research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (C9H17N2)3[Bi2I9]

crossmark logo

aDepartment of Chemistry, University of Reading, Whiteknights, Reading, RG6 6DX, UK
*Correspondence e-mail: p.vaqueiro@reading.ac.uk

Edited by V. Jancik, Universidad Nacional Autónoma de México, México (Received 25 May 2021; accepted 29 July 2021; online 6 August 2021)

Single crystals of tris­(2,3,4,6,7,8,9,10-octa­hydro­pyrimido[1,2-a]azepin-1-ium) tri-μ2-iodido-bis­[tri­iodido­bis­muth(III)], (C9H17N2)3[Bi2I9], were prepared by a solvothermal method, heating a mixture of BiI3, KI, 1,8-di­aza­bicyclo­[5.4.0]undec-7-ene (DBU) and ethanol at 443 K for six days. The asymmetric unit of the title compound, which crystallizes in the monoclinic space group P21/c, contains one [Bi2I9]3− anion and three protonated DBUH+ moieties. The dinuclear [Bi2I9]3− anions, which are composed of face-sharing BiI63− octa­hedra, are packed in columns parallel to the [010] direction, and separated by protonated DBUH+ moieties. The optical band gap of (C9H7N2)3Bi2I9 is 2.1 eV.

1. Chemical context

In recent years, hybrid bis­muth halides have attracted considerable attention owing to their inter­esting physical properties (Adonin et al., 2016[Adonin, S. A., Sokolov, M. N. & Fedin, V. P. (2016). Coord. Chem. Rev. 312, 1-21.]), including luminescence (Adonin et al., 2015[Adonin, S. A., Sokolov, M. N., Rakhmanova, M. E., Smolentsev, A. I., Korolkov, I. V., Kozlova, S. G. & Fedin, V. P. (2015). Inorg. Chem. Commun. 54, 89-91.]), non-linear optical effects (Bi et al., 2008[Bi, W., Louvain, N., Mercier, N., Luc, J., Rau, I., Kajzar, F. & Sahraoui, B. (2008). Adv. Mater. 20, 1013-1017.]) and thermochromism (García-Fernández et al., 2018[García-Fernández, A., Marcos-Cives, I., Platas-Iglesias, C., Castro-García, S., Vázquez-García, D., Fernández, A. & Sánchez-Andújar, M. (2018). Inorg. Chem. 57, 7655-7664.]). Moreover, the lack of stability and the toxicity of lead halide perovskites has stimulated research efforts into bis­muth-containing halides as stable and environmentally friendly alternatives for photovoltaic applications (Wu et al., 2020[Wu, C., Zhang, Q., Liu, G., Zhang, Z., Wang, D., Qu, B., Chen, Z. & Xiao, L. (2020). Adv. Energy Mater. 10, 1902496.]). However, bis­muth-containing hybrid halides, such as (CH3NH3)3Bi2I9 (Eckhardt et al., 2016[Eckhardt, K., Bon, V., Getzschmann, J., Grothe, J., Wisser, F. M. & Kaskel, S. (2016). Chem. Commun. 52, 3058-3060.]), often adopt low-dimensional structures, which in most cases result in larger band gaps than those of lead halide perovskites (Wang et al., 2020[Wang, Y., Wen, R., Liu, Y., Bi, L.-Y., Yang, M., Sun, H., Zheng, Y.-Z., Zhang, G. & Gao, Z. (2020). ChemSusChem, 13, 2753-2760.]). Examples of two- or three-dimensional structures are very rare, and include a two-dimensional metal-deficient perovskite, (H2AEQT)Bi2/3I4 (AEQT = 5,5′′′'-bis­(amino­eth­yl)-2,2′:5′,2′′:5′′,2′′′-quaterthio­phene) (Mitzi, 2000[Mitzi, D. B. (2000). Inorg. Chem. 39, 6107-6113.]) and the two-dimensional mixed halide (TMP)1.5[Bi2I7Cl2]4 (TMP = N,N,N′,N′-tetra­methyl­piperazine) (Li et al., 2017[Li, M.-Q., Hu, Y.-Q., Bi, L.-Y., Zhang, H.-L., Wang, Y. & Zheng, Y.-Z. (2017). Chem. Mater. 29, 5463-5467.]). The vast majority of hybrid bis­muth halides contain zero-dimensional units, which are either discrete polynuclear or mononuclear anionic units, depending on the synthetic conditions and the nature of the organic counter-cations (Wu et al., 2009[Wu, L.-M., Wu, X.-T. & Chen, L. (2009). Coord. Chem. Rev. 253, 2787-2804.]). In these materials, the Bi3+ cation typically adopts a distorted octa­hedral coordination, either forming mononuclear anions or polynuclear anions in which octa­hedra share edges or faces. Dinuclear species, such as [Bi2I8]2−, [Bi2I9]3− and [Bi2I10]4−, are one of the most widespread types of bis­muth-halide units (Adonin et al., 2016[Adonin, S. A., Sokolov, M. N. & Fedin, V. P. (2016). Coord. Chem. Rev. 312, 1-21.]).

2. Structural commentary

The asymmetric unit of (C9H7N2)3Bi2I9 comprises three protonated DBUH+ cations, one of which is disordered (see Refinement), and one [Bi2I9]3− anion (Fig. 1[link]). The two Bi3+ cations found in the [Bi2I9]3− unit are octa­hedrally coord­inated by six iodides, with Bi—I distances ranging between 2.9532 (4) and 3.2788 (4) Å. Each BiI63− octa­hedron shares one face with a second octa­hedron, forming a dinuclear unit, [Bi2I9]3−. The Bi—I distances for the bridging μ2-I anions, which range between 3.1405 (5) and 3.2788 (4) Å, are significantly longer than those for the terminal iodides [2.9532 (4) to 2.9908 (5) Å]. The angles for Bi3+μ2-I—Bi3+ range from 78.144 (9) to 80.095 (10)°, while those for terminal I—Bi 3+μ2-I take values between 85.283 (13) and 97.725 (12)°. The face-sharing arrangement of BiI63− octa­hedra and the distances and angles are similar to those found in other compounds containing [Bi2I9]3− anions, such as (CH3NH3)3Bi2I9 (Eckhardt et al., 2016[Eckhardt, K., Bon, V., Getzschmann, J., Grothe, J., Wisser, F. M. & Kaskel, S. (2016). Chem. Commun. 52, 3058-3060.]) or (C3H5N2)3Bi2I9 (Węcławik et al., 2016[Węcławik, M., Gągor, A., Jakubas, R., Piecha-Bisiorek, A., Medycki, W., Baran, J., Zieliński, P. & Gałązka, M. (2016). Inorg. Chem. Front. 3, 1306-1316.]).

[Scheme 1]
[Figure 1]
Figure 1
The asymmetric unit of (C9H7N2)3Bi2I9 with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity. Only one orientation of the disordered DBUH+ ring is shown.

3. Supra­molecular features

The [Bi2I9]3− dinuclear units are packed in columns parallel to the [010] direction (Fig. 2[link]), separated by the protonated DBUH+ cations. There are no short I⋯I distances between the [Bi2I9]3− anions, implying that there are limited inter­actions that could lead to extended electronic delocalization.

[Figure 2]
Figure 2
View of the packing of the title compound along [010]. Key: bis­muth, green polyhedra; iodine, large orange spheres; carbon, small grey spheres; nitro­gen, small blue spheres. H atoms have been omitted for clarity.

As shown in Table 1[link], there is hydrogen bonding between the amine functional groups in the DBU moieties and the [Bi2I9]3− dinuclear units. It should be noted that H30 does not form a hydrogen bond. This may be related to the fact that N30 is almost equidistant to I2, I5, I7 and I11. In addition, there are also short contacts of the type C—H⋯I. Hirshfeld surface analysis was performed using Crystal Explorer 17 (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17.5. University of Western Australia.]), with standard resolution of the dnorm surfaces. A number of short H⋯I contacts are highlighted in red in the Hirshfeld surfaces for the DBU cations and the [Bi2I9]3− anion (Fig. 3[link]). Examination of the fingerprint plots for the DBUH+ cations (see supporting information), resolved into H⋯H and H⋯I contacts, reveals that approximately 30% of the surface area corresponds to H⋯I contacts, with the remaining area corresponding to H⋯H inter­actions.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N19—H19⋯I9i 0.88 2.81 3.632 (5) 156
N41—H41⋯I6ii 0.88 2.91 3.735 (13) 157
N41—H41⋯I8ii 0.88 3.21 3.663 (14) 115
N41A—H41A⋯I6ii 0.88 2.62 3.492 (15) 169
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 3]
Figure 3
Hirshfeld surfaces, mapped with dnorm, of the three crystallographically independent DBUH+ cations and the [Bi2I9]3− anion. The red areas correspond to regions where contacts are shorter than the sum of the van der Waals radii.

4. Database survey

A search in the Cambridge Structural Database (CSD Version 2020.3, December 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) reveals that there are numerous compounds containing the dinuclear [Bi2I9]3− anion, also found in the compound reported here. This includes examples in which the counter-cation is an organic moiety, such as (CH3NH3)3Bi2I9 (Eckhardt et al., 2016[Eckhardt, K., Bon, V., Getzschmann, J., Grothe, J., Wisser, F. M. & Kaskel, S. (2016). Chem. Commun. 52, 3058-3060.]) or (C3H5N2)3Bi2I9 (Węcławik et al., 2016[Węcławik, M., Gągor, A., Jakubas, R., Piecha-Bisiorek, A., Medycki, W., Baran, J., Zieliński, P. & Gałązka, M. (2016). Inorg. Chem. Front. 3, 1306-1316.]), but also compounds in which the counter-cation is a transition-metal or a rare-earth complex, such as [Co(C2H8N2)3][Bi2I9] (Goforth et al., 2005[Goforth, A. M., Hipp, R. E., Smith, M. D., Peterson, L. & zur Loye, H.-C. (2005). Acta Cryst. E61, m1531-m1533.]) or [Ln(DMF)8][Bi2I9] (Ln = Y, Tb) (Mishra et al., 2012[Mishra, S., Jeanneau, E., Iasco, O., Ledoux, G., Luneau, D. & Daniele, S. (2012). Eur. J. Inorg. Chem. pp. 2749-2758.]). The ubiquitous dinuclear [Bi2I9]3− anion has also been found in compounds containing two or more anions, including (C8H18N2)7(BiI6)2(Bi2I9)2·2I3 (Zhang et al., 2018[Zhang, Z.-P., Feng, Q.-Y., Wang, Q.-L., Huang, X.-Y., Chen, D. & Zhou, J. (2018). J. Clust Sci. 29, 367-374.]), and in inorganic compounds like Cs3Bi2I9 (Arakcheeva et al., 2001[Arakcheeva, A. V., Chapuis, G. & Meyer, M. (2001). Z. Kristallogr. 216, 199-205.]).

5. Optical properties and thermal stability

UV–vis diffuse reflectance data (Fig. 4[link]) were collected on hand-picked single crystals, using a Perkin Elmer Lambda 35 UV–vis spectrometer. BaSO4 was used as a standard. The optical band gap, which was estimated from the absorption edge, is 2.1 eV. Thermogravimetric analysis (TGA) was carried out using a TA-TGA Q50 instrument. Measurements (see supporting information) carried out under a flowing nitro­gen atmosphere indicate that (C9H7N2)3Bi2I9 is stable up to 300°C.

[Figure 4]
Figure 4
UV–vis diffuse reflectance for the title compound.

6. Synthesis and crystallization

A mixture of BiI3 (1.1790 g, 2 mmol), KI (0.4490 g, 3 mmol), DBU (0.150 mL, 1 mmol) and ethanol (10 mL) was placed inside the Teflon liner of a 23 mL Parr autoclave. The autoclave was heated in an oven at 443 K for 6 days, using a heating and cooling rate of 0.1 K min−1. Following filtration, the collected solid product consisted of a mixture of red powder and crystals of the title compound. The powder X-ray diffraction pattern of the product (see supporting information), collected using a Bruker D8 Advance powder diffractometer (Cu Kα1, λ = 1.5406 Å), was in excellent agreement with the simulated diffraction pattern, based on the single-crystal structure determination. Elemental analysis: Calculated values (%) for C27H51N6Bi2I9: C, 16.06; H, 2.55; N, 4.16. Found: C, 16.07; H, 2.42; N, 4.09. IR (νmax) cm−1: 2920, 2850 (C—H); 1640 (C=N).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms were positioned geometrically, with C—H = 0.99 Å (for methyl­ene H atoms) and with N—H = 0.88 Å, and were refined with Uiso(H) = 1.2Ueq(C or N). The disordered DBUH+ cation has been refined using geometry (SAME) and Uij restraints (SIMU and RIGU) implemented in SHELXL. The ratio between the site occupancies of the two positions was refined to 57.1 (13):42.9 (13)%. The maximum/minimum of the difference electron density is located 1.10 and 1.13 Å from Bi3 and Bi1, respectively. The electron density maxima and minima (2.22 and −2.57 e Å−3) close to the heavy bis­muth atoms can be ascribed to Fourier truncation ripples and/or non-ideal absorption correction.

Table 2
Experimental details

Crystal data
Chemical formula (C9H17N2)3[Bi2I9]
Mr 2019.79
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 19.2590 (9), 12.5734 (3), 21.6767 (9)
β (°) 115.861 (5)
V3) 4723.4 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 13.35
Crystal size (mm) 0.31 × 0.23 × 0.07
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.23, 1.00
No. of measured, independent and observed [I > 2σ(I)] reflections 38319, 13780, 11096
Rint 0.034
(sin θ/λ)max−1) 0.714
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.086, 1.08
No. of reflections 13780
No. of parameters 497
No. of restraints 543
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 2.22, −2.57
Computer programs: CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ATOMS (Dowty, 2020[Dowty, E. (2020). ATOMS. Shape Software, Kingsport, Tennessee, USA.]) and ORIGIN (Edwards, 2002[Edwards, P. M. (2002). J. Chem. Inf. Comput. Sci. 42, 1270-1271.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2019); cell refinement: CrysAlis PRO (Rigaku OD, 2019); data reduction: CrysAlis PRO (Rigaku OD, 2019); program(s) used to solve structure: Superflip (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: ATOMS (Dowty, 2020) and ORIGIN (Edwards, 2002).

Tris(2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepin-1-ium) tri-µ2-iodido-bis[triiodidobismuth(III)] top
Crystal data top
(C9H17N2)3[Bi2I9]F(000) = 3592
Mr = 2019.79Dx = 2.840 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 19.2590 (9) ÅCell parameters from 25746 reflections
b = 12.5734 (3) Åθ = 2–33°
c = 21.6767 (9) ŵ = 13.35 mm1
β = 115.861 (5)°T = 100 K
V = 4723.4 (4) Å3Plate, red
Z = 40.31 × 0.23 × 0.07 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
11096 reflections with I > 2σ(I)
ω scansRint = 0.034
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2019)
θmax = 30.5°, θmin = 2.4°
Tmin = 0.23, Tmax = 1.00h = 2727
38319 measured reflectionsk = 1317
13780 independent reflectionsl = 3029
Refinement top
Refinement on F2543 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0423P)2 + 1.9329P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
13780 reflectionsΔρmax = 2.22 e Å3
497 parametersΔρmin = 2.57 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Bi10.18727 (2)0.75290 (2)0.16730 (2)0.01478 (5)
Bi30.31503 (2)0.48511 (2)0.25029 (2)0.01518 (5)
I20.18622 (2)0.60345 (3)0.28735 (2)0.01778 (8)
I40.19072 (2)0.52615 (3)0.09942 (2)0.01934 (8)
I50.37010 (2)0.72314 (3)0.24092 (2)0.02467 (9)
I60.24567 (3)0.27208 (3)0.24502 (2)0.02245 (9)
I70.42044 (3)0.48954 (3)0.40035 (2)0.02341 (9)
I80.42451 (3)0.39855 (3)0.20120 (2)0.02961 (10)
I90.01394 (2)0.74983 (3)0.10767 (2)0.01875 (8)
I100.17891 (3)0.84909 (3)0.03995 (2)0.02861 (10)
I110.21740 (3)0.95712 (3)0.24184 (2)0.02482 (9)
N120.0295 (3)0.7605 (4)0.3236 (2)0.0195 (10)
N190.0307 (4)0.7271 (4)0.4272 (3)0.0258 (12)
H190.0271610.7528920.4662310.031*
N230.4254 (4)0.8196 (5)0.5457 (3)0.0360 (15)
N300.3585 (4)0.8010 (5)0.4269 (3)0.0396 (15)
H300.3599820.7934720.3871800.048*
C130.0306 (4)0.8352 (5)0.2708 (3)0.0229 (13)
H13A0.0669900.8937570.2659990.028*
H13B0.0497220.7976790.2263080.028*
C140.0479 (4)0.8816 (5)0.2876 (3)0.0270 (15)
H14A0.0485090.9079610.2447770.032*
H14B0.0871030.8246500.3061480.032*
C150.0701 (5)0.9724 (5)0.3392 (3)0.0278 (15)
H15A0.0331951.0315940.3190000.033*
H15B0.1219440.9986400.3474720.033*
C160.0714 (4)0.9420 (5)0.4083 (3)0.0221 (13)
H16A0.1087210.8833160.4287030.027*
H16B0.0899431.0037380.4396040.027*
C170.0061 (4)0.9077 (5)0.4035 (3)0.0238 (13)
H17A0.0066100.9189160.4485220.029*
H17B0.0469090.9529110.3694870.029*
C180.0238 (4)0.7931 (5)0.3832 (3)0.0183 (11)
C200.0438 (5)0.6139 (5)0.4146 (3)0.0389 (19)
H20A0.0998680.5989770.3920500.047*
H20B0.0207710.5745050.4585480.047*
C210.0072 (5)0.5788 (5)0.3692 (4)0.0374 (18)
H21A0.0495810.5841820.3946070.045*
H21B0.0205490.5034660.3559540.045*
C220.0347 (5)0.6463 (5)0.3062 (3)0.0283 (15)
H22A0.0030830.6314520.2813970.034*
H22B0.0889500.6279700.2754210.034*
C240.4962 (5)0.8075 (6)0.6123 (3)0.0354 (18)
H24A0.5187500.7361980.6138210.043*
H24B0.4811880.8116790.6505080.043*
C250.5580 (5)0.8926 (6)0.6230 (4)0.0354 (17)
H25A0.5323200.9626020.6088530.043*
H25B0.5935030.8967730.6724360.043*
C260.6046 (5)0.8709 (6)0.5832 (4)0.0383 (18)
H26A0.6334640.8036650.6002670.046*
H26B0.6430410.9285660.5931450.046*
C270.5574 (5)0.8623 (5)0.5048 (4)0.0324 (16)
H27A0.5298910.9302700.4873960.039*
H27B0.5935150.8521860.4838760.039*
C280.4989 (5)0.7723 (5)0.4815 (4)0.0325 (17)
H28A0.4863000.7544390.4333340.039*
H28B0.5224000.7085990.5098030.039*
C290.4259 (4)0.7989 (5)0.4868 (3)0.0244 (14)
C310.2843 (5)0.8157 (7)0.4294 (4)0.0391 (18)
H31A0.2656020.7467100.4383990.047*
H31B0.2455330.8431920.3848770.047*
C320.2947 (5)0.8938 (6)0.4860 (4)0.0427 (19)
H32A0.3065270.9652470.4738520.051*
H32B0.2463590.8987440.4914470.051*
C330.3583 (5)0.8581 (6)0.5509 (4)0.0339 (16)
H33A0.3737680.9182580.5836280.041*
H33B0.3386280.8009060.5704540.041*
N340.7076 (14)0.569 (2)0.4694 (6)0.018 (2)0.571 (13)
C350.7601 (11)0.5636 (16)0.5432 (7)0.018 (3)0.571 (13)
H35A0.8139090.5589060.5490920.022*0.571 (13)
H35B0.7489480.4982400.5627690.022*0.571 (13)
C360.7528 (11)0.6591 (18)0.5828 (10)0.025 (3)0.571 (13)
H36A0.7749720.6399470.6319530.030*0.571 (13)
H36B0.6972090.6737160.5676340.030*0.571 (13)
C370.7915 (15)0.7619 (14)0.5756 (10)0.024 (3)0.571 (13)
H37A0.7778570.8194810.5994940.029*0.571 (13)
H37B0.8480900.7519280.5997310.029*0.571 (13)
C380.7712 (11)0.7984 (14)0.5031 (10)0.027 (3)0.571 (13)
H38A0.8021080.8624520.5054420.032*0.571 (13)
H38B0.7161410.8195770.4812520.032*0.571 (13)
C390.7844 (9)0.7154 (13)0.4570 (8)0.024 (3)0.571 (13)
H39A0.7889290.7520810.4184530.028*0.571 (13)
H39B0.8334940.6773300.4837890.028*0.571 (13)
C400.7199 (12)0.6369 (17)0.4291 (7)0.024 (4)0.571 (13)
N410.6722 (8)0.6439 (10)0.3640 (6)0.031 (3)0.571 (13)
H410.6825730.6905160.3389390.037*0.571 (13)
C420.6022 (8)0.5786 (10)0.3302 (6)0.031 (3)0.571 (13)
H42A0.5909820.5667120.2816680.037*0.571 (13)
H42B0.5575240.6158250.3315930.037*0.571 (13)
C430.6149 (8)0.4726 (8)0.3674 (5)0.027 (2)0.571 (13)
H43A0.5658600.4322900.3497710.033*0.571 (13)
H43B0.6530900.4299530.3588910.033*0.571 (13)
C440.6436 (8)0.4913 (12)0.4427 (6)0.020 (3)0.571 (13)
H44A0.6005880.5178380.4518580.024*0.571 (13)
H44B0.6613100.4229340.4673390.024*0.571 (13)
N34A0.7037 (19)0.565 (3)0.4637 (9)0.020 (3)0.429 (13)
C35A0.7431 (15)0.557 (2)0.5392 (9)0.018 (4)0.429 (13)
H35C0.7983680.5412700.5538190.021*0.429 (13)
H35D0.7204850.4982550.5544870.021*0.429 (13)
C36A0.7363 (15)0.660 (2)0.5737 (12)0.020 (3)0.429 (13)
H36C0.7415450.6435070.6201540.024*0.429 (13)
H36D0.6844520.6911500.5469850.024*0.429 (13)
C37A0.7984 (19)0.7428 (19)0.5793 (12)0.022 (4)0.429 (13)
H37C0.7953580.8042980.6065100.026*0.429 (13)
H37D0.8501440.7103860.6039880.026*0.429 (13)
C38A0.7887 (14)0.7819 (16)0.5091 (12)0.022 (4)0.429 (13)
H38C0.8265610.8392710.5159490.026*0.429 (13)
H38D0.7364260.8126660.4841670.026*0.429 (13)
C39A0.7998 (11)0.6933 (16)0.4645 (11)0.019 (3)0.429 (13)
H39C0.8133840.7263480.4297560.022*0.429 (13)
H39D0.8433180.6471430.4939430.022*0.429 (13)
C40A0.7293 (14)0.626 (2)0.4290 (8)0.017 (3)0.429 (13)
N41A0.6957 (8)0.6272 (12)0.3614 (8)0.018 (3)0.429 (13)
H41A0.7171280.6648940.3401340.022*0.429 (13)
C42A0.6248 (11)0.5690 (16)0.3198 (8)0.029 (3)0.429 (13)
H42C0.6376730.4988140.3067580.035*0.429 (13)
H42D0.5938660.6091990.2773020.035*0.429 (13)
C43A0.5791 (9)0.5543 (12)0.3608 (7)0.027 (3)0.429 (13)
H43C0.5587830.6237660.3668520.032*0.429 (13)
H43D0.5348280.5064630.3357440.032*0.429 (13)
C44A0.6295 (13)0.5075 (19)0.4294 (8)0.026 (4)0.429 (13)
H44C0.6021120.5104480.4588190.031*0.429 (13)
H44D0.6396820.4319020.4236180.031*0.429 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Bi10.01519 (11)0.01399 (10)0.01444 (10)0.00064 (8)0.00580 (9)0.00318 (7)
Bi30.01585 (11)0.01421 (10)0.01379 (10)0.00126 (8)0.00490 (9)0.00033 (7)
I20.0225 (2)0.01701 (17)0.01585 (16)0.00304 (14)0.01026 (16)0.00337 (12)
I40.0213 (2)0.02260 (18)0.01239 (16)0.00069 (15)0.00570 (16)0.00100 (13)
I50.0158 (2)0.02024 (18)0.0350 (2)0.00150 (15)0.00837 (18)0.00284 (15)
I60.0314 (2)0.01434 (17)0.01965 (18)0.00229 (15)0.00928 (18)0.00232 (13)
I70.0242 (2)0.02374 (19)0.01498 (17)0.00049 (16)0.00181 (17)0.00064 (14)
I80.0222 (2)0.0374 (2)0.0300 (2)0.00495 (18)0.01215 (19)0.00864 (17)
I90.01549 (19)0.02433 (18)0.01576 (17)0.00086 (15)0.00617 (16)0.00014 (13)
I100.0275 (2)0.0353 (2)0.0234 (2)0.00061 (18)0.01148 (19)0.01407 (16)
I110.0246 (2)0.01504 (17)0.0310 (2)0.00004 (16)0.00855 (19)0.00205 (14)
N120.021 (3)0.022 (2)0.015 (2)0.003 (2)0.008 (2)0.0051 (18)
N190.033 (3)0.026 (3)0.015 (2)0.010 (2)0.007 (2)0.0008 (19)
N230.047 (4)0.038 (3)0.028 (3)0.002 (3)0.020 (3)0.001 (2)
N300.041 (4)0.054 (4)0.023 (3)0.005 (3)0.014 (3)0.008 (3)
C130.029 (4)0.025 (3)0.014 (3)0.004 (3)0.010 (3)0.002 (2)
C140.037 (4)0.027 (3)0.021 (3)0.012 (3)0.016 (3)0.008 (2)
C150.037 (4)0.022 (3)0.024 (3)0.006 (3)0.013 (3)0.001 (2)
C160.029 (4)0.019 (3)0.010 (3)0.001 (3)0.001 (3)0.003 (2)
C170.031 (4)0.026 (3)0.019 (3)0.003 (3)0.016 (3)0.004 (2)
C180.012 (3)0.024 (3)0.014 (3)0.001 (2)0.001 (2)0.001 (2)
C200.055 (6)0.032 (4)0.019 (3)0.019 (4)0.006 (4)0.000 (3)
C210.049 (5)0.016 (3)0.034 (4)0.002 (3)0.005 (4)0.003 (3)
C220.039 (4)0.021 (3)0.022 (3)0.004 (3)0.011 (3)0.007 (2)
C240.047 (5)0.038 (4)0.022 (3)0.017 (3)0.016 (4)0.011 (3)
C250.036 (5)0.044 (4)0.026 (3)0.008 (3)0.013 (3)0.002 (3)
C260.039 (5)0.041 (4)0.038 (4)0.017 (4)0.019 (4)0.006 (3)
C270.037 (5)0.031 (3)0.038 (4)0.014 (3)0.025 (4)0.008 (3)
C280.048 (5)0.028 (3)0.026 (3)0.017 (3)0.019 (4)0.007 (3)
C290.034 (4)0.019 (3)0.020 (3)0.009 (3)0.011 (3)0.003 (2)
C310.031 (4)0.059 (5)0.027 (4)0.010 (4)0.012 (3)0.010 (3)
C320.035 (5)0.057 (5)0.041 (4)0.000 (4)0.021 (4)0.013 (4)
C330.040 (5)0.038 (4)0.028 (4)0.003 (3)0.019 (4)0.003 (3)
N340.024 (5)0.019 (4)0.014 (4)0.002 (4)0.011 (4)0.002 (3)
C350.021 (7)0.017 (5)0.018 (4)0.001 (5)0.010 (4)0.005 (4)
C360.028 (7)0.025 (5)0.021 (5)0.001 (5)0.010 (5)0.004 (4)
C370.024 (6)0.022 (6)0.027 (5)0.002 (5)0.011 (5)0.004 (5)
C380.025 (7)0.022 (6)0.030 (5)0.001 (5)0.010 (5)0.003 (4)
C390.026 (6)0.028 (6)0.016 (5)0.002 (5)0.008 (5)0.009 (4)
C400.026 (6)0.027 (6)0.017 (4)0.001 (5)0.009 (4)0.007 (4)
N410.028 (6)0.038 (6)0.020 (4)0.010 (5)0.004 (4)0.010 (4)
C420.028 (6)0.034 (5)0.015 (5)0.002 (5)0.004 (4)0.007 (4)
C430.028 (5)0.029 (5)0.019 (4)0.002 (4)0.004 (4)0.004 (3)
C440.018 (5)0.022 (5)0.017 (4)0.004 (4)0.005 (4)0.003 (4)
N34A0.025 (5)0.018 (6)0.014 (4)0.001 (5)0.007 (4)0.003 (4)
C35A0.020 (8)0.018 (6)0.015 (4)0.004 (6)0.007 (5)0.003 (4)
C36A0.023 (7)0.024 (5)0.016 (6)0.005 (6)0.012 (6)0.003 (5)
C37A0.027 (7)0.017 (7)0.024 (5)0.005 (6)0.013 (5)0.007 (5)
C38A0.022 (8)0.013 (6)0.028 (6)0.004 (6)0.009 (6)0.005 (5)
C39A0.020 (7)0.017 (7)0.020 (6)0.001 (5)0.009 (5)0.005 (5)
C40A0.018 (6)0.018 (6)0.017 (4)0.006 (5)0.009 (4)0.002 (4)
N41A0.018 (6)0.022 (5)0.015 (4)0.003 (5)0.007 (4)0.000 (4)
C42A0.028 (7)0.043 (7)0.014 (5)0.006 (5)0.007 (4)0.004 (5)
C43A0.023 (6)0.036 (6)0.019 (5)0.005 (5)0.007 (4)0.003 (5)
C44A0.030 (7)0.022 (7)0.020 (5)0.007 (6)0.005 (5)0.002 (5)
Geometric parameters (Å, º) top
Bi1—I102.9532 (4)C31—H31B0.9900
Bi1—I112.9534 (4)C32—C331.476 (11)
Bi1—I93.0085 (5)C32—H32A0.9900
Bi1—I53.1911 (5)C32—H32B0.9900
Bi1—I23.2169 (4)C33—H33A0.9900
Bi1—I43.2224 (4)C33—H33B0.9900
Bi3—I82.9530 (5)N34—C401.318 (11)
Bi3—I62.9730 (4)N34—C351.475 (12)
Bi3—I72.9908 (5)N34—C441.475 (13)
Bi3—I43.1405 (5)C35—C361.516 (12)
Bi3—I53.2111 (4)C35—H35A0.9900
Bi3—I23.2788 (4)C35—H35B0.9900
N12—C181.313 (7)C36—C371.533 (13)
N12—C131.473 (7)C36—H36A0.9900
N12—C221.477 (7)C36—H36B0.9900
N19—C181.314 (7)C37—C381.516 (13)
N19—C201.451 (8)C37—H37A0.9900
N19—H190.8800C37—H37B0.9900
N23—C291.308 (7)C38—C391.543 (13)
N23—C331.430 (10)C38—H38A0.9900
N23—C241.500 (10)C38—H38B0.9900
N30—C291.379 (9)C39—C401.493 (13)
N30—C311.465 (10)C39—H39A0.9900
N30—H300.8800C39—H39B0.9900
C13—C141.510 (9)C40—N411.308 (12)
C13—H13A0.9900N41—C421.472 (14)
C13—H13B0.9900N41—H410.8800
C14—C151.523 (8)C42—C431.521 (14)
C14—H14A0.9900C42—H42A0.9900
C14—H14B0.9900C42—H42B0.9900
C15—C161.536 (8)C43—C441.497 (16)
C15—H15A0.9900C43—H43A0.9900
C15—H15B0.9900C43—H43B0.9900
C16—C171.512 (9)C44—H44A0.9900
C16—H16A0.9900C44—H44B0.9900
C16—H16B0.9900N34A—C40A1.319 (13)
C17—C181.502 (8)N34A—C35A1.476 (13)
C17—H17A0.9900N34A—C44A1.477 (15)
C17—H17B0.9900C35A—C36A1.525 (14)
C20—C211.505 (11)C35A—H35C0.9900
C20—H20A0.9900C35A—H35D0.9900
C20—H20B0.9900C36A—C37A1.549 (16)
C21—C221.495 (9)C36A—H36C0.9900
C21—H21A0.9900C36A—H36D0.9900
C21—H21B0.9900C37A—C38A1.530 (14)
C22—H22A0.9900C37A—H37C0.9900
C22—H22B0.9900C37A—H37D0.9900
C24—C251.541 (11)C38A—C39A1.551 (15)
C24—H24A0.9900C38A—H38C0.9900
C24—H24B0.9900C38A—H38D0.9900
C25—C261.517 (10)C39A—C40A1.492 (14)
C25—H25A0.9900C39A—H39C0.9900
C25—H25B0.9900C39A—H39D0.9900
C26—C271.542 (11)C40A—N41A1.317 (13)
C26—H26A0.9900N41A—C42A1.462 (15)
C26—H26B0.9900N41A—H41A0.8800
C27—C281.519 (11)C42A—C43A1.510 (16)
C27—H27A0.9900C42A—H42C0.9900
C27—H27B0.9900C42A—H42D0.9900
C28—C291.497 (10)C43A—C44A1.497 (18)
C28—H28A0.9900C43A—H43C0.9900
C28—H28B0.9900C43A—H43D0.9900
C31—C321.515 (10)C44A—H44C0.9900
C31—H31A0.9900C44A—H44D0.9900
I10—Bi1—I1194.180 (13)C32—C31—H31A109.9
I10—Bi1—I990.328 (14)N30—C31—H31B109.9
I11—Bi1—I999.358 (13)C32—C31—H31B109.9
I10—Bi1—I596.536 (14)H31A—C31—H31B108.3
I11—Bi1—I585.283 (13)C33—C32—C31109.6 (7)
I9—Bi1—I5171.439 (12)C33—C32—H32A109.7
I10—Bi1—I2168.049 (13)C31—C32—H32A109.7
I11—Bi1—I297.725 (12)C33—C32—H32B109.7
I9—Bi1—I286.722 (12)C31—C32—H32B109.7
I5—Bi1—I285.519 (12)H32A—C32—H32B108.2
I10—Bi1—I486.507 (12)N23—C33—C32115.5 (6)
I11—Bi1—I4168.754 (14)N23—C33—H33A108.4
I9—Bi1—I491.859 (12)C32—C33—H33A108.4
I5—Bi1—I483.488 (12)N23—C33—H33B108.4
I2—Bi1—I482.022 (10)C32—C33—H33B108.4
I8—Bi3—I691.922 (13)H33A—C33—H33B107.5
I8—Bi3—I798.404 (15)C40—N34—C35120.7 (11)
I6—Bi3—I797.988 (12)C40—N34—C44122.0 (10)
I8—Bi3—I491.439 (13)C35—N34—C44117.2 (10)
I6—Bi3—I488.991 (12)N34—C35—C36113.0 (13)
I7—Bi3—I4167.695 (12)N34—C35—H35A109.0
I8—Bi3—I590.760 (13)C36—C35—H35A109.0
I6—Bi3—I5173.004 (14)N34—C35—H35B109.0
I7—Bi3—I588.005 (12)C36—C35—H35B109.0
I4—Bi3—I584.482 (12)H35A—C35—H35B107.8
I8—Bi3—I2172.288 (13)C35—C36—C37116.2 (12)
I6—Bi3—I292.465 (12)C35—C36—H36A108.2
I7—Bi3—I287.263 (12)C37—C36—H36A108.2
I4—Bi3—I282.301 (11)C35—C36—H36B108.2
I5—Bi3—I284.183 (11)C37—C36—H36B108.2
Bi1—I2—Bi378.144 (9)H36A—C36—H36B107.4
Bi3—I4—Bi180.095 (10)C38—C37—C36116.3 (13)
Bi1—I5—Bi379.516 (11)C38—C37—H37A108.2
C18—N12—C13122.1 (5)C36—C37—H37A108.2
C18—N12—C22121.5 (5)C38—C37—H37B108.2
C13—N12—C22116.4 (4)C36—C37—H37B108.2
C18—N19—C20123.2 (5)H37A—C37—H37B107.4
C18—N19—H19118.4C37—C38—C39115.2 (12)
C20—N19—H19118.4C37—C38—H38A108.5
C29—N23—C33122.4 (7)C39—C38—H38A108.5
C29—N23—C24121.9 (6)C37—C38—H38B108.5
C33—N23—C24115.6 (5)C39—C38—H38B108.5
C29—N30—C31120.1 (6)H38A—C38—H38B107.5
C29—N30—H30119.9C40—C39—C38111.4 (12)
C31—N30—H30119.9C40—C39—H39A109.3
N12—C13—C14112.7 (5)C38—C39—H39A109.3
N12—C13—H13A109.0C40—C39—H39B109.3
C14—C13—H13A109.0C38—C39—H39B109.3
N12—C13—H13B109.0H39A—C39—H39B108.0
C14—C13—H13B109.0N41—C40—N34120.9 (11)
H13A—C13—H13B107.8N41—C40—C39117.4 (11)
C13—C14—C15113.4 (5)N34—C40—C39121.4 (11)
C13—C14—H14A108.9C40—N41—C42124.0 (11)
C15—C14—H14A108.9C40—N41—H41118.0
C13—C14—H14B108.9C42—N41—H41118.0
C15—C14—H14B108.9N41—C42—C43108.9 (10)
H14A—C14—H14B107.7N41—C42—H42A109.9
C14—C15—C16114.2 (5)C43—C42—H42A109.9
C14—C15—H15A108.7N41—C42—H42B109.9
C16—C15—H15A108.7C43—C42—H42B109.9
C14—C15—H15B108.7H42A—C42—H42B108.3
C16—C15—H15B108.7C44—C43—C42109.7 (10)
H15A—C15—H15B107.6C44—C43—H43A109.7
C17—C16—C15114.2 (5)C42—C43—H43A109.7
C17—C16—H16A108.7C44—C43—H43B109.7
C15—C16—H16A108.7C42—C43—H43B109.7
C17—C16—H16B108.7H43A—C43—H43B108.2
C15—C16—H16B108.7N34—C44—C43112.3 (10)
H16A—C16—H16B107.6N34—C44—H44A109.2
C18—C17—C16112.6 (5)C43—C44—H44A109.2
C18—C17—H17A109.1N34—C44—H44B109.2
C16—C17—H17A109.1C43—C44—H44B109.2
C18—C17—H17B109.1H44A—C44—H44B107.9
C16—C17—H17B109.1C40A—N34A—C35A121.9 (14)
H17A—C17—H17B107.8C40A—N34A—C44A121.3 (13)
N12—C18—N19121.7 (5)C35A—N34A—C44A116.4 (14)
N12—C18—C17120.0 (5)N34A—C35A—C36A112.3 (17)
N19—C18—C17118.3 (5)N34A—C35A—H35C109.1
N19—C20—C21108.6 (6)C36A—C35A—H35C109.1
N19—C20—H20A110.0N34A—C35A—H35D109.1
C21—C20—H20A110.0C36A—C35A—H35D109.1
N19—C20—H20B110.0H35C—C35A—H35D107.9
C21—C20—H20B110.0C35A—C36A—C37A112.2 (16)
H20A—C20—H20B108.4C35A—C36A—H36C109.2
C22—C21—C20110.6 (6)C37A—C36A—H36C109.2
C22—C21—H21A109.5C35A—C36A—H36D109.2
C20—C21—H21A109.5C37A—C36A—H36D109.2
C22—C21—H21B109.5H36C—C36A—H36D107.9
C20—C21—H21B109.5C38A—C37A—C36A112.5 (17)
H21A—C21—H21B108.1C38A—C37A—H37C109.1
N12—C22—C21111.1 (5)C36A—C37A—H37C109.1
N12—C22—H22A109.4C38A—C37A—H37D109.1
C21—C22—H22A109.4C36A—C37A—H37D109.1
N12—C22—H22B109.4H37C—C37A—H37D107.8
C21—C22—H22B109.4C37A—C38A—C39A113.5 (14)
H22A—C22—H22B108.0C37A—C38A—H38C108.9
N23—C24—C25113.1 (5)C39A—C38A—H38C108.9
N23—C24—H24A109.0C37A—C38A—H38D108.9
C25—C24—H24A109.0C39A—C38A—H38D108.9
N23—C24—H24B109.0H38C—C38A—H38D107.7
C25—C24—H24B109.0C40A—C39A—C38A112.6 (15)
H24A—C24—H24B107.8C40A—C39A—H39C109.1
C26—C25—C24113.6 (6)C38A—C39A—H39C109.1
C26—C25—H25A108.9C40A—C39A—H39D109.1
C24—C25—H25A108.9C38A—C39A—H39D109.1
C26—C25—H25B108.9H39C—C39A—H39D107.8
C24—C25—H25B108.9N41A—C40A—N34A120.9 (13)
H25A—C25—H25B107.7N41A—C40A—C39A117.7 (14)
C25—C26—C27115.3 (7)N34A—C40A—C39A121.3 (13)
C25—C26—H26A108.4C40A—N41A—C42A123.8 (13)
C27—C26—H26A108.4C40A—N41A—H41A118.1
C25—C26—H26B108.4C42A—N41A—H41A118.1
C27—C26—H26B108.4N41A—C42A—C43A108.9 (12)
H26A—C26—H26B107.5N41A—C42A—H42C109.9
C28—C27—C26114.4 (6)C43A—C42A—H42C109.9
C28—C27—H27A108.7N41A—C42A—H42D109.9
C26—C27—H27A108.7C43A—C42A—H42D109.9
C28—C27—H27B108.7H42C—C42A—H42D108.3
C26—C27—H27B108.7C44A—C43A—C42A110.0 (15)
H27A—C27—H27B107.6C44A—C43A—H43C109.7
C29—C28—C27113.2 (5)C42A—C43A—H43C109.7
C29—C28—H28A108.9C44A—C43A—H43D109.7
C27—C28—H28A108.9C42A—C43A—H43D109.7
C29—C28—H28B108.9H43C—C43A—H43D108.2
C27—C28—H28B108.9N34A—C44A—C43A112.0 (14)
H28A—C28—H28B107.7N34A—C44A—H44C109.2
N23—C29—N30120.6 (6)C43A—C44A—H44C109.2
N23—C29—C28121.7 (6)N34A—C44A—H44D109.2
N30—C29—C28117.6 (5)C43A—C44A—H44D109.2
N30—C31—C32108.9 (6)H44C—C44A—H44D107.9
N30—C31—H31A109.9
C18—N12—C13—C1474.6 (7)C40—N34—C35—C3671 (3)
C22—N12—C13—C14105.1 (6)C44—N34—C35—C36111 (2)
N12—C13—C14—C1579.8 (7)N34—C35—C36—C3777.1 (19)
C13—C14—C15—C1658.5 (8)C35—C36—C37—C3852 (2)
C14—C15—C16—C1762.5 (8)C36—C37—C38—C3955 (2)
C15—C16—C17—C1882.5 (6)C37—C38—C39—C4080.1 (16)
C13—N12—C18—N19173.0 (6)C35—N34—C40—N41178 (2)
C22—N12—C18—N197.4 (10)C44—N34—C40—N415 (5)
C13—N12—C18—C179.3 (9)C35—N34—C40—C393 (4)
C22—N12—C18—C17170.3 (6)C44—N34—C40—C39179 (2)
C20—N19—C18—N121.0 (11)C38—C39—C40—N41108 (2)
C20—N19—C18—C17176.7 (7)C38—C39—C40—N3467 (3)
C16—C17—C18—N1261.7 (8)N34—C40—N41—C420 (4)
C16—C17—C18—N19116.1 (6)C39—C40—N41—C42174.6 (15)
C18—N19—C20—C2129.8 (10)C40—N41—C42—C4329 (2)
N19—C20—C21—C2253.0 (8)N41—C42—C43—C4450.9 (15)
C18—N12—C22—C2118.5 (9)C40—N34—C44—C4321 (4)
C13—N12—C22—C21161.1 (6)C35—N34—C44—C43156.7 (18)
C20—C21—C22—N1248.4 (9)C42—C43—C44—N3448 (2)
C29—N23—C24—C2570.8 (8)C40A—N34A—C35A—C36A69 (4)
C33—N23—C24—C25107.4 (7)C44A—N34A—C35A—C36A105 (3)
N23—C24—C25—C2678.4 (8)N34A—C35A—C36A—C37A84 (2)
C24—C25—C26—C2758.7 (8)C35A—C36A—C37A—C38A65 (3)
C25—C26—C27—C2861.5 (8)C36A—C37A—C38A—C39A64 (3)
C26—C27—C28—C2980.3 (7)C37A—C38A—C39A—C40A81 (2)
C33—N23—C29—N308.1 (10)C35A—N34A—C40A—N41A176 (3)
C24—N23—C29—N30173.8 (6)C44A—N34A—C40A—N41A10 (6)
C33—N23—C29—C28171.9 (6)C35A—N34A—C40A—C39A0 (6)
C24—N23—C29—C286.2 (10)C44A—N34A—C40A—C39A173 (3)
C31—N30—C29—N236.3 (10)C38A—C39A—C40A—N41A117 (2)
C31—N30—C29—C28173.7 (6)C38A—C39A—C40A—N34A66 (4)
C27—C28—C29—N2362.7 (8)N34A—C40A—N41A—C42A6 (5)
C27—C28—C29—N30117.3 (7)C39A—C40A—N41A—C42A177.6 (18)
C29—N30—C31—C3237.4 (9)C40A—N41A—C42A—C43A26 (3)
N30—C31—C32—C3353.5 (9)N41A—C42A—C43A—C44A51 (2)
C29—N23—C33—C3212.0 (10)C40A—N34A—C44A—C43A18 (5)
C24—N23—C33—C32166.2 (6)C35A—N34A—C44A—C43A156 (3)
C31—C32—C33—N2342.8 (9)C42A—C43A—C44A—N34A49 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N19—H19···I9i0.882.813.632 (5)156
N41—H41···I6ii0.882.913.735 (13)157
N41—H41···I8ii0.883.213.663 (14)115
N41A—H41A···I6ii0.882.623.492 (15)169
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

The University of Reading is acknowledged for access to the Chemical Analysis Facility (CAF). Mr Nick Spencer is thanked for his assistance with the collection of the X-ray diffraction data and Dr Pedro Rivas Ruiz for help with FT–IR and Thermogravimetric analysis.

References

First citationAdonin, S. A., Sokolov, M. N. & Fedin, V. P. (2016). Coord. Chem. Rev. 312, 1–21.  Web of Science CrossRef CAS Google Scholar
First citationAdonin, S. A., Sokolov, M. N., Rakhmanova, M. E., Smolentsev, A. I., Korolkov, I. V., Kozlova, S. G. & Fedin, V. P. (2015). Inorg. Chem. Commun. 54, 89–91.  Web of Science CSD CrossRef CAS Google Scholar
First citationArakcheeva, A. V., Chapuis, G. & Meyer, M. (2001). Z. Kristallogr. 216, 199–205.  Web of Science CrossRef ICSD CAS Google Scholar
First citationBi, W., Louvain, N., Mercier, N., Luc, J., Rau, I., Kajzar, F. & Sahraoui, B. (2008). Adv. Mater. 20, 1013–1017.  Web of Science CSD CrossRef CAS Google Scholar
First citationDowty, E. (2020). ATOMS. Shape Software, Kingsport, Tennessee, USA.  Google Scholar
First citationEckhardt, K., Bon, V., Getzschmann, J., Grothe, J., Wisser, F. M. & Kaskel, S. (2016). Chem. Commun. 52, 3058–3060.  Web of Science CSD CrossRef CAS Google Scholar
First citationEdwards, P. M. (2002). J. Chem. Inf. Comput. Sci. 42, 1270–1271.  Web of Science CrossRef CAS Google Scholar
First citationGarcía-Fernández, A., Marcos-Cives, I., Platas-Iglesias, C., Castro-García, S., Vázquez-García, D., Fernández, A. & Sánchez-Andújar, M. (2018). Inorg. Chem. 57, 7655–7664.  Web of Science PubMed Google Scholar
First citationGoforth, A. M., Hipp, R. E., Smith, M. D., Peterson, L. & zur Loye, H.-C. (2005). Acta Cryst. E61, m1531–m1533.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLi, M.-Q., Hu, Y.-Q., Bi, L.-Y., Zhang, H.-L., Wang, Y. & Zheng, Y.-Z. (2017). Chem. Mater. 29, 5463–5467.  Web of Science CSD CrossRef CAS Google Scholar
First citationMishra, S., Jeanneau, E., Iasco, O., Ledoux, G., Luneau, D. & Daniele, S. (2012). Eur. J. Inorg. Chem. pp. 2749–2758.  Web of Science CSD CrossRef Google Scholar
First citationMitzi, D. B. (2000). Inorg. Chem. 39, 6107–6113.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17.5. University of Western Australia.  Google Scholar
First citationWang, Y., Wen, R., Liu, Y., Bi, L.-Y., Yang, M., Sun, H., Zheng, Y.-Z., Zhang, G. & Gao, Z. (2020). ChemSusChem, 13, 2753–2760.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWęcławik, M., Gągor, A., Jakubas, R., Piecha-Bisiorek, A., Medycki, W., Baran, J., Zieliński, P. & Gałązka, M. (2016). Inorg. Chem. Front. 3, 1306–1316.  Google Scholar
First citationWu, C., Zhang, Q., Liu, G., Zhang, Z., Wang, D., Qu, B., Chen, Z. & Xiao, L. (2020). Adv. Energy Mater. 10, 1902496.  Web of Science CrossRef Google Scholar
First citationWu, L.-M., Wu, X.-T. & Chen, L. (2009). Coord. Chem. Rev. 253, 2787–2804.  Web of Science CrossRef CAS Google Scholar
First citationZhang, Z.-P., Feng, Q.-Y., Wang, Q.-L., Huang, X.-Y., Chen, D. & Zhou, J. (2018). J. Clust Sci. 29, 367–374.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds