Jerry P. Jasinski tribute\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures and hydrogen-bonding analysis of a series of benzamide complexes of zinc(II) chloride

crossmark logo

aDepartment of Chemistry, Otterbein University, Westerville, OH 43081, USA
*Correspondence e-mail: djohnston@otterbein.edu

Edited by M. Zeller, Purdue University, USA (Received 2 August 2021; accepted 10 August 2021; online 17 August 2021)

Ionic co-crystals are co-crystals between organic mol­ecules and inorganic salt coformers. Co-crystals of pharmaceuticals are of inter­est to help control polymorph formation and potentially improve stability and other physical properties. We describe the preparation, crystal structures, and hydrogen bonding of five different 2:1 benzamide or tolu­amide/zinc(II) chloride co-crystal salts, namely, bis­(benzamide-κO)di­chlorido­zinc(II), [ZnCl2(C7H7NO)2], di­chlor­ido­bis­(2-methyl­benzamide-κO)zinc(II), [ZnCl2(C8H9NO)2], di­chlorido­bis­(3-methyl­benzamide-κO)zinc(II), [ZnCl2(C8H9NO)2], di­chlorido­bis­(4-methyl­benzamide-κO)zinc(II), [ZnCl2(C8H9NO)2], and di­chlorido­bis­(4-hy­droxy­benzamide-κO)zinc(II), [ZnCl2(C7H7NO2)2]. All of the complexes contain hydrogen bonds between the amide N—H group and the amide carbonyl oxygen atoms or the chlorine atoms, forming extended networks.

1. Chemical context

Ionic co-crystals, formed from the combination of inorganic salts and organic mol­ecules, are of inter­est for their ability to promote or stabilize crystal forms of organic or pharmaceutical mol­ecules (Braga et al., 2011[Braga, D., Grepioni, F., Lampronti, G. I., Maini, L. & Turrina, A. (2011). Cryst. Growth Des. 11, 5621-5627.], 2018[Braga, D., Grepioni, F. & Shemchuk, O. (2018). CrystEngComm, 20, 2212-2220.]). The chloride salts of magnesium, calcium, and strontium have been shown to form an extensive range of structure types when co-crystallized with drug mol­ecules such as piracetam (Braga et al., 2011[Braga, D., Grepioni, F., Lampronti, G. I., Maini, L. & Turrina, A. (2011). Cryst. Growth Des. 11, 5621-5627.]; Song et al., 2018[Song, L., Robeyns, K. & Leyssens, T. (2018). Cryst. Growth Des. 18, 3215-3221.]), etiracetam and levitiracetam (Song et al., 2019[Song, L., Shemchuk, O., Robeyns, K., Braga, D., Grepioni, F. & Leyssens, T. (2019). Cryst. Growth Des. 19, 2446-2454.], 2020[Song, L., Robeyns, K., Tumanov, N., Wouters, J. & Leyssens, T. (2020). Chem. Commun. 56, 13229-13232.]), and nicotinamide and isonicotinamide (Braga et al., 2011[Braga, D., Grepioni, F., Lampronti, G. I., Maini, L. & Turrina, A. (2011). Cryst. Growth Des. 11, 5621-5627.]; Song et al., 2020[Song, L., Robeyns, K., Tumanov, N., Wouters, J. & Leyssens, T. (2020). Chem. Commun. 56, 13229-13232.]). Sodium bromide and sodium iodide form ionic co-crystals with carbamazepine (Buist & Kennedy, 2014[Buist, A. R. & Kennedy, A. R. (2014). Cryst. Growth Des. 14, 6508-6513.]). More recently, it has been shown that co-crystallization with ionic salts can produce chirally resolved forms when combining lithium halides with L- and DL-histidine (Braga et al., 2016[Braga, D., Degli Esposti, L., Rubini, K., Shemchuk, O. & Grepioni, F. (2016). Cryst. Growth Des. 16, 7263-7270.]), magnesium chloride with RS-oxiracetam (Shemchuk et al., 2020[Shemchuk, O., Song, L., Tumanov, N., Wouters, J., Braga, D., Grepioni, F. & Leyssens, T. (2020). Cryst. Growth Des. 20, 2602-2607.]), and zinc chloride with RS-etiracetam (Shemchuk et al., 2018[Shemchuk, O., Song, L., Robeyns, K., Braga, D., Grepioni, F. & Leyssens, T. (2018). Chem. Commun. 54, 10890-10892.]). Co-crystallization of nefiracetam with zinc chloride produced products with improved solubility and dissolution rates (Buol et al., 2020[Buol, X., Robeyns, K., Caro Garrido, C., Tumanov, N., Collard, L., Wouters, J. & Leyssens, T. (2020). Pharmaceutics, 12, 653.]).

[Scheme 1]

The current study was undertaken to explore the preparation of ionic co-crystals (alternatively termed co-crystal salts; Grothe, et al., 2016[Grothe, E., Meekes, H., Vlieg, E., ter Horst, J. H. & de Gelder, R. (2016). Cryst. Growth Des. 16, 3237-3243.]) using zinc chloride combined with various organic amides (specifically benzamide, 4-hy­droxy­benzamide, and tolu­amide) that can serve as models of pharmaceutical mol­ecules.

2. Structural commentary

Five new zinc complexes, (1) through (5), have been prepared and structurally characterized. All five complexes are 2:1 O-bonded aryl amide:ZnCl2 complexes with approximately tetra­hedral zinc(II) centers. The complexes crystallize in five different space groups and form hydrogen-bonding inter­actions between the amide N—H groups and either an amide oxygen or a zinc-bound chlorido ligand.

Compound (1), bis­(benzamide-κO)di­chlorido­zinc(II), [ZnCl2(C7H7NO)2], crystallizes in the P21/n space group with two independent mol­ecules in the asymmetric unit and displays one N—H⋯O and one N—H⋯Cl intra­molecular hydrogen bond in each mol­ecule (see Fig. 1[link] and Table 1[link]). A search for non-crystallographic symmetry using PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) shows the two independent zinc complexes are related by a rotation of −173.2° and translation by 7.232 Å along the vector [1.000 0.101 0.992]. Alignment of the two residues gave a weighted r.m.s. fit of 0.330 Å.

Table 1
Hydrogen-bond geometry (Å, °) for (1)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1AA⋯O2A 0.84 (2) 2.12 (2) 2.888 (2) 152 (3)
N1A—H1AB⋯Cl1Bi 0.87 (2) 2.56 (2) 3.3644 (15) 153 (2)
N2A—H2AA⋯Cl1A 0.87 (2) 2.51 (2) 3.3281 (15) 155 (2)
N2A—H2AB⋯Cl2Aii 0.85 (2) 2.51 (2) 3.3404 (15) 164 (2)
N1B—H1BA⋯O2B 0.84 (2) 2.17 (2) 2.911 (2) 147 (2)
N1B—H1BB⋯Cl1A 0.88 (2) 2.51 (2) 3.3682 (16) 167 (2)
N2B—H2BA⋯Cl1B 0.85 (2) 2.57 (2) 3.3085 (15) 146 (2)
N2B—H2BB⋯Cl2Biii 0.85 (2) 2.48 (2) 3.3107 (15) 165 (2)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
Displacement ellipsoid (50%) diagram and atom-numbering scheme of the two independent mol­ecules in (1). N—H⋯O contacts are shown in red and N—H⋯Cl contacts are shown in green.

As shown in Fig. 2[link], compound (2), di­chlorido­bis­(2-methyl­benzamide-κO)zinc(II), [ZnCl2(C8H9NO)2], displays two intra­molecular N—H⋯Cl hydrogen bonds to one chlorine atom (see Table 2[link]) and crystallizes in the P21 space group. Compound (3), di­chlorido­bis­(3-methyl­benzamide-κO)zinc(II), [ZnCl2(C8H9NO)2], crystallizes in the C2/c space group with the zinc atom lying on the twofold axis (see Fig. 3[link]) and, unlike the other compounds in this study, compound (3) does not form any intra­molecular hydrogen bonds. Compound (4), di­chlorido­bis­(4-methyl­benzamide-κO)zinc(II), [ZnCl2(C8H9NO)2], crystallizes in the P21/c space group and compound (5), di­chlorido­bis­(4-hy­droxy­benzamide-κO)zinc(II), [ZnCl2(C7H7NO2)2], crystallizes in the Cc space group and both compounds form two intra­molecular hydrogen bonds, one N—H⋯O and one N—H⋯Cl, similar to the inter­actions found in compound (1) (see Figs. 4[link] and 5[link] and Tables 4[link] and 5[link]).

Table 2
Hydrogen-bond geometry (Å, °) for (2)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl2i 0.82 (2) 2.57 (2) 3.2916 (17) 147 (2)
N1—H1B⋯Cl1 0.86 (2) 2.54 (2) 3.3077 (17) 150 (2)
N2—H2A⋯Cl1 0.85 (2) 2.52 (2) 3.2667 (16) 148 (2)
N2—H2B⋯O1ii 0.84 (2) 2.14 (2) 2.949 (2) 163 (2)
Symmetry codes: (i) [x, y-1, z]; (ii) [x-1, y, z].

Table 4
Hydrogen-bond geometry (Å, °) for (4)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2 0.87 (2) 2.07 (2) 2.8753 (19) 154 (2)
N1—H1B⋯Cl2i 0.86 (2) 2.49 (2) 3.2265 (14) 145 (2)
N2—H2A⋯Cl1ii 0.86 (2) 2.50 (2) 3.2956 (16) 155 (2)
N2—H2B⋯Cl2 0.87 (2) 3.05 (2) 3.6341 (17) 126 (2)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x-1, y, z].

Table 5
Hydrogen-bond geometry (Å, °) for (5)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯Cl1i 0.84 (3) 2.64 (4) 3.322 (3) 140 (5)
O3—H3⋯Cl2ii 0.84 (3) 2.75 (4) 3.349 (3) 130 (4)
O4—H4⋯Cl2iii 0.80 (3) 2.33 (3) 3.131 (3) 175 (6)
N1—H1A⋯Cl1 0.86 (3) 2.93 (4) 3.648 (4) 142 (4)
N1—H1B⋯Cl1iv 0.87 (3) 2.61 (3) 3.479 (4) 173 (4)
N2—H2A⋯O1 0.84 (3) 2.15 (3) 2.924 (5) 154 (5)
N2—H2B⋯Cl2v 0.84 (3) 2.77 (4) 3.405 (4) 135 (5)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iv) [x, -y+2, z+{\script{1\over 2}}]; (v) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Displacement ellipsoid (50%) diagram and atom-numbering scheme for (2). N—H⋯Cl contacts are shown in green.
[Figure 3]
Figure 3
Displacement ellipsoid (50%) diagram and atom-numbering scheme for (3). The minor component of the disordered methyl group is not shown for clarity.
[Figure 4]
Figure 4
Displacement ellipsoid (50%) diagram and atom-numbering scheme for (4). The N—H⋯O contact is shown in red and the N—H⋯Cl contact is shown in green.
[Figure 5]
Figure 5
Displacement ellipsoid (50%) diagram and atom numbering scheme for (5). The N—H⋯O contact is shown in red and the N—H⋯Cl contact is shown in green.

A comparison of selected bond lengths and bond angles for all five complexes is given in Table 6[link]. The average zinc–chlorine distance of 2.224 (13) Å compares well with the average of 2.22 (2) Å observed for 27 similar four-coordinate ZnCl2L2 complexes (with L = carbonyl oxygen donating ligand) found in a search of the CSD (Version 5.42, May 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). A similar agreement is found for the zinc–oxygen distance with both averages at 1.98 (2) Å. The bond angles in the complexes in this study display an average Cl—Zn—Cl angle of 117 (5)° and an average O—Zn—O angle of 101 (3)°, again quite close to the average angles of 119 (4) and 100 (7)° for the set of comparable mol­ecules.

Table 6
Selected bond lengths and angles (Å, °) for compounds (1) through (5)

Compound R / position Zn—Cl1 Zn—Cl2 Zn—O1 Zn—O2 Cl—Zn—Cl O—Zn—O
(1)a H 2.2294 (4) 2.2118 (4) 1.9653 (12) 2.0040 (13) 113.726 (18) 99.75 (5)
(1)b H 2.2361 (4) 2.2107 (4) 1.9632 (12) 2.0089 (13) 114.034 (18) 101.44 (5)
(2) CH3 / ortho 2.2340 (4) 2.1947 (5) 2.0169 (13) 1.9781 (11) 125.120 (19) 103.92 (5)
(3)c CH3 / meta 2.2341 (4) 2.2341 (4) 1.9652 (10) 1.9652 (10) 121.25 (2) 96.12 (6)
(4) CH3 / para 2.2166 (5) 2.2170 (5) 1.9592 (12) 2.0191 (11) 115.836 (17) 101.98 (5)
(5) OH / para 2.2347 (11) 2.2305 (11) 1.980 (3) 1.954 (3) 112.84 (4) 101.21 (12)
Notes: (a) mol­ecule 1; (b) mol­ecule 2; (c) O1/O2 and Cl1/Cl2 related by symmetry.

3. Supra­molecular features

Each compound displays a unique hydrogen-bonding network, consisting primarily of N—H⋯O and N—H⋯Cl inter­actions, summarized in Table 1[link] through 5. In addition to four intra­molecular hydrogen bonds, compound (1) forms four N—H⋯Cl inter­molecular hydrogen bonds (two from each independent mol­ecule), forming an extended network as shown in Fig. 6[link] and summarized in Table 1[link]. Compound (2) also utilizes N—H bonds in hydrogen-bonding inter­actions, two intra­molecular and two inter­molecular, to form layers within the structure (see Fig. 7[link] and Table 2[link]). Only inter­molecular N—H⋯Cl hydrogen bonds are found in compound (3) (shown in Fig. 8[link], two inter­actions per asymmetric unit, four per mol­ecule, see Table 3[link]) and they combine to form chains that run parallel to the c axis. Compound (4) forms two N—H⋯Cl inter­molecular contacts in addition to the two intra­molecular hydrogen bonds, resulting in a complex set of layers that run perpendicular to the b axis (see Fig. 9[link] and Table 4[link]). The addition of the 4-hy­droxy group in compound (5) results in the greatest number of hydrogen bonds among this set of complexes, as shown in Fig. 10[link] and summarized in Table 5[link], with two N—H⋯Cl and three O—H⋯Cl inter­molecular inter­actions per mol­ecule.

Table 3
Hydrogen-bond geometry (Å, °) for (3)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1i 0.85 (2) 2.56 (2) 3.2854 (13) 145 (2)
N1—H1B⋯Cl1ii 0.85 (2) 2.52 (2) 3.2979 (13) 153 (2)
Symmetry codes: (i) [x, -y+1, z-{\script{1\over 2}}]; (ii) [x, y, z-1].
[Figure 6]
Figure 6
Packing diagram of (1) (viewed along b) showing N—H⋯O contacts (red) and N—H⋯Cl contacts (green).
[Figure 7]
Figure 7
Packing diagram of (2) (viewed along b) showing N—H⋯O contacts (red) and N—H⋯Cl contacts (green).
[Figure 8]
Figure 8
Packing diagram of (3) (viewed along [101]) showing N—H⋯Cl contacts (green). The minor component of the disordered methyl group is not shown for clarity.
[Figure 9]
Figure 9
Packing diagram of (4) (viewed along a) showing N—H⋯O contacts (red) and N—H⋯Cl contacts (green).
[Figure 10]
Figure 10
Packing diagram of (5) (viewed along a) showing N—H⋯O contacts (red) and N—H⋯Cl contacts (green).

Compounds (1), (3), and (5) form ππ inter­actions between the benzene rings of the benzamide or tolu­amide groups as summarized in Table 7[link]. No significant ππ inter­actions were found for compounds (2) or (4).

Table 7
Summary of π–π inter­actions (Å, °) in compounds (1), (3), and (5)

α is the dihedral angle between planes. Cg is the centroid of the benzene ring of the benzamide or tolu­amide mol­ecule.

Compound Ring i Ring j CgCg distance α
(1) 1 4i 3.9522 (11) 8.76 (9)
(1) 1 4ii 3.8781 (11) 8.76 (9)
(1) 3 2iii 3.8195 (10) 6.27 (8)
(3) 1 1iv 3.7770 (10) 6.86 (7)
(5) 1 2v 3.760 (3) 8.0 (2)
Symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) 1 − x, 2 − y, 1 − z; (iii) [{3\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] − z; (iv) 1 − x, y, [{1\over 2}] − z; (v) −[{1\over 2}] + x, [{3\over 2}] − y, [{1\over 2}] + z.

4. Database survey

A search of the CSD (Version 5.42, May 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) produced a relatively small number of amide-coordinated zinc(II)chloride complexes. One of the earliest is a di­chlorido­bis­(dma)zinc(II) complex (CSD refcode: DMAMZN10; Herceg & Fischer, 1974[Herceg, M. & Fischer, J. (1974). Acta Cryst. B30, 1289-1293.]; dma = N,N-di­methyl­acetamide). The similar di­chlorido­bis­(dmf)zinc(II) (KOBWIH; Suzuki et al., 1991[Suzuki, H., Fukushima, N., Ishiguro, S., Masuda, H. & Ohtaki, H. (1991). Acta Cryst. C47, 1838-1842.]; dmf = N,N-di­methyl­formamide) has also been reported. Edwards et al. (1999[Edwards, R. A., Gladkikh, O. P., Nieuwenhuyzen, M. & Wilkins, C. J. (1999). Z. Kristallogr. 214, 111-118.], 1998[Edwards, R. A., Easteal, A. J., Gladkikh, O. P., Robinson, W. T., Turnbull, M. M. & Wilkins, C. J. (1998). Acta Cryst. B54, 663-670.]) investigated the structures of a series of ZnX2L2 complexes that included L = dmf and X = Br and I (FIQBEM, FEXWIO, respectively), the latter of which undergoes a reversible phase transition at 228 K (Edwards et al., 1998[Edwards, R. A., Easteal, A. J., Gladkikh, O. P., Robinson, W. T., Turnbull, M. M. & Wilkins, C. J. (1998). Acta Cryst. B54, 663-670.]). A similar study (Turnbull et al., 2000[Turnbull, M. M., Wikaira, J. L. & Wilkins, C. J. (2000). Z. Kristallogr. 215, 702-706.]) compared the structures of ZnX2(dma)2 where X = Cl, Br, I (DMAMZN11, CAHWEO, CAHWAK, respectively). As part of a larger study, Smirnov et al. (2014[Smirnov, A. S., Butukhanova, E. S., Bokach, N. A., Starova, G. L., Gurzhiy, V. V., Kuznetsov, M. L. & Kukushkin, V. Yu. (2014). Dalton Trans. 43, 15798-15811.]) prepared and crystallographically characterized di­methyl­urea complexes of zinc(II)chloride and zinc(II)bromide (ZZZSAG01, COQXIR) along with bis­(piperidine-1-carboxamide) zinc(II)halide complexes (COQWOW, COQVIP), all of which display intra­molecular N—H⋯O hydrogen bonding similar to that observed in this study.

A number of zinc(II) iodide complexes, ZnI2L2, have been prepared with simple amide ligands, including urea (ACAQAW; Furmanova et al., 2001[Furmanova, N. G., Resnyanskii, V. F., Sulaimankulov, K. S., Zhorobekova, Sh. Zh. & Sulaimankulova, D. K. (2001). Crystallogr. Rep. 46, 51-55.]), acetamide (VIDBOA; Savinkina et al., 2007[Savinkina, E. V., Buravlev, E. A., Zamilatskov, I. A. & Albov, D. V. (2007). Acta Cryst. E63, m1094-m1095.]), and formamide (DIYGUO; Savinkina et al., 2008[Savinkina, E. V., Zamilatskov, I. A., Buravlev, E. A., Albov, D. V. & Tsivadze, A. Yu. (2008). Mendeleev Commun. 18, 92-93.]). Savinkina et al. (2009[Savinkina, E. V., Buravlev, E. A., Zamilatskov, I. A., Albov, D. V., Kravchenko, V. V., Zaitseva, M. G. & Mavrin, B. N. (2009). Z. Anorg. Allg. Chem. 635, 1458-1462.]) have also prepared a series of ZnI2L2 complexes with L = di­methyl­urea (VUCTUJ), thio­acetamide (VUCTOD), and benzamide (VUCVAR).

Three structural studies have prepared zinc(II)chloride complexes with pharmaceutically relevant mol­ecules. Sultana et al. (2016[Sultana, K., Zaib, S., Hassan Khan, N., Khan, I., Shahid, K., Simpson, J. & Iqbal, J. (2016). New J. Chem. 40, 7084-7094.]) prepared bis­(4′-meth­oxy­acetanilide)di­chlorido­zinc(II) (EQIGOC). Di­chlorido­bis­(nicotinamide)­zinc(II) has also been studied (WUKZAD; İde et al., 2002[İde, S., Ataç, A. & Yurdakul, Ş. (2002). J. Mol. Struct. 605, 103-107.]) but differs from the structures in this report in that the two nicotinamide ligands are N-bonded through the ring nitro­gen instead of the amide oxygen. Buol et al. (2020[Buol, X., Robeyns, K., Caro Garrido, C., Tumanov, N., Collard, L., Wouters, J. & Leyssens, T. (2020). Pharmaceutics, 12, 653.]) describe the preparation and crystal structures of co-crystals obtained from the co-crystallization of nefiracetam with zinc(II)chloride, producing two different structures. In one form (CCDC 2010272), the four-coordinate zinc atom binds to one nefiracetam molecule (via the γ-lactam carbonyl), one water molecule, and two chlorido ligands. In the second form (CCDC 2010264), the zinc bonds to one nefiracetam molecule through the γ-lactam and to a second via the amide carbonyl, forming a cyclic zinc dimer.

5. Synthesis and crystallization

All reagents were used as received from the manufacturer. Compounds (1) through (5) were prepared by dissolution of the respective components in various solvents [50:50 v:v ratio of water and ethanol (benzamide, 4-hy­droxy­benzamide), ethanol (o,m,p-tolu­amide)] followed by slow evaporation. In a typical preparation, a 1:1 stoichiometric ratio of benzamide (0.1352 g) and zinc(II) chloride (0.1336 g) was dissolved in approximately 5 mL of a 50:50 v:v ratio of water and ethanol. Slow evaporation of the resulting solution produced single crystals of compound (1).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 8[link]. All hydrogen atoms were located in difference maps.

Table 8
Experimental details

  (1) (2) (3) (4) (5)
Crystal data
Chemical formula [ZnCl2(C7H7NO)2] [ZnCl2(C8H9NO)2] [ZnCl2(C8H9NO)2] [ZnCl2(C8H9NO)2] [ZnCl2(C7H7NO2)2]
Mr 378.54 406.59 406.59 406.59 410.54
Crystal system, space group Monoclinic, P21/n Monoclinic, P21 Monoclinic, C2/c Monoclinic, P21/c Monoclinic, Cc
Temperature (K) 100 100 100 100 100
a, b, c (Å) 20.6241 (11), 7.3309 (4), 20.6485 (11) 7.3802 (3), 8.2491 (3), 14.5953 (5) 13.9452 (11), 18.9742 (16), 7.0651 (6) 6.8376 (4), 17.2694 (9), 14.9856 (7) 7.0532 (6), 21.3776 (17), 11.1181 (9)
β (°) 90.532 (1) 97.852 (1) 108.021 (2) 96.893 (2) 106.477 (2)
V3) 3121.8 (3) 880.23 (6) 1777.7 (3) 1756.73 (16) 1607.5 (2)
Z 8 2 4 4 4
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 1.92 1.71 1.69 1.71 1.88
Crystal size (mm) 0.6 × 0.60 × 0.35 0.5 × 0.16 × 0.11 0.42 × 0.14 × 0.14 0.56 × 0.18 × 0.09 0.15 × 0.09 × 0.07
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD Bruker APEXII CCD Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.558, 0.746 0.478, 0.680 0.620, 0.746 0.629, 0.746 0.673, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 48491, 9668, 9501 20749, 5348, 5135 12177, 2295, 2023 33806, 5376, 4283 17255, 4168, 3809
Rint 0.023 0.025 0.027 0.051 0.042
(sin θ/λ)max−1) 0.718 0.714 0.676 0.715 0.676
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.053, 1.07 0.018, 0.039, 1.00 0.022, 0.059, 1.05 0.031, 0.069, 1.01 0.030, 0.065, 1.05
No. of reflections 9668 5348 2295 5376 4168
No. of parameters 404 223 113 222 227
No. of restraints 8 5 17 4 8
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.43, −0.35 0.31, −0.24 0.39, −0.26 0.46, −0.32 0.46, −0.29
Absolute structure Refined as an inversion twin. Refined as an inversion twin
Absolute structure parameter 0.016 (6) 0.024 (13)
Computer programs: BIS (Bruker, 2020[Bruker (2020). BIS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2020[Bruker (2020). BIS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), CrystalMaker (Palmer, 2020[Palmer, D. C. (2020). CrystalMaker. CrystalMaker Software Ltd, Begbroke, England.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

All carbon-bonded H atoms were placed in idealized positions using a riding model with aromatic C—H = 0.95 Å, methyl C—H = 0.98 Å and Uiso(H) = 1.2Ueq(C) (aromatic) or Uiso(H) = 1.5Ueq(C) (meth­yl). All amide H-atom positions were refined with N—H distances restrained to 0.88 (2) Å and Uiso(H) = 1.5Ueq(N). The hydroxyl H-atom positions in compound (5) were refined with O—H distances restrained to 0.84 (2) Å and Uiso(H) = 1.5Ueq(N).

Compound (1) was refined as a pseudo-merohedral twin (monoclinic mimicking ortho­rhom­bic, since β is close to 90°) with a twin law of (0 0 −1 0 −1 0 −1 0 0) , corresponding to a twofold rotation about the [10[\overline{1}]] axis. The twin ratio refined to 0.4825 (5).

The methyl group in compound (3) was modeled as a disordered methyl group with each set of hydrogen atoms rotated by 60° (AFIX 127). The disorder was identified from multiple peaks near C8 in the difference map. The refined occupancies of the two hydrogen atom sets were 0.54 (2):0.46 (2).

Supporting information


Computing details top

For all structures, data collection: BIS (Bruker, 2020); cell refinement: SAINT (Bruker, 2020); data reduction: SAINT (Bruker, 2020); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: CrystalMaker (Palmer, 2020); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Bis(benzamide-κO)dichloridozinc(II) (1) top
Crystal data top
[ZnCl2(C7H7NO)2]F(000) = 1536
Mr = 378.54Dx = 1.611 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 20.6241 (11) ÅCell parameters from 9702 reflections
b = 7.3309 (4) Åθ = 6.8–30.5°
c = 20.6485 (11) ŵ = 1.92 mm1
β = 90.532 (1)°T = 100 K
V = 3121.8 (3) Å3Block, clear light colourless
Z = 80.6 × 0.60 × 0.35 mm
Data collection top
Bruker APEXII CCD
diffractometer
9668 independent reflections
Radiation source: sealed tube9501 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 8 pixels mm-1θmax = 30.7°, θmin = 1.0°
ω and φ scansh = 2927
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1010
Tmin = 0.558, Tmax = 0.746l = 2929
48491 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.022H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.053 w = 1/[σ2(Fo2) + (0.0256P)2 + 1.2394P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.002
9668 reflectionsΔρmax = 0.43 e Å3
404 parametersΔρmin = 0.34 e Å3
8 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn1A0.62741 (2)0.74478 (4)0.34018 (2)0.01179 (4)
Cl1A0.69397 (2)0.97842 (5)0.36146 (2)0.01636 (7)
Cl2A0.66272 (2)0.47923 (6)0.37699 (2)0.02204 (9)
O1A0.53865 (6)0.78998 (17)0.36973 (6)0.0163 (2)
O2A0.61465 (6)0.73870 (17)0.24363 (6)0.0163 (2)
N1A0.48113 (7)0.8093 (2)0.27621 (8)0.0217 (3)
H1AA0.5138 (10)0.785 (4)0.2536 (12)0.033*
H1AB0.4458 (10)0.824 (3)0.2534 (11)0.033*
N2A0.71341 (7)0.8269 (2)0.21095 (7)0.0189 (3)
H2AA0.7218 (12)0.869 (3)0.2497 (9)0.028*
H2AB0.7417 (10)0.851 (3)0.1825 (10)0.028*
C1A0.42560 (7)0.8246 (2)0.37895 (8)0.0138 (3)
C2A0.36411 (9)0.7932 (2)0.35252 (10)0.0188 (3)
H2A0.3593160.7612800.3081430.023*
C3A0.30976 (9)0.8092 (3)0.39175 (11)0.0251 (4)
H3A0.2676890.7887390.3740690.030*
C4A0.31709 (9)0.8548 (3)0.45663 (10)0.0257 (4)
H4A0.2798530.8652960.4831130.031*
C5A0.37808 (9)0.8854 (3)0.48331 (9)0.0245 (4)
H5A0.3827680.9166050.5277690.029*
C6A0.43205 (8)0.8700 (2)0.44430 (8)0.0188 (3)
H6A0.4739930.8905560.4622610.023*
C7A0.48516 (7)0.8061 (2)0.34012 (8)0.0137 (3)
C8A0.63351 (8)0.7328 (2)0.13053 (8)0.0129 (3)
C9A0.67309 (8)0.7703 (2)0.07743 (8)0.0156 (3)
H9A0.7157960.8154240.0842310.019*
C10A0.64995 (9)0.7416 (2)0.01464 (9)0.0190 (3)
H10A0.6769120.7670830.0212950.023*
C11A0.58777 (9)0.6760 (2)0.00452 (8)0.0201 (3)
H11A0.5721420.6561930.0383270.024*
C12A0.54825 (8)0.6391 (2)0.05687 (8)0.0201 (3)
H12A0.5054400.5953210.0496430.024*
C13A0.57073 (8)0.6657 (2)0.11984 (8)0.0163 (3)
H13A0.5436060.6384740.1554970.020*
C14A0.65448 (8)0.7671 (2)0.19832 (8)0.0129 (3)
Zn1B0.83932 (2)0.71554 (2)0.62742 (2)0.01256 (4)
Cl1B0.86157 (2)0.48139 (6)0.69283 (2)0.01790 (8)
Cl2B0.87722 (2)0.97969 (6)0.66307 (2)0.02414 (8)
O1B0.86683 (6)0.67828 (17)0.53751 (6)0.0176 (2)
O2B0.74288 (6)0.71225 (17)0.61469 (6)0.0171 (2)
N1B0.77974 (8)0.7747 (2)0.48074 (8)0.0190 (3)
H1BA0.7583 (12)0.791 (3)0.5147 (10)0.028*
H1BB0.7610 (11)0.815 (3)0.4453 (9)0.028*
N2B0.71169 (7)0.6279 (2)0.71506 (7)0.0201 (3)
H2BA0.7511 (8)0.612 (3)0.7260 (11)0.030*
H2BB0.6836 (10)0.585 (3)0.7407 (10)0.030*
C1B0.87943 (7)0.7032 (2)0.42412 (8)0.0134 (3)
C2B0.85410 (10)0.7395 (2)0.36242 (9)0.0191 (3)
H2B0.8100460.7750750.3573950.023*
C3B0.89345 (10)0.7234 (3)0.30844 (9)0.0231 (4)
H3B0.8762660.7477260.2664780.028*
C4B0.95793 (9)0.6716 (3)0.31582 (9)0.0229 (3)
H4B0.9849450.6614510.2789840.028*
C5B0.98268 (8)0.6349 (2)0.37696 (9)0.0221 (3)
H5B1.0267220.5990790.3817920.027*
C6B0.94395 (7)0.6499 (2)0.43130 (8)0.0165 (3)
H6B0.9612890.6239940.4730790.020*
C7B0.84054 (8)0.7192 (2)0.48449 (8)0.0133 (3)
C8B0.63040 (7)0.6729 (2)0.63094 (8)0.0135 (3)
C9B0.57871 (8)0.6850 (2)0.67379 (8)0.0176 (3)
H9B0.5865000.6974990.7189860.021*
C10B0.51568 (8)0.6786 (3)0.64956 (8)0.0189 (3)
H10B0.4800960.6872010.6782860.023*
C11B0.50456 (8)0.6597 (2)0.58355 (8)0.0196 (3)
H11B0.4613300.6559440.5673210.024*
C12B0.55602 (8)0.6463 (3)0.54103 (8)0.0197 (3)
H12B0.5481410.6327350.4958820.024*
C13B0.61889 (8)0.6528 (2)0.56485 (8)0.0164 (3)
H13B0.6543230.6436230.5359590.020*
C14B0.69873 (8)0.6727 (2)0.65418 (8)0.0151 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn1A0.00847 (10)0.01580 (8)0.01112 (10)0.00076 (6)0.00080 (5)0.00048 (6)
Cl1A0.01556 (17)0.01763 (16)0.01590 (17)0.00279 (13)0.00038 (13)0.00214 (13)
Cl2A0.01553 (18)0.02015 (18)0.0306 (2)0.00577 (13)0.00699 (15)0.00859 (15)
O1A0.0097 (5)0.0253 (6)0.0139 (5)0.0034 (4)0.0001 (4)0.0007 (4)
O2A0.0124 (6)0.0253 (6)0.0112 (6)0.0021 (4)0.0016 (4)0.0004 (4)
N1A0.0101 (6)0.0408 (9)0.0143 (7)0.0017 (6)0.0003 (5)0.0039 (6)
N2A0.0108 (6)0.0342 (8)0.0118 (6)0.0019 (5)0.0012 (4)0.0034 (5)
C1A0.0101 (6)0.0145 (7)0.0169 (7)0.0014 (5)0.0035 (5)0.0027 (5)
C2A0.0098 (8)0.0244 (8)0.0221 (9)0.0006 (6)0.0017 (6)0.0051 (7)
C3A0.0095 (7)0.0296 (9)0.0362 (11)0.0009 (6)0.0040 (7)0.0075 (8)
C4A0.0174 (8)0.0252 (9)0.0348 (10)0.0037 (7)0.0140 (7)0.0029 (7)
C5A0.0230 (8)0.0269 (9)0.0238 (8)0.0021 (7)0.0106 (6)0.0049 (7)
C6A0.0143 (7)0.0217 (8)0.0206 (8)0.0018 (6)0.0041 (6)0.0027 (6)
C7A0.0095 (6)0.0150 (7)0.0166 (7)0.0007 (5)0.0020 (5)0.0014 (5)
C8A0.0122 (7)0.0160 (7)0.0104 (6)0.0026 (5)0.0005 (5)0.0011 (5)
C9A0.0127 (7)0.0215 (8)0.0125 (7)0.0033 (5)0.0017 (5)0.0002 (5)
C10A0.0198 (8)0.0233 (8)0.0140 (7)0.0062 (6)0.0012 (6)0.0000 (6)
C11A0.0231 (8)0.0223 (8)0.0149 (7)0.0043 (6)0.0027 (6)0.0039 (6)
C12A0.0189 (7)0.0218 (8)0.0194 (8)0.0022 (6)0.0035 (6)0.0047 (6)
C13A0.0165 (7)0.0178 (7)0.0146 (7)0.0012 (6)0.0006 (5)0.0022 (5)
C14A0.0108 (7)0.0166 (7)0.0114 (7)0.0024 (5)0.0002 (5)0.0000 (5)
Zn1B0.01035 (10)0.01706 (8)0.01029 (10)0.00033 (6)0.00080 (6)0.00034 (6)
Cl1B0.01485 (17)0.01905 (17)0.01981 (19)0.00226 (12)0.00040 (14)0.00404 (13)
Cl2B0.0299 (2)0.02135 (17)0.0213 (2)0.00772 (15)0.00810 (15)0.00662 (14)
O1B0.0148 (5)0.0277 (6)0.0103 (5)0.0031 (5)0.0004 (4)0.0016 (4)
O2B0.0104 (6)0.0269 (6)0.0140 (6)0.0009 (4)0.0028 (4)0.0032 (4)
N1B0.0126 (7)0.0326 (8)0.0117 (7)0.0026 (5)0.0015 (5)0.0016 (5)
N2B0.0114 (6)0.0358 (8)0.0130 (6)0.0005 (6)0.0010 (5)0.0033 (6)
C1B0.0126 (7)0.0150 (7)0.0126 (7)0.0014 (5)0.0023 (5)0.0019 (5)
C2B0.0194 (9)0.0240 (8)0.0139 (8)0.0010 (6)0.0000 (6)0.0001 (6)
C3B0.0279 (10)0.0283 (9)0.0133 (8)0.0025 (7)0.0047 (7)0.0015 (6)
C4B0.0282 (9)0.0234 (8)0.0173 (8)0.0013 (7)0.0108 (6)0.0004 (6)
C5B0.0186 (8)0.0254 (8)0.0225 (8)0.0015 (6)0.0077 (6)0.0033 (6)
C6B0.0133 (7)0.0197 (7)0.0164 (7)0.0011 (6)0.0030 (5)0.0017 (6)
C7B0.0120 (7)0.0158 (7)0.0120 (7)0.0023 (5)0.0016 (5)0.0029 (5)
C8B0.0108 (6)0.0152 (7)0.0146 (7)0.0008 (5)0.0002 (5)0.0013 (5)
C9B0.0140 (7)0.0224 (8)0.0163 (8)0.0008 (6)0.0013 (6)0.0035 (6)
C10B0.0108 (7)0.0268 (8)0.0191 (8)0.0014 (6)0.0032 (5)0.0036 (6)
C11B0.0120 (7)0.0252 (8)0.0216 (8)0.0039 (6)0.0030 (6)0.0002 (6)
C12B0.0166 (7)0.0282 (9)0.0142 (7)0.0051 (6)0.0021 (5)0.0003 (6)
C13B0.0143 (7)0.0198 (7)0.0151 (7)0.0029 (6)0.0011 (5)0.0008 (6)
C14B0.0129 (7)0.0176 (7)0.0147 (7)0.0009 (6)0.0023 (5)0.0015 (6)
Geometric parameters (Å, º) top
Zn1A—Cl1A2.2361 (4)Zn1B—Cl1B2.2294 (4)
Zn1A—Cl2A2.2107 (4)Zn1B—Cl2B2.2118 (4)
Zn1A—O1A1.9632 (12)Zn1B—O1B1.9653 (12)
Zn1A—O2A2.0089 (13)Zn1B—O2B2.0040 (13)
O1A—C7A1.2618 (19)O1B—C7B1.254 (2)
O2A—C14A1.268 (2)O2B—C14B1.2617 (19)
N1A—H1AA0.842 (16)N1B—H1BA0.842 (16)
N1A—H1AB0.871 (16)N1B—H1BB0.876 (16)
N1A—C7A1.322 (2)N1B—C7B1.320 (2)
N2A—H2AA0.874 (16)N2B—H2BA0.850 (16)
N2A—H2AB0.851 (16)N2B—H2BB0.848 (16)
N2A—C14A1.316 (2)N2B—C14B1.324 (2)
C1A—C2A1.395 (2)C1B—C2B1.398 (2)
C1A—C6A1.395 (2)C1B—C6B1.393 (2)
C1A—C7A1.479 (2)C1B—C7B1.493 (2)
C2A—H2A0.9500C2B—H2B0.9500
C2A—C3A1.394 (3)C2B—C3B1.390 (3)
C3A—H3A0.9500C3B—H3B0.9500
C3A—C4A1.388 (3)C3B—C4B1.390 (3)
C4A—H4A0.9500C4B—H4B0.9500
C4A—C5A1.387 (3)C4B—C5B1.384 (3)
C5A—H5A0.9500C5B—H5B0.9500
C5A—C6A1.385 (2)C5B—C6B1.388 (2)
C6A—H6A0.9500C6B—H6B0.9500
C8A—C9A1.400 (2)C8B—C9B1.394 (2)
C8A—C13A1.401 (2)C8B—C13B1.391 (2)
C8A—C14A1.483 (2)C8B—C14B1.485 (2)
C9A—H9A0.9500C9B—H9B0.9500
C9A—C10A1.394 (2)C9B—C10B1.389 (2)
C10A—H10A0.9500C10B—H10B0.9500
C10A—C11A1.384 (3)C10B—C11B1.387 (2)
C11A—H11A0.9500C11B—H11B0.9500
C11A—C12A1.386 (2)C11B—C12B1.387 (2)
C12A—H12A0.9500C12B—H12B0.9500
C12A—C13A1.390 (2)C12B—C13B1.383 (2)
C13A—H13A0.9500C13B—H13B0.9500
Cl2A—Zn1A—Cl1A114.035 (18)Cl2B—Zn1B—Cl1B113.726 (18)
O1A—Zn1A—Cl1A112.47 (4)O1B—Zn1B—Cl1B113.93 (4)
O1A—Zn1A—Cl2A110.29 (4)O1B—Zn1B—Cl2B109.38 (4)
O1A—Zn1A—O2A101.44 (5)O1B—Zn1B—O2B99.75 (5)
O2A—Zn1A—Cl1A106.65 (4)O2B—Zn1B—Cl1B105.59 (4)
O2A—Zn1A—Cl2A111.18 (4)O2B—Zn1B—Cl2B113.67 (4)
C7A—O1A—Zn1A132.74 (11)C7B—O1B—Zn1B131.70 (11)
C14A—O2A—Zn1A130.46 (11)C14B—O2B—Zn1B129.74 (12)
H1AA—N1A—H1AB113 (3)H1BA—N1B—H1BB115 (3)
C7A—N1A—H1AA120 (2)C7B—N1B—H1BA120.1 (18)
C7A—N1A—H1AB125.9 (18)C7B—N1B—H1BB124.4 (17)
H2AA—N2A—H2AB115 (2)H2BA—N2B—H2BB116 (2)
C14A—N2A—H2AA118.3 (16)C14B—N2B—H2BA118.1 (17)
C14A—N2A—H2AB124.9 (16)C14B—N2B—H2BB123.5 (16)
C2A—C1A—C7A121.96 (15)C2B—C1B—C7B123.15 (15)
C6A—C1A—C2A119.73 (15)C6B—C1B—C2B119.91 (15)
C6A—C1A—C7A118.29 (14)C6B—C1B—C7B116.94 (14)
C1A—C2A—H2A120.3C1B—C2B—H2B120.0
C3A—C2A—C1A119.46 (19)C3B—C2B—C1B119.91 (18)
C3A—C2A—H2A120.3C3B—C2B—H2B120.0
C2A—C3A—H3A120.0C2B—C3B—H3B120.0
C4A—C3A—C2A120.01 (18)C2B—C3B—C4B120.03 (18)
C4A—C3A—H3A120.0C4B—C3B—H3B120.0
C3A—C4A—H4A119.6C3B—C4B—H4B120.1
C5A—C4A—C3A120.86 (16)C5B—C4B—C3B119.84 (16)
C5A—C4A—H4A119.6C5B—C4B—H4B120.1
C4A—C5A—H5A120.4C4B—C5B—H5B119.6
C6A—C5A—C4A119.12 (18)C4B—C5B—C6B120.80 (16)
C6A—C5A—H5A120.4C6B—C5B—H5B119.6
C1A—C6A—H6A119.6C1B—C6B—H6B120.3
C5A—C6A—C1A120.81 (16)C5B—C6B—C1B119.50 (16)
C5A—C6A—H6A119.6C5B—C6B—H6B120.3
O1A—C7A—N1A122.15 (15)O1B—C7B—N1B121.88 (15)
O1A—C7A—C1A118.20 (15)O1B—C7B—C1B118.61 (14)
N1A—C7A—C1A119.64 (14)N1B—C7B—C1B119.51 (15)
C9A—C8A—C13A119.37 (15)C9B—C8B—C14B121.61 (14)
C9A—C8A—C14A122.60 (15)C13B—C8B—C9B120.32 (15)
C13A—C8A—C14A117.99 (14)C13B—C8B—C14B118.02 (14)
C8A—C9A—H9A119.9C8B—C9B—H9B120.4
C10A—C9A—C8A120.11 (16)C10B—C9B—C8B119.19 (16)
C10A—C9A—H9A119.9C10B—C9B—H9B120.4
C9A—C10A—H10A119.9C9B—C10B—H10B119.9
C11A—C10A—C9A120.13 (17)C11B—C10B—C9B120.19 (16)
C11A—C10A—H10A119.9C11B—C10B—H10B119.9
C10A—C11A—H11A120.0C10B—C11B—H11B119.7
C10A—C11A—C12A120.05 (16)C10B—C11B—C12B120.57 (15)
C12A—C11A—H11A120.0C12B—C11B—H11B119.7
C11A—C12A—H12A119.7C11B—C12B—H12B120.2
C11A—C12A—C13A120.57 (16)C13B—C12B—C11B119.51 (16)
C13A—C12A—H12A119.7C13B—C12B—H12B120.2
C8A—C13A—H13A120.1C8B—C13B—H13B119.9
C12A—C13A—C8A119.76 (15)C12B—C13B—C8B120.22 (15)
C12A—C13A—H13A120.1C12B—C13B—H13B119.9
O2A—C14A—N2A120.79 (15)O2B—C14B—N2B122.02 (15)
O2A—C14A—C8A118.92 (15)O2B—C14B—C8B118.66 (15)
N2A—C14A—C8A120.29 (14)N2B—C14B—C8B119.31 (14)
Zn1A—O1A—C7A—N1A6.1 (2)Zn1B—O1B—C7B—N1B11.6 (2)
Zn1A—O1A—C7A—C1A174.83 (11)Zn1B—O1B—C7B—C1B168.80 (11)
Zn1A—O2A—C14A—N2A7.2 (2)Zn1B—O2B—C14B—N2B1.6 (3)
Zn1A—O2A—C14A—C8A173.10 (10)Zn1B—O2B—C14B—C8B177.09 (11)
C1A—C2A—C3A—C4A0.4 (3)C1B—C2B—C3B—C4B0.1 (3)
C2A—C1A—C6A—C5A0.4 (3)C2B—C1B—C6B—C5B0.6 (2)
C2A—C1A—C7A—O1A162.09 (15)C2B—C1B—C7B—O1B177.76 (15)
C2A—C1A—C7A—N1A18.8 (2)C2B—C1B—C7B—N1B1.9 (2)
C2A—C3A—C4A—C5A0.1 (3)C2B—C3B—C4B—C5B0.5 (3)
C3A—C4A—C5A—C6A0.0 (3)C3B—C4B—C5B—C6B0.3 (3)
C4A—C5A—C6A—C1A0.1 (3)C4B—C5B—C6B—C1B0.3 (3)
C6A—C1A—C2A—C3A0.5 (3)C6B—C1B—C2B—C3B0.4 (3)
C6A—C1A—C7A—O1A16.1 (2)C6B—C1B—C7B—O1B2.4 (2)
C6A—C1A—C7A—N1A162.95 (16)C6B—C1B—C7B—N1B177.91 (15)
C7A—C1A—C2A—C3A178.72 (16)C7B—C1B—C2B—C3B179.38 (16)
C7A—C1A—C6A—C5A178.66 (16)C7B—C1B—C6B—C5B179.20 (15)
C8A—C9A—C10A—C11A0.0 (2)C8B—C9B—C10B—C11B0.2 (3)
C9A—C8A—C13A—C12A0.7 (2)C9B—C8B—C13B—C12B0.5 (3)
C9A—C8A—C14A—O2A176.29 (15)C9B—C8B—C14B—O2B160.50 (16)
C9A—C8A—C14A—N2A3.4 (2)C9B—C8B—C14B—N2B20.8 (3)
C9A—C10A—C11A—C12A0.2 (3)C9B—C10B—C11B—C12B0.2 (3)
C10A—C11A—C12A—C13A0.7 (3)C10B—C11B—C12B—C13B0.3 (3)
C11A—C12A—C13A—C8A0.9 (3)C11B—C12B—C13B—C8B0.0 (3)
C13A—C8A—C9A—C10A0.2 (2)C13B—C8B—C9B—C10B0.6 (3)
C13A—C8A—C14A—O2A1.6 (2)C13B—C8B—C14B—O2B22.1 (2)
C13A—C8A—C14A—N2A178.73 (15)C13B—C8B—C14B—N2B156.62 (16)
C14A—C8A—C9A—C10A177.62 (15)C14B—C8B—C9B—C10B177.92 (16)
C14A—C8A—C13A—C12A177.25 (15)C14B—C8B—C13B—C12B177.94 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1AA···O2A0.84 (2)2.12 (2)2.888 (2)152 (3)
N1A—H1AB···Cl1Bi0.87 (2)2.56 (2)3.3644 (15)153 (2)
N2A—H2AA···Cl1A0.87 (2)2.51 (2)3.3281 (15)155 (2)
N2A—H2AB···Cl2Aii0.85 (2)2.51 (2)3.3404 (15)164 (2)
N1B—H1BA···O2B0.84 (2)2.17 (2)2.911 (2)147 (2)
N1B—H1BB···Cl1A0.88 (2)2.51 (2)3.3682 (16)167 (2)
N2B—H2BA···Cl1B0.85 (2)2.57 (2)3.3085 (15)146 (2)
N2B—H2BB···Cl2Biii0.85 (2)2.48 (2)3.3107 (15)165 (2)
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x+3/2, y+1/2, z+1/2; (iii) x+3/2, y1/2, z+3/2.
Dichloridobis(2-methylbenzamide-κO)zinc(II) (2) top
Crystal data top
[ZnCl2(C8H9NO)2]F(000) = 416
Mr = 406.59Dx = 1.534 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 7.3802 (3) ÅCell parameters from 9884 reflections
b = 8.2491 (3) Åθ = 2.8–30.5°
c = 14.5953 (5) ŵ = 1.71 mm1
β = 97.852 (1)°T = 100 K
V = 880.23 (6) Å3Needle, clear light colourless
Z = 20.5 × 0.16 × 0.11 mm
Data collection top
Bruker APEXII CCD
diffractometer
5348 independent reflections
Radiation source: sealed tube5135 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 8 pixels mm-1θmax = 30.5°, θmin = 2.8°
ω and φ scansh = 1010
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1111
Tmin = 0.478, Tmax = 0.680l = 2020
20749 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.018 w = 1/[σ2(Fo2) + (0.0078P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.039(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.31 e Å3
5348 reflectionsΔρmin = 0.24 e Å3
223 parametersAbsolute structure: Refined as an inversion twin.
5 restraintsAbsolute structure parameter: 0.016 (6)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.65448 (2)0.68146 (2)0.17755 (2)0.01057 (5)
Cl10.47230 (6)0.60339 (6)0.05028 (3)0.01680 (9)
Cl20.81306 (6)0.90729 (5)0.19165 (3)0.01797 (10)
O10.85119 (17)0.51161 (15)0.20425 (9)0.0127 (2)
O20.51677 (14)0.66731 (18)0.28443 (8)0.0146 (2)
N10.7092 (2)0.28760 (19)0.14025 (13)0.0191 (4)
H1A0.719 (3)0.190 (3)0.1287 (15)0.029*
H1B0.616 (3)0.340 (3)0.1134 (17)0.029*
N20.2228 (2)0.64887 (18)0.21691 (10)0.0143 (3)
H2A0.253 (3)0.665 (3)0.1637 (13)0.021*
H2B0.114 (3)0.627 (3)0.2209 (15)0.021*
C11.0259 (2)0.2690 (2)0.20486 (12)0.0104 (3)
C21.1130 (2)0.1966 (2)0.13538 (11)0.0133 (3)
C31.2723 (2)0.1092 (2)0.16300 (13)0.0169 (4)
H31.3345360.0605130.1172180.020*
C41.3429 (2)0.0912 (2)0.25546 (13)0.0177 (4)
H41.4512120.0298170.2723820.021*
C51.2548 (2)0.1629 (3)0.32327 (12)0.0163 (4)
H51.3017110.1496910.3867460.020*
C61.0978 (2)0.2542 (2)0.29786 (12)0.0128 (3)
H61.0394300.3065260.3438970.015*
C70.8535 (2)0.3634 (2)0.18179 (12)0.0109 (3)
C81.0403 (3)0.2111 (3)0.03369 (13)0.0230 (5)
H8A1.1395560.1907590.0031260.034*
H8B0.9916350.3204240.0207370.034*
H8C0.9427540.1313220.0175680.034*
C90.2906 (2)0.6074 (2)0.38067 (11)0.0112 (3)
C100.3975 (2)0.5094 (2)0.44575 (12)0.0136 (3)
C110.3296 (3)0.4755 (2)0.52821 (13)0.0176 (4)
H110.3977220.4062990.5721770.021*
C120.1661 (3)0.5397 (2)0.54805 (13)0.0181 (4)
H120.1245880.5159560.6053760.022*
C130.0628 (2)0.6389 (2)0.48400 (13)0.0165 (4)
H130.0490350.6840500.4975030.020*
C140.1242 (2)0.6717 (3)0.40001 (11)0.0135 (3)
H140.0530150.7379650.3555400.016*
C150.3493 (2)0.64320 (19)0.28939 (12)0.0113 (3)
C160.5780 (3)0.4348 (2)0.42876 (14)0.0190 (4)
H16A0.5635070.3839110.3675180.029*
H16B0.6154330.3527570.4761570.029*
H16C0.6716730.5195490.4316460.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.00830 (8)0.01066 (9)0.01290 (9)0.00019 (8)0.00197 (6)0.00037 (9)
Cl10.01314 (19)0.0252 (2)0.01136 (19)0.00219 (17)0.00077 (14)0.00050 (17)
Cl20.0186 (2)0.01049 (19)0.0251 (2)0.00277 (17)0.00381 (18)0.00124 (18)
O10.0107 (6)0.0098 (6)0.0171 (6)0.0007 (5)0.0001 (5)0.0020 (5)
O20.0082 (5)0.0214 (6)0.0143 (5)0.0029 (6)0.0020 (4)0.0005 (6)
N10.0123 (7)0.0113 (7)0.0318 (10)0.0008 (6)0.0042 (7)0.0047 (7)
N20.0094 (6)0.0219 (9)0.0117 (7)0.0016 (6)0.0021 (5)0.0013 (6)
C10.0093 (7)0.0084 (7)0.0136 (8)0.0015 (6)0.0022 (6)0.0001 (6)
C20.0132 (7)0.0134 (8)0.0138 (7)0.0011 (7)0.0036 (6)0.0006 (8)
C30.0145 (8)0.0171 (8)0.0207 (9)0.0013 (7)0.0077 (7)0.0026 (8)
C40.0127 (8)0.0165 (8)0.0237 (10)0.0034 (7)0.0012 (7)0.0018 (8)
C50.0157 (8)0.0168 (9)0.0153 (8)0.0016 (8)0.0015 (6)0.0019 (8)
C60.0128 (8)0.0123 (7)0.0137 (8)0.0016 (6)0.0030 (6)0.0023 (6)
C70.0114 (8)0.0107 (8)0.0108 (8)0.0005 (6)0.0018 (6)0.0016 (6)
C80.0220 (9)0.0320 (13)0.0154 (9)0.0030 (8)0.0043 (7)0.0001 (8)
C90.0099 (7)0.0122 (7)0.0117 (8)0.0036 (6)0.0017 (6)0.0022 (7)
C100.0126 (8)0.0126 (7)0.0147 (8)0.0019 (6)0.0011 (6)0.0009 (7)
C110.0220 (10)0.0150 (8)0.0149 (9)0.0045 (7)0.0008 (7)0.0014 (7)
C120.0224 (10)0.0193 (9)0.0137 (9)0.0072 (7)0.0064 (7)0.0015 (7)
C130.0140 (8)0.0200 (9)0.0164 (8)0.0036 (6)0.0056 (6)0.0041 (7)
C140.0119 (7)0.0138 (7)0.0148 (7)0.0013 (8)0.0015 (5)0.0016 (8)
C150.0113 (7)0.0098 (8)0.0128 (8)0.0000 (5)0.0017 (6)0.0008 (6)
C160.0146 (8)0.0209 (9)0.0212 (10)0.0048 (7)0.0008 (7)0.0036 (8)
Geometric parameters (Å, º) top
Zn1—Cl12.2340 (4)C5—H50.9500
Zn1—Cl22.1947 (5)C5—C61.389 (2)
Zn1—O12.0169 (13)C6—H60.9500
Zn1—O21.9781 (11)C8—H8A0.9800
O1—C71.266 (2)C8—H8B0.9800
O2—C151.2637 (19)C8—H8C0.9800
N1—H1A0.82 (2)C9—C101.405 (2)
N1—H1B0.858 (19)C9—C141.402 (2)
N1—C71.310 (2)C9—C151.486 (2)
N2—H2A0.847 (18)C10—C111.393 (3)
N2—H2B0.836 (18)C10—C161.519 (3)
N2—C151.313 (2)C11—H110.9500
C1—C21.406 (2)C11—C121.384 (3)
C1—C61.394 (2)C12—H120.9500
C1—C71.490 (2)C12—C131.389 (3)
C2—C31.391 (2)C13—H130.9500
C2—C81.512 (2)C13—C141.390 (2)
C3—H30.9500C14—H140.9500
C3—C41.386 (3)C16—H16A0.9800
C4—H40.9500C16—H16B0.9800
C4—C51.389 (3)C16—H16C0.9800
Cl2—Zn1—Cl1125.120 (19)N1—C7—C1118.01 (16)
O1—Zn1—Cl1107.22 (4)C2—C8—H8A109.5
O1—Zn1—Cl2102.18 (4)C2—C8—H8B109.5
O2—Zn1—Cl1108.84 (3)C2—C8—H8C109.5
O2—Zn1—Cl2107.52 (4)H8A—C8—H8B109.5
O2—Zn1—O1103.91 (5)H8A—C8—H8C109.5
C7—O1—Zn1130.95 (12)H8B—C8—H8C109.5
C15—O2—Zn1131.79 (10)C10—C9—C15121.02 (15)
H1A—N1—H1B119 (2)C14—C9—C10120.54 (16)
C7—N1—H1A118.0 (15)C14—C9—C15118.44 (15)
C7—N1—H1B121.5 (16)C9—C10—C16123.15 (16)
H2A—N2—H2B118 (2)C11—C10—C9117.69 (17)
C15—N2—H2A119.8 (14)C11—C10—C16119.12 (16)
C15—N2—H2B121.5 (15)C10—C11—H11119.0
C2—C1—C7121.28 (15)C12—C11—C10122.04 (17)
C6—C1—C2120.96 (16)C12—C11—H11119.0
C6—C1—C7117.75 (16)C11—C12—H12120.0
C1—C2—C8122.60 (16)C11—C12—C13119.91 (18)
C3—C2—C1117.57 (15)C13—C12—H12120.0
C3—C2—C8119.84 (16)C12—C13—H13120.2
C2—C3—H3119.1C12—C13—C14119.52 (18)
C4—C3—C2121.86 (17)C14—C13—H13120.2
C4—C3—H3119.1C9—C14—H14119.9
C3—C4—H4120.1C13—C14—C9120.27 (16)
C3—C4—C5119.86 (17)C13—C14—H14119.9
C5—C4—H4120.1O2—C15—N2122.81 (16)
C4—C5—H5120.2O2—C15—C9119.34 (14)
C4—C5—C6119.70 (16)N2—C15—C9117.86 (15)
C6—C5—H5120.2C10—C16—H16A109.5
C1—C6—H6120.0C10—C16—H16B109.5
C5—C6—C1120.02 (16)C10—C16—H16C109.5
C5—C6—H6120.0H16A—C16—H16B109.5
O1—C7—N1122.80 (17)H16A—C16—H16C109.5
O1—C7—C1119.18 (15)H16B—C16—H16C109.5
Zn1—O1—C7—N16.3 (3)C7—C1—C6—C5177.87 (16)
Zn1—O1—C7—C1174.92 (12)C8—C2—C3—C4179.24 (17)
Zn1—O2—C15—N211.9 (3)C9—C10—C11—C122.2 (3)
Zn1—O2—C15—C9168.30 (12)C10—C9—C14—C130.1 (3)
C1—C2—C3—C40.9 (3)C10—C9—C15—O238.3 (2)
C2—C1—C6—C51.9 (3)C10—C9—C15—N2141.92 (17)
C2—C1—C7—O1119.46 (19)C10—C11—C12—C131.1 (3)
C2—C1—C7—N161.7 (2)C11—C12—C13—C140.6 (3)
C2—C3—C4—C50.7 (3)C12—C13—C14—C91.1 (3)
C3—C4—C5—C60.8 (3)C14—C9—C10—C111.7 (3)
C4—C5—C6—C12.1 (3)C14—C9—C10—C16179.43 (17)
C6—C1—C2—C30.5 (3)C14—C9—C15—O2142.68 (18)
C6—C1—C2—C8179.44 (18)C14—C9—C15—N237.1 (2)
C6—C1—C7—O160.7 (2)C15—C9—C10—C11177.30 (16)
C6—C1—C7—N1118.08 (19)C15—C9—C10—C160.4 (3)
C7—C1—C2—C3179.36 (16)C15—C9—C14—C13178.94 (16)
C7—C1—C2—C80.7 (3)C16—C10—C11—C12179.92 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl2i0.82 (2)2.57 (2)3.2916 (17)147 (2)
N1—H1B···Cl10.86 (2)2.54 (2)3.3077 (17)150 (2)
N2—H2A···Cl10.85 (2)2.52 (2)3.2667 (16)148 (2)
N2—H2B···O1ii0.84 (2)2.14 (2)2.949 (2)163 (2)
Symmetry codes: (i) x, y1, z; (ii) x1, y, z.
Dichloridobis(3-methylbenzamide-κO)zinc(II) (3) top
Crystal data top
[ZnCl2(C8H9NO)2]F(000) = 832
Mr = 406.59Dx = 1.519 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 13.9452 (11) ÅCell parameters from 6211 reflections
b = 18.9742 (16) Åθ = 3.1–28.7°
c = 7.0651 (6) ŵ = 1.69 mm1
β = 108.021 (2)°T = 100 K
V = 1777.7 (3) Å3Needle, clear light colourless
Z = 40.42 × 0.14 × 0.14 mm
Data collection top
Bruker APEXII CCD
diffractometer
2295 independent reflections
Radiation source: sealed tube2023 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 8 pixels mm-1θmax = 28.7°, θmin = 1.9°
ω and φ scansh = 1818
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 2525
Tmin = 0.620, Tmax = 0.746l = 99
12177 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.022H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.0284P)2 + 1.5576P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2295 reflectionsΔρmax = 0.39 e Å3
113 parametersΔρmin = 0.26 e Å3
17 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.5000000.38624 (2)0.7500000.01707 (8)
Cl10.62434 (3)0.44400 (2)0.97242 (5)0.02080 (9)
O10.56261 (8)0.31701 (5)0.61793 (15)0.0204 (2)
N10.61233 (10)0.38460 (7)0.40319 (19)0.0202 (3)
H1A0.5980 (15)0.4225 (9)0.452 (3)0.030*
H1B0.6324 (15)0.3898 (10)0.302 (3)0.030*
C10.62069 (10)0.25740 (7)0.3812 (2)0.0158 (3)
C20.61038 (10)0.19345 (8)0.4691 (2)0.0180 (3)
H20.5886350.1932630.5839650.022*
C30.63116 (12)0.12987 (8)0.3927 (2)0.0221 (3)
C40.66207 (12)0.13155 (8)0.2221 (2)0.0247 (3)
H40.6767880.0886810.1673590.030*
C50.67144 (12)0.19491 (8)0.1323 (2)0.0234 (3)
H50.6918230.1950330.0158590.028*
C60.65141 (11)0.25802 (8)0.2104 (2)0.0187 (3)
H60.6584280.3013800.1488140.022*
C70.59708 (10)0.32279 (7)0.4738 (2)0.0158 (3)
C80.62193 (14)0.06111 (9)0.4921 (3)0.0332 (4)
H8A0.6309210.0694270.6334940.050*0.54 (2)
H8B0.6738090.0283370.4789920.050*0.54 (2)
H8C0.5550470.0408230.4286550.050*0.54 (2)
H8D0.6089310.0229640.3939330.050*0.46 (2)
H8E0.5660420.0640550.5484360.050*0.46 (2)
H8F0.6848040.0515680.5987730.050*0.46 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02315 (13)0.01516 (12)0.01467 (12)0.0000.00842 (9)0.000
Cl10.02732 (19)0.01659 (17)0.01841 (16)0.00333 (13)0.00694 (14)0.00035 (12)
O10.0265 (6)0.0175 (5)0.0197 (5)0.0021 (4)0.0110 (4)0.0008 (4)
N10.0259 (7)0.0152 (6)0.0214 (6)0.0015 (5)0.0099 (5)0.0002 (5)
C10.0121 (6)0.0173 (6)0.0165 (6)0.0004 (5)0.0023 (5)0.0016 (5)
C20.0148 (7)0.0199 (7)0.0184 (6)0.0015 (5)0.0038 (5)0.0002 (5)
C30.0189 (7)0.0171 (7)0.0283 (8)0.0006 (5)0.0046 (6)0.0001 (6)
C40.0234 (8)0.0204 (7)0.0306 (8)0.0008 (6)0.0089 (6)0.0079 (6)
C50.0216 (7)0.0277 (8)0.0233 (7)0.0005 (6)0.0103 (6)0.0057 (6)
C60.0170 (7)0.0196 (7)0.0196 (6)0.0007 (5)0.0058 (5)0.0006 (5)
C70.0130 (6)0.0168 (6)0.0157 (6)0.0004 (5)0.0015 (5)0.0008 (5)
C80.0398 (10)0.0178 (8)0.0439 (10)0.0011 (7)0.0156 (8)0.0039 (7)
Geometric parameters (Å, º) top
Zn1—Cl12.2341 (4)C3—C41.400 (2)
Zn1—Cl1i2.2341 (4)C3—C81.506 (2)
Zn1—O1i1.9652 (10)C4—H40.9500
Zn1—O11.9652 (10)C4—C51.384 (2)
O1—C71.2581 (16)C5—H50.9500
N1—H1A0.847 (15)C5—C61.383 (2)
N1—H1B0.848 (15)C6—H60.9500
N1—C71.3173 (18)C8—H8A0.9800
C1—C21.3906 (19)C8—H8B0.9800
C1—C61.3998 (19)C8—H8C0.9800
C1—C71.4863 (19)C8—H8D0.9800
C2—H20.9500C8—H8E0.9800
C2—C31.388 (2)C8—H8F0.9800
Cl1—Zn1—Cl1i121.25 (2)C5—C6—C1119.36 (14)
O1i—Zn1—Cl1110.86 (3)C5—C6—H6120.3
O1—Zn1—Cl1i110.86 (3)O1—C7—N1122.08 (13)
O1—Zn1—Cl1107.44 (3)O1—C7—C1118.40 (12)
O1i—Zn1—Cl1i107.44 (3)N1—C7—C1119.53 (12)
O1i—Zn1—O196.12 (6)C3—C8—H8A109.5
C7—O1—Zn1131.54 (9)C3—C8—H8B109.5
H1A—N1—H1B114.8 (18)C3—C8—H8C109.5
C7—N1—H1A121.2 (13)C3—C8—H8D109.5
C7—N1—H1B123.8 (13)C3—C8—H8E109.5
C2—C1—C6119.59 (13)C3—C8—H8F109.5
C2—C1—C7117.67 (12)H8A—C8—H8B109.5
C6—C1—C7122.74 (13)H8A—C8—H8C109.5
C1—C2—H2119.3H8A—C8—H8D141.1
C3—C2—C1121.45 (13)H8A—C8—H8E56.3
C3—C2—H2119.3H8A—C8—H8F56.3
C2—C3—C4118.15 (14)H8B—C8—H8C109.5
C2—C3—C8120.88 (15)H8B—C8—H8D56.3
C4—C3—C8120.97 (14)H8B—C8—H8E141.1
C3—C4—H4119.6H8B—C8—H8F56.3
C5—C4—C3120.80 (14)H8C—C8—H8D56.3
C5—C4—H4119.6H8C—C8—H8E56.3
C4—C5—H5119.7H8C—C8—H8F141.1
C6—C5—C4120.65 (14)H8D—C8—H8E109.5
C6—C5—H5119.7H8D—C8—H8F109.5
C1—C6—H6120.3H8E—C8—H8F109.5
Zn1—O1—C7—N112.2 (2)C3—C4—C5—C60.7 (2)
Zn1—O1—C7—C1167.56 (9)C4—C5—C6—C10.5 (2)
C1—C2—C3—C40.7 (2)C6—C1—C2—C30.8 (2)
C1—C2—C3—C8178.60 (15)C6—C1—C7—O1174.61 (13)
C2—C1—C6—C50.3 (2)C6—C1—C7—N15.2 (2)
C2—C1—C7—O14.73 (19)C7—C1—C2—C3179.79 (13)
C2—C1—C7—N1175.49 (13)C7—C1—C6—C5179.60 (13)
C2—C3—C4—C50.1 (2)C8—C3—C4—C5179.35 (15)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1ii0.85 (2)2.56 (2)3.2854 (13)145 (2)
N1—H1B···Cl1iii0.85 (2)2.52 (2)3.2979 (13)153 (2)
Symmetry codes: (ii) x, y+1, z1/2; (iii) x, y, z1.
Dichloridobis(4-methylbenzamide-κO)zinc(II) (4) top
Crystal data top
[ZnCl2(C8H9NO)2]F(000) = 832
Mr = 406.59Dx = 1.537 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.8376 (4) ÅCell parameters from 8511 reflections
b = 17.2694 (9) Åθ = 2.4–30.1°
c = 14.9856 (7) ŵ = 1.71 mm1
β = 96.893 (2)°T = 100 K
V = 1756.73 (16) Å3Needle, clear light colourless
Z = 40.56 × 0.18 × 0.09 mm
Data collection top
Bruker APEXII CCD
diffractometer
5376 independent reflections
Radiation source: sealed tube4283 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 8 pixels mm-1θmax = 30.5°, θmin = 1.8°
ω and φ scansh = 99
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 2424
Tmin = 0.629, Tmax = 0.746l = 2121
33806 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.069 w = 1/[σ2(Fo2) + (0.028P)2 + 0.9244P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
5376 reflectionsΔρmax = 0.46 e Å3
222 parametersΔρmin = 0.32 e Å3
4 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.62040 (3)0.33576 (2)0.90851 (2)0.01257 (6)
Cl10.77285 (6)0.44248 (3)0.96142 (3)0.01698 (9)
Cl20.47211 (6)0.26784 (3)1.00645 (3)0.01897 (9)
O10.80611 (18)0.27132 (8)0.85157 (8)0.0185 (3)
O20.42159 (16)0.36421 (7)0.80292 (7)0.0138 (2)
N10.6780 (2)0.27321 (10)0.70593 (9)0.0173 (3)
H1A0.581 (3)0.3025 (12)0.7182 (14)0.026*
H1B0.679 (3)0.2600 (13)0.6506 (11)0.026*
N20.1956 (2)0.41980 (11)0.87969 (10)0.0227 (4)
H2A0.076 (3)0.4331 (14)0.8844 (16)0.034*
H2B0.275 (3)0.4161 (14)0.9295 (12)0.034*
C10.9836 (2)0.20466 (10)0.75021 (10)0.0121 (3)
C21.1478 (2)0.20012 (10)0.81520 (10)0.0135 (3)
H21.1458410.2250370.8716030.016*
C31.3132 (2)0.15949 (10)0.79764 (11)0.0147 (3)
H31.4242730.1572770.8421840.018*
C41.3201 (2)0.12177 (10)0.71601 (11)0.0140 (3)
C51.1545 (2)0.12644 (10)0.65131 (11)0.0149 (3)
H51.1563870.1011150.5951430.018*
C60.9882 (2)0.16732 (10)0.66776 (10)0.0138 (3)
H60.8775130.1699570.6230500.017*
C70.8142 (2)0.25188 (10)0.77107 (10)0.0130 (3)
C81.4980 (3)0.07558 (11)0.69831 (12)0.0200 (4)
H8A1.4690320.0201890.7021780.030*
H8B1.6093500.0888240.7431540.030*
H8C1.5316080.0876420.6380880.030*
C90.1206 (2)0.40383 (10)0.71921 (10)0.0135 (3)
C100.1505 (2)0.35807 (11)0.64562 (11)0.0153 (3)
H100.2556020.3217470.6502560.018*
C110.0270 (3)0.36541 (11)0.56531 (11)0.0189 (4)
H110.0478050.3333580.5158100.023*
C120.1263 (3)0.41870 (11)0.55606 (12)0.0197 (4)
C130.1537 (3)0.46467 (12)0.62984 (13)0.0250 (4)
H130.2572930.5016430.6248000.030*
C140.0324 (3)0.45754 (11)0.71067 (12)0.0217 (4)
H140.0539240.4893880.7602620.026*
C150.2540 (2)0.39488 (10)0.80440 (10)0.0131 (3)
C160.2596 (3)0.42661 (13)0.46859 (13)0.0276 (4)
H16A0.2200310.3891790.4249750.041*
H16B0.2490330.4791990.4450660.041*
H16C0.3960950.4165770.4789500.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01264 (9)0.01536 (11)0.00929 (8)0.00095 (8)0.00036 (6)0.00125 (7)
Cl10.01717 (18)0.0165 (2)0.01668 (18)0.00171 (16)0.00044 (14)0.00253 (15)
Cl20.01998 (19)0.0250 (2)0.01107 (16)0.00528 (17)0.00144 (14)0.00284 (16)
O10.0177 (6)0.0255 (7)0.0120 (5)0.0070 (5)0.0000 (4)0.0039 (5)
O20.0119 (5)0.0180 (6)0.0111 (5)0.0022 (5)0.0002 (4)0.0012 (4)
N10.0164 (7)0.0238 (9)0.0112 (6)0.0065 (6)0.0008 (5)0.0040 (6)
N20.0158 (7)0.0376 (10)0.0141 (7)0.0066 (7)0.0002 (6)0.0059 (7)
C10.0123 (7)0.0114 (8)0.0123 (7)0.0012 (6)0.0009 (6)0.0002 (6)
C20.0147 (7)0.0146 (9)0.0107 (7)0.0008 (6)0.0006 (6)0.0007 (6)
C30.0133 (7)0.0152 (9)0.0146 (7)0.0004 (6)0.0024 (6)0.0012 (6)
C40.0129 (7)0.0117 (8)0.0177 (7)0.0005 (6)0.0029 (6)0.0010 (6)
C50.0173 (8)0.0140 (9)0.0133 (7)0.0001 (7)0.0018 (6)0.0023 (6)
C60.0141 (7)0.0144 (8)0.0125 (6)0.0001 (6)0.0003 (6)0.0011 (6)
C70.0128 (7)0.0134 (8)0.0126 (7)0.0022 (6)0.0006 (6)0.0007 (6)
C80.0151 (8)0.0196 (10)0.0250 (8)0.0023 (7)0.0012 (7)0.0032 (7)
C90.0127 (7)0.0132 (8)0.0139 (7)0.0006 (6)0.0015 (6)0.0014 (6)
C100.0147 (7)0.0167 (9)0.0140 (7)0.0023 (6)0.0001 (6)0.0011 (6)
C110.0214 (8)0.0213 (10)0.0134 (7)0.0010 (7)0.0010 (6)0.0039 (7)
C120.0194 (8)0.0182 (10)0.0193 (8)0.0021 (7)0.0065 (7)0.0020 (7)
C130.0219 (9)0.0201 (10)0.0301 (10)0.0084 (8)0.0088 (8)0.0032 (8)
C140.0221 (9)0.0195 (10)0.0218 (8)0.0060 (7)0.0040 (7)0.0064 (7)
C150.0132 (7)0.0130 (8)0.0128 (7)0.0016 (6)0.0001 (6)0.0014 (6)
C160.0282 (10)0.0273 (11)0.0237 (9)0.0014 (8)0.0121 (8)0.0023 (8)
Geometric parameters (Å, º) top
Zn1—Cl12.2166 (5)C5—H50.9500
Zn1—Cl22.2170 (5)C5—C61.385 (2)
Zn1—O11.9592 (12)C6—H60.9500
Zn1—O22.0191 (11)C8—H8A0.9800
O1—C71.2599 (19)C8—H8B0.9800
O2—C151.265 (2)C8—H8C0.9800
N1—H1A0.869 (16)C9—C101.392 (2)
N1—H1B0.861 (15)C9—C141.393 (2)
N1—C71.318 (2)C9—C151.485 (2)
N2—H2A0.858 (16)C10—H100.9500
N2—H2B0.871 (16)C10—C111.391 (2)
N2—C151.313 (2)C11—H110.9500
C1—C21.398 (2)C11—C121.389 (3)
C1—C61.397 (2)C12—C131.392 (3)
C1—C71.480 (2)C12—C161.510 (2)
C2—H20.9500C13—H130.9500
C2—C31.382 (2)C13—C141.389 (2)
C3—H30.9500C14—H140.9500
C3—C41.392 (2)C16—H16A0.9800
C4—C51.402 (2)C16—H16B0.9800
C4—C81.505 (2)C16—H16C0.9800
Cl1—Zn1—Cl2115.836 (17)N1—C7—C1119.92 (14)
O1—Zn1—Cl1109.06 (4)C4—C8—H8A109.5
O1—Zn1—Cl2111.08 (4)C4—C8—H8B109.5
O1—Zn1—O2101.98 (5)C4—C8—H8C109.5
O2—Zn1—Cl1108.75 (4)H8A—C8—H8B109.5
O2—Zn1—Cl2109.22 (4)H8A—C8—H8C109.5
C7—O1—Zn1132.35 (11)H8B—C8—H8C109.5
C15—O2—Zn1127.89 (10)C10—C9—C14119.06 (15)
H1A—N1—H1B117 (2)C10—C9—C15119.24 (15)
C7—N1—H1A119.6 (15)C14—C9—C15121.69 (15)
C7—N1—H1B123.4 (15)C9—C10—H10119.9
H2A—N2—H2B117 (2)C11—C10—C9120.14 (16)
C15—N2—H2A123.2 (16)C11—C10—H10119.9
C15—N2—H2B119.3 (16)C10—C11—H11119.4
C2—C1—C7117.86 (14)C12—C11—C10121.30 (16)
C6—C1—C2119.24 (15)C12—C11—H11119.4
C6—C1—C7122.85 (14)C11—C12—C13118.05 (15)
C1—C2—H2119.9C11—C12—C16121.06 (17)
C3—C2—C1120.19 (15)C13—C12—C16120.89 (17)
C3—C2—H2119.9C12—C13—H13119.4
C2—C3—H3119.3C14—C13—C12121.28 (17)
C2—C3—C4121.31 (14)C14—C13—H13119.4
C4—C3—H3119.3C9—C14—H14119.9
C3—C4—C5118.12 (15)C13—C14—C9120.16 (17)
C3—C4—C8121.10 (14)C13—C14—H14119.9
C5—C4—C8120.77 (15)O2—C15—N2121.42 (14)
C4—C5—H5119.4O2—C15—C9119.51 (14)
C6—C5—C4121.21 (15)N2—C15—C9119.07 (15)
C6—C5—H5119.4C12—C16—H16A109.5
C1—C6—H6120.0C12—C16—H16B109.5
C5—C6—C1119.92 (14)C12—C16—H16C109.5
C5—C6—H6120.0H16A—C16—H16B109.5
O1—C7—N1121.75 (16)H16A—C16—H16C109.5
O1—C7—C1118.33 (14)H16B—C16—H16C109.5
Zn1—O1—C7—N12.3 (3)C7—C1—C6—C5177.51 (16)
Zn1—O1—C7—C1176.97 (12)C8—C4—C5—C6178.48 (17)
Zn1—O2—C15—N27.0 (3)C9—C10—C11—C120.8 (3)
Zn1—O2—C15—C9173.68 (11)C10—C9—C14—C130.4 (3)
C1—C2—C3—C40.6 (3)C10—C9—C15—O220.4 (2)
C2—C1—C6—C50.0 (3)C10—C9—C15—N2160.32 (18)
C2—C1—C7—O115.5 (2)C10—C11—C12—C130.2 (3)
C2—C1—C7—N1163.79 (17)C10—C11—C12—C16179.77 (18)
C2—C3—C4—C50.4 (3)C11—C12—C13—C140.3 (3)
C2—C3—C4—C8178.10 (16)C12—C13—C14—C90.2 (3)
C3—C4—C5—C60.0 (3)C14—C9—C10—C110.9 (3)
C4—C5—C6—C10.2 (3)C14—C9—C15—O2158.86 (17)
C6—C1—C2—C30.4 (3)C14—C9—C15—N220.5 (3)
C6—C1—C7—O1166.97 (16)C15—C9—C10—C11179.83 (16)
C6—C1—C7—N113.8 (3)C15—C9—C14—C13179.64 (18)
C7—C1—C2—C3177.27 (16)C16—C12—C13—C14179.70 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.87 (2)2.07 (2)2.8753 (19)154 (2)
N1—H1B···Cl2i0.86 (2)2.49 (2)3.2265 (14)145 (2)
N2—H2A···Cl1ii0.86 (2)2.50 (2)3.2956 (16)155 (2)
N2—H2B···Cl20.87 (2)3.05 (2)3.6341 (17)126 (2)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x1, y, z.
Dichloridobis(4-hydroxybenzamide-κO)zinc(II) (5) top
Crystal data top
[ZnCl2(C7H7NO2)2]F(000) = 832
Mr = 410.54Dx = 1.696 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 7.0532 (6) ÅCell parameters from 5843 reflections
b = 21.3776 (17) Åθ = 2.7–27.6°
c = 11.1181 (9) ŵ = 1.88 mm1
β = 106.477 (2)°T = 100 K
V = 1607.5 (2) Å3Block, clear light colourless
Z = 40.15 × 0.09 × 0.07 mm
Data collection top
Bruker APEXII CCD
diffractometer
4168 independent reflections
Radiation source: sealed tube3809 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 8 pixels mm-1θmax = 28.7°, θmin = 1.9°
ω and φ scansh = 99
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 2828
Tmin = 0.673, Tmax = 0.746l = 1515
17255 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.023P)2 + 0.9687P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.065(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.46 e Å3
4168 reflectionsΔρmin = 0.29 e Å3
227 parametersAbsolute structure: Refined as an inversion twin
8 restraintsAbsolute structure parameter: 0.024 (13)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.53881 (5)0.85209 (2)0.23775 (4)0.01454 (12)
Cl10.73319 (15)0.92222 (5)0.18199 (9)0.0198 (2)
Cl20.21825 (15)0.86831 (5)0.14477 (10)0.0210 (2)
O10.5952 (4)0.84920 (13)0.4225 (3)0.0171 (6)
O20.6040 (5)0.76660 (13)0.2016 (3)0.0202 (6)
O30.7811 (5)0.80301 (14)1.0011 (3)0.0203 (7)
H30.833 (7)0.828 (2)1.059 (4)0.030*
O40.6608 (5)0.49561 (14)0.0004 (3)0.0260 (7)
H40.681 (8)0.4641 (19)0.041 (5)0.039*
N10.6218 (6)0.95087 (17)0.4782 (3)0.0188 (8)
H1A0.606 (7)0.960 (2)0.401 (3)0.028*
H1B0.644 (7)0.9847 (17)0.524 (4)0.028*
N20.7170 (6)0.72093 (18)0.3908 (3)0.0203 (8)
H2A0.711 (8)0.7563 (16)0.422 (5)0.030*
H2B0.757 (8)0.6873 (17)0.428 (4)0.030*
C10.6588 (6)0.87096 (18)0.6380 (4)0.0129 (8)
C20.7355 (6)0.91117 (19)0.7389 (4)0.0154 (8)
H20.7596380.9537370.7236120.018*
C30.7767 (6)0.88968 (19)0.8609 (4)0.0153 (8)
H3A0.8290090.9174050.9290060.018*
C40.7414 (6)0.8275 (2)0.8836 (4)0.0153 (8)
C50.6645 (6)0.78625 (19)0.7834 (4)0.0157 (8)
H50.6411790.7437100.7994260.019*
C60.6234 (6)0.80752 (19)0.6626 (4)0.0156 (8)
H60.5708650.7796490.5947610.019*
C70.6229 (6)0.89057 (18)0.5072 (4)0.0135 (8)
C80.6692 (6)0.65874 (18)0.2021 (4)0.0129 (8)
C90.7129 (6)0.60210 (19)0.2654 (4)0.0153 (8)
H90.7450400.6014210.3543330.018*
C100.7104 (6)0.54637 (19)0.2002 (4)0.0169 (8)
H100.7383640.5077800.2440240.020*
C110.6661 (6)0.5479 (2)0.0692 (4)0.0165 (8)
C120.6224 (6)0.6047 (2)0.0046 (4)0.0178 (9)
H120.5922150.6057520.0842690.021*
C130.6238 (6)0.65941 (19)0.0717 (4)0.0154 (8)
H130.5932570.6979890.0281030.018*
C140.6644 (6)0.71888 (18)0.2678 (4)0.0137 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0211 (2)0.0112 (2)0.01033 (19)0.0013 (2)0.00287 (15)0.0002 (2)
Cl10.0282 (5)0.0143 (5)0.0176 (5)0.0022 (4)0.0078 (4)0.0003 (4)
Cl20.0213 (5)0.0154 (5)0.0225 (5)0.0004 (4)0.0003 (4)0.0000 (4)
O10.0246 (15)0.0157 (15)0.0100 (14)0.0000 (12)0.0035 (11)0.0003 (11)
O20.0332 (17)0.0102 (15)0.0194 (15)0.0024 (12)0.0109 (13)0.0015 (11)
O30.0308 (17)0.0190 (16)0.0090 (14)0.0028 (13)0.0022 (12)0.0018 (11)
O40.0412 (19)0.0116 (16)0.0236 (17)0.0012 (14)0.0068 (15)0.0021 (12)
N10.031 (2)0.0137 (19)0.0106 (17)0.0004 (16)0.0046 (15)0.0008 (13)
N20.032 (2)0.0143 (19)0.0137 (18)0.0036 (17)0.0043 (16)0.0014 (14)
C10.014 (2)0.0111 (18)0.0125 (18)0.0009 (15)0.0028 (15)0.0019 (15)
C20.018 (2)0.012 (2)0.017 (2)0.0015 (15)0.0071 (16)0.0013 (15)
C30.020 (2)0.014 (2)0.0111 (19)0.0004 (16)0.0025 (15)0.0033 (14)
C40.014 (2)0.022 (2)0.0099 (18)0.0026 (16)0.0039 (15)0.0029 (15)
C50.018 (2)0.013 (2)0.016 (2)0.0004 (16)0.0062 (15)0.0012 (15)
C60.0155 (19)0.015 (2)0.016 (2)0.0007 (16)0.0039 (16)0.0026 (16)
C70.0138 (19)0.014 (2)0.0132 (19)0.0013 (15)0.0052 (15)0.0012 (15)
C80.0136 (18)0.0098 (19)0.0148 (19)0.0006 (14)0.0035 (15)0.0002 (14)
C90.018 (2)0.012 (2)0.0148 (19)0.0005 (16)0.0037 (16)0.0013 (15)
C100.021 (2)0.0115 (19)0.018 (2)0.0009 (16)0.0044 (16)0.0023 (15)
C110.019 (2)0.014 (2)0.017 (2)0.0016 (16)0.0038 (16)0.0024 (15)
C120.020 (2)0.021 (2)0.0118 (19)0.0001 (17)0.0022 (16)0.0021 (16)
C130.0163 (19)0.013 (2)0.016 (2)0.0018 (15)0.0033 (15)0.0020 (15)
C140.0148 (18)0.0110 (19)0.016 (2)0.0023 (15)0.0061 (15)0.0014 (15)
Geometric parameters (Å, º) top
Zn1—Cl12.2347 (11)C2—H20.9500
Zn1—Cl22.2305 (11)C2—C31.383 (6)
Zn1—O11.980 (3)C3—H3A0.9500
Zn1—O21.954 (3)C3—C41.388 (6)
O1—C71.266 (5)C4—C51.404 (5)
O2—C141.259 (5)C5—H50.9500
O3—H30.84 (3)C5—C61.369 (6)
O3—C41.361 (5)C6—H60.9500
O4—H40.80 (3)C8—C91.390 (5)
O4—C111.353 (5)C8—C131.394 (6)
N1—H1A0.86 (3)C8—C141.483 (5)
N1—H1B0.87 (3)C9—H90.9500
N1—C71.328 (5)C9—C101.392 (6)
N2—H2A0.84 (3)C10—H100.9500
N2—H2B0.84 (3)C10—C111.400 (6)
N2—C141.313 (5)C11—C121.401 (6)
C1—C21.395 (5)C12—H120.9500
C1—C61.419 (5)C12—C131.386 (6)
C1—C71.465 (5)C13—H130.9500
Cl2—Zn1—Cl1112.84 (4)C6—C5—C4119.8 (4)
O1—Zn1—Cl1110.51 (9)C6—C5—H5120.1
O1—Zn1—Cl2111.39 (9)C1—C6—H6119.8
O2—Zn1—Cl1111.83 (10)C5—C6—C1120.4 (4)
O2—Zn1—Cl2108.48 (10)C5—C6—H6119.8
O2—Zn1—O1101.21 (12)O1—C7—N1120.6 (4)
C7—O1—Zn1133.9 (3)O1—C7—C1119.0 (4)
C14—O2—Zn1134.3 (3)N1—C7—C1120.4 (4)
C4—O3—H3115 (4)C9—C8—C13119.2 (4)
C11—O4—H4113 (4)C9—C8—C14122.6 (4)
H1A—N1—H1B111 (5)C13—C8—C14118.2 (4)
C7—N1—H1A117 (3)C8—C9—H9119.5
C7—N1—H1B132 (3)C8—C9—C10120.9 (4)
H2A—N2—H2B128 (5)C10—C9—H9119.5
C14—N2—H2A116 (4)C9—C10—H10120.4
C14—N2—H2B116 (4)C9—C10—C11119.2 (4)
C2—C1—C6118.9 (4)C11—C10—H10120.4
C2—C1—C7122.7 (4)O4—C11—C10122.5 (4)
C6—C1—C7118.3 (3)O4—C11—C12117.2 (4)
C1—C2—H2119.7C10—C11—C12120.3 (4)
C3—C2—C1120.6 (4)C11—C12—H12120.4
C3—C2—H2119.7C13—C12—C11119.3 (4)
C2—C3—H3A120.1C13—C12—H12120.4
C2—C3—C4119.9 (4)C8—C13—H13119.5
C4—C3—H3A120.1C12—C13—C8121.1 (4)
O3—C4—C3123.0 (4)C12—C13—H13119.5
O3—C4—C5116.6 (4)O2—C14—N2122.0 (4)
C3—C4—C5120.4 (4)O2—C14—C8117.8 (3)
C4—C5—H5120.1N2—C14—C8120.2 (4)
Zn1—O1—C7—N11.8 (6)C6—C1—C7—N1168.7 (4)
Zn1—O1—C7—C1179.0 (3)C7—C1—C2—C3176.6 (4)
Zn1—O2—C14—N27.0 (6)C7—C1—C6—C5176.6 (4)
Zn1—O2—C14—C8171.2 (3)C8—C9—C10—C111.0 (6)
O3—C4—C5—C6179.2 (4)C9—C8—C13—C120.2 (6)
O4—C11—C12—C13179.3 (4)C9—C8—C14—O2173.0 (4)
C1—C2—C3—C40.1 (6)C9—C8—C14—N25.2 (6)
C2—C1—C6—C50.2 (6)C9—C10—C11—O4180.0 (4)
C2—C1—C7—O1164.6 (4)C9—C10—C11—C120.8 (6)
C2—C1—C7—N114.6 (6)C10—C11—C12—C130.1 (6)
C2—C3—C4—O3179.0 (4)C11—C12—C13—C80.5 (6)
C2—C3—C4—C50.2 (6)C13—C8—C9—C100.5 (6)
C3—C4—C5—C60.3 (6)C13—C8—C14—O25.6 (6)
C4—C5—C6—C10.3 (6)C13—C8—C14—N2176.1 (4)
C6—C1—C2—C30.1 (6)C14—C8—C9—C10178.1 (4)
C6—C1—C7—O112.0 (6)C14—C8—C13—C12179.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···Cl1i0.84 (3)2.64 (4)3.322 (3)140 (5)
O3—H3···Cl2ii0.84 (3)2.75 (4)3.349 (3)130 (4)
O4—H4···Cl2iii0.80 (3)2.33 (3)3.131 (3)175 (6)
N1—H1A···Cl10.86 (3)2.93 (4)3.648 (4)142 (4)
N1—H1B···Cl1iv0.87 (3)2.61 (3)3.479 (4)173 (4)
N2—H2A···O10.84 (3)2.15 (3)2.924 (5)154 (5)
N2—H2B···Cl2v0.84 (3)2.77 (4)3.405 (4)135 (5)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) x+1/2, y1/2, z; (iv) x, y+2, z+1/2; (v) x+1/2, y+3/2, z+1/2.
Selected bond lengths and angles (Å, °) for compounds (1) through (5) top
CompoundR / positionZn—Cl1Zn—Cl2Zn—O1Zn—O2Cl—Zn—ClO—Zn—O
(1)aH2.2294 (4)2.2118 (4)1.9653 (12)2.0040 (13)113.726 (18)99.75 (5)
(1)bH2.2361 (4)2.2107 (4)1.9632 (12)2.0089 (13)114.034 (18)101.44 (5)
(2)CH3 / ortho2.2340 (4)2.1947 (5)2.0169 (13)1.9781 (11)125.120 (19)103.92 (5)
(3)cCH3 / meta2.2341 (4)2.2341 (4)1.9652 (10)1.9652 (10)121.25 (2)96.12 (6)
(4)CH3 / para2.2166 (5)2.2170 (5)1.9592 (12)2.0191 (11)115.836 (17)101.98 (5)
(5)OH / para2.2347 (11)2.2305 (11)1.980 (3)1.954 (3)112.84 (4)101.21 (12)
Notes: (a) molecule 1; (b) molecule 2; (c) O1/O2 and Cl1/Cl2 related by symmetry.
Summary of ππ interactions (Å, °) in compounds (1), (3), and (5). top
α is the dihedral angle between planes. Cg is the centroid of the benzene ring of the benzamide or toluamide molecule.
CompoundRing iRing jCg···Cg distanceα
(1)14i3.9522 (11)8.76 (9)
(1)14ii3.8781 (11)8.76 (9)
(1)32iii3.8195 (10)6.27 (8)
(3)11iv3.7770 (10)6.86 (7)
(5)12v3.760 (3)8.0 (2)
Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) 1 - x, 2 - y, 1 - z; (iii) 3/2 - x, -1/2 + y, 1/2 - z; (iv) 1 - x, y, 1/2 - z; (v) -1/2 + x, 3/2 - y, 1/2 + z.
 

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Education and Human Resources (grant No. 0942850 to DHJ).

References

First citationBraga, D., Degli Esposti, L., Rubini, K., Shemchuk, O. & Grepioni, F. (2016). Cryst. Growth Des. 16, 7263–7270.  Web of Science CSD CrossRef CAS Google Scholar
First citationBraga, D., Grepioni, F., Lampronti, G. I., Maini, L. & Turrina, A. (2011). Cryst. Growth Des. 11, 5621–5627.  Web of Science CSD CrossRef CAS Google Scholar
First citationBraga, D., Grepioni, F. & Shemchuk, O. (2018). CrystEngComm, 20, 2212–2220.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2020). BIS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuist, A. R. & Kennedy, A. R. (2014). Cryst. Growth Des. 14, 6508–6513.  Web of Science CSD CrossRef CAS Google Scholar
First citationBuol, X., Robeyns, K., Caro Garrido, C., Tumanov, N., Collard, L., Wouters, J. & Leyssens, T. (2020). Pharmaceutics, 12, 653.  CSD CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEdwards, R. A., Easteal, A. J., Gladkikh, O. P., Robinson, W. T., Turnbull, M. M. & Wilkins, C. J. (1998). Acta Cryst. B54, 663–670.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationEdwards, R. A., Gladkikh, O. P., Nieuwenhuyzen, M. & Wilkins, C. J. (1999). Z. Kristallogr. 214, 111–118.  CSD CrossRef CAS Google Scholar
First citationFurmanova, N. G., Resnyanskii, V. F., Sulaimankulov, K. S., Zhorobekova, Sh. Zh. & Sulaimankulova, D. K. (2001). Crystallogr. Rep. 46, 51–55.  CSD CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGrothe, E., Meekes, H., Vlieg, E., ter Horst, J. H. & de Gelder, R. (2016). Cryst. Growth Des. 16, 3237–3243.  Web of Science CrossRef CAS Google Scholar
First citationHerceg, M. & Fischer, J. (1974). Acta Cryst. B30, 1289–1293.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationİde, S., Ataç, A. & Yurdakul, Ş. (2002). J. Mol. Struct. 605, 103–107.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationPalmer, D. C. (2020). CrystalMaker. CrystalMaker Software Ltd, Begbroke, England.  Google Scholar
First citationSavinkina, E. V., Buravlev, E. A., Zamilatskov, I. A. & Albov, D. V. (2007). Acta Cryst. E63, m1094–m1095.  CSD CrossRef IUCr Journals Google Scholar
First citationSavinkina, E. V., Buravlev, E. A., Zamilatskov, I. A., Albov, D. V., Kravchenko, V. V., Zaitseva, M. G. & Mavrin, B. N. (2009). Z. Anorg. Allg. Chem. 635, 1458–1462.  CSD CrossRef CAS Google Scholar
First citationSavinkina, E. V., Zamilatskov, I. A., Buravlev, E. A., Albov, D. V. & Tsivadze, A. Yu. (2008). Mendeleev Commun. 18, 92–93.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShemchuk, O., Song, L., Robeyns, K., Braga, D., Grepioni, F. & Leyssens, T. (2018). Chem. Commun. 54, 10890–10892.  CSD CrossRef CAS Google Scholar
First citationShemchuk, O., Song, L., Tumanov, N., Wouters, J., Braga, D., Grepioni, F. & Leyssens, T. (2020). Cryst. Growth Des. 20, 2602–2607.  CSD CrossRef CAS Google Scholar
First citationSmirnov, A. S., Butukhanova, E. S., Bokach, N. A., Starova, G. L., Gurzhiy, V. V., Kuznetsov, M. L. & Kukushkin, V. Yu. (2014). Dalton Trans. 43, 15798–15811.  CSD CrossRef CAS PubMed Google Scholar
First citationSong, L., Robeyns, K. & Leyssens, T. (2018). Cryst. Growth Des. 18, 3215–3221.  CSD CrossRef CAS Google Scholar
First citationSong, L., Robeyns, K., Tumanov, N., Wouters, J. & Leyssens, T. (2020). Chem. Commun. 56, 13229–13232.  Web of Science CSD CrossRef CAS Google Scholar
First citationSong, L., Shemchuk, O., Robeyns, K., Braga, D., Grepioni, F. & Leyssens, T. (2019). Cryst. Growth Des. 19, 2446–2454.  CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSultana, K., Zaib, S., Hassan Khan, N., Khan, I., Shahid, K., Simpson, J. & Iqbal, J. (2016). New J. Chem. 40, 7084–7094.  CSD CrossRef CAS Google Scholar
First citationSuzuki, H., Fukushima, N., Ishiguro, S., Masuda, H. & Ohtaki, H. (1991). Acta Cryst. C47, 1838–1842.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationTurnbull, M. M., Wikaira, J. L. & Wilkins, C. J. (2000). Z. Kristallogr. 215, 702–706.  CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds