research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of three N-(pyridine-2-carbon­yl)pyridine-2-carboxamides as potential ligands for supra­molecular chemistry

crossmark logo

aSupramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000 Ghent, Belgium, and bXStruct, Department of Chemistry, Ghent University, Krijgslaan 281-S3, B-9000 Ghent, Belgium
*Correspondence e-mail: Kristof.VanHecke@UGent.be

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 27 July 2021; accepted 17 August 2021; online 24 August 2021)

The synthesis and single-crystal X-ray structures of three N-(pyridine-2-carbon­yl)pyridine-2-carboxamide imides, with or without F atoms on the 3-position of the pyridine rings are reported, namely, N-(pyridine-2-carbon­yl)pyridine-2-carboxamide, C12H9N3O2 (1), N-(3-fluoro­pyridine-2-carbon­yl)pyridine-2-carboxamide, C12H8FN3O2 (2), and 3-fluoro-N-(3-fluoro­pyridine-2-carbon­yl)pyridine-2-carboxamide, C12H7F2N3O2 (3). The above-mentioned compounds were synthesized by a mild, general procedure with an excellent yield, providing straightforward access to symmetrical and/or asymmetrical heterocyclic ureas. The crystal structures of 1 and 2 are isomorphous, showing similar packing arrangements, i.e. double layers of parallel (face-to-face) mol­ecules alternating with analogous, but perpendicularly oriented, double layers. In contrast, the crystal structure of 3, containing a fluoro- group at the 3-position of both pyridine rings, shows mol­ecular arrangements in a longitudinal, tubular manner along the c axis, with the aromatic pyridine and carbon­yl/fluorine moieties facing towards each other.

1. Chemical context

N-(Pyridine-2-carbon­yl)pyridine-2-carboxamide systems and their derivatives have been shown to be very useful inter­mediates for the construction of mol­ecular building blocks, able to self-assemble into a wide range of super-architectures taking advantage of acceptor–donor–donor–acceptor (ADDA) arrays of hydrogen-bonding sites (Corbin et al., 2001[Corbin, P. S., Zimmerman, S. C., Thiessen, P. A., Hawryluk, N. A. & Murray, T. J. (2001). J. Am. Chem. Soc. 123, 10475-10488.]). Further inter­est in this family of compounds has involved the investigation of their metal coordination complexes, which possess strong luminescence characteristics (Das et al., 2018[Das, K., Dolai, S., Vojtíšek, P. & Manna, S. C. (2018). Polyhedron, 149, 7-16.]), as well as their electrochemical (Gasser et al., 2012[Gasser, G., Mari, C., Burkart, M., Green, S. J., Ribas, J., Stoeckli-Evans, H. & Tucker, J. H. R. (2012). New J. Chem. 36, 1819-1827.]), magnetic (Kajiwara et al., 2010[Kajiwara, T., Tanaka, H., Nakano, M., Takaishi, S., Nakazawa, Y. & Yamashita, M. (2010). Inorg. Chem. 49, 8358-8370.]) and catalytic properties (Chowdhury et al., 2007[Chowdhury, H., Rahaman, S. H., Ghosh, R., Sarkar, S. K., Fun, H.-K. & Ghosh, B. K. (2007). J. Mol. Struct. 826, 170-176.]). Consequently, the synthesis of N-(pyridine-2-carbon­yl)pyridine-2-carboxamide, containing different functional groups, at a large scale and in a high yield is of great importance in the field of supra­molecular chemistry. Previously reported studies have shown the conversion of 2-amino­pyridine to 1 in a single step (Gerchuk & Taits, 1950[Gerchuk, M. & Taits, S. (1950). Zh. Obshch. Khim. 20, 910-916.]; Corbin et al., 2001[Corbin, P. S., Zimmerman, S. C., Thiessen, P. A., Hawryluk, N. A. & Murray, T. J. (2001). J. Am. Chem. Soc. 123, 10475-10488.]). However, the utilized reaction conditions were, to some extent, harsh and the reported yield of the compound was rather low (< 32%), presumably because of the inferior nucleophilicity of the –NH2 groups at the 2-position of the pyridine rings. Moreover, the use of this procedure is limited to the synthesis of symmetrical imides. The synthesis of high-yield asymmetrical imides, bearing different functional groups on the pyridine rings, is still challenging.

[Scheme 1]

Herein, we report the single-crystal X-ray structural analysis of the imides N-(pyridine-2-carbon­yl)pyridine-2-carboxamide (1) (R1 = H, R2 = H), N-(3-fluoro­pyridine-2-carbon­yl)pyridine-2-carboxamide (2) (R1 = F, R2 = H) and 3-fluoro-N-(3-fluoro­pyridine-2-carbon­yl)pyridine-2-carboxamide (3) (R1 = F, R2 = F), prepared via a simple, straightforward synthesis method that does not involve high pressure nor harsh conditions and can be carried out on a large scale.

2. Structural commentary

The structure of 1, although determined at a different temperature of 200 K, has previously been deposited in the CSD (refcode COJNAT; Castaneda & Gabidullin, 2019[Castaneda, R. & Gabidullin, B. (2019). CSD Communication (CCDC 1945074). CCDC, Cambridge, England.]). Compound 1 crystallizes in the non-centrosymmetric ortho­rhom­bic space group Pna21, with the asymmetric unit consisting of one N-(pyridine-2-carbon­yl)pyridine-2-carboxamide mol­ecule. The mol­ecular structure of 1 is found almost completely planar, with a dihedral angle of 6.1 (2)° between the best planes through the two pyridine rings (Fig. 1[link]a).

[Figure 1]
Figure 1
Mol­ecular structures of (a) 1, (b) 2 and (c) 3, showing thermal displacement ellipsoids drawn at the 50% probability level and the atom-labelling scheme. The disorder in 2 (b) is shown in yellow. The carbon atoms in the asymmetric unit of 3 (c) are shown in green. Intra­molecular hydrogen bonds are indicated.

The structure of 2 is isomorphous with 1, although the 3-fluoro-N-(pyridine-2-carbon­yl)pyridine-2-carboxamide mol­ecules are rotated 90° with respect to 1 (Fig. 2[link]). Similarly to 1, the asymmetric unit contains one planar 3-fluoro-N-(pyridine-2-carbon­yl)pyridine-2-carboxamide mol­ecule, which shows a dihedral angle of 5.2 (2)° between the best planes through the two pyridine rings. Here, the fluoro group is found disordered over both pyridine rings, i.e. a transverse disorder by 180° rotation along the axis through the imide N—H function occurs, showing refined occupancy factors of 0.563 (8) and 0.437 (8) for the first (F1A) and second fluoro (F1B) site, respectively (Fig. 1[link]b).

[Figure 2]
Figure 2
Unit-cell fit of the structures of 1 and 2, showing a 90° rotation of the mol­ecules of 2 (in green). Hydrogen atoms and disorder of the fluorine atoms are omitted for clarity.

