research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Structure of the {U13} polyoxo cluster U13O8Clx(MeO)38–x (x = 2.3, MeO = methoxide)

crossmark logo

aHelmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Resource Ecology, Bautzner Landstrasse 400, 01328 Dresden, Germany, and bCollaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), 2-4 Shirakata, Tokai-mura, Naka-gun, 319-1195 Ibaraki-ken, Japan
*Correspondence e-mail: ikeda.atsushi16@jaea.go.jp

Edited by C. Schulzke, Universität Greifswald, Germany (Received 29 June 2021; accepted 26 July 2021; online 30 July 2021)

The structure of a new type of polyoxo cluster complex that contains thirteen uranium atoms, {U13}, is reported. The complex crystallized from methanol containing tetra­valent uranium (UIV) with a basic organic ligand, and was characterized as di­chloridoocta­cosa-μ2-methano­lato-octa­kis­(methano­lato)octa-μ4-oxido-trideca­uranium, [U13(CH3O)35.7Cl2.3O8] or [U13(μ4-Ooxo)8Clx(MeO)38–x] (x = 2.3, MeO = methoxide) (I), by single-crystal X-ray diffraction. The characterized {U13} polyoxo cluster complex (I) possesses a single cubic uranium polyhedron at the centre of the cluster core. To the best of our knowledge, this is the very first example of a polyoxo actinide complex that bears a single cubic polyhedron in its structure. The cubic polyhedron in I is well comparable in shape with those in bulk UO2. The U—O bonds in the cubic polyhedron of I are, however, significantly shorter than those not only in bulk UO2 but also in another analogue in the {U38} cluster. This shortening of U—O bonds, together with BVS calculations and the overall negative charge (2−) of I, suggests that the central uranium atom in I, which forms the single cubic coordination polyhedron, is presumably oxidized to the penta­valent state (UV) from the original tetra­valent state (UIV). Complex I is, hence, the first example of a polyoxo cluster possessing a single cubic coordination polyhedron of UV.

1. Chemical context

Hydrolysis is one of the most fundamental reactions in aqueous chemistry. The strong hydrolysis of highly charged metal cations (M+n) induces olation (to form hydroxo-bridging: M–OH–M) and oxolation (to form oxo-bridging: M–O–M), which eventually results in the formation of hydroxo/oxo-bridged oligomer and cluster complexes in an aqueous solution (Henry et al., 1992[Henry, M., Jolivet, J. P. & Livage, J. (1992). Struct. Bonding, 77, 153-206.]). Amongst the hydroxo/oxo-based oligomer/cluster complexes of metal cations, the polyoxo cluster complexes of f-block elements (i.e. lanthanides and actinides) have been extensively investigated over the last few decades, not only for their engineering applications and environmental impact associated with nuclear industry, but also for the fundamental chemical science of f-block elements (Knope & Soderholm, 2013[Knope, K. E. & Soderholm, L. (2013). Chem. Rev. 113, 944-994.]; Qiu & Burns, 2013[Qiu, J. & Burns, P. C. (2013). Chem. Rev. 113, 1097-1120.]). As a discrete polyoxo cluster complex (i.e. not a chain- or wheel-shaped cluster) of f-block elements, the largest cluster complex reported thus far is the cluster containing 100 metal cations ({M100}) (Russell-Webster et al., 2021[Russell-Webster, B., Lopez-Nieto, J., Abboud, K. A. & Christou, G. (2021). Angew. Chem. Int. Ed. 60, 12591-12596.]), within which a large variety of nuclearity was reported. Based on this background, the present work contributes to further development of the polyoxo cluster chemistry of f-block metals by reporting a new member of the polyoxo cluster family of tetra­valent uranium (UIV) that contains thirteen metal centres: {U13}.

[Scheme 1]

2. Structural commentary

The best refinement for the SC-XRD data of the dark-black crystals resulted in the chemical formula C35.7H107.1Cl2.3O43.7U13, which corresponds to the mol­ecular formula [U13(μ4-Ooxo)8(μ4-OMeO)2(μ2-OMeO)24Cl2.3(OMeO)9.7] (I). The mol­ecular structure of I (i.e. the {U13} cluster) contains seven distinct crystallographically independent uranium centres (U1–U7), which are bridged by eight μ4-Ooxo, two μ4-OMeO, and twenty-four μ2-OMeO oxygen donors to form the {U13} core. The exterior of the {U13} core is further decorated with monodentate chloro and methoxide (MeO) ligands to complete the uranium centres' coordination spheres in terminal positions, eventually forming the {U13} cluster compound (I) (Figs. 1[link] and 2[link]a). In the crystal structure, there is some disorder between the chloro and methoxide ligands at the terminal positions (i.e. Cl1–Cl3). This means that partial chloro ligands and partial methoxide groups occupy the same coordination sites in the average structure and that they can be found on either of three out of the seven refined uranium centres of the asymmetric unit. Given this fact, it is more appropriate to describe the mol­ecular formula of I as [U13(μ4-Ooxo)8Clx(MeO)38-x], where x was determined to be 2.3 by SC-XRD. The uranium centres in I are mostly eightfold coordin­ated, whilst only U3 and U4 are sevenfold coordinated (pink polyhedra in Fig. 2[link]). One uranium centre (U6), which is positioned at the centre of the {U13} core unit, forms a nearly ideal cubic polyhedron (dark-purple polyhedra in Fig. 2[link]), whilst the rest of the eightfold coordinated uranium centres (U1, U2, U5 and U7) define distorted square-anti­prismatic polyhedra (green polyhedra in Fig. 2[link]). The central cubic uranium polyhedron (U6) is sandwiched with two {U3} sub­units (pink and green polyhedra in Fig. 2[link]b) along the c-axis direction, and it is further surrounded by a {U6} ring (pink and green polyhedra in Fig. 2[link]c). Hence, one cubic uranium polyhedron, two {U3} subunits, and one {U6} ring assemble to the {U13} core [i.e. 1 + (2 × 3) + 6 = 13]. The sevenfold-coordinated uranium centres (U3 and U4, pink polyhedra in Fig. 2[link]), from a different perspective, form the corners of a square around the central U6, the edges of which are open to allow for a direct view of the central cubic uranium centre as in Fig. 2[link]a. The {U13} core unit is surrounded by chloro and methoxide ligands to stabilize the {U13} cluster as a discrete mol­ecule. The structural arrangement of the {U13} cluster is well comparable with that of the reported {Ce13} cluster: Ce13O8[(OCH2CH2)2N((C6H5)]18 (Yuan et al., 2017[Yuan, F., Gu, Z., Li, L. & Sha, L. (2017). Polyhedron, 133, 393-397.]), in which a single cubic polyhedron of the central cerium centre is surrounded by two {Ce3} and one {Ce6} ring subunits with distorted square-anti­prismatic polyhedra.

[Figure 1]
Figure 1
Mol­ecular structure of the asymmetric unit of the {U13} cluster I. Ellipsoids are shown at the 50% probability level. H atoms are omitted for clarity, as are the disordered methoxide ligands (only the chlorides that share their locations are shown).
[Figure 2]
Figure 2
Mol­ecular structure of the {U13} cluster I. Uranium atoms are illustrated with coloured polyhedra. The structure is drawn as [U13(μ4-Ooxo)8Cl6(MeO)32] in order to omit the disorder between chloride and methoxide anions for clarity. Colour code: hydrogen, white; carbon, black; oxygen, red; chlorine, light green. Hydrogen and carbon atoms are also omitted for clarity in (b) and (c).

When assuming the formal oxidation numbers of +4 for UIV, −2 for oxo groups, and −1 for chloride ions and methoxides, the overall charge of the mol­ecule [U13(μ4-Ooxo)8Clx(MeO)38-x] is calculated to be −2, which is not neutral. Such an unbalanced charge is often observed for the polyoxo cluster complexes of f-block elements (e.g. Takao et al., 2009[Takao, S., Takao, K., Kraus, W., Emmerling, F., Scheinost, A. C., Bernhard, G. & Hennig, C. (2009). Eur. J. Inorg. Chem. 2009, 4771-4775.]; Falaise et al., 2013c[Falaise, C., Volkringer, C., Vigier, J.-F., Beaurain, A., Roussel, P., Rabu, P. & Loiseau, T. (2013c). J. Am. Chem. Soc. 135, 15678-15681.]). In fact, the bond-valence-sum (BVS) calculation (Brown, 1978[Brown, I. D. (1978). Chem. Soc. Rev. 7, 359-376.]) [R0U–O = 2.10 (Gagné & Hawthorne, 2015[Gagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562-578.]) and R0U–Cl = 2.47 (Zachariasen, 1978[Zachariasen, W. H. (1978). J. Less-Common Met. 62, 1-7.])] suggests 4.11 valence units (v.u.) for the average charge of thirteen uranium atoms in I (Table 1[link]), which is higher than the formal charge of UIV (i.e. > +4). The results of BVS calculations further indicate that the BVS charge of the U6 atom, which is the central uranium atom in the {U13} cluster (dark-purple polyhedra in Fig. 2[link]), is comparable to the penta­valent state (5.16 v.u.), whilst the rest of the uranium atoms (U1–U5 and U7) exhibit BVS charges close to 4 v.u. (i.e. the original tetra­valent state) (Table 1[link]). Hence, the central uranium atom U6 in I is presumably oxidized to UV, partly compensating the negative charge of the oxo, chloride and methoxide anions to neutralize the whole mol­ecule. Similar partial oxidation of UIV was also presumed for a {U38} polyoxo cluster (Falaise et al., 2013c[Falaise, C., Volkringer, C., Vigier, J.-F., Beaurain, A., Roussel, P., Rabu, P. & Loiseau, T. (2013c). J. Am. Chem. Soc. 135, 15678-15681.]). Another possible charge compensation to keep the neutrality of I is the replacement of oxo (−2) by hydroxo ligands (−1). That is, the bridging oxo ions (or methoxide groups) in I could be partly protonated, which was also proposed in the {U38} polyoxo cluster (Falaise et al., 2013c[Falaise, C., Volkringer, C., Vigier, J.-F., Beaurain, A., Roussel, P., Rabu, P. & Loiseau, T. (2013c). J. Am. Chem. Soc. 135, 15678-15681.]). Hence, a partial protonation and the oxidation of UIV to UV presumably compensate the negative charges of oxo, chloride and methoxide anions and result in a neutral mol­ecule of I.

Table 1
Summary of bond-valence-sum (BVS) calculations on the uranium atoms U1–U7 in (I)

Atom Atomic charge calculated by BVS (v.u.)
U1 3.73
U2 3.99
U3 4.34
U4 3.86
U5 3.77
U6 5.16
U7 3.93
Average 4.11

The structures of polyoxo clusters of metal cations are often compared with those of their corresponding oxide compounds, as the polyoxo clusters can be potential precursors, which evolve into bulk oxides (Ikeda-Ohno et al., 2013[Ikeda-Ohno, A., Hennig, C., Weiss, S., Yaita, T. & Bernhard, G. (2013). Chem. Eur. J. 19, 7348-7360.]). In the case of UIV polyoxo clusters, the corresponding oxide is uranium dioxide (UO2). The coordination polyhedron of uranium in UO2 is cubic, as shown in Fig. 3[link]a (dark-purple polyhedron). Amongst the reported polyoxo oligomer and cluster complexes of UIV [i.e. dimers (Le Borgne et al., 2002[Le Borgne, T., Thuéry, P. & Ephritikhine, M. (2002). Acta Cryst. C58, m8-m9.]; Salmon et al., 2006[Salmon, L., Thuéry, P., Rivière, E., Miyamoto, S., Yamato, T. & Ephritikhine, M. (2006). New J. Chem. 30, 1220-1227.]; Schmidt et al., 2014[Schmidt, A.-C., Heinemann, F. W., Lukens, W. W. Jr & Meyer, K. (2014). J. Am. Chem. Soc. 136, 11980-11993.]), trimers (Berthet et al., 1993[Berthet, J.-C., Ephritikhine, M., Lance, M., Nierlich, M. & Vigner, J. (1993). J. Organomet. Chem., 460, 47-53.]; Duval et al., 2015[Duval, S., Sobanska, S., Roussel, P. & Loiseau, T. (2015). Dalton Trans. 44, 19772-19776.]; Lin et al., 2018[Lin, J., Yue, Z., Silver, M. A., Qie, M., Wang, X., Liu, W., Lin, X., Bao, H.-L., Zhang, L.-J., Wang, S. & Wang, J.-W. (2018). Inorg. Chem. 57, 6753-6761.]), tetra­mer (Falaise et al., 2013a[Falaise, C., Volkringer, C. & Loiseau, T. (2013a). Cryst. Growth Des. 13, 3225-3231.]), hexa­mers (Mokry et al., 1996[Mokry, L. M., Dean, N. S. & Carrano, C. J. (1996). Angew. Chem. Int. Ed. Engl. 35, 1497-1498.]; Takao et al., 2009[Takao, S., Takao, K., Kraus, W., Emmerling, F., Scheinost, A. C., Bernhard, G. & Hennig, C. (2009). Eur. J. Inorg. Chem. 2009, 4771-4775.]; Mougel et al., 2010[Mougel, V., Biswas, B., Pécaut, J. & Mazzanti, M. (2010). Chem. Commun. 46, 8648-8650.]; Falaise et al., 2013b[Falaise, C., Volkringer, C., Vigier, J.-F., Henry, N., Beaurain, A. & Loiseau, T. (2013b). Chem. Eur. J. 19, 5324-5331.]), octa­mer (Salmon et al., 2004[Salmon, L., Thuéry, P. & Ephritikhine, M. (2004). Polyhedron, 23, 623-627.]), deca­mer (Biswas et al., 2011[Biswas, B., Mougel, V., Pécaut, J. & Mazzanti, M. (2011). Angew. Chem. Int. Ed. 50, 5745-5748.]), 14-mer (Dufaye et al., 2019[Dufaye, M., Martin, N. P., Duval, S., Volkringer, C., Ikeda-Ohno, A. & Loiseau, T. (2019). RSC Adv. 9, 22795-22804.]), 16-mer (Biswas et al., 2011[Biswas, B., Mougel, V., Pécaut, J. & Mazzanti, M. (2011). Angew. Chem. Int. Ed. 50, 5745-5748.]), and 38-mers (Falaise et al., 2013c[Falaise, C., Volkringer, C., Vigier, J.-F., Beaurain, A., Roussel, P., Rabu, P. & Loiseau, T. (2013c). J. Am. Chem. Soc. 135, 15678-15681.]; Martin et al., 2018[Martin, N. P., Volkringer, C., Henry, N., Trivelli, X., Stoclet, G., Ikeda-Ohno, A. & Loiseau, T. (2018). Chem. Sci. 9, 5021-5032.])], only the 38-mers {U38} contain cubic coordination polyhedra of uranium, which are comparable to those in bulk UO2. That is, the {U14} core unit in the {U38} cluster consists of fourteen cubic uranium polyhedra, corresponding to a small fraction of face-centred cubic UO2 (Fig. 3[link]a and b). The central uranium (U6) in the {U13} cluster (I) (dark-purple polyhedron in Fig. 3[link]c) also defines a cubic coordination polyhedron. The cubic polyhedron in the {U13} cluster is, however, not surrounded by other cubic uranium polyhedra to evolve into a fraction of fcc-based UO2 structure. Hence, the {U13} cluster contains the smallest unit of cubic uranium polyhedron that is comparable to that in UO2. Geometrical parameters of the cubic uranium polyhedra in bulk UO2, the {U38} cluster, and the {U13} cluster are summarized in Table 2[link]. The average O—U—O angle in the cubic uranium polyhedra is 70.5° for all three species, indicating that the shape of the uranium polyhedron is an ideal cube even in the polyoxo clusters. The average U—O distance, however, shortens with decreasing size of the polyhedral cluster. That is, the average U—O distance shortens from 2.368 to 2.357 Å when the size of the polyhedral cluster reduces from bulk UO2 (infinite cluster) to {U14} (sub-unit in the {U38} cluster). The U—O distance further shortens to 2.267 Å, which is ∼5% shorter compared with that in bulk UO2, in the case of the single cubic uranium polyhedron in the {U13} cluster. This 5% shortening of the U—O distance in the single cubic uranium polyhedron of I is rather remarkable. As a matter of fact, such drastic shortening of M—O distances is not observed in the {Ce13} cluster (Yuan et al., 2017[Yuan, F., Gu, Z., Li, L. & Sha, L. (2017). Polyhedron, 133, 393-397.]), the chemical analogue of the {U13} cluster. That is, the Ce—O distances (average: 2.35 Å) in the central cubic polyhedron of the {Ce13} cluster are well comparable with those in bulk CeO2 (2.34 Å) (Wyckoff, 1963[Wyckoff, R. W. G. (1963). Crystal Structure. Vol. 1, 2nd ed. New York: Interscience.]). Given these facts, it is reasonable to consider that the oxidation state of the uranium ion in the single cubic polyhedron (i.e. U6) is higher than the original tetra­valent state of UIV, strengthening (and thereby shortening) the U—O bonds. This also supports the BVS results suggesting a penta­valent state for uranium centre U6 (UV). Hence, the central uranium polyhedron in I (dark-purple polyhedra in Fig. 2[link]) should be considered an exceptionally rare example of a UV polyhedron with a cubic structure, which is comparable with the cubic UIV polyhedron as in UO2.

Table 2
Geometrical parameters (Å, °) of cubic uranium polyhedra in different compounds

  U—O distance O—U—O angle  
Compound Shortest Longest Average Smallest Largest Average Reference
UO2     2.368     70.5 Cooper (1982[Cooper, M. J. (1982). Acta Cryst. A38, 264-269.])
{U38} 2.229 2.520 2.357 68.1 76.5 70.5 Falaize et al. (2013c[Falaise, C., Volkringer, C., Vigier, J.-F., Beaurain, A., Roussel, P., Rabu, P. & Loiseau, T. (2013c). J. Am. Chem. Soc. 135, 15678-15681.])
{U13} 2.243 2.290 2.264 69.8 71.2 70.5 This work
[Figure 3]
Figure 3
Cubic coordination polyhedra of uranium (dark purple polyhedra) in different compounds: (a) bulk UO2 (Cooper, 1982[Cooper, M. J. (1982). Acta Cryst. A38, 264-269.]), (b) the {U38} cluster (Falaise et al., 2013c[Falaise, C., Volkringer, C., Vigier, J.-F., Beaurain, A., Roussel, P., Rabu, P. & Loiseau, T. (2013c). J. Am. Chem. Soc. 135, 15678-15681.]), and (c) the {U13} cluster (I). The structure of I is drawn as [U13(μ4-Ooxo)8Cl6(MeO)32] in order to omit the disorder between chloride and methoxide anions for clarity. Colour code: carbon, black; oxygen, red; chlorine, light green; uranium, dark purple. Hydrogen atoms are omitted for clarity in (b) and (c).

Amongst the polyoxo/hydroxo metal clusters comprising thirteen metal centres ({M13}), the Keggin-type {Al13} cluster is probably the most famous complex of this type (Johansson et al., 1960[Johansson, G., Lundgren, G., Sillén, L. G. & Söderquist, R. (1960). Acta Chem. Scand. 14, 769-771.]; Rowsell & Nazar, 2000[Rowsell, J. & Nazar, L. F. (2000). J. Am. Chem. Soc. 122, 3777-3778.]). The {Al13} cluster consists of a central aluminium tetra­hedron [Al(O)4] that links four trimeric octa­hedra [Al(O)6], forming the cluster unit with a diameter of ∼10 Å (assuming a sphere). The {U13} cluster characterized in this study is composed of one central uranium polyhedron [cubic-U(O)8] surrounded by twelve exterior uranium polyhedra (i.e. two {U3} subunits and one {U6} ring), forming an ellipsoidal cluster ca 7 Å wide and 10 Å high. Although {Al13} and {U13} have the same nuclearity of thirteen, the constituent polyhedra and the framework of the resultant {M13} cluster differ significantly between {Al13} and {U13}, reflecting the differences of the metal centres (i.e. AlIII vs UIV, as well as their coordination properties). Additionally, given the number of atoms in the polyoxo {M13} unit (i.e. Al13O40 for {Al13} and U13O46 for {U13} assuming 100% occupancy of MeO at all terminal positions) and the dimensions of the cluster, the {U13} unit is apparently denser than the {Al13} one. Therefore, despite having the same nuclearity of thirteen, {Al13} and {U13} are actually not well comparable in terms of structure and coordination chemistry.

3. Supra­molecular features

Compound I crystallizes in the space group P[\overline{1}]. The chemically analogous {U38} cluster crystallizes in a more symmetric crystal system in tetra­gonal setting (I4/m) (Falaise et al., 2013c[Falaise, C., Volkringer, C., Vigier, J.-F., Beaurain, A., Roussel, P., Rabu, P. & Loiseau, T. (2013c). J. Am. Chem. Soc. 135, 15678-15681.]). This symmetrical difference in crystal structure between the {U13} and {U38} clusters may stem from the symmetrical difference in their original mol­ecular structures. That is, as shown in Fig. 2[link]a, the mol­ecular structure of I (i.e. the {U13} cluster) is slightly oval along the c axis, whilst the shape of the {U38} cluster mol­ecule is rather close to a sphere (Falaise et al., 2013c[Falaise, C., Volkringer, C., Vigier, J.-F., Beaurain, A., Roussel, P., Rabu, P. & Loiseau, T. (2013c). J. Am. Chem. Soc. 135, 15678-15681.]). In the crystal structure of I, there are two sets of inter­molecular short contacts that help the mol­ecules to assemble into the crystal structure. These inter­molecular short contacts are indicated with light blue lines in Fig. 4[link]. One set of inter­molecular short contact (SC1) is found between a hydrogen atom of one bridging methoxide group and a carbon atom of another bridging methoxide group from the adjacent mol­ecule [C7—H8Ai = 2.87 Å; symmetry code: (i) 1 − x, 2 − y, 1 − z, Fig. 4[link]a]. There are two such (bi-directional) SC1 between adjacent mol­ecules, facilitating the mol­ecules being lined up along the b-axis direction. A similar C—H inter­molecular short contact (SC2) is formed between a bridging methoxide group and its analogue in an adjacent mol­ecule [C10—H10Bii = 2.89 Å; symmetry code: (ii) 2 − x, 2 − y, 2 − z, Fig. 4[link]b]. Again pairs of this H—C short contact are found between adjacent bridging methoxide mol­ecules (Fig. 4[link]b), supporting the assembly of mol­ecules of I more or less along a diagonal through the cell's origin. The engaged bridging methoxide groups are not affected by the disorders between chloride and methoxide groups. These two types of inter­molecular short contacts are, hence, presumably key to assembling the mol­ecules for crystallization. This renders the exterior methoxide groups of I, therefore, important not only for stabilizing the discrete {U13} core, but also for supporting the assembly and crystallization of the {U13} mol­ecules and the stability of the resulting crystal lattice.

[Figure 4]
Figure 4
Packing diagrams of I. Light-blue lines indicate the inter­molecular short contacts [(a) SC1 and (b) SC2] between hydrogens and carbons of adjacent methoxide groups. The structure is drawn as [U13(μ4-Ooxo)8Cl6(MeO)32] in order to omit the disorder between chloride and methoxide anions for clarity reasons.

4. Synthesis and crystallization

Caution! Uranium isotopes (235U and 238U) are long-lived α-emitters with half-lives of 7.04 × 108 and 4.47 × 109 years, respectively. These radionuclides are also chemically toxic. Handling these radionuclides involves a serious risk to human health. Therefore, special precautions with appropriate lab equipment and facilities dedicated to radiation protection are required for handling these radionuclides.

Single crystals of the {U13} cluster complex were obtained as a by-product when UIV was dissolved in methanol in the presence of a basic organic ligand. The crystals were obtained from the following two different synthetic routes:

Route A: [UCl(S)-PEBA)3] (S)-PEBA: (S,S)-N,N′-bis­(1-phenyl­eth­yl)benzamidinate) was prepared according to a reported procedure (Kloditz et al., 2020[Kloditz, R., Fichter, S., Kaufmann, S., Brunner, T. S., Kaden, P., Patzschke, M., Stumpf, T., Roesky, P. W., Schmidt, M. & März, J. (2020). Inorg. Chem. 59, 15670-15680.]). A solution containing 10 mg of [UCl(S)-PEBA)3] in 1 mL of methanol was transferred into a quartz cuvette and sealed doubly with a lid and Parafilm in a dry and inert glove box filled with nitro­gen gas. The cuvette was then taken out of the glove box and kept under atmospheric condition. After ten days, dark-black crystals were obtained with a low yield (<1 mg).

Route B: [UCl2(salen)2(MeOH)2] (H2salen = N,N′-bis(salicyl­idene)ethyl­enedi­amine) was prepared according to a reported procedure (Radoske et al., 2020[Radoske, T., März, J., Patzschke, M., Kaden, P., Walter, O., Schmidt, M. & Stumpf, T. (2020). Chem. Eur. J. 26, 16853-16859.]). A solution containing 7 mg of [UCl2(salen)2(MeOH)2] in 1 mL of methanol was transferred into a quartz cuvette and sealed doubly with a lid and Parafilm in a dry and inert glove box filled with nitro­gen gas. The cuvette was then taken out of the glove box and kept under atmospheric condition. After one week, dark-black crystals were obtained with a low yield (<1 mg).

Synthetic attempts in the absence of an organic ligand did not succeed in obtaining crystals of the {U13} polyoxo cluster. It was reported that the reaction between an alcohol mol­ecule (methanol in the present case) and another organic mol­ecule can generate a water mol­ecule, which is the source to trigger the olation/oxolation reaction that could eventually result in the formation of polyoxo clusters (Martin et al., 2018[Martin, N. P., Volkringer, C., Henry, N., Trivelli, X., Stoclet, G., Ikeda-Ohno, A. & Loiseau, T. (2018). Chem. Sci. 9, 5021-5032.]). Hence, the presence of an organic ligand in an alcohol medium is presumably essential to materialize polyoxo metal cluster complexes. Another possible source of water into the synthetic route is the slow penetration of ambient moisture into the sample cuvette via the double sealing, which cannot be completely excluded. Crystals suitable for single crystal X-ray diffraction (SC-XRD) measurements were selected on a polarized light microscope and mounted on a MiTeGen MicroMountTM with mineral oil. Due to the low yield of crystals, additional characterization, such as elemental analysis, FT–IR, powder-XRD, etc., was not feasible. Chemicals (except uranium) employed in this study were commercially available from Sigma Aldrich and were used without further purification.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula [U13(CH3O)35.7Cl2.3O8]
Mr 4412.01
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 12.8598 (6), 14.0014 (6), 14.6311 (6)
α, β, γ (°) 117.339 (2), 113.186 (2), 92.373 (2)
V3) 2069.95 (16)
Z 1
Radiation type Mo Kα
μ (mm−1) 25.48
Crystal size (mm) 0.12 × 0.11 × 0.08
 
Data collection
Diffractometer Bruker D8 Venture
Absorption correction Multi-scan (Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.394, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 55319, 7304, 6185
Rint 0.052
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.103, 1.09
No. of reflections 7304
No. of parameters 488
No. of restraints 145
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 5.02, −3.41
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and shelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]).

All non-hydrogen atoms were refined anisotropically. H atoms of the methoxide groups were placed in the expected geometric positions and treated in a riding mode with Uiso(H) = 1.5 Ueq(C). Three apical ligand positions (Cl1–Cl3) in the asymmetric unit showed pseudo-substitutional disorder between negatively charged methoxide (MeO) and chloride (Cl) ions. This disorder was modelled by constraining the sum of the site occupation factors to unity. Additional constraints (SIMU, DELU and SAME) were applied to avoid chemically unreasonable ellipsoids. Even after the completion of refinement, substantial residual electron density remained around the uranium atoms or within their ionic radii. This is not an uncommon issue in heavy atom structures and was possibly intensified by truncation errors of the Fourier series. Additionally, disorder issues between methoxide and chloride ions caused further residual electron density that could not be modelled in a chemically reasonable manner.

Supporting information


Computing details top

Data collection: SAINT (Bruker, 2016); cell refinement: APEX3 (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: shelXle (Hübschle et al., 2011).

Dichloridooctacosa-µ2-methanolato-octakis(methanolato)octa-µ4-oxido-\ tridecauranium top
Crystal data top
[U13(CH3O)35.7Cl2.3O8]Z = 1
Mr = 4412.01F(000) = 1906
Triclinic, P1Dx = 3.539 Mg m3
a = 12.8598 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 14.0014 (6) ÅCell parameters from 529 reflections
c = 14.6311 (6) Åθ = 2.2–29.1°
α = 117.339 (2)°µ = 25.48 mm1
β = 113.186 (2)°T = 100 K
γ = 92.373 (2)°Block, black
V = 2069.95 (16) Å30.12 × 0.11 × 0.08 mm
Data collection top
Bruker D8 Venture
diffractometer
6185 reflections with I > 2σ(I)
Detector resolution: 10.4167 pixels mm-1Rint = 0.052
generic φ and ο scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
(Krause et al., 2015)
h = 1515
Tmin = 0.394, Tmax = 0.746k = 1616
55319 measured reflectionsl = 1717
7304 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0373P)2 + 70.429P]
where P = (Fo2 + 2Fc2)/3
7304 reflections(Δ/σ)max = 0.001
488 parametersΔρmax = 5.02 e Å3
145 restraintsΔρmin = 3.41 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement.

_reflns_Friedel_fraction is defined as the number of unique Friedel pairs measured divided by the number that would be possible theoretically, ignoring centric projections and systematic absences.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
U10.69331 (4)0.29727 (4)0.47526 (4)0.01860 (12)
Cl10.8241 (9)0.1509 (8)0.4746 (9)0.035 (3)0.43 (2)
O1M0.785 (2)0.1771 (16)0.4625 (19)0.030 (4)0.57 (2)
C1M0.841 (2)0.098 (2)0.458 (3)0.036 (5)0.57 (2)
H1MA0.8065130.0502670.4775920.054*0.57 (2)
H1MB0.9243800.1325150.5141460.054*0.57 (2)
H1MC0.8322970.0517650.3797360.054*0.57 (2)
U40.64636 (4)0.81258 (4)0.69281 (4)0.01947 (12)
Cl30.7477 (10)1.0349 (10)0.8252 (9)0.040 (4)0.41 (2)
O3M0.7246 (19)0.9836 (15)0.7937 (19)0.032 (4)0.59 (2)
C3M0.781 (3)1.092 (2)0.860 (3)0.049 (7)0.59 (2)
H3MA0.8455761.1058520.8436240.074*0.59 (2)
H3MB0.8135851.1153150.9421530.074*0.59 (2)
H3MC0.7265481.1355210.8430280.074*0.59 (2)
U50.83654 (4)0.60227 (4)0.66263 (4)0.02061 (12)
Cl21.0679 (11)0.6808 (10)0.7997 (11)0.026 (4)0.33 (2)
O2M1.0187 (16)0.6605 (18)0.7652 (17)0.031 (4)0.67 (2)
C2M1.1339 (19)0.710 (2)0.841 (2)0.038 (5)0.67 (2)
H2MA1.1583160.6840200.8958570.056*0.67 (2)
H2MB1.1473840.7910020.8827190.056*0.67 (2)
H2MC1.1797290.6899260.7977590.056*0.67 (2)
C10.6604 (16)0.1259 (13)0.2091 (13)0.042 (4)
H1A0.5803110.0762970.1575100.062*
H1B0.7082470.0948770.2537490.062*
H1C0.6948740.1326140.1626080.062*
O10.6573 (9)0.2307 (8)0.2848 (8)0.027 (2)
U20.53611 (4)0.33105 (4)0.22261 (4)0.01968 (12)
C20.5492 (17)0.1741 (14)0.0359 (14)0.047 (4)
H2A0.6045960.2214690.0388600.071*
H2B0.4717590.1480960.1029950.071*
H2C0.5773770.1096800.0375170.071*
O20.5407 (9)0.2342 (8)0.0640 (8)0.034 (2)
O30.3774 (9)0.3831 (8)0.1168 (7)0.028 (2)
U30.33989 (4)0.53469 (4)0.24238 (4)0.01995 (12)
C30.3303 (17)0.3378 (14)0.0051 (12)0.045 (4)
H3A0.2594050.2763130.0464280.068*
H3B0.3888270.3096620.0298740.068*
H3C0.3103850.3960910.0228610.068*
C40.176 (2)0.564 (2)0.0362 (19)0.072 (7)
H4A0.2109640.5677960.0112110.109*
H4B0.1525550.6317910.0700490.109*
H4C0.1075570.4986540.0125610.109*
O40.2354 (11)0.5561 (10)0.0995 (11)0.050 (3)
C50.299 (3)0.7886 (17)0.341 (2)0.079 (7)
H5A0.3551970.7979340.3147250.119*
H5B0.3165290.8569050.4145660.119*
H5C0.2189740.7739960.2826630.119*
O50.3068 (9)0.6959 (8)0.3598 (8)0.031 (2)
U60.5000000.5000000.5000000.01170 (13)
C60.5010 (17)0.7108 (18)0.2245 (17)0.055 (5)
H6A0.5293740.6710080.1679160.082*
H6B0.5525640.7869310.2808030.082*
H6C0.4207950.7137130.1839900.082*
O60.5011 (9)0.6532 (8)0.2841 (8)0.030 (2)
O80.4733 (8)0.8554 (8)0.6182 (8)0.028 (2)
U70.67893 (4)0.63767 (4)0.41143 (4)0.01923 (12)
C70.674 (2)0.9055 (14)0.5289 (17)0.056 (5)
H7A0.6727160.8820380.4540180.085*
H7B0.7460830.9654250.5916350.085*
H7C0.6054580.9327100.5297030.085*
O70.6722 (9)0.8130 (7)0.5454 (8)0.031 (2)
C80.4640 (16)0.9651 (13)0.6393 (19)0.055 (5)
H8A0.3997520.9581810.5701640.083*
H8B0.5379771.0083200.6563400.083*
H8C0.4479801.0032780.7056120.083*
C90.6967 (15)0.8979 (12)0.9640 (12)0.038 (4)
H9A0.7583410.8673070.9969000.057*
H9B0.6496110.9153291.0054380.057*
H9C0.7329220.9661740.9720650.057*
O90.6228 (8)0.8175 (7)0.8437 (7)0.027 (2)
O100.8303 (9)0.7880 (8)0.7769 (8)0.031 (2)
C100.9266 (13)0.8800 (13)0.8746 (14)0.041 (4)
H10A1.0004380.8608630.8801820.062*
H10B0.9214940.8973870.9454240.062*
H10C0.9242500.9451630.8655980.062*
O110.8253 (9)0.5933 (8)0.8157 (8)0.030 (2)
C110.9024 (16)0.6711 (15)0.9356 (13)0.048 (4)
H11A0.9740370.7089510.9437030.072*
H11B0.9228560.6313070.9777920.072*
H11C0.8632040.7264830.9677940.072*
O120.8746 (9)0.4274 (8)0.6120 (9)0.032 (2)
C120.9709 (14)0.4066 (14)0.6837 (16)0.051 (5)
H12A0.9747630.4378530.7605100.077*
H12B1.0439060.4418310.6916640.077*
H12C0.9606440.3258870.6484040.077*
O130.8658 (9)0.6767 (8)0.5580 (9)0.031 (2)
C130.9615 (15)0.7636 (15)0.6003 (15)0.046 (4)
H13A0.9631140.7664120.5351970.069*
H13B1.0346090.7504420.6424510.069*
H13C0.9536930.8347560.6530220.069*
O140.7675 (11)0.7281 (10)0.3648 (9)0.045 (3)
C140.8158 (16)0.7802 (17)0.3389 (18)0.062 (6)
H14A0.8343640.7285770.2781840.093*
H14B0.8885920.8342290.4075670.093*
H14C0.7636660.8198790.3100970.093*
O150.6499 (9)0.4803 (8)0.2400 (8)0.027 (2)
C150.6596 (19)0.4833 (15)0.1523 (15)0.054 (5)
H15A0.6898020.4214270.1148540.082*
H15B0.7139030.5544080.1836150.082*
H15C0.5822260.4761640.0951230.082*
O160.7331 (8)0.4585 (8)0.4341 (8)0.027 (2)
C160.8348 (19)0.4483 (16)0.4207 (16)0.063 (6)
H16A0.8314140.3690290.3783680.094*
H16B0.9040290.4860890.4973370.094*
H16C0.8401620.4826100.3768800.094*
O170.6641 (8)0.4672 (7)0.5997 (7)0.0200 (18)
O180.5061 (8)0.5022 (7)0.3469 (7)0.0191 (18)
O190.4861 (7)0.6687 (7)0.6212 (7)0.0168 (17)
O200.6572 (7)0.6365 (7)0.5677 (7)0.0176 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
U10.0266 (3)0.0149 (2)0.0179 (2)0.00949 (19)0.0113 (2)0.01012 (19)
Cl10.035 (6)0.028 (6)0.045 (5)0.017 (4)0.019 (4)0.020 (4)
O1M0.033 (7)0.028 (7)0.032 (6)0.018 (5)0.016 (6)0.016 (6)
C1M0.032 (10)0.034 (11)0.052 (11)0.020 (8)0.030 (9)0.019 (10)
U40.0294 (3)0.0112 (2)0.0149 (2)0.00420 (19)0.0090 (2)0.00584 (18)
Cl30.050 (7)0.023 (7)0.023 (7)0.004 (6)0.012 (5)0.000 (5)
O3M0.036 (7)0.015 (6)0.019 (7)0.002 (7)0.005 (6)0.001 (6)
C3M0.047 (13)0.021 (9)0.032 (12)0.008 (11)0.003 (10)0.007 (11)
U50.0247 (3)0.0175 (2)0.0164 (2)0.00476 (19)0.0066 (2)0.00890 (19)
Cl20.011 (7)0.028 (6)0.024 (7)0.007 (6)0.003 (5)0.007 (5)
O2M0.022 (6)0.032 (7)0.024 (7)0.002 (6)0.004 (6)0.010 (5)
C2M0.013 (7)0.052 (11)0.034 (11)0.002 (9)0.013 (7)0.011 (9)
C10.065 (11)0.034 (9)0.027 (8)0.027 (8)0.026 (8)0.012 (7)
O10.043 (6)0.024 (5)0.029 (5)0.020 (4)0.025 (5)0.016 (4)
U20.0328 (3)0.0153 (2)0.0148 (2)0.0093 (2)0.0140 (2)0.00798 (19)
C20.076 (13)0.035 (9)0.041 (9)0.026 (9)0.046 (10)0.010 (8)
O20.048 (6)0.029 (5)0.030 (5)0.011 (5)0.020 (5)0.017 (5)
O30.045 (6)0.026 (5)0.013 (4)0.012 (4)0.013 (4)0.010 (4)
U30.0284 (3)0.0195 (2)0.0147 (2)0.0087 (2)0.0088 (2)0.01164 (19)
C30.070 (12)0.045 (10)0.012 (7)0.019 (9)0.012 (7)0.014 (7)
C40.089 (17)0.075 (15)0.051 (12)0.002 (13)0.026 (11)0.039 (12)
O40.052 (8)0.042 (7)0.040 (6)0.006 (6)0.023 (6)0.009 (5)
C50.17 (2)0.056 (11)0.081 (14)0.063 (14)0.092 (16)0.056 (11)
O50.051 (6)0.026 (5)0.028 (5)0.017 (5)0.022 (5)0.020 (4)
U60.0178 (3)0.0086 (3)0.0095 (3)0.0054 (2)0.0062 (2)0.0053 (2)
C60.051 (11)0.076 (14)0.065 (12)0.019 (10)0.024 (10)0.058 (12)
O60.044 (6)0.029 (5)0.032 (5)0.015 (5)0.020 (5)0.024 (5)
O80.034 (5)0.023 (5)0.032 (5)0.010 (4)0.014 (5)0.018 (4)
U70.0278 (3)0.0162 (2)0.0172 (2)0.00635 (19)0.0118 (2)0.01013 (19)
C70.103 (16)0.037 (10)0.058 (11)0.025 (10)0.046 (12)0.038 (9)
O70.057 (7)0.011 (4)0.030 (5)0.012 (4)0.024 (5)0.013 (4)
C80.047 (10)0.023 (8)0.085 (14)0.007 (7)0.016 (10)0.031 (9)
C90.053 (10)0.023 (7)0.015 (7)0.010 (7)0.011 (7)0.001 (6)
O90.037 (6)0.018 (5)0.015 (4)0.002 (4)0.006 (4)0.006 (4)
O100.037 (6)0.022 (5)0.014 (4)0.005 (4)0.005 (4)0.001 (4)
C100.030 (8)0.036 (9)0.044 (9)0.006 (7)0.012 (7)0.016 (8)
O110.038 (6)0.029 (5)0.014 (4)0.009 (4)0.006 (4)0.010 (4)
C110.048 (10)0.047 (10)0.027 (8)0.003 (8)0.009 (8)0.011 (8)
O120.032 (5)0.022 (5)0.037 (6)0.012 (4)0.009 (5)0.017 (5)
C120.031 (9)0.037 (9)0.050 (10)0.014 (7)0.000 (8)0.013 (8)
O130.033 (5)0.029 (5)0.038 (6)0.005 (4)0.016 (5)0.022 (5)
C130.044 (10)0.060 (11)0.047 (10)0.004 (8)0.026 (8)0.033 (9)
O140.055 (8)0.043 (7)0.027 (6)0.021 (6)0.015 (6)0.013 (5)
C140.034 (10)0.058 (13)0.055 (12)0.008 (9)0.015 (9)0.004 (10)
O150.045 (6)0.024 (5)0.022 (5)0.012 (4)0.023 (5)0.013 (4)
C150.080 (14)0.036 (9)0.045 (10)0.006 (9)0.040 (10)0.011 (8)
O160.030 (5)0.030 (5)0.030 (5)0.012 (4)0.019 (4)0.016 (4)
C160.086 (16)0.047 (12)0.042 (11)0.002 (11)0.030 (11)0.015 (9)
O170.027 (5)0.020 (4)0.015 (4)0.007 (4)0.007 (4)0.014 (4)
O180.029 (5)0.016 (4)0.014 (4)0.011 (4)0.010 (4)0.009 (4)
O190.026 (5)0.011 (4)0.014 (4)0.007 (3)0.010 (4)0.007 (3)
O200.022 (4)0.017 (4)0.017 (4)0.008 (4)0.008 (4)0.012 (4)
Geometric parameters (Å, º) top
U1—O1M2.076 (19)C4—H4B0.9800
U1—O122.320 (10)C4—H4C0.9800
U1—O12.326 (9)C5—O51.441 (19)
U1—O5i2.371 (9)C5—H5A0.9800
U1—O8i2.378 (9)C5—H5B0.9800
U1—O19i2.385 (8)C5—H5C0.9800
U1—O172.399 (9)U6—O17i2.249 (8)
U1—O162.668 (9)U6—O172.249 (8)
U1—Cl12.704 (11)U6—O20i2.255 (8)
O1M—C1M1.34 (3)U6—O202.255 (8)
C1M—H1MA0.9800U6—O19i2.279 (8)
C1M—H1MB0.9800U6—O192.279 (8)
C1M—H1MC0.9800U6—O18i2.287 (8)
U4—O3M2.076 (18)U6—O182.287 (8)
U4—O82.303 (9)C6—O61.432 (17)
U4—O72.310 (9)C6—H6A0.9800
U4—O92.315 (9)C6—H6B0.9800
U4—O102.322 (10)C6—H6C0.9800
U4—O192.328 (8)O6—U72.410 (10)
U4—O202.352 (8)O8—C81.442 (17)
U4—Cl32.698 (11)U7—O142.157 (14)
O3M—C3M1.34 (3)U7—O152.324 (9)
C3M—H3MA0.9800U7—O132.330 (10)
C3M—H3MB0.9800U7—O72.368 (9)
C3M—H3MC0.9800U7—O182.404 (9)
U5—O2M2.086 (18)U7—O202.417 (8)
U5—O132.337 (9)U7—O162.759 (9)
U5—O122.346 (9)C7—O71.423 (17)
U5—O112.359 (9)C7—H7A0.9800
U5—O202.379 (8)C7—H7B0.9800
U5—O102.387 (10)C7—H7C0.9800
U5—O172.406 (9)C8—H8A0.9800
U5—Cl22.662 (12)C8—H8B0.9800
U5—O162.664 (9)C8—H8C0.9800
O2M—C2M1.35 (3)C9—O91.429 (16)
C2M—H2MA0.9800C9—H9A0.9800
C2M—H2MB0.9800C9—H9B0.9800
C2M—H2MC0.9800C9—H9C0.9800
C1—O11.389 (16)O10—C101.420 (17)
C1—H1A0.9800C10—H10A0.9800
C1—H1B0.9800C10—H10B0.9800
C1—H1C0.9800C10—H10C0.9800
O1—U22.339 (9)O11—C111.426 (18)
U2—O22.110 (10)C11—H11A0.9800
U2—O152.353 (9)C11—H11B0.9800
U2—O9i2.383 (9)C11—H11C0.9800
U2—O32.401 (9)O12—C121.416 (18)
U2—O19i2.411 (8)C12—H12A0.9800
U2—O182.413 (8)C12—H12B0.9800
U2—O162.749 (10)C12—H12C0.9800
C2—O21.363 (17)O13—C131.400 (18)
C2—H2A0.9800C13—H13A0.9800
C2—H2B0.9800C13—H13B0.9800
C2—H2C0.9800C13—H13C0.9800
O3—C31.425 (15)O14—C141.21 (2)
O3—U32.305 (9)C14—H14A0.9800
U3—O42.160 (14)C14—H14B0.9800
U3—O62.284 (10)C14—H14C0.9800
U3—O182.293 (8)O15—C151.356 (18)
U3—O11i2.305 (10)C15—H15A0.9800
U3—O52.307 (9)C15—H15B0.9800
U3—O17i2.344 (8)C15—H15C0.9800
C3—H3A0.9800O16—C161.40 (2)
C3—H3B0.9800C16—H16A0.9800
C3—H3C0.9800C16—H16B0.9800
C4—O40.99 (2)C16—H16C0.9800
C4—H4A0.9800
O1M—U1—O1286.1 (7)C4—O4—U3170.5 (18)
O1M—U1—O183.1 (7)O5—C5—H5A109.5
O12—U1—O1113.1 (4)O5—C5—H5B109.5
O12—U1—O5i83.0 (4)H5A—C5—H5B109.5
O1—U1—O5i161.1 (3)O5—C5—H5C109.5
O12—U1—O8i160.6 (3)H5A—C5—H5C109.5
O1—U1—O8i82.2 (3)H5B—C5—H5C109.5
O5i—U1—O8i80.1 (3)C5—O5—U3123.3 (9)
O12—U1—O19i127.3 (3)C5—O5—U1i122.8 (9)
O1—U1—O19i72.2 (3)U3—O5—U1i113.6 (4)
O5i—U1—O19i106.7 (3)O17i—U6—O17180.0 (5)
O8i—U1—O19i67.4 (3)O17i—U6—O20i71.0 (3)
O1M—U1—O17147.4 (6)O17—U6—O20i109.0 (3)
O12—U1—O1771.0 (3)O17i—U6—O20109.0 (3)
O1—U1—O17126.8 (3)O17—U6—O2071.0 (3)
O5i—U1—O1766.5 (3)O20i—U6—O20180.0
O8i—U1—O17110.3 (3)O17i—U6—O19i108.9 (3)
O19i—U1—O1766.8 (3)O17—U6—O19i71.1 (3)
O1M—U1—O16124.2 (7)O20i—U6—O19i70.0 (3)
O12—U1—O1667.0 (3)O20—U6—O19i110.0 (3)
O1—U1—O1666.4 (3)O17i—U6—O1971.1 (3)
O5i—U1—O16131.6 (3)O17—U6—O19108.9 (3)
O8i—U1—O16132.1 (3)O20i—U6—O19110.0 (3)
O19i—U1—O1669.0 (3)O20—U6—O1970.0 (3)
O17—U1—O1668.1 (3)O19i—U6—O19180.0
O12—U1—Cl182.5 (3)O17i—U6—O18i110.4 (3)
O1—U1—Cl186.4 (3)O17—U6—O18i69.6 (3)
O5i—U1—Cl186.0 (3)O20i—U6—O18i70.8 (3)
O8i—U1—Cl186.8 (3)O20—U6—O18i109.2 (3)
O19i—U1—Cl1148.1 (3)O19i—U6—O18i109.3 (3)
O17—U1—Cl1143.4 (3)O19—U6—O18i70.7 (3)
O16—U1—Cl1124.0 (3)O17i—U6—O1869.6 (3)
C1M—O1M—U1176 (2)O17—U6—O18110.4 (3)
O1M—C1M—H1MA109.5O20i—U6—O18109.2 (3)
O1M—C1M—H1MB109.5O20—U6—O1870.8 (3)
H1MA—C1M—H1MB109.5O19i—U6—O1870.7 (3)
O1M—C1M—H1MC109.5O19—U6—O18109.3 (3)
H1MA—C1M—H1MC109.5O18i—U6—O18180.0
H1MB—C1M—H1MC109.5O6—C6—H6A109.5
O3M—U4—O886.4 (7)O6—C6—H6B109.5
O3M—U4—O788.1 (7)H6A—C6—H6B109.5
O8—U4—O785.1 (3)O6—C6—H6C109.5
O3M—U4—O990.3 (7)H6A—C6—H6C109.5
O8—U4—O994.8 (3)H6B—C6—H6C109.5
O7—U4—O9178.4 (3)C6—O6—U3125.1 (10)
O3M—U4—O1087.9 (7)C6—O6—U7122.8 (10)
O8—U4—O10174.3 (3)U3—O6—U7110.7 (3)
O7—U4—O1093.9 (4)C8—O8—U4124.9 (9)
O9—U4—O1086.1 (3)C8—O8—U1i122.9 (9)
O3M—U4—O19146.4 (7)U4—O8—U1i111.7 (4)
O8—U4—O1969.6 (3)O14—U7—O1585.3 (4)
O7—U4—O19112.0 (3)O14—U7—O1385.2 (4)
O9—U4—O1969.4 (3)O15—U7—O13109.0 (3)
O10—U4—O19115.9 (3)O14—U7—O786.7 (4)
O3M—U4—O20146.0 (7)O15—U7—O7162.5 (3)
O8—U4—O20115.1 (3)O13—U7—O785.8 (4)
O7—U4—O2069.1 (3)O14—U7—O18146.0 (3)
O9—U4—O20112.3 (3)O15—U7—O1872.6 (3)
O10—U4—O2069.5 (3)O13—U7—O18126.0 (3)
O19—U4—O2067.6 (3)O7—U7—O18106.7 (3)
O8—U4—Cl386.4 (3)O14—U7—O685.3 (4)
O7—U4—Cl388.5 (3)O15—U7—O683.1 (3)
O9—U4—Cl389.9 (3)O13—U7—O6163.9 (3)
O10—U4—Cl388.0 (3)O7—U7—O680.7 (3)
O19—U4—Cl3146.1 (3)O18—U7—O667.0 (3)
O20—U4—Cl3146.3 (3)O14—U7—O20145.9 (3)
C3M—O3M—U4177 (3)O15—U7—O20125.5 (3)
O3M—C3M—H3MA109.5O13—U7—O2072.0 (3)
O3M—C3M—H3MB109.5O7—U7—O2067.1 (3)
H3MA—C3M—H3MB109.5O18—U7—O2066.2 (3)
O3M—C3M—H3MC109.5O6—U7—O20110.2 (3)
H3MA—C3M—H3MC109.5O14—U7—O16125.7 (4)
H3MB—C3M—H3MC109.5O15—U7—O1665.7 (3)
O2M—U5—O1385.7 (7)O13—U7—O1664.9 (3)
O2M—U5—O1282.7 (6)O7—U7—O16131.1 (3)
O13—U5—O12113.4 (4)O18—U7—O1668.1 (3)
O2M—U5—O1187.6 (7)O6—U7—O16131.1 (3)
O13—U5—O11160.2 (3)O20—U7—O1666.9 (3)
O12—U5—O1184.1 (3)O7—C7—H7A109.5
O2M—U5—O20148.5 (6)O7—C7—H7B109.5
O13—U5—O2072.5 (3)H7A—C7—H7B109.5
O12—U5—O20126.5 (3)O7—C7—H7C109.5
O11—U5—O20105.1 (3)H7A—C7—H7C109.5
O2M—U5—O1086.8 (6)H7B—C7—H7C109.5
O13—U5—O1081.6 (3)C7—O7—U4124.4 (9)
O12—U5—O10160.8 (3)C7—O7—U7122.0 (9)
O11—U5—O1079.4 (3)U4—O7—U7113.5 (3)
O20—U5—O1068.0 (3)O8—C8—H8A109.5
O2M—U5—O17143.9 (7)O8—C8—H8B109.5
O13—U5—O17126.7 (3)H8A—C8—H8B109.5
O12—U5—O1770.4 (3)O8—C8—H8C109.5
O11—U5—O1766.5 (3)H8A—C8—H8C109.5
O20—U5—O1766.3 (3)H8B—C8—H8C109.5
O10—U5—O17111.1 (3)O9—C9—H9A109.5
O13—U5—Cl286.7 (4)O9—C9—H9B109.5
O12—U5—Cl283.9 (4)H9A—C9—H9B109.5
O11—U5—Cl286.2 (4)O9—C9—H9C109.5
O20—U5—Cl2147.9 (4)H9A—C9—H9C109.5
O10—U5—Cl285.3 (4)H9B—C9—H9C109.5
O17—U5—Cl2143.6 (4)C9—O9—U4124.5 (8)
O2M—U5—O16123.0 (6)C9—O9—U2i123.0 (8)
O13—U5—O1666.4 (3)U4—O9—U2i112.5 (3)
O12—U5—O1666.7 (3)C10—O10—U4121.1 (9)
O11—U5—O16132.0 (3)C10—O10—U5127.1 (9)
O20—U5—O1669.0 (3)U4—O10—U5111.2 (4)
O10—U5—O16132.2 (3)O10—C10—H10A109.5
O17—U5—O1668.1 (3)O10—C10—H10B109.5
Cl2—U5—O16124.9 (3)H10A—C10—H10B109.5
C2M—O2M—U5173 (2)O10—C10—H10C109.5
O2M—C2M—H2MA109.5H10A—C10—H10C109.5
O2M—C2M—H2MB109.5H10B—C10—H10C109.5
H2MA—C2M—H2MB109.5C11—O11—U3i121.4 (9)
O2M—C2M—H2MC109.5C11—O11—U5123.7 (9)
H2MA—C2M—H2MC109.5U3i—O11—U5114.2 (4)
H2MB—C2M—H2MC109.5O11—C11—H11A109.5
O1—C1—H1A109.5O11—C11—H11B109.5
O1—C1—H1B109.5H11A—C11—H11B109.5
H1A—C1—H1B109.5O11—C11—H11C109.5
O1—C1—H1C109.5H11A—C11—H11C109.5
H1A—C1—H1C109.5H11B—C11—H11C109.5
H1B—C1—H1C109.5C12—O12—U1124.1 (9)
C1—O1—U1126.0 (8)C12—O12—U5125.1 (9)
C1—O1—U2123.2 (9)U1—O12—U5105.3 (4)
U1—O1—U2105.4 (3)O12—C12—H12A109.5
O2—U2—O184.8 (3)O12—C12—H12B109.5
O2—U2—O1584.7 (3)H12A—C12—H12B109.5
O1—U2—O15109.8 (3)O12—C12—H12C109.5
O2—U2—O9i88.0 (3)H12A—C12—H12C109.5
O1—U2—O9i85.5 (3)H12B—C12—H12C109.5
O15—U2—O9i162.4 (3)C13—O13—U7124.0 (9)
O2—U2—O386.0 (3)C13—O13—U5125.9 (9)
O1—U2—O3164.1 (3)U7—O13—U5105.2 (4)
O15—U2—O382.2 (3)O13—C13—H13A109.5
O9i—U2—O381.3 (3)O13—C13—H13B109.5
O2—U2—O19i146.2 (3)H13A—C13—H13B109.5
O1—U2—O19i71.5 (3)O13—C13—H13C109.5
O15—U2—O19i125.4 (3)H13A—C13—H13C109.5
O9i—U2—O19i66.9 (3)H13B—C13—H13C109.5
O3—U2—O19i110.7 (3)C14—O14—U7178.8 (13)
O2—U2—O18146.1 (3)O14—C14—H14A109.5
O1—U2—O18125.7 (3)O14—C14—H14B109.5
O15—U2—O1871.9 (3)H14A—C14—H14B109.5
O9i—U2—O18106.9 (3)O14—C14—H14C109.5
O3—U2—O1867.1 (3)H14A—C14—H14C109.5
O19i—U2—O1866.4 (3)H14B—C14—H14C109.5
O2—U2—O16124.0 (3)C15—O15—U7124.3 (9)
O1—U2—O1664.9 (3)C15—O15—U2126.2 (9)
O15—U2—O1665.5 (3)U7—O15—U2105.7 (3)
O9i—U2—O16131.2 (3)O15—C15—H15A109.5
O3—U2—O16130.9 (3)O15—C15—H15B109.5
O19i—U2—O1667.2 (3)H15A—C15—H15B109.5
O18—U2—O1668.2 (3)O15—C15—H15C109.5
O2—C2—H2A109.5H15A—C15—H15C109.5
O2—C2—H2B109.5H15B—C15—H15C109.5
H2A—C2—H2B109.5C16—O16—U598.1 (9)
O2—C2—H2C109.5C16—O16—U1103.3 (10)
H2A—C2—H2C109.5U5—O16—U188.2 (3)
H2B—C2—H2C109.5C16—O16—U2110.3 (9)
C2—O2—U2177.3 (11)U5—O16—U2151.6 (4)
C3—O3—U3125.8 (9)U1—O16—U286.5 (3)
C3—O3—U2122.6 (9)C16—O16—U7105.4 (10)
U3—O3—U2110.7 (3)U5—O16—U786.3 (3)
O4—U3—O689.5 (4)U1—O16—U7151.3 (4)
O4—U3—O18151.1 (4)U2—O16—U785.2 (3)
O6—U3—O1871.0 (3)O16—C16—H16A109.5
O4—U3—O11i87.5 (4)O16—C16—H16B109.5
O6—U3—O11i175.1 (3)H16A—C16—H16B109.5
O18—U3—O11i110.3 (3)O16—C16—H16C109.5
O4—U3—O389.2 (4)H16A—C16—H16C109.5
O6—U3—O391.3 (3)H16B—C16—H16C109.5
O18—U3—O370.7 (3)U6—O17—U3i111.0 (4)
O11i—U3—O384.9 (3)U6—O17—U1111.2 (3)
O4—U3—O586.8 (4)U3i—O17—U1111.3 (3)
O6—U3—O584.5 (4)U6—O17—U5110.8 (3)
O18—U3—O5111.4 (3)U3i—O17—U5111.0 (3)
O11i—U3—O599.2 (4)U1—O17—U5101.1 (3)
O3—U3—O5174.2 (3)U6—O18—U3111.5 (4)
O4—U3—O17i141.1 (4)U6—O18—U7111.1 (3)
O6—U3—O17i116.2 (3)U3—O18—U7110.6 (3)
O18—U3—O17i67.9 (3)U6—O18—U2111.2 (3)
O11i—U3—O17i68.3 (3)U3—O18—U2110.7 (3)
O3—U3—O17i117.1 (3)U7—O18—U2101.4 (3)
O5—U3—O17i68.5 (3)U6—O19—U4111.2 (3)
O3—C3—H3A109.5U6—O19—U1i110.7 (3)
O3—C3—H3B109.5U4—O19—U1i110.6 (3)
H3A—C3—H3B109.5U6—O19—U2i111.5 (3)
O3—C3—H3C109.5U4—O19—U2i111.0 (3)
H3A—C3—H3C109.5U1i—O19—U2i101.4 (3)
H3B—C3—H3C109.5U6—O20—U4111.2 (3)
O4—C4—H4A109.5U6—O20—U5111.6 (3)
O4—C4—H4B109.5U4—O20—U5110.5 (3)
H4A—C4—H4B109.5U6—O20—U7111.7 (3)
O4—C4—H4C109.5U4—O20—U7110.2 (3)
H4A—C4—H4C109.5U5—O20—U7101.3 (3)
H4B—C4—H4C109.5
Symmetry code: (i) x+1, y+1, z+1.
Summary of bond-valence-sum (BVS) calculations on the uranium atoms U1–U7 in (I) top
AtomAtomic charge calculated by BVS (v.u.)
U13.73
U23.99
U34.34
U43.86
U53.77
U65.16
U73.93
Average4.11
Geometrical parameters (Å, °) of cubic uranium polyhedra in different compounds top
U—O distanceO—U—O angle
CompoundShortestLongestAverageSmallestLargestAverageReference
UO22.36870.5Cooper (1982)
{U38}2.2292.5202.35768.176.570.5Falaise et al. (2013c)
{U13}2.2432.2902.26469.871.270.5This work
 

Acknowledgements

The authors acknowledge Dr Thierry Loiseau and Dr Nicolas P. Martin (Unité de Catalyse et Chimie du Solide, Université de Lille, France) for technical support of the crystal structure refinement.

Funding information

Funding for this research was provided by: Bundesministerium für Bildung und Forschung (grant No. 02NUK046B).

References

First citationBerthet, J.-C., Ephritikhine, M., Lance, M., Nierlich, M. & Vigner, J. (1993). J. Organomet. Chem., 460, 47-53.  CrossRef CAS Google Scholar
First citationBiswas, B., Mougel, V., Pécaut, J. & Mazzanti, M. (2011). Angew. Chem. Int. Ed. 50, 5745–5748.  CrossRef CAS Google Scholar
First citationBrown, I. D. (1978). Chem. Soc. Rev. 7, 359–376.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCooper, M. J. (1982). Acta Cryst. A38, 264–269.  CrossRef CAS IUCr Journals Google Scholar
First citationDufaye, M., Martin, N. P., Duval, S., Volkringer, C., Ikeda-Ohno, A. & Loiseau, T. (2019). RSC Adv. 9, 22795–22804.  CrossRef CAS Google Scholar
First citationDuval, S., Sobanska, S., Roussel, P. & Loiseau, T. (2015). Dalton Trans. 44, 19772–19776.  CrossRef CAS PubMed Google Scholar
First citationFalaise, C., Volkringer, C. & Loiseau, T. (2013a). Cryst. Growth Des. 13, 3225–3231.  CrossRef CAS Google Scholar
First citationFalaise, C., Volkringer, C., Vigier, J.-F., Beaurain, A., Roussel, P., Rabu, P. & Loiseau, T. (2013c). J. Am. Chem. Soc. 135, 15678–15681.  CrossRef CAS PubMed Google Scholar
First citationFalaise, C., Volkringer, C., Vigier, J.-F., Henry, N., Beaurain, A. & Loiseau, T. (2013b). Chem. Eur. J. 19, 5324–5331.  CrossRef CAS PubMed Google Scholar
First citationGagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562–578.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHenry, M., Jolivet, J. P. & Livage, J. (1992). Struct. Bonding, 77, 153-206.  CrossRef CAS Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIkeda-Ohno, A., Hennig, C., Weiss, S., Yaita, T. & Bernhard, G. (2013). Chem. Eur. J. 19, 7348–7360.  CAS PubMed Google Scholar
First citationJohansson, G., Lundgren, G., Sillén, L. G. & Söderquist, R. (1960). Acta Chem. Scand. 14, 769–771.  CrossRef CAS Google Scholar
First citationKloditz, R., Fichter, S., Kaufmann, S., Brunner, T. S., Kaden, P., Patzschke, M., Stumpf, T., Roesky, P. W., Schmidt, M. & März, J. (2020). Inorg. Chem. 59, 15670–15680.  CrossRef CAS PubMed Google Scholar
First citationKnope, K. E. & Soderholm, L. (2013). Chem. Rev. 113, 944–994.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLe Borgne, T., Thuéry, P. & Ephritikhine, M. (2002). Acta Cryst. C58, m8–m9.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLin, J., Yue, Z., Silver, M. A., Qie, M., Wang, X., Liu, W., Lin, X., Bao, H.-L., Zhang, L.-J., Wang, S. & Wang, J.-W. (2018). Inorg. Chem. 57, 6753–6761.  CrossRef CAS PubMed Google Scholar
First citationMartin, N. P., Volkringer, C., Henry, N., Trivelli, X., Stoclet, G., Ikeda-Ohno, A. & Loiseau, T. (2018). Chem. Sci. 9, 5021–5032.  CrossRef CAS PubMed Google Scholar
First citationMokry, L. M., Dean, N. S. & Carrano, C. J. (1996). Angew. Chem. Int. Ed. Engl. 35, 1497–1498.  CSD CrossRef CAS Web of Science Google Scholar
First citationMougel, V., Biswas, B., Pécaut, J. & Mazzanti, M. (2010). Chem. Commun. 46, 8648–8650.  CrossRef CAS Google Scholar
First citationQiu, J. & Burns, P. C. (2013). Chem. Rev. 113, 1097–1120.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRadoske, T., März, J., Patzschke, M., Kaden, P., Walter, O., Schmidt, M. & Stumpf, T. (2020). Chem. Eur. J. 26, 16853–16859.  CrossRef CAS PubMed Google Scholar
First citationRowsell, J. & Nazar, L. F. (2000). J. Am. Chem. Soc. 122, 3777–3778.  CrossRef CAS Google Scholar
First citationRussell–Webster, B., Lopez–Nieto, J., Abboud, K. A. & Christou, G. (2021). Angew. Chem. Int. Ed. 60, 12591–12596.  CAS Google Scholar
First citationSalmon, L., Thuéry, P. & Ephritikhine, M. (2004). Polyhedron, 23, 623–627.  CrossRef CAS Google Scholar
First citationSalmon, L., Thuéry, P., Rivière, E., Miyamoto, S., Yamato, T. & Ephritikhine, M. (2006). New J. Chem. 30, 1220–1227.  CrossRef CAS Google Scholar
First citationSchmidt, A.-C., Heinemann, F. W., Lukens, W. W. Jr & Meyer, K. (2014). J. Am. Chem. Soc. 136, 11980–11993.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTakao, S., Takao, K., Kraus, W., Emmerling, F., Scheinost, A. C., Bernhard, G. & Hennig, C. (2009). Eur. J. Inorg. Chem. 2009, 4771–4775.  CrossRef Google Scholar
First citationWyckoff, R. W. G. (1963). Crystal Structure. Vol. 1, 2nd ed. New York: Interscience.  Google Scholar
First citationYuan, F., Gu, Z., Li, L. & Sha, L. (2017). Polyhedron, 133, 393–397.  CrossRef CAS Google Scholar
First citationZachariasen, W. H. (1978). J. Less-Common Met. 62, 1–7.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds