research communications
Z)-2-amino-4-(2,6-dichlorophenyl)-5-(1-hydroxyethylidene)-6-oxo-1-phenyl-1,4,5,6-tetrahydropyridine-3-carbonitrile
and Hirshfeld surface analysis of (aDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148 Baku, Azerbaijan, bPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow, 117198 , Russian Federation, cN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, e"Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan, and fAcad. Sci. Republ. Tadzhikistan, Kh. Yu. Yusufbekov Pamir Biol. Inst., 1 Kholdorova St, Khorog 736002, Gbao, Tajikistan
*Correspondence e-mail: anzurat2003@mail.ru
The molecular conformation of the title compound, C20H15Cl2N3O2, is stabilized by an intramolecular O—H⋯O hydrogen bond, forming an S(6) ring motif. The central pyridine ring is almost planar [maximum deviation = 0.074 (3) Å]. It subtends dihedral angles of 86.10 (15) and 87.17 (14)°, respectively, with the phenyl and dichlorophenyl rings, which are at an angle of 21.28 (15)° to each other. The =C(—OH)CH3 group is coplanar. In the crystal, molecules are linked by intermolecular N—H⋯N and C—H⋯N hydrogen bonds, and N—H⋯π and C—H⋯π interactions, forming a three-dimensional network. The most important contributions to the crystal packing are from H⋯H (33.1%), C⋯H/H⋯C (22.5%), Cl⋯H/H⋯Cl (14.1%), O⋯H/H⋯O (11.9%) and N⋯H/H⋯N (9.7%) interactions.
Keywords: crystal structure; pyridine ring; hydrogen bonds; ring motifs; Hirshfeld surface analysis.
CCDC reference: 2101203
1. Chemical context
The development of effective methods for the construction of small-sized molecules bearing a nitrogen heterocycle is a very important proposition in organic synthesis and catalysis (Abdel-Hafiz et al., 2012; Gurbanov et al., 2018; Zubkov et al., 2018). As members of this family, pyridine derivatives play a key role in flavor chemistry, crystal engineering, and the development of biologically active compounds (Adams & De Kimpe, 2006; Mahmoudi et al., 2019; Mamedov et al., 2020). The pyridine core is a key bioactive fragment of diverse natural products (niacin, pyridoxine, nicotine, NADP+) and series of derivatives constitute promising drugs in medicinal chemistry (Mohsin & Ahmad, 2018).
In this study, in the framework of our ongoing structural studies (Naghiyev et al., 2020, 2021a,b), we report the and Hirshfeld surface analysis of the title compound, (Z)-2-amino-4-(2,6-dichlorophenyl)-5-(1-hydroxyethylidene)-6-oxo-1-phenyl-1,4,5,6-tetrahydropyridine-3-carbonitrile, previously mistakenly reported in the E isomeric form (Maharramov et al., 2018). This compound was also previously mentioned as transient intermediate but neither isolated nor characterized (Naghiyeva et al., 2019).
2. Structural commentary
The title compound crystallizes in the monoclinic P21/c with Z = 4, in which the comprises one molecule. In the molecule (Fig. 1), the central pyridine ring (N1/C2–C6) is almost planar with a maximum deviation of 0.074 (3) Å for C4. The phenyl (C7–C12) and dichlorophenyl (C14–C19) rings are at an angle of 21.28 (15)°. They form dihedral angles of 86.10 (15) and 87.17 (14)°, respectively, with the central pyridine ring. The =C(—OH)CH3 group is nearly coplanar with the pyridine ring with C2—C3—C1—O2 and C4—C3—C1—C13 torsion angles of only 5.5 (5) and 3.3 (5)°, respectively. A strong intramolecular O2—H2⋯O1 hydrogen bond (Fig. 1, Table 1) stabilizes the molecular conformation of the title molecule, creating an S(6) ring motif (Bernstein et al., 1995).
3. Supramolecular features and Hirshfeld surface analysis
Intermolecular N3—H3A⋯N2 hydrogen bonds, which form an R22(12) ring motif between pairs of molecules along the b-axis direction and an R22(16) ring motif between pairs of molecules along the a-axis direction, together with N3—H3B⋯Cg2 and C9—H9⋯Cg2 interactions (Fig. 2, Tables 1 and 2; Cg2 is the centroid of the C7–C12 phenyl ring) create a three-dimensional network in the crystal (Figs. 2 and 3).
|
The Hirshfeld surfaces were calculated and the two-dimensional fingerprint plots generated using Crystal Explorer 17.5 (Turner et al., 2017). The use of various hues and intensities to represent short and long contacts, as well as the relative intensity of the connections, allows Hirshfeld surfaces to depict intermolecular interactions. Fig. 4 shows the three-dimensional Hirshfeld surfaces of the title compound plotted over dnorm (normalized contact distance) in the range of −0.4290 to 1.5192 a.u. The red patches that appear around N2 are caused by the intermolecular N3—H3A⋯N2 and C16—H16⋯N2 interactions, which are important in the packing of the title molecule. Bright red dots near N2 and amine hydrogen atoms H3A and H3B highlight their functions as hydrogen-bonding acceptors and donors, respectively; these also appear as blue and red areas on the Hirshfeld surface mapped over electrostatic potential (Spackman et al., 2008) in Fig. 5, corresponding to positive and negative potentials. Positive electrostatic potential (hydrogen-bond donors) is shown in blue, whereas negative electrostatic potential is indicated in red (hydrogen-bond acceptors).
In Fig. 6, the overall two-dimensional fingerprint plot for the title compound and those delineated into H⋯H, C⋯H/H⋯C, Cl⋯H/H⋯Cl, O⋯H/H⋯O and N⋯H/H⋯N contacts, as well as their relative contributions to the Hirshfeld surface, are presented, while details of the various contacts are given in Table 2. The percentage contributions to the Hirshfeld surfaces from the various interatomic contacts are as follows: H⋯H (33.1%; Fig. 6b), C⋯H/H⋯C (22.5%; Fig. 6c), Cl⋯H/H⋯Cl (14.1%; Fig. 6d), O⋯H/H⋯O (11.9%; Fig. 6e) and N⋯H/H⋯N (9.7%; Fig. 6f). Other Cl⋯C/C⋯Cl, C⋯C, Cl⋯O/O⋯Cl, Cl⋯N/N⋯Cl, N⋯C/C⋯N, O⋯N/N⋯O, Cl⋯Cl, O⋯C/C⋯O and N⋯N contacts contribute less than 2.1% to Hirshfeld surface mapping and have little directional influence on molecular packing (Table 3).
|
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.39, update of August 2018; Groom et al., 2016) using Conquest (Bruno et al., 2002) for the tetrahydropyridine unit revealed 1339 hits. Some interesting structures related to the title compound based on their tetrahydropyridine moieties include: ethyl 4-hydroxy-2,6-diphenyl-5-(phenylsulfanyl)pyridine-3-carboxylate (refcode SETWOE: Suresh et al., 2007), ethyl 2,6-bis(4-fluorophenyl)-4-hydroxy-5-(4-methylphenylsulfanyl)pyridine-3-carboxylate (SETWUK: Suresh et al., 2007), 2,6-diamino-4-chloropyrimidin-1-ium 2-carboxy-3-nitrobenzoate (JEBRAM: Mohana et al., 2017) and 2,6-diamino-4-chloropyrimidin-1-ium 4-methylbenzene-1-sulfonate monohydrate (JEBREQ: Mohana et al., 2017).
The polysubstituted pyridines, SETWOE (space group: P21/c) and SETWUK (space group: P21/n), adopt nearly planar structures. The of SETWOE is stabilized by intermolecular C—H⋯O and C—H⋯π interactions. The C—H⋯O hydrogen bonds generate rings with R22(14) and R22(20) motifs. The of SETWUK is stabilized by intermolecular C—H⋯F and C—H⋯π interactions. The C—H⋯F bond generates a linear chain with a C(14) motif. In addition, in SETWOE and SETWUK, intramolecular O—H⋯O interactions are found, which generate an S(6) graph-set motif. No significant aryl–aryl or π–π interactions exist in these structures. All this bears some resemblance to the title compound.
In both the related salts, JEBRAM (space group: P) and JEBREQ (space group: P) , the N atom in the 1-position of the pyrimidine ring is protonated. In JEBRAM, the protonated N atom and the amino group of the pyrimidinium cation interact with the carboxylate group of the anion through N—H⋯O hydrogen bonds, forming a heterosynthon with an R22(8) ring motif. In the hydrated salt JEBREQ, the presence of the water molecule prevents the formation of the familiar R22(8) ring motif. Instead, an expanded ring [i.e. R32(8)] is formed involving the sulfonate group, the pyrimidinium cation and the water molecule. Both salts form a supramolecular homosynthon [ R22(8) ring motif] through N—H⋯N hydrogen bonds. The molecular structures are further stabilized by π–π stacking, and C=O⋯π, C—H⋯O and C—H⋯Cl interactions. None of these are found in the crystal packing of the title compound. It appears that the protonation state of the pyrimidine ring influences the intermolecular interactions within the crystal lattices to a substantial extent.
5. Synthesis and crystallization
The title compound was synthesized using our previously reported procedure (Maharramov et al., 2018), and colorless prisms were obtained upon recrystallization from its methanol solution.
6. Refinement
Crystal data, data collection and structure . The positional parameters of the H atoms of the hydroxy and amine groups were determined from difference electron-density maps and were refined freely [O2—H2 = 0.86 (4) Å, N3—H3A = 0.86 (4) Å and N3—H3B = 0.88 (4) Å]. Their isotropic displacement parameters were refined using a riding model with Uiso(H) set to either 1.2Ueq(N) for the NH2 group or 1.5Ueq(O) for the OH group. The C-bound H atoms were positioned geometrically (C—H = 0.95–1.00 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for the methyl group and Uiso(H) = 1.2Ueq(C) for aromatic and methine H atoms.
details are summarized in Table 4
|
Supporting information
CCDC reference: 2101203
https://doi.org/10.1107/S2056989021007994/yz2010sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021007994/yz2010Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021007994/yz2010Isup3.cml
Data collection: APEX3 (Bruker, 2018); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).C20H15Cl2N3O2 | F(000) = 824 |
Mr = 400.25 | Dx = 1.465 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 9.662 (1) Å | Cell parameters from 2887 reflections |
b = 27.010 (3) Å | θ = 2.3–25.6° |
c = 7.4782 (8) Å | µ = 0.38 mm−1 |
β = 111.571 (2)° | T = 100 K |
V = 1814.9 (3) Å3 | Plate, colourless |
Z = 4 | 0.24 × 0.21 × 0.02 mm |
Bruker D8 QUEST PHOTON-III CCD diffractometer | 2631 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.099 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 27.5°, θmin = 2.3° |
Tmin = 0.864, Tmax = 0.986 | h = −12→12 |
27440 measured reflections | k = −35→35 |
4180 independent reflections | l = −9→9 |
Refinement on F2 | Secondary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.053 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.126 | w = 1/[σ2(Fo2) + (0.0387P)2 + 2.0157P] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max < 0.001 |
4180 reflections | Δρmax = 0.50 e Å−3 |
255 parameters | Δρmin = −0.37 e Å−3 |
0 restraints | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: dual | Extinction coefficient: 0.0024 (2) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.86090 (9) | 0.51416 (3) | 0.60657 (12) | 0.0256 (2) | |
Cl2 | 0.73128 (9) | 0.32459 (3) | 0.75788 (12) | 0.0262 (2) | |
O1 | 0.3936 (2) | 0.32320 (9) | 0.2910 (3) | 0.0280 (5) | |
O2 | 0.5668 (3) | 0.34472 (9) | 0.1210 (3) | 0.0286 (6) | |
H2 | 0.502 (4) | 0.3295 (15) | 0.155 (6) | 0.043* | |
N1 | 0.3832 (3) | 0.36887 (10) | 0.5389 (4) | 0.0190 (6) | |
N2 | 0.6028 (3) | 0.51570 (10) | 0.8819 (4) | 0.0213 (6) | |
N3 | 0.3468 (3) | 0.41829 (11) | 0.7719 (4) | 0.0216 (6) | |
H3A | 0.376 (4) | 0.4411 (13) | 0.857 (5) | 0.026* | |
H3B | 0.275 (4) | 0.3976 (13) | 0.763 (5) | 0.026* | |
C1 | 0.6193 (3) | 0.38087 (12) | 0.2516 (4) | 0.0222 (7) | |
C2 | 0.4484 (3) | 0.35814 (12) | 0.4048 (4) | 0.0215 (7) | |
C3 | 0.5700 (3) | 0.38792 (12) | 0.3994 (4) | 0.0190 (7) | |
C4 | 0.6393 (3) | 0.42841 (12) | 0.5454 (4) | 0.0185 (7) | |
H4 | 0.6402 | 0.4592 | 0.4717 | 0.022* | |
C5 | 0.5438 (3) | 0.43903 (11) | 0.6633 (4) | 0.0178 (6) | |
C6 | 0.4288 (3) | 0.40975 (12) | 0.6622 (4) | 0.0190 (6) | |
C7 | 0.2636 (3) | 0.33754 (11) | 0.5457 (4) | 0.0182 (6) | |
C8 | 0.2954 (3) | 0.29874 (12) | 0.6757 (4) | 0.0225 (7) | |
H8 | 0.3954 | 0.2923 | 0.7572 | 0.027* | |
C9 | 0.1808 (4) | 0.26931 (12) | 0.6866 (5) | 0.0247 (7) | |
H9 | 0.2018 | 0.2428 | 0.7762 | 0.030* | |
C10 | 0.0355 (4) | 0.27893 (12) | 0.5655 (5) | 0.0254 (7) | |
H10 | −0.0431 | 0.2588 | 0.5722 | 0.030* | |
C11 | 0.0039 (3) | 0.31762 (12) | 0.4351 (5) | 0.0233 (7) | |
H11 | −0.0959 | 0.3239 | 0.3526 | 0.028* | |
C12 | 0.1182 (3) | 0.34720 (12) | 0.4251 (4) | 0.0219 (7) | |
H12 | 0.0970 | 0.3739 | 0.3362 | 0.026* | |
C13 | 0.7339 (4) | 0.41270 (13) | 0.2175 (5) | 0.0262 (7) | |
H13A | 0.7588 | 0.3988 | 0.1121 | 0.039* | |
H13B | 0.8235 | 0.4139 | 0.3346 | 0.039* | |
H13C | 0.6943 | 0.4462 | 0.1834 | 0.039* | |
C14 | 0.8003 (3) | 0.41904 (12) | 0.6829 (4) | 0.0168 (6) | |
C15 | 0.9070 (3) | 0.45717 (12) | 0.7254 (4) | 0.0206 (7) | |
C16 | 1.0502 (3) | 0.45270 (13) | 0.8591 (5) | 0.0237 (7) | |
H16 | 1.1177 | 0.4797 | 0.8851 | 0.028* | |
C17 | 1.0934 (3) | 0.40785 (13) | 0.9546 (4) | 0.0252 (7) | |
H17 | 1.1915 | 0.4041 | 1.0469 | 0.030* | |
C18 | 0.9949 (3) | 0.36865 (13) | 0.9164 (5) | 0.0238 (7) | |
H18 | 1.0255 | 0.3378 | 0.9793 | 0.029* | |
C19 | 0.8510 (3) | 0.37491 (12) | 0.7852 (4) | 0.0194 (7) | |
C20 | 0.5773 (3) | 0.48144 (12) | 0.7841 (4) | 0.0190 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0223 (4) | 0.0243 (4) | 0.0291 (4) | −0.0013 (3) | 0.0083 (3) | 0.0025 (4) |
Cl2 | 0.0236 (4) | 0.0258 (4) | 0.0260 (4) | −0.0006 (3) | 0.0056 (3) | 0.0049 (4) |
O1 | 0.0271 (12) | 0.0342 (14) | 0.0240 (12) | −0.0085 (11) | 0.0108 (10) | −0.0124 (11) |
O2 | 0.0296 (13) | 0.0394 (15) | 0.0171 (12) | −0.0043 (11) | 0.0091 (10) | −0.0072 (11) |
N1 | 0.0169 (13) | 0.0243 (15) | 0.0161 (13) | −0.0028 (11) | 0.0063 (10) | −0.0035 (11) |
N2 | 0.0213 (14) | 0.0210 (14) | 0.0200 (14) | −0.0026 (11) | 0.0058 (11) | −0.0030 (12) |
N3 | 0.0199 (14) | 0.0270 (15) | 0.0196 (14) | −0.0071 (12) | 0.0095 (11) | −0.0081 (12) |
C1 | 0.0210 (16) | 0.0286 (18) | 0.0135 (15) | 0.0038 (13) | 0.0022 (12) | −0.0012 (14) |
C2 | 0.0200 (15) | 0.0275 (18) | 0.0160 (15) | 0.0009 (13) | 0.0053 (12) | −0.0023 (14) |
C3 | 0.0174 (15) | 0.0225 (17) | 0.0152 (15) | −0.0002 (12) | 0.0038 (12) | −0.0001 (13) |
C4 | 0.0157 (15) | 0.0228 (17) | 0.0166 (15) | 0.0014 (12) | 0.0055 (12) | −0.0020 (13) |
C5 | 0.0172 (15) | 0.0207 (16) | 0.0139 (15) | 0.0005 (12) | 0.0037 (12) | −0.0014 (13) |
C6 | 0.0162 (14) | 0.0237 (17) | 0.0135 (15) | 0.0036 (12) | 0.0012 (12) | −0.0002 (13) |
C7 | 0.0175 (15) | 0.0185 (16) | 0.0184 (15) | −0.0037 (12) | 0.0062 (12) | −0.0048 (13) |
C8 | 0.0201 (16) | 0.0264 (18) | 0.0174 (16) | 0.0015 (13) | 0.0026 (13) | −0.0003 (14) |
C9 | 0.0275 (17) | 0.0219 (17) | 0.0254 (18) | 0.0030 (14) | 0.0106 (14) | 0.0049 (14) |
C10 | 0.0228 (16) | 0.0245 (18) | 0.0310 (19) | −0.0028 (14) | 0.0124 (14) | −0.0042 (15) |
C11 | 0.0177 (15) | 0.0259 (18) | 0.0223 (17) | 0.0019 (13) | 0.0024 (13) | 0.0013 (14) |
C12 | 0.0230 (16) | 0.0224 (17) | 0.0177 (16) | 0.0031 (13) | 0.0044 (13) | 0.0001 (13) |
C13 | 0.0264 (17) | 0.033 (2) | 0.0206 (17) | 0.0037 (15) | 0.0107 (14) | 0.0041 (15) |
C14 | 0.0152 (14) | 0.0241 (16) | 0.0126 (14) | 0.0025 (12) | 0.0070 (11) | −0.0011 (12) |
C15 | 0.0200 (15) | 0.0254 (17) | 0.0179 (16) | 0.0040 (13) | 0.0088 (13) | 0.0024 (14) |
C16 | 0.0185 (15) | 0.0315 (19) | 0.0222 (17) | −0.0020 (13) | 0.0089 (13) | −0.0035 (14) |
C17 | 0.0162 (15) | 0.042 (2) | 0.0173 (16) | 0.0027 (14) | 0.0063 (13) | −0.0010 (15) |
C18 | 0.0219 (16) | 0.0307 (19) | 0.0196 (16) | 0.0047 (14) | 0.0087 (13) | 0.0047 (14) |
C19 | 0.0174 (15) | 0.0266 (17) | 0.0150 (15) | −0.0009 (13) | 0.0066 (12) | −0.0022 (13) |
C20 | 0.0110 (14) | 0.0270 (18) | 0.0193 (16) | 0.0044 (12) | 0.0058 (12) | 0.0062 (14) |
Cl1—C15 | 1.751 (3) | C7—C12 | 1.387 (4) |
Cl2—C19 | 1.747 (3) | C8—C9 | 1.390 (4) |
O1—C2 | 1.250 (4) | C8—H8 | 0.9500 |
O2—C1 | 1.342 (4) | C9—C10 | 1.387 (4) |
O2—H2 | 0.86 (4) | C9—H9 | 0.9500 |
N1—C2 | 1.397 (4) | C10—C11 | 1.385 (5) |
N1—C6 | 1.401 (4) | C10—H10 | 0.9500 |
N1—C7 | 1.448 (4) | C11—C12 | 1.387 (4) |
N2—C20 | 1.149 (4) | C11—H11 | 0.9500 |
N3—C6 | 1.354 (4) | C12—H12 | 0.9500 |
N3—H3A | 0.86 (4) | C13—H13A | 0.9800 |
N3—H3B | 0.88 (4) | C13—H13B | 0.9800 |
C1—C3 | 1.368 (4) | C13—H13C | 0.9800 |
C1—C13 | 1.496 (4) | C14—C19 | 1.404 (4) |
C2—C3 | 1.437 (4) | C14—C15 | 1.408 (4) |
C3—C4 | 1.516 (4) | C15—C16 | 1.382 (4) |
C4—C5 | 1.519 (4) | C16—C17 | 1.390 (5) |
C4—C14 | 1.538 (4) | C16—H16 | 0.9500 |
C4—H4 | 1.0000 | C17—C18 | 1.382 (5) |
C5—C6 | 1.361 (4) | C17—H17 | 0.9500 |
C5—C20 | 1.421 (4) | C18—C19 | 1.386 (4) |
C7—C8 | 1.385 (4) | C18—H18 | 0.9500 |
C1—O2—H2 | 105 (3) | C8—C9—H9 | 120.3 |
C2—N1—C6 | 121.3 (3) | C11—C10—C9 | 120.6 (3) |
C2—N1—C7 | 118.7 (2) | C11—C10—H10 | 119.7 |
C6—N1—C7 | 120.0 (2) | C9—C10—H10 | 119.7 |
C6—N3—H3A | 118 (2) | C10—C11—C12 | 120.0 (3) |
C6—N3—H3B | 118 (2) | C10—C11—H11 | 120.0 |
H3A—N3—H3B | 123 (3) | C12—C11—H11 | 120.0 |
O2—C1—C3 | 122.6 (3) | C11—C12—C7 | 119.5 (3) |
O2—C1—C13 | 113.5 (3) | C11—C12—H12 | 120.2 |
C3—C1—C13 | 123.8 (3) | C7—C12—H12 | 120.2 |
O1—C2—N1 | 117.1 (3) | C1—C13—H13A | 109.5 |
O1—C2—C3 | 123.3 (3) | C1—C13—H13B | 109.5 |
N1—C2—C3 | 119.6 (3) | H13A—C13—H13B | 109.5 |
C1—C3—C2 | 118.4 (3) | C1—C13—H13C | 109.5 |
C1—C3—C4 | 119.4 (3) | H13A—C13—H13C | 109.5 |
C2—C3—C4 | 122.1 (3) | H13B—C13—H13C | 109.5 |
C3—C4—C5 | 110.7 (2) | C19—C14—C15 | 114.7 (3) |
C3—C4—C14 | 115.6 (2) | C19—C14—C4 | 124.6 (3) |
C5—C4—C14 | 108.9 (2) | C15—C14—C4 | 120.5 (3) |
C3—C4—H4 | 107.1 | C16—C15—C14 | 123.7 (3) |
C5—C4—H4 | 107.1 | C16—C15—Cl1 | 116.4 (3) |
C14—C4—H4 | 107.1 | C14—C15—Cl1 | 120.0 (2) |
C6—C5—C20 | 117.8 (3) | C15—C16—C17 | 118.7 (3) |
C6—C5—C4 | 123.7 (3) | C15—C16—H16 | 120.7 |
C20—C5—C4 | 118.4 (3) | C17—C16—H16 | 120.7 |
N3—C6—C5 | 123.7 (3) | C18—C17—C16 | 120.5 (3) |
N3—C6—N1 | 114.8 (3) | C18—C17—H17 | 119.8 |
C5—C6—N1 | 121.4 (3) | C16—C17—H17 | 119.8 |
C8—C7—C12 | 120.6 (3) | C17—C18—C19 | 119.2 (3) |
C8—C7—N1 | 119.5 (3) | C17—C18—H18 | 120.4 |
C12—C7—N1 | 119.9 (3) | C19—C18—H18 | 120.4 |
C7—C8—C9 | 119.9 (3) | C18—C19—C14 | 123.2 (3) |
C7—C8—H8 | 120.1 | C18—C19—Cl2 | 115.9 (3) |
C9—C8—H8 | 120.1 | C14—C19—Cl2 | 120.9 (2) |
C10—C9—C8 | 119.5 (3) | N2—C20—C5 | 179.2 (3) |
C10—C9—H9 | 120.3 | ||
C6—N1—C2—O1 | −174.8 (3) | C6—N1—C7—C8 | −86.5 (4) |
C7—N1—C2—O1 | 3.5 (4) | C2—N1—C7—C12 | −86.2 (4) |
C6—N1—C2—C3 | 3.4 (4) | C6—N1—C7—C12 | 92.2 (3) |
C7—N1—C2—C3 | −178.2 (3) | C12—C7—C8—C9 | −0.4 (5) |
O2—C1—C3—C2 | −5.5 (5) | N1—C7—C8—C9 | 178.3 (3) |
C13—C1—C3—C2 | 173.5 (3) | C7—C8—C9—C10 | 0.5 (5) |
O2—C1—C3—C4 | 177.7 (3) | C8—C9—C10—C11 | −0.3 (5) |
C13—C1—C3—C4 | −3.3 (5) | C9—C10—C11—C12 | −0.1 (5) |
O1—C2—C3—C1 | 6.4 (5) | C10—C11—C12—C7 | 0.3 (5) |
N1—C2—C3—C1 | −171.7 (3) | C8—C7—C12—C11 | 0.0 (5) |
O1—C2—C3—C4 | −176.9 (3) | N1—C7—C12—C11 | −178.7 (3) |
N1—C2—C3—C4 | 5.0 (4) | C3—C4—C14—C19 | −48.4 (4) |
C1—C3—C4—C5 | 165.1 (3) | C5—C4—C14—C19 | 76.9 (4) |
C2—C3—C4—C5 | −11.6 (4) | C3—C4—C14—C15 | 136.5 (3) |
C1—C3—C4—C14 | −70.5 (4) | C5—C4—C14—C15 | −98.2 (3) |
C2—C3—C4—C14 | 112.8 (3) | C19—C14—C15—C16 | −1.0 (4) |
C3—C4—C5—C6 | 11.6 (4) | C4—C14—C15—C16 | 174.6 (3) |
C14—C4—C5—C6 | −116.5 (3) | C19—C14—C15—Cl1 | 179.1 (2) |
C3—C4—C5—C20 | −169.4 (3) | C4—C14—C15—Cl1 | −5.3 (4) |
C14—C4—C5—C20 | 62.5 (4) | C14—C15—C16—C17 | 1.4 (5) |
C20—C5—C6—N3 | −1.3 (5) | Cl1—C15—C16—C17 | −178.7 (2) |
C4—C5—C6—N3 | 177.7 (3) | C15—C16—C17—C18 | 0.0 (5) |
C20—C5—C6—N1 | 176.3 (3) | C16—C17—C18—C19 | −1.7 (5) |
C4—C5—C6—N1 | −4.7 (5) | C17—C18—C19—C14 | 2.2 (5) |
C2—N1—C6—N3 | 174.1 (3) | C17—C18—C19—Cl2 | −176.1 (2) |
C7—N1—C6—N3 | −4.2 (4) | C15—C14—C19—C18 | −0.8 (4) |
C2—N1—C6—C5 | −3.6 (4) | C4—C14—C19—C18 | −176.2 (3) |
C7—N1—C6—C5 | 178.0 (3) | C15—C14—C19—Cl2 | 177.3 (2) |
C2—N1—C7—C8 | 95.1 (3) | C4—C14—C19—Cl2 | 1.9 (4) |
Cg2 is the centroid of the C7–C12 phenyl ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O1 | 0.86 (4) | 1.72 (4) | 2.514 (3) | 153 (4) |
N3—H3A···N2i | 0.86 (4) | 2.22 (4) | 3.032 (4) | 159 (3) |
C16—H16···N2ii | 0.95 | 2.62 | 3.308 (4) | 129 |
N3—H3B···Cg2 | 0.88 (4) | 2.88 (4) | 3.581 (3) | 138 (3) |
C9—H9···Cg2iii | 0.95 | 2.70 | 3.564 (4) | 151 |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x+2, −y+1, −z+2; (iii) x, −y−1/2, z−1/2. |
Contact | Distance | Symmetry operation |
Cl1···Cl1 | 3.6744 (14) | 2 - x, 1 - y, 1 - z |
H4···C20 | 2.77 | 1 - x, 1 - y, 1 - z |
O1···H9 | 2.54 | x, 1/2 - y, -1/2 + z |
N2···H13C | 2.81 | x, y, 1 + z |
H3A···N2 | 2.22 (4) | 1 - x, 1 - y, 2 - z |
H16···N2 | 2.62 | 2 - x, 1 - y, 2 - z |
H11···H13B | 2.54 | -1 + x, y, z |
H17···H3B | 2.54 | 1 + x, y, z |
H12···C18 | 2.93 | -1 + x, y, -1 + z |
Contact | Percentage contribution |
H···H | 33.1 |
C···H/H···C | 22.5 |
Cl···H/H···Cl | 14.1 |
O···H/H···O | 11.9 |
N···H/H···N | 9.7 |
Cl···C/C···Cl | 2.1 |
C···C | 1.4 |
Cl···O/O···Cl | 1.2 |
Cl···N/N···Cl | 1.1 |
N···C/C···N | 1.0 |
O···N/N···O | 0.6 |
Cl···Cl | 0.6 |
O···C/C···O | 0.5 |
N···N | 0.1 |
Acknowledgements
Authors' contributions are as follows. Conceptualization, FNN and IGM; methodology, FNN and IGM; investigation, FNN, AVP and AAA; writing (original draft), MA and ANK; writing (review and editing of the manuscript), MA and ANK; visualization, MA, FNN and IGM; funding acquisition, VNK and FNN; resources, AAA, VNK and FNN; supervision, IGM and MA.
Funding information
This work was supported by Baku State University and RUDN University Strategic Academic Leadership Program.
References
Abdel-Hafiz, I. S., Ramiz, M. M. M. & Elian, M. A. (2012). J. Chem. Sci. 124, 647–655. Google Scholar
Adams, A. & De Kimpe, N. (2006). Chem. Rev. 106, 2299–2319. Web of Science CrossRef PubMed CAS Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Inorg. Chim. Acta, 471, 130–136. Web of Science CSD CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Maharramov, A. M., Naghiyev, F. N., Asgerova, A. R., Guseynov, E. Z. & Mamedov, I. G. (2018). Azerbaijan Chem. J. 4, 33–38. CrossRef Google Scholar
Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108–117. Web of Science CSD CrossRef CAS Google Scholar
Mamedov, I., Naghiyev, F., Maharramov, A., Uwangue, O., Farewell, A., Sunnerhagen, P. & Erdelyi, M. (2020). Mendeleev Commun. 30, 498–499. Web of Science CrossRef CAS Google Scholar
Mohana, M., Thomas Muthiah, P. & Butcher, R. J. (2017). Acta Cryst. C73, 536–540. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mohsin, N. & Ahmad, M. (2018). Turk. J. Chem. 42, 1191–1216. Web of Science CrossRef CAS Google Scholar
Naghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A. & Brito, I. (2020). Molecules, 25, 2235–2248. Web of Science CSD CrossRef CAS Google Scholar
Naghiyev, F. N., Grishina, M. M., Khrustalev, V. N., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021a). Acta Cryst. E77, 195–199. Web of Science CSD CrossRef IUCr Journals Google Scholar
Naghiyev, F. N., Maharramov, A. M., Asadov, K. A. & Mamedov, I. G. (2019). Russ. J. Org. Chem. 55, 388–391. Web of Science CSD CrossRef CAS Google Scholar
Naghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Khalilov, A. N., Akobirshoeva, A. A. & Mamedov, İ. G. (2021b). Acta Cryst. E77, 512–515. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388. CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Suresh, J., Suresh Kumar, R., Perumal, S., Mostad, A. & Natarajan, S. (2007). Acta Cryst. C63, o141–o144. Web of Science CSD CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net. Google Scholar
Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.