 (6) | −0.0014 (6) | −0.0025 (6) |
C26 | 0.0231 (7) | 0.0382 (8) | 0.0384 (8) | −0.0073 (6) | −0.0016 (6) | 0.0047 (6) |
C27 | 0.0244 (7) | 0.0371 (8) | 0.0356 (8) | 0.0010 (6) | 0.0067 (6) | 0.0032 (6) |
C28 | 0.0261 (7) | 0.0267 (7) | 0.0263 (6) | 0.0001 (5) | 0.0045 (5) | −0.0001 (5) |
Cl1—C13 | 1.7471 (14) | C10—C11 | 1.3929 (18) |
Cl2—C26 | 1.7376 (14) | C11—C12 | 1.3907 (19) |
S1—C7 | 1.7674 (12) | C11—H11 | 0.9500 |
S1—C21 | 1.7989 (13) | C12—C13 | 1.376 (2) |
O1—C16 | 1.2120 (18) | C12—H12 | 0.9500 |
O2—C3 | 1.4325 (15) | C13—C14 | 1.383 (2) |
O2—H2A | 0.8699 | C14—C15 | 1.3891 (19) |
O3—C22 | 1.2238 (15) | C14—H14 | 0.9500 |
N3—C22 | 1.3576 (15) | C15—H15 | 0.9500 |
N3—C23 | 1.4154 (15) | C16—C17 | 1.494 (2) |
N3—H3 | 0.9096 | C17—H17A | 0.9800 |
N1—C7 | 1.3288 (16) | C17—H17B | 0.9800 |
N1—C8 | 1.3454 (15) | C17—H17C | 0.9800 |
N2—C19 | 1.1464 (17) | C18—H18A | 0.9800 |
C1—C9 | 1.5219 (16) | C18—H18B | 0.9800 |
C1—C10 | 1.5228 (16) | C18—H18C | 0.9800 |
C1—C2 | 1.5485 (17) | C20—H20A | 0.9800 |
C1—H1 | 1.0000 | C20—H20B | 0.9800 |
C2—C16 | 1.5313 (17) | C20—H20C | 0.9800 |
C2—C3 | 1.5424 (17) | C21—C22 | 1.5155 (17) |
C2—H2 | 1.0000 | C21—H21A | 0.9900 |
C3—C4 | 1.5201 (16) | C21—H21B | 0.9900 |
C3—C18 | 1.5256 (17) | C23—C28 | 1.3906 (19) |
C4—C5 | 1.5034 (16) | C23—C24 | 1.3929 (18) |
C4—H4A | 0.9900 | C24—C25 | 1.3894 (19) |
C4—H4AB | 0.9900 | C24—H24 | 0.9500 |
C5—C9 | 1.3945 (17) | C25—C26 | 1.381 (2) |
C5—C6 | 1.4027 (16) | C25—H25 | 0.9500 |
C6—C7 | 1.3991 (16) | C26—C27 | 1.377 (2) |
C6—C19 | 1.4365 (17) | C27—C28 | 1.3901 (19) |
C8—C9 | 1.4089 (16) | C27—H27 | 0.9500 |
C8—C20 | 1.4971 (18) | C28—H28 | 0.9500 |
C10—C15 | 1.3917 (18) | ||
C7—S1—C21 | 99.68 (6) | C14—C13—Cl1 | 119.42 (12) |
C3—O2—H2A | 103.5 | C13—C14—C15 | 118.97 (13) |
C22—N3—C23 | 124.26 (11) | C13—C14—H14 | 120.5 |
C22—N3—H3 | 118.3 | C15—C14—H14 | 120.5 |
C23—N3—H3 | 115.9 | C14—C15—C10 | 121.13 (13) |
C7—N1—C8 | 119.05 (10) | C14—C15—H15 | 119.4 |
C9—C1—C10 | 113.12 (10) | C10—C15—H15 | 119.4 |
C9—C1—C2 | 112.04 (10) | O1—C16—C17 | 122.54 (13) |
C10—C1—C2 | 107.77 (9) | O1—C16—C2 | 119.68 (12) |
C9—C1—H1 | 107.9 | C17—C16—C2 | 117.76 (12) |
C10—C1—H1 | 107.9 | C16—C17—H17A | 109.5 |
C2—C1—H1 | 107.9 | C16—C17—H17B | 109.5 |
C16—C2—C3 | 110.39 (10) | H17A—C17—H17B | 109.5 |
C16—C2—C1 | 109.11 (10) | C16—C17—H17C | 109.5 |
C3—C2—C1 | 111.81 (10) | H17A—C17—H17C | 109.5 |
C16—C2—H2 | 108.5 | H17B—C17—H17C | 109.5 |
C3—C2—H2 | 108.5 | C3—C18—H18A | 109.5 |
C1—C2—H2 | 108.5 | C3—C18—H18B | 109.5 |
O2—C3—C4 | 106.43 (9) | H18A—C18—H18B | 109.5 |
O2—C3—C18 | 110.39 (10) | C3—C18—H18C | 109.5 |
C4—C3—C18 | 110.06 (10) | H18A—C18—H18C | 109.5 |
O2—C3—C2 | 110.21 (10) | H18B—C18—H18C | 109.5 |
C4—C3—C2 | 108.00 (10) | N2—C19—C6 | 179.01 (15) |
C18—C3—C2 | 111.60 (10) | C8—C20—H20A | 109.5 |
C5—C4—C3 | 113.58 (10) | C8—C20—H20B | 109.5 |
C5—C4—H4A | 108.8 | H20A—C20—H20B | 109.5 |
C3—C4—H4A | 108.8 | C8—C20—H20C | 109.5 |
C5—C4—H4AB | 108.8 | H20A—C20—H20C | 109.5 |
C3—C4—H4AB | 108.8 | H20B—C20—H20C | 109.5 |
H4A—C4—H4AB | 107.7 | C22—C21—S1 | 117.46 (8) |
C9—C5—C6 | 118.36 (10) | C22—C21—H21A | 107.9 |
C9—C5—C4 | 122.22 (10) | S1—C21—H21A | 107.9 |
C6—C5—C4 | 119.41 (10) | C22—C21—H21B | 107.9 |
C7—C6—C5 | 119.23 (11) | S1—C21—H21B | 107.9 |
C7—C6—C19 | 120.24 (10) | H21A—C21—H21B | 107.2 |
C5—C6—C19 | 120.52 (11) | O3—C22—N3 | 123.49 (12) |
N1—C7—C6 | 121.94 (11) | O3—C22—C21 | 119.13 (11) |
N1—C7—S1 | 118.73 (9) | N3—C22—C21 | 117.35 (11) |
C6—C7—S1 | 119.32 (9) | C28—C23—C24 | 119.91 (12) |
N1—C8—C9 | 122.47 (11) | C28—C23—N3 | 121.55 (11) |
N1—C8—C20 | 114.72 (10) | C24—C23—N3 | 118.43 (12) |
C9—C8—C20 | 122.81 (11) | C25—C24—C23 | 120.08 (13) |
C5—C9—C8 | 117.88 (10) | C25—C24—H24 | 120.0 |
C5—C9—C1 | 121.92 (10) | C23—C24—H24 | 120.0 |
C8—C9—C1 | 120.15 (11) | C26—C25—C24 | 119.27 (13) |
C15—C10—C11 | 118.59 (12) | C26—C25—H25 | 120.4 |
C15—C10—C1 | 120.76 (12) | C24—C25—H25 | 120.4 |
C11—C10—C1 | 120.53 (11) | C27—C26—C25 | 121.25 (13) |
C12—C11—C10 | 120.64 (14) | C27—C26—Cl2 | 119.44 (12) |
C12—C11—H11 | 119.7 | C25—C26—Cl2 | 119.30 (12) |
C10—C11—H11 | 119.7 | C26—C27—C28 | 119.71 (14) |
C13—C12—C11 | 119.54 (14) | C26—C27—H27 | 120.1 |
C13—C12—H12 | 120.2 | C28—C27—H27 | 120.1 |
C11—C12—H12 | 120.2 | C27—C28—C23 | 119.75 (13) |
C12—C13—C14 | 121.12 (13) | C27—C28—H28 | 120.1 |
C12—C13—Cl1 | 119.45 (12) | C23—C28—H28 | 120.1 |
C9—C1—C2—C16 | −165.26 (10) | C2—C1—C9—C5 | 8.11 (15) |
C10—C1—C2—C16 | 69.67 (12) | C10—C1—C9—C8 | −52.56 (15) |
C9—C1—C2—C3 | −42.86 (13) | C2—C1—C9—C8 | −174.62 (11) |
C10—C1—C2—C3 | −167.93 (10) | C9—C1—C10—C15 | 137.21 (12) |
C16—C2—C3—O2 | 69.67 (12) | C2—C1—C10—C15 | −98.37 (13) |
C1—C2—C3—O2 | −51.99 (13) | C9—C1—C10—C11 | −46.77 (16) |
C16—C2—C3—C4 | −174.46 (10) | C2—C1—C10—C11 | 77.64 (14) |
C1—C2—C3—C4 | 63.88 (12) | C15—C10—C11—C12 | 1.0 (2) |
C16—C2—C3—C18 | −53.36 (14) | C1—C10—C11—C12 | −175.08 (12) |
C1—C2—C3—C18 | −175.02 (10) | C10—C11—C12—C13 | −0.3 (2) |
O2—C3—C4—C5 | 69.02 (12) | C11—C12—C13—C14 | −0.6 (2) |
C18—C3—C4—C5 | −171.35 (11) | C11—C12—C13—Cl1 | 179.46 (11) |
C2—C3—C4—C5 | −49.30 (13) | C12—C13—C14—C15 | 0.7 (2) |
C3—C4—C5—C9 | 16.26 (16) | Cl1—C13—C14—C15 | −179.38 (11) |
C3—C4—C5—C6 | −162.89 (11) | C13—C14—C15—C10 | 0.1 (2) |
C9—C5—C6—C7 | 1.48 (17) | C11—C10—C15—C14 | −0.9 (2) |
C4—C5—C6—C7 | −179.33 (11) | C1—C10—C15—C14 | 175.16 (12) |
C9—C5—C6—C19 | −179.09 (11) | C3—C2—C16—O1 | −59.41 (16) |
C4—C5—C6—C19 | 0.10 (17) | C1—C2—C16—O1 | 63.84 (15) |
C8—N1—C7—C6 | 5.13 (17) | C3—C2—C16—C17 | 119.10 (13) |
C8—N1—C7—S1 | −174.45 (9) | C1—C2—C16—C17 | −117.65 (14) |
C5—C6—C7—N1 | −8.16 (18) | C7—S1—C21—C22 | 59.47 (10) |
C19—C6—C7—N1 | 172.41 (11) | C23—N3—C22—O3 | 14.1 (2) |
C5—C6—C7—S1 | 171.42 (9) | C23—N3—C22—C21 | −167.77 (11) |
C19—C6—C7—S1 | −8.01 (16) | S1—C21—C22—O3 | −160.99 (10) |
C21—S1—C7—N1 | 3.28 (11) | S1—C21—C22—N3 | 20.84 (15) |
C21—S1—C7—C6 | −176.31 (10) | C22—N3—C23—C28 | 31.66 (18) |
C7—N1—C8—C9 | 4.53 (18) | C22—N3—C23—C24 | −152.12 (12) |
C7—N1—C8—C20 | −174.30 (11) | C28—C23—C24—C25 | −0.9 (2) |
C6—C5—C9—C8 | 7.41 (16) | N3—C23—C24—C25 | −177.19 (12) |
C4—C5—C9—C8 | −171.75 (11) | C23—C24—C25—C26 | 0.6 (2) |
C6—C5—C9—C1 | −175.26 (11) | C24—C25—C26—C27 | 0.7 (2) |
C4—C5—C9—C1 | 5.58 (17) | C24—C25—C26—Cl2 | 179.63 (11) |
N1—C8—C9—C5 | −10.85 (17) | C25—C26—C27—C28 | −1.8 (2) |
C20—C8—C9—C5 | 167.89 (11) | Cl2—C26—C27—C28 | 179.33 (11) |
N1—C8—C9—C1 | 171.78 (11) | C26—C27—C28—C23 | 1.5 (2) |
C20—C8—C9—C1 | −9.49 (18) | C24—C23—C28—C27 | −0.1 (2) |
C10—C1—C9—C5 | 130.18 (12) | N3—C23—C28—C27 | 176.03 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2A···O1 | 0.87 | 2.14 | 2.8746 (14) | 142 |
N3—H3···O3i | 0.91 | 2.17 | 2.9362 (13) | 141 |
Symmetry code: (i) x, −y+1/2, z−1/2. |
Contact | Distance | Symmetry operation |
Cl2···H14 | 3.06 | -x, -1/2 + y, 1/2 - z; |
H14···Cl1 | 2.98 | -x, 1 - y, 1 - z; |
H17A···Cl1 | 3.02 | -x, 1 - y, -z; |
S1···H18B | 3.17 | 1 - x, -1/2 + y, 1/2 - z; |
H21B···H4AB | 2.51 | 1 - x, 1 - y, 1 - z; |
H3···O3 | 2.17 | x, 1/2 - y, -1/2 + z; |
H1···H18C | 2.26 | x, 3/2 - y, 1/2 + z; |
H18B···N2 | 2.86 | 1 - x, 1 - y, -z. |
Contact | Percentage contribution |
H···H | 37.3 |
Cl···H/H···Cl | 17.6 |
O···H/H···O | 11.1 |
C···H/H···C | 10.9 |
N···H/H···N | 9.7 |
S···H/H···S | 2.9 |
Cl···C/C···Cl | 1.7 |
O···C/C···O | 1.6 |
S···C/C···S | 1.6 |
Cl···O/O···Cl | 1.6 |
C···C | 1.3 |
N···C/C···N | 1.1 |
S···O/O···S | 0.8 |
S···N/N···S | 0.4 |
N···N | 0.2 |
Cl···Cl | 0.2 |
O···N/N···O | 0.1 |
Acknowledgements
Author contributions are as follows. Conceptualization, SKM and MA; methodology, ISM and JTM; investigation, ISM and JTM; writing (original draft), JTM, MA and SKM; writing (review and editing), AM and SKM; visualisation, SKM and AM; funding acquisition, SAHA; resources EAB, ISM and SAHA; supervision, AM, SKM and JTM.
Funding information
JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.
References
Al-Taifi, E. A., Maraei, I. S., Bakhite, E. A., Demirtas, G., Mague, J. T., Mohamed, S. K. & Ramli, Y. (2021). Acta Cryst. E77, 121–125. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ben Ali, K. & Retailleau, P. (2019). Acta Cryst. E75, 1399–1402. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bouasla, R., Berredjem, M., Aouf, N.-E. & Barbey, C. (2008). Acta Cryst. E64, o432. Web of Science CSD CrossRef IUCr Journals Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chrzanowska, M., Schönenberger, B., Brossi, A. & Flippen-Anderson, J. L. (1987). Helv. Chim. Acta, 70, 1721–1731. CSD CrossRef CAS Web of Science Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Czarnocki, Z., Suh, D., MacLean, D. B., Hultin, P. G. & Szarek, W. A. (1992). Can. J. Chem. 70, 1555–1561. CrossRef CAS Web of Science Google Scholar
Gill, R., Brazell, C., Woodruff, G. N. & Kemp, J. A. (1991). Br. J. Pharmacol. 103, 2030–2036. CrossRef PubMed CAS Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Houston, J. & Rodger, I. (1974). Clin. Exp. Pharmacol. Physiol. 1, 401–413. CrossRef CAS Web of Science Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Langenohl, F., Otte, F. & Strohmann, C. (2020). Acta Cryst. E76, 298–302. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lehmann, A., Lechner, L., Radacki, K., Braunschweig, H. & Holzgrabe, U. (2017). Acta Cryst. E73, 867–870. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mague, J. T., Mohamed, S. K., Akkurt, M., Bakhite, E. A. & Albayati, M. R. (2017). IUCrData, 2, x170390. Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Naghiyev, F. N., Grishina, M. M., Khrustalev, V. N., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 195–199. Web of Science CSD CrossRef IUCr Journals Google Scholar
Naicker, T., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2011). Acta Cryst. C67, o100–o103. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ohkubo, M., Kuno, A., Katsuta, K., Ueda, Y., Shirakawa, K., Nakanishi, H., Nakanishi, I., Kinoshita, T. & Takasugi, H. (1996). Chem. Pharm. Bull. 44, 95–102. CSD CrossRef CAS Google Scholar
Selvaraj, J. P., Mary, S., Dhruba, J. B., Huidrom, B. S., Panneerselvam, Y. & Piskala Subburaman, K. (2020). Acta Cryst. E76, 1548–1550. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Thompson, W. J., Anderson, P. S., Britcher, S. F., Lyle, T. A., Thies, J. E., Magill, C. A., Varga, S. L., Schwering, J. E., Lyle, P. A., Christy, M. E., et al. (1990). J. Med. Chem. 33, 789–808. CrossRef PubMed CAS Web of Science Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, M. A., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer. University of Western Australia. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.