Compound 3 crystallizes in the centrosymmetric monoclinic space group I2/a, with the asymmetric unit consisting of only half of a total 3-fluoro-N-(3-fluoro-pyridine-2-carbon­yl)pyridine-2-carboxamide mol­ecule. The second half is generated by symmetry, i.e. a twofold axis runs through the N—H imide atoms. In contrast to the previous structures of 1 and 2, the mol­ecular structure of 3 is not planar, with a dihedral angle of 29.73 (11)° between the best planes through the two pyridine rings (Fig. 1[link]c).

3. Supra­molecular features

Despite the presence of two pyridine rings in the mol­ecular structure of 1, only weak ππ inter­actions are present in the crystal packing, with rather large centroid–centroid distances ranging from 4.969 (2) to 5.497 (2) Å. However, clear C=O⋯π contacts are observed in the crystal packing [C6—O1⋯Cg1(x, y, −1 + z) = 3.861 (3) Å; Cg1 is the centroid of the C1–C5/N1 ring]. Intra­molecular potential hydrogen bonds are found between the imide N2—H2 hydrogen atom and both pyridine nitro­gen atoms [N2—H2⋯N1 = 2.15 (6) Å; N2—H2⋯N3 = 2.15 (5) Å], while non-classical inter­molecular hydrogen bonds can be observed between the first pyridine rings and carbonyl O2 atoms of symmetry-equivalent mol­ecules [C3—H3⋯O2i = 2.48 Å; symmetry code: (i) [{1\over 2}] − x, [{1\over 2}] + y, −[{3\over 2}] + z], while these first pyridine rings are further connected to each other via similar hydrogen bonds with the pyridine N1 atoms [C5—H5⋯N1ii = 2.51 Å; symmetry code: (ii) −x, 1 − y, −[{1\over 2}] + z] (Table 1[link]). As such, in the packing, double layers of parallel (face-to-face) mol­ecules of 1 are observed, parallel with the (100) plane, alternating with analogous double layers, oriented perpendicular to the former layers (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N1 0.90 (5) 2.15 (6) 2.614 (5) 111 (4)
N2—H2⋯N3 0.90 (5) 2.15 (5) 2.637 (4) 113 (5)
C3—H3⋯O2i 0.95 2.48 3.343 (5) 152
C5—H5⋯N1ii 0.95 2.51 3.393 (5) 154
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z+{\script{3\over 2}}]; (ii) [-x, -y+1, z-{\script{1\over 2}}].
[Figure 3]
Figure 3
Packing in the structure of 1, showing (a) the perpendicularly oriented mol­ecules, viewed down the a axis and (b) the double layers of parallel-oriented (face-to-face) mol­ecules, inter­changed with analogous double layers, perpendicular to the former layers.

For the structure of 2, analogous to 1, only weak ππ inter­actions are present in the crystal packing between the 3-fluoro-pyridine rings, with centroid–centroid distances in the range 4.915 (3) to 5.473 (3) Å, while C=O⋯π contacts are also observed in the crystal packing [C6—O1⋯Cg1(x, y, −1 + z)= 3.865 (4) Å; Cg1 is the centroid of the C1–C5/N1 ring]. Analogous to 1, intra­molecular potential hydrogen bonds between the imide N2—H2 hydrogen atom and both pyridine nitro­gen atoms are observed [N2—H2⋯N1 = 2.16 (6) Å; N2—H2⋯N3 = 2.11 (6) Å], while non-classical inter­molecular hydrogen bonds occur between the first pyridine rings and carbonyl O2 atoms of symmetry-equivalent mol­ecules [C3—H3⋯O2i = 2.43 Å; symmetry code: (i) [{1\over 2}] − x, [{1\over 2}] + y, [{3\over 2}] + z], while these first pyridine rings are further connected to each other via similar hydrogen bonds with the pyridine N1 atoms [C5—H5⋯N1ii = 2.53 Å; symmetry code: (ii) 1 − x, 2 − y, [{1\over 2}] + z]. Additionally, C—H⋯F hydrogen bonds are observed with the two disordered fluorine moieties [C3—H3⋯F1Bi = 2.40 Å; C10—H10⋯F1Aiii = 2.45 Å; symmetry code: (iii) [{1\over 2}] + x, [{3\over 2}] − y, −1 + z] (Table 2[link]). However, in the packing, analogous to 1, alternating double layers of parallel (face-to-face) mol­ecules of 2 are observed, parallel with the (100) plane (Fig. 4[link]). Hence, the extra C—H⋯F bonds do not alter the overall architecture.

Table 2
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N1 0.92 (5) 2.16 (6) 2.614 (6) 109 (4)
N2—H2⋯N3 0.92 (5) 2.11 (6) 2.622 (5) 114 (5)
C3—H3⋯O2i 0.95 2.43 3.320 (6) 156
C3—H3⋯F1Bi 0.95 2.40 3.049 (8) 125
C5—H5⋯N1ii 0.95 2.53 3.420 (6) 156
C10—H10⋯F1Aiii 0.95 2.45 3.169 (7) 132
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z+{\script{3\over 2}}]; (ii) [-x+1, -y+2, z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-1].
[Figure 4]
Figure 4
Packing in the structure of 2, showing (a) the perpendicularly oriented mol­ecules, viewed down the a axis and (b) the double layers of parallel-oriented (face-to-face) mol­ecules, inter­changed with analogous double layers, perpendicular to the former layers. C10—H10⋯F1A hydrogen bonds are indicated. Hydrogen atoms and disorder of the fluorine atoms are omitted for clarity.

For 3, besides weak ππ inter­actions between the pyridine rings [centroid–centroid distances in the range 4.3776 (13)–5.9437 (13) Å], one strong ππ contact is observed between the pyridine ring and its symmetry-equivalent [CgCg([{1\over 2}] − x, [{1\over 2}] − y, [{1\over 2}] − z) = 3.6334 (13) Å; Cg is the centroid of the C1–C5/N1 ring]. Analogous to 1 and 2, intra­molecular potential hydrogen bonds are observed between the imide N2—H2 hydrogen atom and the pyridine nitro­gen atom [N2—H2⋯N1 = 2.265 (15) Å], while non-classical inter­molecular hydrogen bonds between the pyridine rings and carbonyl O1 atoms of symmetry-equivalent mol­ecules are found [C4—H4⋯O1ii = 2.49 Å; symmetry code: (ii) −x, −[{1\over 2}] + y, [{1\over 2}] − z] (Table 3[link]). Additionally, although significantly longer, other hydrogen bonds are formed between the pyridine ring and the carbonyl O1 atom [C5—H5⋯O1ii = 2.61 Å] and C—H⋯F hydrogen bonds are observed with the fluorine moieties [C5—H5⋯F1ii = 2.66 Å; C3—H3⋯F1iii = 2.58 Å; symmetry codes: (iii) −x, 1 − y, −z]. This gives rise to a different packing assembly, i.e. the mol­ecules are arranged in a longitudinal, tubular manner along the c-axis direction, while the aromatic pyridine and the carbon­yl/fluorine moieties, face towards each other (Fig. 5[link]).

Table 3
Hydrogen-bond geometry (Å, °) for 3[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N1 0.84 (4) 2.27 (2) 2.671 (2) 110 (1)
N2—H2⋯N1i 0.84 (4) 2.27 (2) 2.671 (2) 110 (1)
C4—H4⋯O1ii 0.95 2.49 3.135 (3) 125
C5—H5⋯O1ii 0.95 2.61 3.207 (3) 122
C3—H3⋯F1iii 0.95 2.58 3.398 (3) 145
C5—H5⋯F1ii 0.95 2.66 3.604 (3) 176
Symmetry codes: (i) [-x+{\script{1\over 2}}, y, -z+1]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x, -y+1, -z].
[Figure 5]
Figure 5
Packing in the structure of 3, showing (a) the longitudinal tubular arrangement of the mol­ecules along the c axis and (b) the aromatic pyridine and the carbon­yl/fluorine moieties facing towards each other. C5—H5⋯F1 and C3—H3⋯F1 hydrogen bonds are indicated. Hydrogen atoms are omitted for clarity.

4. Database survey

A survey of compounds related to 1, 2 and 3, deposited with the Cambridge Structural Database (CSD 2021.1, version 5.42 updates May 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) resulted in three other compounds with refcodes COJNAT, WUXQOW and ZAVVAV.

As previously mentioned, COJNAT (Castaneda & Gabidullin, 2019[Castaneda, R. & Gabidullin, B. (2019). CSD Communication (CCDC 1945074). CCDC, Cambridge, England.]) represents the same structure as 1, although determined at 200 K. When fitting the mol­ecular structures of COJNAT and 1, an r.m.s.d. of 0.0107 Å is obtained.

The structure with refcode WUXQOW (Sahu et al., 2010[Sahu, R., Padhi, S. K., Jena, H. S. & Manivannan, V. (2010). Inorg. Chim. Acta, 363, 1448-1454.]) represents an analogous structure to 1, but featuring quinoline moieties instead of pyridine rings, i.e. N,N-bis­(quinolin-2-ylcarbon­yl)amine. Similarly to 1, the mol­ecular structure is also found to be almost completely planar, with a dihedral angle of 1.34 (4)° between the best planes through the two quinoline moieties.

The structure with refcode ZAVVAV (Zebret et al., 2012[Zebret, S., Dupont, N., Besnard, C., Bernardinelli, G. & Hamacek, J. (2012). Dalton Trans. 41, 4817-4823.]) represents another N-(pyridine-2-carbon­yl)pyridine-2-carboxamide system, in this case featuring two meth­oxy substituents, one on each pyridine ring, i.e. methyl 6-({[6-(meth­oxy­carbon­yl)pyridin-2-yl]carbon­yl}carbamo­yl)pyridine-2-carboxyl­ate. Here, because of steric hindrance of the substituents, the planes defined by the two pyridine rings are distorted by 14.52 (11)°.

5. Synthesis and crystallization

The known compound 1 was prepared in excellent yield by the reaction between 2-pyridine­carbonyl chloride and 2-pyri­dine­carboxamide under mild conditions. By introducing a fluoro group at the 3-position of 2-pyridine­carbonyl chloride and/or 2-pyridine­carboxamide, the new compounds 2 and 3 could be obtained, also in excellent yield. Details for the synthesis of the precursors and the products are given below. Unless otherwise stated, all reagents were used as received.

3-Fluoro­pyridine-2-carb­oxy­lic acid

The preparation of 3-fluoro­pyridine-2-carb­oxy­lic acid was performed according to a previously reported procedure (Eller et al., 2006[Eller, G. A., Wimmer, V., Haring, A. W. & Holzer, W. (2006). Synthesis, pp. 4219-4229.]). Commercially available lithium 3-fluoro­picolinate (1.47 g, 10 mmol) was recrystallized from a mixture of EtOH–H2O (9:1), which was acidified with several drops of concentrated HCl (36.5%) to afford 3-fluoro­pyridine-2-carb­oxy­lic acid. Yield: 91%. 1H NMR (300 MHz, DMSO-d6) δ 8.49 (d, J = 4.4 Hz, 1H), 7.94–7.81 (m, 1H), 7.64–7.70 (m, 1H). 13C NMR (101 MHz, DMSO-d6) δ 164.35, 159.27, 145.26, 138.65, 128.27, 125.59.

2-Pyridine­carbonyl chloride

The preparation of 2-pyridine­carbonyl chloride was performed according to a previously reported procedure (Aluri et al., 2011[Aluri, B. R., Niaz, B., Kindermann, M. K., Jones, P. G. & Heinicke, J. (2011). Dalton Trans. 40, 211-224.]). 2-Pyridine­carb­oxy­lic acid (1.23 g, 10 mmol) and SOCl2 (11.9 g, 100 mmol) were dissolved in 100 ml of dry toluene with 10 drops of DMF. The reaction mixture was refluxed at 383.15 K for 3 h. The reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. The resulting viscous residue was used directly in the next step without further purification.

3-Fluoro­pyridine-2-carbonyl chloride

The preparation of 3-fluoro­pyridine-2-carbonyl chloride was performed according to a previously reported procedure (Aluri et al., 2011[Aluri, B. R., Niaz, B., Kindermann, M. K., Jones, P. G. & Heinicke, J. (2011). Dalton Trans. 40, 211-224.]). 3-Fluoro­pyridin-2-carb­oxy­lic acid (1.41 g, 10 mmol) and SOCl2 (11.9 g, 100 mmol) were dissolved in 100 ml of dry toluene with 10 drops of DMF. The reaction mixture was refluxed at 383 K for 3 h. The reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. The resulting viscous residue was used directly in the next step without further purification.

2-Pyridine­carboxamide

The preparation of 2-pyridine­carboxamide was performed according to a previously reported procedure (Cai et al., 2014[Cai, S., Chen, C., Shao, P. & Xi, C. (2014). Org. Lett. 16, 3142-3145.]). 20 ml of NH3/methanol solution (NH3 ca 7 N in methanol solution) was slowly added to 2-pyridine­carbonyl chloride at 273 K under stirring. The resulting reaction mixture was allowed to warm to room temperature and stirred overnight. The solvent was removed under reduced pressure and the residue was purified by a silica column with an eluent of hexa­ne/ethyl acetate (5/1) to afford the product. Yield: 88%. 1H NMR (300 MHz, DMSO-d6) δ 8.63 (d, J = 4.7 Hz, 1H), 8.11 (s, 1H), 8.06–7.94 (m, 2H), 7.64 (s, 1H), 7.63–7.55 (m, 1H).

3-Fluoro­pyridin-2-carboxamide

20 ml of NH3/methanol (NH3 ca 7 N in methanol solution) was added slowly to 3-fluoro­pyridin-2-carbonyl chloride at 273 K under stirring. The resulting reaction mixture was allowed to warm to room temperature and stirred overnight. The solvent was removed under reduced pressure and the residue was purified by silica column with an eluent of hexa­ne/ethyl acetate (5/1) to afford the product. Yield 85%. 1H NMR (300 MHz, CDCl3) δ 8.34 (dt, J = 4.2, 1.4 Hz, 1H), 7.63 (s, 1H), 7.54–7.40 (m, 2H), 6.30 (s, 1H). 13C NMR (101 MHz, CDCl3) δ 164.96, 164.91, 158.20, 144.12, 144.07, 137.26, 128.42, 128.37, 126.36, 126.16.

N-(Pyridine-2-carbon­yl)pyridine-2-carboxamide (1)

2-Pyridine­carbonyl chloride (212.32 mg, 1.5 mmol) and 2-pyridine­carboxamide (170.98 mg, 1.4 mmol) were dissolved in toluene (20 ml). The resulting reaction mixture was refluxed at 383 K overnight. The solvent was removed under reduced pressure and the residue was purified by a silica column with an eluent of hexa­ne/ethyl acetate (3/1) to afford the product. Yield: 91%. 1H NMR (300 MHz, CDCl3) δ 13.03 (s, 1H), 8.75 (ddd, J = 4.8, 1.7, 0.9 Hz, 2H), 8.35 (dt, J = 7.9, 1.1 Hz, 2H), 7.94 (td, J = 7.7, 1.7 Hz, 2H), 7.56 (ddd, J = 7.6, 4.8, 1.2 Hz, 2H). 13C NMR (101 MHz, CDCl3) δ 162.65, 149.15, 148.67, 137.73, 127.50, 123.49.

N-(3-Fluoro­pyridine-2-carbon­yl)pyridine-2-carboxamide (2)

3-Fluoro­pyridin-2-carboxamide (238.47 mg, 1.5 mmol) and 2-pyridine­carboxamide (170.98 mg, 1.4 mmol) were dissolved in toluene (20 ml). The resulting reaction mixture was refluxed at 383 K overnight. The solvent was removed under reduced pressure and the residue was purified by a silica column with an eluent of hexa­ne/ethyl acetate (3/1) to afford the product. Yield: 89%. 1H NMR (300 MHz, DMSO-d6) δ 12.72 (s, 1H), 8.81 (ddd, J = 4.8, 1.6, 0.9 Hz, 1H), 8.66 (dt, J = 4.5, 1.4 Hz, 1H), 8.22 (dt, J = 7.8, 1.1 Hz, 1H), 8.13 (td, J = 7.7, 1.7 Hz, 1H), 8.02 (ddd, J = 11.3, 8.5, 1.2 Hz, 1H), 7.92–7.85 (m, 1H), 7.78 (ddd, J = 7.5, 4.8, 1.3 Hz, 1H). 13C NMR (101 MHz, DMSO-d6) 161.88, 160.91, 159.53, 159.47, 158.21, 148.97, 148.16, 144.99, 144.93, 138.66, 135.97, 135.92, 130.72, 130.67, 128.35, 127.45, 127.26, 122.94.

3-Fluoro-N-(3-fluoro­pyridine-2-carbon­yl)pyridine-2-carb­ox­amide (3)

3-Fluoro­pyridin-2-carboxamide (238.47 mg, 1.5 mmol) and 3-fluoro­pyridin-2-carbonyl chloride (196.04 mg, 1.4 mmol) were dissolved in toluene (20 ml). The resulting reaction mixture was refluxed at 383 K overnight. The solvent was removed under reduced pressure and the residue was purified by a silica column with an eluent of hexa­ne/ethyl acetate (3/1) to afford the product. Yield: 80%. 1H NMR (300 MHz, DMSO-d6) δ 12.53 (s, 1H), 8.64 (dt, J = 4.5, 1.4 Hz, 2H), 8.02 (ddd, J = 11.3, 8.5, 1.2 Hz, 2H), 7.91–7.80 (m, 2H). 13C NMR (101 MHz, DMSO-d6) 160.75, 159.72, 159.66, 158.05, 156.16, 144.97, 144.92, 136.12, 136.08, 130.62, 130.56, 127.36, 127.17.

Crystals of 1, 2, and 3, suitable for single-crystal X-ray diffraction analysis were prepared by slow evaporation of a 10 mg ml−1 aceto­nitrile solution at room temperature. All crystals appeared as colourless blocks.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. For all structures, the imide N—H hydrogen atoms could be located from a difference electron-density Fourier map, and were further refined with isotropic temperature factors fixed at 1.2 times Ueq of the parent atoms.

Table 4
Experimental details

  1 2 3
Crystal data
Chemical formula C12H9N3O2 C12H8FN3O2 C12H7F2N3O2
Mr 227.22 245.21 263.21
Crystal system, space group Orthorhombic, Pna21 Orthorhombic, Pna21 Monoclinic, I2/a
Temperature (K) 100 100 100
a, b, c (Å) 16.2689 (6), 12.8086 (7), 4.9983 (2) 16.6058 (10), 12.9096 (7), 4.9153 (3) 6.7062 (3), 14.1190 (5), 11.2074 (5)
α, β, γ (°) 90, 90, 90 90, 90, 90 90, 97.140 (4), 90
V3) 1041.56 (8) 1053.71 (11) 1052.94 (8)
Z 4 4 4
Radiation type Cu Kα Cu Kα Cu Kα
μ (mm−1) 0.85 1.03 1.22
Crystal size (mm) 0.20 × 0.12 × 0.06 0.26 × 0.10 × 0.05 0.11 × 0.09 × 0.06
 
Data collection
Diffractometer SuperNova, Dual, Cu at zero, Atlas SuperNova, Dual, Cu at zero, Atlas SuperNova, Dual, Cu at zero, Atlas
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Gaussian (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Gaussian (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.187, 0.563 0.983, 0.995 0.993, 0.996
No. of measured, independent and observed [I > 2σ(I)] reflections 8626, 2028, 1831 5774, 1798, 1567 5200, 1083, 856
Rint 0.076 0.054 0.069
(sin θ/λ)max−1) 0.627 0.629 0.628
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.170, 1.07 0.055, 0.152, 1.03 0.055, 0.161, 1.04
No. of reflections 2028 1798 1083
No. of parameters 157 176 88
No. of restraints 1 1 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.32, −0.30 0.28, −0.28 0.29, −0.32
Absolute structure Flack x determined using 673 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Flack x determined using 450 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.0 (3) 0.2 (3)
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

For the structure of 2, the 3-fluoro­pyridine atom is disordered at both pyridine sites, showing final occupancy factors of 0.563 (8) and 0.437 (8), for the first and second site, respectively.

Supporting information


Computing details top

For all structures, data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

N-(Pyridine-2-carbonyl)pyridine-2-carboxamide (1) top
Crystal data top
C12H9N3O2Dx = 1.449 Mg m3
Mr = 227.22Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, Pna21Cell parameters from 4719 reflections
a = 16.2689 (6) Åθ = 4.2–74.0°
b = 12.8086 (7) ŵ = 0.85 mm1
c = 4.9983 (2) ÅT = 100 K
V = 1041.56 (8) Å3Block, clear colourless
Z = 40.20 × 0.12 × 0.06 mm
F(000) = 472
Data collection top
SuperNova, Dual, Cu at zero, Atlas
diffractometer
2028 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source1831 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.076
Detector resolution: 10.4839 pixels mm-1θmax = 75.3°, θmin = 4.4°
ω scansh = 1420
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2015)
k = 1515
Tmin = 0.187, Tmax = 0.563l = 56
8626 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.060 w = 1/[σ2(Fo2) + (0.1236P)2 + 0.0215P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.170(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.32 e Å3
2028 reflectionsΔρmin = 0.30 e Å3
157 parametersAbsolute structure: Flack x determined using 673 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.0 (3)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.29400 (14)0.3937 (2)0.2999 (6)0.0362 (7)
O20.22855 (16)0.2512 (2)0.7000 (6)0.0343 (7)
N10.10762 (18)0.4562 (3)0.0277 (7)0.0301 (7)
N20.16131 (17)0.3339 (2)0.3528 (7)0.0299 (7)
N30.01890 (19)0.2587 (3)0.5153 (7)0.0335 (8)
C10.1883 (2)0.4642 (3)0.0217 (8)0.0288 (8)
C20.2393 (2)0.5328 (3)0.1112 (8)0.0322 (8)
H2A0.2960910.5366900.0686260.039*
C30.2060 (2)0.5956 (3)0.3071 (9)0.0372 (9)
H30.2394640.6439070.4015150.045*
C40.1232 (2)0.5872 (3)0.3640 (9)0.0372 (9)
H40.0988060.6286010.5002750.045*
C50.0767 (2)0.5170 (3)0.2176 (8)0.0344 (8)
H50.0195660.5120610.2551510.041*
C60.2213 (2)0.3943 (3)0.2372 (8)0.0279 (8)
C70.1662 (2)0.2696 (3)0.5753 (8)0.0284 (8)
C80.0840 (2)0.2245 (3)0.6517 (8)0.0290 (8)
C90.0551 (2)0.2220 (3)0.5853 (10)0.0361 (9)
H90.1019870.2454920.4891100.043*
C100.0664 (2)0.1513 (3)0.7923 (9)0.0371 (9)
H100.1199770.1279040.8384840.045*
C110.0010 (3)0.1157 (4)0.9290 (9)0.0410 (10)
H110.0049630.0667671.0705770.049*
C120.0785 (2)0.1526 (3)0.8565 (9)0.0368 (9)
H120.1264140.1288260.9462420.044*
H20.110 (3)0.341 (4)0.286 (12)0.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0224 (11)0.0457 (15)0.0404 (17)0.0004 (11)0.0002 (11)0.0017 (13)
O20.0291 (12)0.0387 (14)0.0352 (15)0.0032 (10)0.0065 (10)0.0041 (12)
N10.0235 (13)0.0340 (15)0.0328 (17)0.0006 (11)0.0019 (12)0.0011 (13)
N20.0235 (13)0.0350 (15)0.0312 (17)0.0004 (11)0.0032 (12)0.0022 (13)
N30.0286 (14)0.0353 (16)0.0365 (19)0.0011 (11)0.0011 (13)0.0023 (15)
C10.0270 (15)0.0290 (16)0.0302 (19)0.0025 (13)0.0024 (14)0.0040 (14)
C20.0270 (16)0.0333 (18)0.036 (2)0.0007 (13)0.0064 (15)0.0024 (16)
C30.0379 (19)0.0334 (18)0.040 (2)0.0007 (15)0.0100 (17)0.0029 (17)
C40.0424 (19)0.0361 (18)0.033 (2)0.0081 (17)0.0016 (17)0.0015 (16)
C50.0308 (16)0.0393 (18)0.033 (2)0.0036 (15)0.0007 (16)0.0005 (17)
C60.0214 (15)0.0318 (17)0.0304 (19)0.0016 (12)0.0011 (13)0.0024 (15)
C70.0303 (16)0.0281 (16)0.0269 (18)0.0034 (13)0.0011 (14)0.0002 (14)
C80.0283 (16)0.0296 (17)0.0292 (19)0.0010 (13)0.0011 (13)0.0032 (15)
C90.0262 (16)0.0390 (19)0.043 (2)0.0019 (15)0.0023 (16)0.0022 (16)
C100.0350 (17)0.0367 (18)0.040 (2)0.0063 (15)0.0072 (16)0.0006 (17)
C110.043 (2)0.041 (2)0.038 (3)0.0062 (16)0.0010 (18)0.0060 (18)
C120.0346 (17)0.041 (2)0.035 (2)0.0004 (15)0.0030 (15)0.0069 (17)
Geometric parameters (Å, º) top
O1—C61.224 (4)C3—C41.380 (6)
O2—C71.214 (4)C4—H40.9500
N1—C11.339 (4)C4—C51.385 (6)
N1—C51.327 (5)C5—H50.9500
N2—C61.373 (5)C7—C81.506 (5)
N2—C71.385 (5)C8—C121.380 (6)
N2—H20.90 (5)C9—H90.9500
N3—C81.333 (5)C9—C101.387 (6)
N3—C91.339 (5)C10—H100.9500
C1—C21.379 (5)C10—C111.370 (6)
C1—C61.499 (5)C11—H110.9500
C2—H2A0.9500C11—C121.394 (6)
C2—C31.378 (6)C12—H120.9500
C3—H30.9500
C5—N1—C1117.3 (3)O1—C6—C1122.3 (3)
C6—N2—C7129.2 (3)N2—C6—C1112.6 (3)
C6—N2—H2116 (3)O2—C7—N2125.1 (3)
C7—N2—H2114 (3)O2—C7—C8122.5 (3)
C8—N3—C9117.8 (4)N2—C7—C8112.4 (3)
N1—C1—C2123.3 (4)N3—C8—C7116.7 (3)
N1—C1—C6115.9 (3)N3—C8—C12123.1 (4)
C2—C1—C6120.7 (3)C12—C8—C7120.1 (3)
C1—C2—H2A120.7N3—C9—H9118.6
C3—C2—C1118.6 (3)N3—C9—C10122.9 (4)
C3—C2—H2A120.7C10—C9—H9118.6
C2—C3—H3120.5C9—C10—H10120.5
C2—C3—C4119.0 (4)C11—C10—C9118.9 (4)
C4—C3—H3120.5C11—C10—H10120.5
C3—C4—H4120.8C10—C11—H11120.6
C3—C4—C5118.3 (4)C10—C11—C12118.7 (4)
C5—C4—H4120.8C12—C11—H11120.6
N1—C5—C4123.5 (4)C8—C12—C11118.6 (4)
N1—C5—H5118.3C8—C12—H12120.7
C4—C5—H5118.3C11—C12—H12120.7
O1—C6—N2125.1 (3)
O2—C7—C8—N3173.6 (4)C3—C4—C5—N11.0 (6)
O2—C7—C8—C125.5 (5)C5—N1—C1—C21.0 (6)
N1—C1—C2—C30.8 (6)C5—N1—C1—C6179.9 (3)
N1—C1—C6—O1179.4 (4)C6—N2—C7—O24.7 (6)
N1—C1—C6—N21.1 (5)C6—N2—C7—C8174.7 (3)
N2—C7—C8—N35.8 (5)C6—C1—C2—C3179.8 (3)
N2—C7—C8—C12175.2 (4)C7—N2—C6—O17.6 (6)
N3—C8—C12—C111.6 (6)C7—N2—C6—C1171.9 (3)
N3—C9—C10—C111.1 (7)C7—C8—C12—C11177.4 (4)
C1—N1—C5—C40.1 (6)C8—N3—C9—C100.3 (6)
C1—C2—C3—C40.3 (6)C9—N3—C8—C7178.0 (3)
C2—C1—C6—O11.5 (5)C9—N3—C8—C121.0 (6)
C2—C1—C6—N2178.0 (3)C9—C10—C11—C120.5 (7)
C2—C3—C4—C51.1 (6)C10—C11—C12—C80.7 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N10.90 (5)2.15 (6)2.614 (5)111 (4)
N2—H2···N30.90 (5)2.15 (5)2.637 (4)113 (5)
C3—H3···O2i0.952.483.343 (5)152
C5—H5···N1ii0.952.513.393 (5)154
Symmetry codes: (i) x+1/2, y+1/2, z3/2; (ii) x, y+1, z1/2.
N-(3-Fluoropyridine-2-carbonyl)pyridine-2-carboxamide (2) top
Crystal data top
C12H8FN3O2Dx = 1.546 Mg m3
Mr = 245.21Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, Pna21Cell parameters from 2360 reflections
a = 16.6058 (10) Åθ = 3.4–74.8°
b = 12.9096 (7) ŵ = 1.03 mm1
c = 4.9153 (3) ÅT = 100 K
V = 1053.71 (11) Å3Block, clear colourless
Z = 40.26 × 0.10 × 0.05 mm
F(000) = 504
Data collection top
SuperNova, Dual, Cu at zero, Atlas
diffractometer
1798 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source1567 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.054
Detector resolution: 10.4839 pixels mm-1θmax = 75.9°, θmin = 5.3°
ω scansh = 1920
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2015)
k = 1516
Tmin = 0.983, Tmax = 0.995l = 65
5774 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.055 w = 1/[σ2(Fo2) + (0.0898P)2 + 0.4172P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.152(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.28 e Å3
1798 reflectionsΔρmin = 0.28 e Å3
176 parametersAbsolute structure: Flack x determined using 450 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.2 (3)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O20.27904 (19)0.7427 (2)0.1952 (8)0.0338 (8)
O10.21184 (17)0.8809 (3)0.5995 (8)0.0359 (8)
N30.4847 (2)0.7588 (3)0.3876 (9)0.0309 (9)
N20.3438 (2)0.8296 (3)0.5407 (9)0.0271 (8)
N10.3932 (2)0.9540 (3)0.9257 (8)0.0269 (8)
C120.4327 (3)0.6517 (4)0.0372 (11)0.0407 (12)
H120.3873170.6260860.0593090.049*0.563 (8)
C80.4221 (3)0.7223 (3)0.2426 (10)0.0267 (9)
C90.5586 (3)0.7247 (3)0.3242 (12)0.0358 (11)
H90.6030430.7492970.4273900.043*
C100.5730 (3)0.6555 (4)0.1156 (11)0.0393 (11)
H100.6263960.6345250.0732790.047*
C110.5087 (3)0.6176 (4)0.0299 (12)0.0433 (13)
H110.5164730.5691530.1729220.052*
C70.3403 (2)0.7643 (3)0.3213 (10)0.0270 (9)
C60.2827 (2)0.8864 (3)0.6609 (9)0.0257 (9)
C10.3139 (2)0.9587 (3)0.8767 (10)0.0247 (9)
C20.2642 (3)1.0262 (3)1.0150 (10)0.0300 (10)
H2A0.2083151.0288220.9737230.036*0.437 (8)
C30.2959 (3)1.0902 (3)1.2140 (12)0.0351 (11)
H30.2623911.1370861.3108470.042*
C40.3766 (3)1.0842 (3)1.2677 (11)0.0341 (10)
H40.4000531.1260251.4054990.041*
C50.4234 (3)1.0164 (3)1.1188 (10)0.0302 (9)
H50.4796091.0137411.1546790.036*
F1B0.3801 (4)0.6170 (5)0.1240 (16)0.046 (2)0.437 (8)
F1A0.1855 (3)1.0352 (3)0.9733 (12)0.0368 (16)0.563 (8)
H20.395 (3)0.837 (4)0.611 (14)0.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0306 (15)0.0302 (14)0.0407 (19)0.0041 (12)0.0077 (16)0.0028 (15)
O10.0223 (15)0.0426 (17)0.043 (2)0.0018 (12)0.0037 (15)0.0012 (16)
N30.0279 (18)0.0288 (17)0.036 (2)0.0004 (13)0.0008 (17)0.0003 (17)
N20.0239 (17)0.0283 (17)0.029 (2)0.0004 (13)0.0022 (15)0.0039 (15)
N10.0249 (17)0.0281 (16)0.028 (2)0.0030 (13)0.0019 (15)0.0021 (15)
C120.055 (3)0.034 (2)0.033 (3)0.006 (2)0.009 (3)0.003 (2)
C80.029 (2)0.0221 (16)0.029 (2)0.0005 (14)0.0027 (18)0.0019 (17)
C90.033 (2)0.028 (2)0.047 (3)0.0026 (17)0.003 (2)0.001 (2)
C100.045 (2)0.030 (2)0.043 (3)0.0102 (19)0.012 (2)0.005 (2)
C110.061 (3)0.036 (2)0.033 (3)0.010 (2)0.004 (3)0.004 (2)
C70.031 (2)0.0227 (18)0.027 (2)0.0036 (15)0.003 (2)0.0033 (17)
C60.0198 (18)0.0282 (18)0.029 (3)0.0029 (15)0.0016 (17)0.0038 (19)
C10.0218 (18)0.0222 (16)0.030 (2)0.0014 (14)0.0005 (19)0.0011 (16)
C20.028 (2)0.0232 (18)0.039 (3)0.0010 (15)0.006 (2)0.0045 (19)
C30.043 (3)0.0250 (19)0.037 (3)0.0003 (17)0.009 (2)0.003 (2)
C40.044 (3)0.0276 (19)0.030 (2)0.0053 (18)0.005 (2)0.002 (2)
C50.030 (2)0.0301 (19)0.031 (2)0.0040 (16)0.001 (2)0.002 (2)
F1B0.036 (4)0.053 (4)0.050 (5)0.002 (3)0.012 (3)0.025 (4)
F1A0.020 (2)0.028 (2)0.062 (4)0.0007 (16)0.002 (2)0.001 (2)
Geometric parameters (Å, º) top
O2—C71.224 (5)C9—C101.381 (7)
O1—C61.217 (5)C10—H100.9500
N3—C81.346 (6)C10—C111.376 (8)
N3—C91.340 (6)C11—H110.9500
N2—C71.370 (6)C6—C11.505 (6)
N2—C61.384 (6)C1—C21.380 (6)
N2—H20.92 (6)C2—H2A0.9500
N1—C11.341 (5)C2—C31.384 (7)
N1—C51.342 (6)C2—F1A1.327 (6)
C12—H120.9500C3—H30.9500
C12—C81.372 (7)C3—C41.369 (7)
C12—C111.376 (7)C4—H40.9500
C12—F1B1.262 (8)C4—C51.381 (6)
C8—C71.511 (6)C5—H50.9500
C9—H90.9500
C9—N3—C8118.0 (4)O2—C7—C8122.4 (4)
C7—N2—C6129.1 (4)N2—C7—C8112.6 (3)
C7—N2—H2113 (4)O1—C6—N2124.9 (4)
C6—N2—H2118 (4)O1—C6—C1122.9 (4)
C1—N1—C5117.9 (4)N2—C6—C1112.2 (3)
C8—C12—H12119.8N1—C1—C6115.9 (3)
C8—C12—C11120.5 (5)N1—C1—C2121.9 (4)
C11—C12—H12119.8C2—C1—C6122.2 (4)
F1B—C12—C8127.5 (6)C1—C2—H2A120.1
F1B—C12—C11111.7 (6)C1—C2—C3119.8 (4)
N3—C8—C12121.5 (4)C3—C2—H2A120.1
N3—C8—C7115.7 (4)F1A—C2—C1124.6 (5)
C12—C8—C7122.8 (4)F1A—C2—C3115.6 (4)
N3—C9—H9118.5C2—C3—H3120.8
N3—C9—C10122.9 (5)C4—C3—C2118.4 (4)
C10—C9—H9118.5C4—C3—H3120.8
C9—C10—H10120.6C3—C4—H4120.5
C11—C10—C9118.8 (5)C3—C4—C5119.0 (4)
C11—C10—H10120.6C5—C4—H4120.5
C12—C11—H11120.9N1—C5—C4123.0 (4)
C10—C11—C12118.3 (5)N1—C5—H5118.5
C10—C11—H11120.9C4—C5—H5118.5
O2—C7—N2125.0 (4)
O1—C6—C1—N1178.5 (4)C11—C12—C8—C7178.6 (4)
O1—C6—C1—C21.9 (7)C7—N2—C6—O16.0 (7)
N3—C8—C7—O2175.2 (4)C7—N2—C6—C1172.9 (4)
N3—C8—C7—N23.2 (5)C6—N2—C7—O22.1 (7)
N3—C9—C10—C111.7 (8)C6—N2—C7—C8176.3 (4)
N2—C6—C1—N12.6 (5)C6—C1—C2—C3179.2 (4)
N2—C6—C1—C2177.0 (4)C6—C1—C2—F1A0.4 (7)
N1—C1—C2—C31.2 (7)C1—N1—C5—C40.2 (6)
N1—C1—C2—F1A179.2 (4)C1—C2—C3—C40.0 (7)
C12—C8—C7—O24.7 (6)C2—C3—C4—C51.2 (7)
C12—C8—C7—N2176.8 (4)C3—C4—C5—N11.3 (7)
C8—N3—C9—C101.0 (7)C5—N1—C1—C6179.3 (4)
C8—C12—C11—C100.6 (8)C5—N1—C1—C21.1 (6)
C9—N3—C8—C120.6 (7)F1B—C12—C8—N3175.0 (6)
C9—N3—C8—C7179.4 (4)F1B—C12—C8—C75.0 (9)
C9—C10—C11—C120.9 (7)F1B—C12—C11—C10175.1 (6)
C11—C12—C8—N31.3 (7)F1A—C2—C3—C4179.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N10.92 (5)2.16 (6)2.614 (6)109 (4)
N2—H2···N30.92 (5)2.11 (6)2.622 (5)114 (5)
C3—H3···O2i0.952.433.320 (6)156
C3—H3···F1Bi0.952.403.049 (8)125
C5—H5···N1ii0.952.533.420 (6)156
C10—H10···F1Aiii0.952.453.169 (7)132
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x+1, y+2, z+1/2; (iii) x+1/2, y+3/2, z1.
3-Fluoro-N-(3-fluoropyridine-2-carbonyl)pyridine-2-carboxamide (3) top
Crystal data top
C12H7F2N3O2F(000) = 536
Mr = 263.21Dx = 1.660 Mg m3
Monoclinic, I2/aCu Kα radiation, λ = 1.54184 Å
a = 6.7062 (3) ÅCell parameters from 1899 reflections
b = 14.1190 (5) Åθ = 5.0–74.9°
c = 11.2074 (5) ŵ = 1.22 mm1
β = 97.140 (4)°T = 100 K
V = 1052.94 (8) Å3Block, clear colourless
Z = 40.11 × 0.09 × 0.06 mm
Data collection top
SuperNova, Dual, Cu at zero, Atlas
diffractometer
1083 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source856 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.069
Detector resolution: 10.4839 pixels mm-1θmax = 75.4°, θmin = 5.1°
ω scansh = 78
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2015)
k = 1717
Tmin = 0.993, Tmax = 0.996l = 1413
5200 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.161 w = 1/[σ2(Fo2) + (0.0954P)2 + 0.7955P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1083 reflectionsΔρmax = 0.29 e Å3
88 parametersΔρmin = 0.32 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.1012 (3)0.49942 (9)0.14190 (14)0.0349 (5)
O10.1649 (3)0.53996 (11)0.37977 (16)0.0296 (5)
N10.0596 (3)0.29674 (13)0.33292 (17)0.0204 (5)
N20.2500000.41071 (19)0.5000000.0218 (6)
C20.0612 (4)0.41086 (16)0.1771 (2)0.0245 (6)
C10.0945 (3)0.38567 (15)0.2979 (2)0.0217 (5)
C50.0104 (3)0.23375 (15)0.2494 (2)0.0208 (5)
H50.0378420.1713550.2745330.025*
C40.0453 (3)0.25475 (16)0.1273 (2)0.0233 (5)
H40.0940440.2075880.0706040.028*
C30.0075 (4)0.34557 (16)0.0902 (2)0.0247 (6)
H30.0281770.3624700.0075580.030*
C60.1711 (3)0.45473 (15)0.3944 (2)0.0213 (5)
H20.2500000.351 (3)0.5000000.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0551 (11)0.0191 (7)0.0292 (9)0.0062 (6)0.0002 (7)0.0071 (6)
O10.0404 (10)0.0157 (8)0.0316 (10)0.0016 (7)0.0006 (8)0.0023 (7)
N10.0190 (9)0.0171 (9)0.0254 (10)0.0017 (7)0.0038 (7)0.0014 (7)
N20.0254 (13)0.0141 (12)0.0262 (15)0.0000.0042 (11)0.000
C20.0262 (11)0.0165 (10)0.0309 (13)0.0012 (9)0.0042 (10)0.0048 (9)
C10.0203 (11)0.0167 (11)0.0278 (12)0.0022 (8)0.0023 (9)0.0021 (9)
C50.0188 (10)0.0174 (10)0.0270 (12)0.0007 (8)0.0058 (9)0.0008 (8)
C40.0213 (11)0.0223 (11)0.0258 (12)0.0025 (8)0.0014 (9)0.0022 (9)
C30.0276 (11)0.0239 (12)0.0222 (12)0.0039 (9)0.0014 (10)0.0028 (9)
C60.0222 (11)0.0162 (10)0.0259 (12)0.0014 (8)0.0051 (9)0.0009 (9)
Geometric parameters (Å, º) top
F1—C21.348 (2)C2—C31.378 (3)
O1—C61.214 (3)C1—C61.498 (3)
N1—C11.344 (3)C5—H50.9500
N1—C51.334 (3)C5—C41.391 (3)
N2—C6i1.383 (3)C4—H40.9500
N2—C61.383 (3)C4—C31.381 (3)
N2—H20.85 (4)C3—H30.9500
C2—C11.391 (3)
C5—N1—C1118.5 (2)N1—C5—C4123.4 (2)
C6i—N2—C6126.6 (3)C4—C5—H5118.3
C6i—N2—H2116.71 (13)C5—C4—H4120.7
C6—N2—H2116.71 (13)C3—C4—C5118.6 (2)
F1—C2—C1120.5 (2)C3—C4—H4120.7
F1—C2—C3118.4 (2)C2—C3—C4117.8 (2)
C3—C2—C1121.1 (2)C2—C3—H3121.1
N1—C1—C2120.7 (2)C4—C3—H3121.1
N1—C1—C6117.0 (2)O1—C6—N2124.3 (2)
C2—C1—C6122.3 (2)O1—C6—C1123.0 (2)
N1—C5—H5118.3N2—C6—C1112.68 (19)
F1—C2—C1—N1178.3 (2)C1—C2—C3—C41.0 (4)
F1—C2—C1—C61.3 (4)C5—N1—C1—C21.0 (3)
F1—C2—C3—C4179.1 (2)C5—N1—C1—C6179.41 (19)
N1—C1—C6—O1162.6 (2)C5—C4—C3—C20.6 (3)
N1—C1—C6—N217.9 (3)C3—C2—C1—N10.2 (4)
N1—C5—C4—C30.6 (3)C3—C2—C1—C6179.3 (2)
C2—C1—C6—O117.8 (4)C6i—N2—C6—O11.68 (18)
C2—C1—C6—N2161.7 (2)C6i—N2—C6—C1178.8 (2)
C1—N1—C5—C41.4 (3)
Symmetry code: (i) x+1/2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N10.84 (4)2.27 (2)2.671 (2)110 (1)
N2—H2···N1i0.84 (4)2.27 (2)2.671 (2)110 (1)
C4—H4···O1ii0.952.493.135 (3)125
C5—H5···O1ii0.952.613.207 (3)122
C3—H3···F1iii0.952.583.398 (3)145
C5—H5···F1ii0.952.663.604 (3)176
Symmetry codes: (i) x+1/2, y, z+1; (ii) x, y1/2, z+1/2; (iii) x, y+1, z.
 

Funding information

Funding for this research was provided by: Fonds Wetenschappelijk Onderzoek (grant No. AUGE/11/029); Bijzonder Onderzoeksfonds UGent (grant No. 01N03217); Bijzonder Onderzoeksfonds UGent (grant No. 01SC1717); China Scholarship Council (scholarship No. 201506780014).

References

First citationAluri, B. R., Niaz, B., Kindermann, M. K., Jones, P. G. & Heinicke, J. (2011). Dalton Trans. 40, 211–224.  CSD CrossRef CAS PubMed Google Scholar
First citationCai, S., Chen, C., Shao, P. & Xi, C. (2014). Org. Lett. 16, 3142–3145.  CSD CrossRef CAS PubMed Google Scholar
First citationCastaneda, R. & Gabidullin, B. (2019). CSD Communication (CCDC 1945074). CCDC, Cambridge, England.  Google Scholar
First citationChowdhury, H., Rahaman, S. H., Ghosh, R., Sarkar, S. K., Fun, H.-K. & Ghosh, B. K. (2007). J. Mol. Struct. 826, 170–176.  Web of Science CSD CrossRef CAS Google Scholar
First citationCorbin, P. S., Zimmerman, S. C., Thiessen, P. A., Hawryluk, N. A. & Murray, T. J. (2001). J. Am. Chem. Soc. 123, 10475–10488.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDas, K., Dolai, S., Vojtíšek, P. & Manna, S. C. (2018). Polyhedron, 149, 7–16.  CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEller, G. A., Wimmer, V., Haring, A. W. & Holzer, W. (2006). Synthesis, pp. 4219–4229.  CrossRef Google Scholar
First citationGasser, G., Mari, C., Burkart, M., Green, S. J., Ribas, J., Stoeckli-Evans, H. & Tucker, J. H. R. (2012). New J. Chem. 36, 1819–1827.  CSD CrossRef CAS Google Scholar
First citationGerchuk, M. & Taits, S. (1950). Zh. Obshch. Khim. 20, 910–916.  CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKajiwara, T., Tanaka, H., Nakano, M., Takaishi, S., Nakazawa, Y. & Yamashita, M. (2010). Inorg. Chem. 49, 8358–8370.  CSD CrossRef CAS PubMed Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSahu, R., Padhi, S. K., Jena, H. S. & Manivannan, V. (2010). Inorg. Chim. Acta, 363, 1448–1454.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZebret, S., Dupont, N., Besnard, C., Bernardinelli, G. & Hamacek, J. (2012). Dalton Trans. 41, 4817–4823.  CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds