research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa-μ-acetato-chlorido­(μ-N,2-dioxodo­benzene-1-carboximidato)-μ3-oxido-tetra­iron(III)–water (1/1) and hexa-μ-acetato-(μ-N,2-dioxodo­benzene-1-carboximidato)fluorido-μ3-oxido-tri­pyridine­tetra­iron(III)–pyridine–water (1/1/0.24)

crossmark logo

aLumingen Instrument Center, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA, and bDepartment of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA
*Correspondence e-mail: jclutter@umich.edu

Edited by M. Zeller, Purdue University, USA (Received 4 June 2021; accepted 5 September 2021; online 14 September 2021)

The title compounds, [Fe4(C2H3O2)6(C7H4O3)FO(C5H5N)3]·C5H5N·0.24H2O (1-F) and [Fe4(C2H3O2)6(C7H4O3)ClO(C5H5N)3]·H2O (1-Cl) were synthesized using a self-assembly reaction in methanol and pyridine with stoichiometric addition of salicyl­hydroxamic acid (H3shi), acetic acid (HOAc), and the appropriate ferric halide salt. The compounds crystallize as solvates, where 1-F has one pyridine mol­ecule that is disordered about a twofold axis and one water mol­ecule with an occupancy of 0.24 (2); and 1-Cl has one water mol­ecule that is disordered over two sites with occupancies of 0.71 (1) and 0.29 (1). The space groups for each analog differ as 1-F crystallizes in Fdd2 while 1-Cl crystallizes in P21. The difference in packing is due to changes in the inter­molecular inter­actions involving the different halides. The two mol­ecules are mostly isostructural, differing only by the torsion of the pyrine ligands and slight orientation changes in the acetate ligands. All of the iron(III) ions are in six-coordinate octa­hedral ligand field geometries but each one exhibits a unique coordination environment with various numbers of O (four to six) and N (nought to two) atom donors. Bond-valence sums confirm each iron is trivalent. The hydroximate ligand is bound to three iron(III) ions using a fused chelate motif similar to those in metallacrown compounds.

1. Chemical context

Examples of hydroximate binding as fused chelate rings has been dominated by a class of coordination compounds known as metallacrowns. First introduced by Pecoraro and Lah in 1989 (Pecoraro, 1989[Pecoraro, V. L. (1989). Inorg. Chim. Acta, 155, 171-173.]; Lah & Pecoraro, 1989[Lah, M. S. & Pecoraro, V. L. (1989). J. Am. Chem. Soc. 111, 7258-7259.]), these compounds have since been tuned to explore many applications including host–guest binding, mol­ecular magnetism, and luminescence (Mezei et al., 2007[Mezei, G., Zaleski, C. M. & Pecoraro, V. L. (2007). Chem. Rev. 107, 4933-5003.]; Chow et al., 2015[Chow, C. Y., Trivedi, E. R., Pecoraro, V. L. & Zaleski, C. M. (2015). Comments Inorg. Chem. 35, 214-253.]; Lutter et al., 2018[Lutter, J. C., Zaleski, C. M. & Pecoraro, V. L. (2018). Advances in Inorganic Chemistry, Vol. 71, Supramolecular Chemistry, edited by R. Eldik & L. Puchta, pp 177-246. Cambridge: Academic Press.]). In particular, iron(III) 9-metallacrown-3 compounds have demonstrated inter­esting magnetocoolent properties (Chow et al., 2016[Chow, C. Y., Guillot, R., Rivière, E., Kampf, J. W., Mallah, T. & Pecoraro, V. L. (2016). Inorg. Chem. 55, 10238-10247.]). Here, we describe two tetra-iron(III) compounds that have a fused chelate motif similar to metallacrowns but that are not examples of metallamacrocycles (Figs. 1[link] and 2[link]). Instead, this fused chelate motif is complemented by six acetate ligands, a μ3-oxo ligand, and three pyridine ligands to complete the octa­hedral ligand fields of the four iron ions. These compounds were a serendipitous discovery from metallacrown synthesis that can be formed with their own rational self-assembly reaction.

[Scheme 1]
[Figure 1]
Figure 1
ORTEP representations from crystallographic data for 1-F. Orange = iron, yellow = fluorine, light blue = nitro­gen, red = oxygen, gray = carbon. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
ORTEP representation from crystallographic data for 1-Cl. Orange = iron, green = chlorine, light blue = nitro­gen, red = oxygen, gray = carbon. Displacement ellipsoids are drawn at the 50% probability level.

2. Structural commentary

Each of the iron(III) centers in 1-F and 1-Cl are in six-coord­inate octa­hedral ligand field geometries and bond-valence sums confirm that each iron ion is trivalent (Zheng et al., 2017[Zheng, H., Langner, K. M., Shields, G. P., Hou, J., Kowiel, M., Allen, F. H., Murshudov, G. & Minor, W. (2017). Acta Cryst. D73, 316-325.]). More details are available in Tables 1[link] and 2[link]. Fe1 is bound to the μ2-oxime oxygen and carbonyl oxygen of shi3– to form a penta­gonal chelate ring, an oxygen from an acetate ligand, the nitro­gen from two pyridine ligands, and the respective halide for each compound. Fe2 is bound to the imino nitro­gen and phenolic oxygen of shi3– to form a hexag­onal chelate ring, the μ3-oxo, and an oxygen from three acetate ligands. Fe3 is bound to the μ3-oxo, an oxygen from four acetate ligands, and the nitro­gen of a pyridine ligand. Fe4 is bound to the μ3-oxo, the μ2-oxime oxygen of shi3–, and an oxygen from four acetate ligands. Depictions of these coord­ination environments are shown in Fig. 3[link]. Generally, for both compounds, the Fe—O(oxo) bonds are shorter than the average, and the Fe—N(pyridine) bonds are longer than the average (Tables 1[link] and 2[link]). Geometric parameters, including bond lengths and angles for the coordination environment for the iron atoms, are given in Tables 3[link] and 4[link]. An overlay of both structures shows some variation in pyridine and acetate ligand binding between 1-F and 1-Cl (Fig. 4[link]). The acetates are close to uniform with only minor differences in binding orientation. The pyridine differ noticeably in torsion angle. The torsion angles of the two pyridines on Fe1 in 1-F are 43.4 (5)° for C24—N2—Fe1—F1 and 149.3 (5)° for C25—N3—Fe1—F1, while the torsion angles of the two pyridines on Fe1 in 1-Cl are 26.7 (5)° for C24—N2—Fe1—Cl1 and 104.5 (6)° for C25—N3—Fe1—Cl1. The torsion angle for the pyridine in 1-F on Fe3 is 139.8 (5)° for C30—N4—Fe3—O5 while the torsion angle for the pyridine in 1-Cl on Fe3 is 33.5 (4)° for C30—N4—Fe3—O5. These differences are likely due to the change in crystal packing between the two structures.

Table 1
Geometric information (Å) for 1-F

Metal ID Coordination number Shape Average bond length Bond-valence suma Fe—O(oxo)bond length Fe—N(pyridine) bond length
Fe1 6 Octa­hedral 2.103 2.953 2.164, 2.194
Fe2 6 Octa­hedral 2.011 3.191 1.940
Fe3 6 Octa­hedral 2.026 3.116 1.866 2.207
Fe4 6 Octa­hedral 2.007 3.158 1.886
Note: (a) Zheng et al. (2017[Zheng, H., Langner, K. M., Shields, G. P., Hou, J., Kowiel, M., Allen, F. H., Murshudov, G. & Minor, W. (2017). Acta Cryst. D73, 316-325.]).

Table 2
Geometric information (Å) for 1-Cl

Metal ID Coordination number Shape Average bond length Bond-valence suma Fe—O(oxo)bond length Fe—N(pyridine) bond length
Fe1 6 Octa­hedral 2.026 3.032 2.133, 2.171
Fe2 6 Octa­hedral 2.012 3.199 1.925
Fe3 6 Octa­hedral 2.020 3.149 1.871 2.169
Fe4 6 Octa­hedral 2.012 3.118 1.890
Note: (a) Zheng et al. (2017[Zheng, H., Langner, K. M., Shields, G. P., Hou, J., Kowiel, M., Allen, F. H., Murshudov, G. & Minor, W. (2017). Acta Cryst. D73, 316-325.]).

Table 3
Selected geometric parameters (Å, °) for 1-F[link]

Fe4—O16 1.890 (5) Fe1—F1 1.843 (4)
Fe4—O15 2.016 (5) Fe1—O2 1.978 (5)
Fe4—O13 2.021 (4) Fe1—O14 1.987 (4)
Fe4—O10 2.023 (4) Fe1—O1 2.043 (5)
Fe4—O8 2.034 (4) Fe1—N3 2.133 (5)
Fe4—O1 2.056 (4) Fe1—N2 2.171 (5)
Fe3—O16 1.872 (4) Fe2—O3 1.902 (5)
Fe3—O9 1.997 (5) Fe2—O16 1.925 (4)
Fe3—O5 2.020 (5) Fe2—O6 2.021 (5)
Fe3—O11 2.024 (5) Fe2—O12 2.057 (5)
Fe3—O7 2.037 (5) Fe2—N1 2.083 (5)
Fe3—N4 2.170 (5) Fe2—O4 2.084 (5)
       
O16—Fe4—O15 178.35 (19) F1—Fe1—O2 93.63 (18)
O16—Fe4—O13 95.35 (18) F1—Fe1—O14 97.73 (18)
O15—Fe4—O13 84.96 (18) O2—Fe1—O14 168.62 (18)
O16—Fe4—O10 95.84 (18) F1—Fe1—O1 170.62 (18)
O15—Fe4—O10 83.89 (18) O2—Fe1—O1 77.18 (18)
O13—Fe4—O10 168.72 (19) O14—Fe1—O1 91.44 (17)
O16—Fe4—O8 94.97 (18) F1—Fe1—N3 89.35 (19)
O15—Fe4—O8 86.66 (18) O2—Fe1—N3 93.10 (19)
O13—Fe4—O8 87.52 (18) O14—Fe1—N3 87.6 (2)
O10—Fe4—O8 90.07 (18) O1—Fe1—N3 93.0 (2)
O16—Fe4—O1 89.18 (18) F1—Fe1—N2 87.15 (18)
O15—Fe4—O1 89.19 (18) O2—Fe1—N2 88.72 (19)
O13—Fe4—O1 91.19 (18) O14—Fe1—N2 91.2 (2)
O10—Fe4—O1 90.42 (18) O1—Fe1—N2 90.74 (19)
O8—Fe4—O1 175.74 (18) N3—Fe1—N2 176.2 (2)
O16—Fe3—O9 94.78 (18) O3—Fe2—O16 171.98 (19)
O16—Fe3—O5 96.68 (18) O3—Fe2—O6 92.3 (2)
O9—Fe3—O5 168.52 (18) O16—Fe2—O6 95.12 (19)
O16—Fe3—O11 95.43 (18) O3—Fe2—O12 91.36 (19)
O9—Fe3—O11 91.8 (2) O16—Fe2—O12 92.38 (18)
O5—Fe3—O11 87.8 (2) O6—Fe2—O12 85.01 (19)
O16—Fe3—O7 96.08 (19) O3—Fe2—N1 86.4 (2)
O9—Fe3—O7 87.2 (2) O16—Fe2—N1 86.6 (2)
O5—Fe3—O7 90.9 (2) O6—Fe2—N1 174.8 (2)
O11—Fe3—O7 168.49 (18) O12—Fe2—N1 90.0 (2)
O16—Fe3—N4 178.5 (2) O3—Fe2—O4 85.9 (2)
O9—Fe3—N4 84.23 (19) O16—Fe2—O4 90.72 (19)
O5—Fe3—N4 84.33 (18) O6—Fe2—O4 92.3 (2)
O11—Fe3—N4 83.47 (19) O12—Fe2—O4 176.1 (2)
O7—Fe3—N4 85.02 (19) N1—Fe2—O4 92.6 (2)

Table 4
Selected geometric parameters (Å, °) for 1-Cl[link]

Cl1—Fe1 2.2963 (14) Fe4—O15 2.039 (3)
Fe2—O3 1.918 (3) Fe1—O2 1.957 (3)
Fe2—O16 1.940 (3) Fe1—O14 1.982 (3)
Fe2—O6 2.015 (4) Fe1—O1 2.025 (3)
Fe2—O12 2.050 (3) Fe1—N3 2.165 (5)
Fe2—O4 2.070 (3) Fe1—N2 2.194 (4)
Fe2—N1 2.075 (4) Fe3—O16 1.866 (3)
Fe4—O16 1.886 (3) Fe3—O5 2.012 (3)
Fe4—O13 2.011 (3) Fe3—O11 2.016 (3)
Fe4—O1 2.033 (3) Fe3—O9 2.023 (3)
Fe4—O10 2.035 (3) Fe3—O7 2.030 (3)
Fe4—O8 2.039 (3) Fe3—N4 2.206 (4)
       
O3—Fe2—O16 172.17 (14) O2—Fe1—O14 167.24 (14)
O3—Fe2—O6 90.17 (14) O2—Fe1—O1 77.46 (12)
O16—Fe2—O6 97.63 (13) O14—Fe1—O1 90.32 (13)
O3—Fe2—O12 90.00 (14) O2—Fe1—N3 94.22 (15)
O16—Fe2—O12 91.14 (14) O14—Fe1—N3 88.66 (16)
O6—Fe2—O12 86.91 (14) O1—Fe1—N3 86.72 (15)
O3—Fe2—O4 88.54 (14) O2—Fe1—N2 89.67 (15)
O16—Fe2—O4 90.71 (13) O14—Fe1—N2 86.85 (16)
O6—Fe2—O4 90.10 (14) O1—Fe1—N2 90.99 (15)
O12—Fe2—O4 176.67 (15) N3—Fe1—N2 174.96 (17)
O3—Fe2—N1 85.84 (14) O2—Fe1—Cl1 93.87 (10)
O16—Fe2—N1 86.39 (14) O14—Fe1—Cl1 98.56 (11)
O6—Fe2—N1 175.53 (15) O1—Fe1—Cl1 170.45 (10)
O12—Fe2—N1 91.08 (15) N3—Fe1—Cl1 89.97 (12)
O4—Fe2—N1 91.80 (15) N2—Fe1—Cl1 92.98 (12)
O16—Fe4—O13 95.04 (14) O16—Fe3—O5 93.99 (14)
O16—Fe4—O1 88.71 (13) O16—Fe3—O11 98.53 (13)
O13—Fe4—O1 91.05 (14) O5—Fe3—O11 89.69 (14)
O16—Fe4—O10 96.37 (13) O16—Fe3—O9 93.46 (14)
O13—Fe4—O10 168.28 (14) O5—Fe3—O9 172.54 (14)
O1—Fe4—O10 91.88 (13) O11—Fe3—O9 88.91 (14)
O16—Fe4—O8 93.00 (13) O16—Fe3—O7 97.10 (14)
O13—Fe4—O8 87.50 (14) O5—Fe3—O7 89.76 (14)
O1—Fe4—O8 177.85 (14) O11—Fe3—O7 164.36 (14)
O10—Fe4—O8 89.23 (14) O9—Fe3—O7 89.61 (14)
O16—Fe4—O15 176.24 (14) O16—Fe3—N4 178.69 (15)
O13—Fe4—O15 86.51 (14) O5—Fe3—N4 84.80 (15)
O1—Fe4—O15 87.84 (14) O11—Fe3—N4 81.96 (14)
O10—Fe4—O15 82.26 (13) O9—Fe3—N4 87.76 (15)
O8—Fe4—O15 90.48 (14) O7—Fe3—N4 82.43 (15)
[Figure 3]
Figure 3
Depiction of iron(III) ion geometries from crystallographic data for (a) 1-F and (b) 1-Cl. Orange = iron, green = chlorine, yellow = fluorine, light blue = nitro­gen, red = oxygen, gray = carbon. Chelate rings from shi3– are shown when appropriate.
[Figure 4]
Figure 4
Overlay of 1-F (blue) and 1-Cl (green) shows near isomorphology between the two compounds.

3. Supra­molecular features

Both compounds crystallize as solvates where 1-F has one pyridine (N5 C35–39) and a 0.24 (2) occupancy water mol­ecule (O17), and 1-Cl has one disordered water mol­ecule (O17 and O17A). The pyridine in 1-F is disordered on a special position (twofold axis). This pyridine inter­acts with the main moiety via a hydrogen bond from an acetate C11—H11A bond to N5 on the pyridine. The pyridine also forms a hydrogen bond using using C39—H39 to donate to O6 from an acetate. The solvent water in 1-F has two hydrogen bonds, where the O17—H17E bond donates to O13 on an acetate, and the C17—H17A bond on an acetate donates to O17. The solvent water in 1-Cl is disordered over two sites with occupancies of 0.71 (1) and 0.29 (1) for the major and minor contributors. The major water site has three hydrogen bonds including: (i) the O17—H17D bond donating to Cl1, (ii) the O17—H17E bond donating to O3 in an acetate, and (iii) the C26—H26 bond of a pyridine donating to O17. The minor contributor has two hydrogen bonds, one where the C26—H26 bond in a pyridine donates to O17A and where the C6—H6 bond on shi3– donates to O17A. Details of all hydrogen bonds, including distances and angles, are summarized in Tables 5[link] and 6[link].

Table 5
Hydrogen-bond geometry (Å, °) for 1-F[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯N5i 0.98 2.37 3.23 (3) 146
C13—H13A⋯F1ii 0.98 2.54 3.389 (7) 145
C15—H15B⋯F1iii 0.98 2.49 3.454 (8) 168
C17—H17A⋯O17iv 0.98 2.60 3.42 (3) 142
C19—H19B⋯F1iii 0.98 2.60 3.520 (9) 156
C19—H19C⋯O11v 0.98 2.47 3.446 (8) 172
C20—H20⋯O13 0.95 2.64 3.269 (8) 124
C20—H20⋯O15 0.95 2.49 3.365 (8) 153
C23—H23⋯O5i 0.95 2.55 3.473 (9) 164
C25—H25⋯O1 0.95 2.60 3.149 (8) 117
C26—H26⋯O6vi 0.95 2.64 3.431 (8) 141
C29—H29⋯F1 0.95 2.46 2.930 (8) 110
C31—H31⋯O2ii 0.95 2.48 3.282 (8) 143
C39—H39⋯O6vii 0.95 2.54 3.27 (2) 134
O17—H17E⋯O13viii 0.84 2.15 2.97 (3) 164
Symmetry codes: (i) [x+{\script{1\over 4}}, -y+{\script{3\over 4}}, z+{\script{3\over 4}}]; (ii) [x, y, z-1]; (iii) [-x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+{\script{3\over 4}}, y+{\script{1\over 4}}, z+{\script{3\over 4}}]; (v) [-x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vi) [x-{\script{1\over 4}}, -y+{\script{3\over 4}}, z+{\script{1\over 4}}]; (vii) [x-{\script{1\over 4}}, -y+{\script{3\over 4}}, z-{\script{3\over 4}}]; (viii) [-x+{\script{3\over 4}}, y-{\script{1\over 4}}, z-{\script{3\over 4}}].

Table 6
Hydrogen-bond geometry (Å, °) for 1-Cl[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O17Ai 0.95 2.64 3.486 (19) 149
C15—H15C⋯O15ii 0.98 2.62 3.581 (7) 166
C19—H19A⋯O11iii 0.98 2.61 3.424 (7) 141
C20—H20⋯N1 0.95 2.65 3.429 (7) 140
C20—H20⋯O1 0.95 2.53 3.100 (6) 118
C21—H21⋯O4iv 0.95 2.56 3.403 (6) 148
C23—H23⋯Cl1v 0.95 2.97 3.697 (6) 135
C24—H24⋯Cl1 0.95 2.75 3.301 (6) 118
C25—H25⋯O2 0.95 2.55 3.126 (7) 119
C26—H26⋯O17ii 0.95 2.20 3.014 (12) 144
C26—H26⋯O17Aii 0.95 2.60 3.17 (3) 118
C29—H29⋯O14 0.95 2.48 3.007 (7) 115
O17—H17D⋯Cl1vi 0.85 (3) 2.80 (3) 3.647 (9) 174 (15)
O17—H17E⋯O3vii 0.84 (3) 2.03 (5) 2.830 (8) 159 (12)
Symmetry codes: (i) x, y, z+1; (ii) [-x, y+{\script{1\over 2}}, -z+1]; (iii) [-x, y-{\script{1\over 2}}, -z+1]; (iv) [-x, y-{\script{1\over 2}}, -z+2]; (v) [-x-1, y-{\script{1\over 2}}, -z+1]; (vi) x+1, y, z; (vii) [x, y, z-1].

The main moieties also have inter­molecular hydrogen-bonding inter­actions. In 1-F, the C13—H13A bond on an acetate donates to F1, the C15—H15B bond on an acetate donates to F1, the C19—H19B bond on an acetate donates to F1, the C19—H19C bond of an acetate donates to O11 of an acetate, the C23—H23 bond on a pyridine donates to O5 of an acetate, the C26—H26 bond of a pyridine donates to O6 of an acetate, and the C31—H31 bond of a pyridine donates to O2 on shi3–. In 1-Cl, the C15—H15C bond on an acetate donates to O15 from an acetate, the C19—H19A bond on an acetate donates to O11 from an acetate, the C21—H21 bond on a pyridine donates to O4 from an acetate, and the C23—H23 bond from a pyridine donates to Cl1. In addition to hydrogen bonding, 1-F has ππ stacking between the pyridine containing N2 and C20—C24 and the pyridine containing N4 and C30—C34. There is no ππ stacking observed in 1-Cl.

Despite the fact that both compounds were synthesized using nearly identical procedures, each compound crystallizes in a unique space group where 1-F is in Fdd2 and 1-Cl is in P21. The reason for the unique packing is likely due to the different chemistry of fluorine compared to chlorine. Fluorine has a smaller radius and is more electronegative than chlorine, and these properties have an effect on the overall packing of the compounds in their lattice. Essentially, the mol­ecules of 1-F pack tighter than those of 1-Cl. The main moiety inter­molecular hydrogen bonds discussed above demonstrate this difference. For 1-F, there are seven inter­molecular hydrogen bonds where three of the hydrogen bonds involve fluorine (Fig. 5[link]). However, in 1-Cl there are four inter­molecular hydrogen bonds and only one of these hydrogen bonds involves the chlorine (Fig. 6[link]). In addition, the difference in radius and electronegativity results in different lengths for hydrogen-bonding inter­actions, where 1-F has proton-to-fluorine distances of 2.49, 2.54, and 2.60 Å while 1-Cl has a proton-to-chlorine distance of 2.97 Å for their respective inter­molecular hydrogen bonds. Since the mol­ecules of 1-F pack more tightly than those of 1-Cl, their orientation is fixed such that all of the fluorine atoms of adjacent mol­ecules point towards the same direction of the unit cell and is enforced by ππ stacking of pyridine ligands (Fig. 5[link]). In 1-Cl, adjacent layers of mol­ecules point their chlorine atoms in opposite directions as there is less inter­action between the mol­ecules, likely due to pair-opposing mol­ecular dipoles (Fig. 6[link]). This observation also suggests that 1-F may have a crystallographic net dipole since all of the fluorines point in the same general direction.

[Figure 5]
Figure 5
Representation of the crystal packing in 1-F from crystallographic data. Hydrogen-bond pairs involving the halide are shown as spheres and the Fe—F bond is bolded for emphasis. Pyridines that have ππ stacking are bolded. Orange = iron, yellow = fluorine, light blue = nitro­gen, red = oxygen, gray = carbon.
[Figure 6]
Figure 6
Representation of the crystal packing in 1-Cl from crystallographic data. Hydrogen-bond pairs involving the halide are shown as spheres and the Fe–Cl bond is in bold for emphasis. Orange = iron, green = chlorine, light blue = nitro­gen, red = oxygen, gray = carbon.

4. Database survey

Two other compounds in the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) feature the same hydroximate coordination motif to three iron(III) ions shown in 1-F and 1-Cl, where both are iron(III) 9-met­alla­crown-3 compounds (Chow et al., 2016[Chow, C. Y., Guillot, R., Rivière, E., Kampf, J. W., Mallah, T. & Pecoraro, V. L. (2016). Inorg. Chem. 55, 10238-10247.]): HADWOB and HADWUH. HADWOB is a 9-metallacrown-3 with three benzoate ligands that bridge the ring and central iron(III) ions and three methanol mol­ecules that are bound to ring iron(III) ions. HADWUH is a set of two 9-metallacrown-3 compounds with three isophthalate ligands that bridge the ring and central iron(III) ions as well as spanning the two rings into a dimeric structure. These structures are adaptations of another iron(III) 9-metallacrown-3 reported in 1989 (Lah et al., 1989[Lah, M. S., Kirk, M. L., Hatfield, W. & Pecoraro, V. L. (1989). J. Chem. Soc. Chem. Commun. pp. 1606-1608.]). The other major motif of a μ3-oxo combined with μ-acetato ligands on iron is not found in the Cambridge Structural Database.

5. Synthesis and crystallization

Fe4(shi)O(OAc)6(pyridine)3F (1-F): To a flask was added salicyl­hydroxamic acid (0.0766 g, 0.500 mmol, 1 equiv) and iron(III) fluoride trihydrate (0.3338 g, 2.000 mmol, 4 equiv). These solids were dissolved in a mixture of methanol (10 mL) and pyridine (2 mL), resulting in a dark-purple solution. Glacial acetic acid (0.200 mL, 3.50 mmol, 7 equiv) was added immediately, and the resulting solution was stirred for 1 h. The reaction mixture was gravity filtered using Whatman #2 filter paper, and the filtrate was allowed to evaporate slowly. After about one week, purple plates were obtained and diffracted. These plates were collected using vacuum filtration with #2 Whatman filter paper and a water aspirator and allowed to dry for 1 h before stopping the vacuum. Synthetic yield = 27% based on salicyl­hydroxamic acid. Elemental analysis of Fe4C34H37N4O16F (MM = 1000.06 g mol−1) observed (calculated): %C = 40.64 (40.83); %H = 3.83 (3.73); %N = 5.60 (5.95). Melting point = 530 K (decomposed). Selected FTIR peaks (ATR) in cm−1: 1585, 1560, 1535, 1496, 1408, 1329, 1263, 1221, 1149, 1097, 1070, 1041, 1015, 922, 862, 762, 696, 651, 636, 600, 544.

Fe4(shi)O(OAc)6(pyridine)3Cl (1-Cl): To a flask was added salicyl­hydroxamic acid (0.0383 g, 0.250 mmol, 1 equiv) and iron(III) chloride hexa­hydrate (0.2703 g, 1.000 mmol, 4 equiv). These solids were dissolved in a mixture of methanol (10 mL) and pyridine (2 mL), resulting in a dark-purple solution. Glacial acetic acid (0.100 mL, 1.75 mmol, 7 equiv) was added immediately, and the resulting solution was stirred for 1 h. The reaction mixture was gravity filtered using Whatman #2 filter paper, and the filtrate was allowed to evaporate slowly. After about one week, red–brown plates were observed and diffracted. These plates were collected using vacuum filtration with Whatman #2 filter paper and a water aspirator and allowed to dry for one h before stopping the vacuum. Synthetic yield = 59% based on salicyl­hydroxamic acid. Elemental analysis of Fe4C34H37N4O16Cl (MM = 1016.51 g mol−1) observed (calculated): %C = 40.22 (40.17); %H = 3.74 (3.67); %N = 5.77 (5.51). Melting point = 511 K (decomposed). Selected FTIR peaks (ATR) in cm−1: 1589, 1562, 1533, 1485, 1415, 1329, 1267, 1219, 1148, 1101, 1071, 1042, 1013, 930, 864, 766, 692, 633, 610, 565, 430.

Elemental analysis was performed by Midwest Microlabs.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 7[link]. The absolute structure for both compounds were determined by refinement of the Flack parameter. For 1-F, the pyridine containing N5 and C35–C39 is disordered around a special position (twofold axis) that was refined using a PART −1 command. The displacement parameters of these atoms were restrained with an esd of 0.01 using the ISOR command in SHELXL to limit excessive prolate character in displacement ellipsoids due to the disorder on a special position. A partial-occupancy water molecule containing O17 was refined to have an occupancy of 0.24 (2). Hydrogen atoms on O17 were located on the difference map and distances were restrained to 0.84 (2) Å for O–H bonds in water using a DFIX command in SHELXL. In addition, the distance between H—H atoms in the water mol­ecule was restrained to 1.35 (2) Å using a DANG command in SHELXL. These restraints maintain reasonable geometry for a water mol­ecule. Final refinement required an additional geometric constraint using the AFIX 3 command in SHELXL to stabilize the positions of these 0.24 (2) occupancy hydrogen atoms. For 1-Cl, one disordered water molecule containing O17 was refined using a PART command and refined occupancies of 0.71 (1) and 0.29 (1). Hydrogen atoms for the water were found on the difference map and O—H bonds were restrained to 0.84 (2) Å using a DFIX command in SHELXL. The distance between H—H atoms in the water mol­ecule were restrained to 1.35 (2) Å using a DANG command in SHELXL. These restraints maintain reasonable geometry of the water mol­ecules.

Table 7
Experimental details

  1-F 1-Cl
Crystal data
Chemical formula [Fe4(C2H3O2)6(C7H4O3)FO(C5H5N)5]·C5H5N·0.24H2O [Fe4(C2H3O2)6(C7H4O3)ClO(C5H5N)3]·H2O
Mr 2087.76 1034.54
Crystal system, space group Orthorhombic, Fdd2 Monoclinic, P21
Temperature (K) 100 100
a, b, c (Å) 31.676 (2), 44.806 (3), 12.6056 (8) 11.8460 (6), 15.5041 (7), 12.6425 (6)
α, β, γ (°) 90, 90, 90 90, 115.449 (1), 90
V3) 17891 (2) 2096.64 (17)
Z 8 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 1.35 1.50
Crystal size (mm) 0.33 × 0.30 × 0.14 0.28 × 0.28 × 0.14
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.670, 0.745 0.688, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 102006, 8265, 7012 52843, 8621, 7877
Rint 0.098 0.048
(sin θ/λ)max−1) 0.604 0.627
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.090, 1.05 0.033, 0.071, 1.06
No. of reflections 8265 8621
No. of parameters 604 570
No. of restraints 58 7
H-atom treatment H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.47, −0.38 0.43, −0.34
Absolute structure Via refinement Via refinement
Absolute structure parameter 0.05 (2) 0.014 (16)
Computer programs: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/3 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXT2018/3 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Hexa-µ-acetato-(µ-N,2-dioxodobenzene-1-carboximidato)fluorido-µ3-oxido-tripyridinetetrairon(III)–pyridine–water (1/1/0.24) (1-F) top
Crystal data top
[Fe4(C2H3O2)6(C7H4O3)FO(C5H5N)5]·C5H5N·0.24H2ODx = 1.550 Mg m3
Mr = 2087.76Melting point: 257 K
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
a = 31.676 (2) ÅCell parameters from 9974 reflections
b = 44.806 (3) Åθ = 2.2–25.1°
c = 12.6056 (8) ŵ = 1.35 mm1
V = 17891 (2) Å3T = 100 K
Z = 8Plate, purple
F(000) = 85340.33 × 0.30 × 0.14 mm
Data collection top
Bruker APEXII CCD
diffractometer
7012 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.098
φ and ω scansθmax = 25.4°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 3838
Tmin = 0.670, Tmax = 0.745k = 5454
102006 measured reflectionsl = 1515
8265 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0392P)2 + 78.008P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.090(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.47 e Å3
8265 reflectionsΔρmin = 0.38 e Å3
604 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
58 restraintsExtinction coefficient: 0.000039 (8)
Primary atom site location: dualAbsolute structure: Refined as an inversion twin
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.05 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a two-component inversion twin. A lattice pyridine containing N5 and C35 through C39 lies on a twofold axis and was refined using a PART -1 command. The partial occupancy of lattice water O17 was refined using a free variable, and the H atoms were found on the difference map and refined with DFIX and DANG commands.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe40.54162 (3)0.31181 (2)0.77891 (6)0.0170 (2)
Fe30.48707 (3)0.34874 (2)0.60174 (7)0.0172 (2)
Fe10.52740 (3)0.30748 (2)1.07300 (7)0.0178 (2)
Fe20.53647 (3)0.38430 (2)0.79611 (7)0.0189 (2)
C10.52500 (18)0.36899 (15)1.0345 (5)0.0177 (14)
C20.52547 (19)0.40090 (15)1.0584 (5)0.0178 (14)
C30.5175 (2)0.40924 (16)1.1646 (5)0.0200 (15)
H30.5097430.3942931.2143280.024*
C40.5208 (2)0.43821 (16)1.1980 (5)0.0252 (17)
H40.5152270.4432211.2698940.030*
C50.5322 (2)0.46024 (18)1.1260 (6)0.0302 (18)
H50.5345800.4803781.1487890.036*
C60.5401 (2)0.45296 (16)1.0213 (6)0.0265 (16)
H60.5475000.4682740.9726190.032*
C70.5372 (2)0.42337 (16)0.9856 (5)0.0203 (15)
C80.4415 (2)0.39185 (17)0.7444 (5)0.0284 (17)
C90.3996 (3)0.4050 (2)0.7751 (7)0.053 (3)
H9A0.4042010.4229960.8176430.080*
H9B0.3836420.3903700.8168310.080*
H9C0.3837050.4101090.7110270.080*
C100.5404 (2)0.40351 (17)0.5665 (5)0.0278 (17)
C110.5638 (3)0.4222 (2)0.4871 (7)0.055 (3)
H11A0.5541770.4429030.4919770.083*
H11B0.5583160.4145460.4154930.083*
H11C0.5941350.4212230.5018210.083*
C120.5479 (2)0.30150 (15)0.5414 (5)0.0197 (14)
C130.5673 (2)0.28292 (16)0.4548 (5)0.0250 (16)
H13A0.5643630.2933030.3867990.038*
H13B0.5529400.2635890.4511350.038*
H13C0.5973330.2797820.4701290.038*
C140.4545 (2)0.29360 (15)0.7173 (5)0.0193 (14)
C150.4195 (2)0.27110 (16)0.7260 (6)0.0252 (16)
H15A0.4054900.2732580.7947940.038*
H15B0.4312690.2509360.7197840.038*
H15C0.3990370.2744300.6689490.038*
C160.6196 (2)0.34999 (17)0.7895 (5)0.0213 (14)
C170.6670 (2)0.35092 (17)0.7983 (6)0.0286 (16)
H17A0.6787820.3319420.7735280.043*
H17B0.6750020.3541510.8725030.043*
H17C0.6779510.3672570.7546370.043*
C180.5498 (2)0.25712 (16)0.9189 (5)0.0208 (15)
C190.5504 (3)0.22453 (16)0.9063 (5)0.0306 (18)
H19A0.5747860.2187490.8631300.046*
H19B0.5243750.2180230.8711260.046*
H19C0.5524160.2150680.9762070.046*
N20.59476 (16)0.31323 (12)1.0972 (4)0.0192 (12)
C200.6248 (2)0.30487 (17)1.0282 (5)0.0274 (17)
H200.6164220.2955870.9638310.033*
C210.6667 (2)0.3090 (2)1.0460 (6)0.039 (2)
H210.6868010.3028010.9946680.047*
C220.6799 (2)0.32238 (19)1.1388 (6)0.036 (2)
H220.7090480.3253741.1527900.043*
C230.6495 (2)0.33131 (17)1.2112 (6)0.0297 (17)
H230.6573530.3408411.2755920.036*
C240.6079 (2)0.32606 (16)1.1878 (5)0.0254 (16)
H240.5872030.3318041.2384010.030*
C250.4366 (2)0.31587 (16)0.9917 (5)0.0246 (16)
H250.4494510.3299930.9457900.030*
C260.3935 (2)0.31257 (17)0.9890 (5)0.0280 (17)
H260.3769230.3246750.9431720.034*
C270.3742 (2)0.29151 (17)1.0533 (6)0.0316 (18)
H270.3444870.2886751.0514190.038*
C280.3991 (2)0.27487 (17)1.1198 (6)0.0308 (18)
H280.3868060.2603441.1651430.037*
C290.4425 (2)0.27941 (16)1.1204 (5)0.0261 (16)
H290.4594660.2677751.1667470.031*
C300.4637 (2)0.34985 (15)0.3626 (5)0.0187 (14)
H300.4933650.3518810.3545250.022*
C310.4386 (2)0.34877 (15)0.2726 (5)0.0209 (14)
H310.4509180.3503790.2041270.025*
C320.3959 (2)0.34537 (16)0.2832 (6)0.0244 (15)
H320.3782070.3447550.2223900.029*
C330.3787 (2)0.34283 (16)0.3842 (5)0.0238 (16)
H330.3492390.3400970.3935660.029*
C340.4053 (2)0.34433 (15)0.4702 (5)0.0219 (15)
H340.3933380.3426330.5390740.026*
F10.52458 (12)0.29497 (9)1.2121 (3)0.0232 (9)
N10.53052 (17)0.35965 (12)0.9354 (4)0.0163 (12)
N30.46126 (16)0.29968 (12)1.0577 (4)0.0206 (12)
N40.44722 (16)0.34809 (12)0.4618 (4)0.0177 (12)
O10.53120 (14)0.32821 (10)0.9290 (3)0.0178 (10)
O20.51946 (13)0.35002 (10)1.1099 (3)0.0197 (10)
O30.54669 (15)0.41781 (11)0.8852 (3)0.0237 (11)
O40.47337 (15)0.39745 (11)0.7996 (4)0.0309 (12)
O50.44128 (14)0.37496 (11)0.6630 (3)0.0249 (11)
O60.54797 (16)0.40823 (11)0.6633 (4)0.0283 (12)
O70.51501 (15)0.38471 (11)0.5322 (4)0.0271 (11)
O80.55440 (14)0.29309 (10)0.6355 (3)0.0222 (11)
O90.52547 (14)0.32326 (11)0.5146 (3)0.0238 (11)
O100.48483 (13)0.29115 (10)0.7812 (3)0.0220 (10)
O110.45184 (14)0.31306 (11)0.6447 (3)0.0232 (11)
O120.59983 (14)0.37435 (10)0.7909 (4)0.0228 (11)
O130.60280 (13)0.32449 (10)0.7846 (3)0.0210 (10)
O140.53657 (14)0.26776 (10)1.0068 (3)0.0206 (10)
O150.56241 (13)0.27338 (10)0.8435 (3)0.0204 (10)
O160.52158 (13)0.34820 (10)0.7222 (3)0.0181 (10)
N50.2858 (10)0.2671 (6)0.144 (2)0.155 (12)0.5
C350.2940 (10)0.2379 (6)0.163 (2)0.127 (11)0.5
H350.3110100.2329290.2220800.152*0.5
C360.2797 (7)0.2153 (5)0.1015 (17)0.073 (6)0.5
H360.2832120.1951320.1233990.088*0.5
C370.2596 (7)0.2218 (4)0.0060 (17)0.063 (6)0.5
H370.2544570.2067920.0456080.076*0.5
C380.2473 (17)0.2515 (7)0.0109 (14)0.074 (6)0.5
H380.2278450.2565110.0654030.089*0.5
C390.2643 (10)0.2733 (5)0.054 (2)0.095 (9)0.5
H390.2608030.2936540.0345800.114*0.5
O170.0851 (9)0.0248 (6)0.027 (3)0.069 (12)0.236 (17)
H17D0.0712990.0265120.0315770.103*0.236 (17)
H17E0.1052320.0369500.0189110.103*0.236 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe40.0181 (5)0.0248 (5)0.0081 (4)0.0004 (4)0.0020 (4)0.0010 (4)
Fe30.0163 (5)0.0266 (5)0.0087 (4)0.0001 (4)0.0025 (4)0.0009 (4)
Fe10.0181 (5)0.0274 (5)0.0077 (4)0.0007 (4)0.0004 (4)0.0009 (4)
Fe20.0219 (5)0.0256 (5)0.0093 (5)0.0017 (4)0.0032 (4)0.0008 (4)
C10.006 (3)0.032 (4)0.015 (3)0.000 (3)0.001 (3)0.002 (3)
C20.009 (3)0.028 (4)0.017 (4)0.005 (3)0.002 (2)0.002 (3)
C30.015 (4)0.032 (4)0.013 (3)0.001 (3)0.002 (3)0.002 (3)
C40.020 (4)0.036 (4)0.020 (4)0.001 (3)0.000 (3)0.009 (3)
C50.035 (4)0.030 (4)0.025 (4)0.002 (3)0.001 (3)0.009 (3)
C60.033 (4)0.025 (4)0.021 (4)0.001 (3)0.001 (3)0.001 (3)
C70.016 (3)0.033 (4)0.012 (3)0.002 (3)0.003 (3)0.001 (3)
C80.031 (4)0.043 (5)0.011 (3)0.006 (3)0.001 (3)0.004 (3)
C90.036 (5)0.098 (8)0.025 (5)0.029 (5)0.008 (4)0.013 (5)
C100.031 (4)0.036 (4)0.017 (4)0.009 (3)0.014 (3)0.008 (3)
C110.060 (6)0.080 (7)0.026 (4)0.038 (5)0.010 (4)0.023 (5)
C120.019 (3)0.030 (4)0.010 (3)0.002 (3)0.003 (3)0.004 (3)
C130.034 (4)0.035 (4)0.006 (3)0.008 (3)0.006 (3)0.001 (3)
C140.019 (3)0.027 (4)0.012 (3)0.001 (3)0.002 (3)0.005 (3)
C150.021 (4)0.034 (4)0.020 (4)0.004 (3)0.002 (3)0.003 (3)
C160.023 (3)0.036 (4)0.005 (3)0.003 (3)0.002 (3)0.001 (3)
C170.019 (3)0.046 (5)0.021 (4)0.002 (3)0.001 (3)0.002 (3)
C180.018 (4)0.037 (4)0.008 (3)0.004 (3)0.002 (3)0.000 (3)
C190.052 (5)0.026 (4)0.013 (4)0.006 (4)0.010 (3)0.001 (3)
N20.019 (3)0.030 (3)0.009 (3)0.003 (2)0.001 (2)0.001 (2)
C200.025 (4)0.050 (5)0.007 (3)0.002 (3)0.003 (3)0.004 (3)
C210.023 (4)0.077 (6)0.018 (4)0.002 (4)0.005 (3)0.007 (4)
C220.017 (4)0.062 (6)0.029 (4)0.009 (4)0.007 (3)0.003 (4)
C230.029 (4)0.039 (5)0.021 (4)0.006 (3)0.008 (3)0.003 (3)
C240.028 (4)0.034 (4)0.015 (4)0.001 (3)0.003 (3)0.001 (3)
C250.024 (4)0.032 (4)0.018 (4)0.002 (3)0.001 (3)0.005 (3)
C260.025 (4)0.040 (5)0.019 (4)0.013 (3)0.004 (3)0.008 (3)
C270.024 (4)0.043 (5)0.028 (4)0.003 (3)0.001 (3)0.016 (4)
C280.025 (4)0.040 (5)0.027 (4)0.005 (3)0.006 (3)0.007 (4)
C290.031 (4)0.033 (4)0.014 (3)0.001 (3)0.004 (3)0.004 (3)
C300.014 (3)0.025 (4)0.017 (3)0.000 (3)0.002 (3)0.006 (3)
C310.023 (3)0.028 (4)0.012 (3)0.001 (3)0.001 (3)0.002 (3)
C320.024 (4)0.034 (4)0.015 (3)0.003 (3)0.005 (3)0.002 (3)
C330.017 (4)0.042 (5)0.012 (3)0.000 (3)0.000 (3)0.001 (3)
C340.019 (3)0.036 (4)0.010 (3)0.001 (3)0.004 (3)0.001 (3)
F10.024 (2)0.038 (2)0.0072 (18)0.0010 (17)0.0008 (15)0.0027 (17)
N10.016 (3)0.021 (3)0.012 (3)0.000 (2)0.002 (2)0.000 (2)
N30.023 (3)0.025 (3)0.014 (3)0.001 (2)0.001 (2)0.004 (2)
N40.015 (3)0.028 (3)0.010 (3)0.003 (2)0.001 (2)0.004 (2)
O10.020 (2)0.021 (3)0.012 (2)0.001 (2)0.0031 (17)0.004 (2)
O20.019 (2)0.031 (3)0.009 (2)0.001 (2)0.0002 (18)0.001 (2)
O30.033 (3)0.026 (3)0.012 (2)0.004 (2)0.001 (2)0.001 (2)
O40.029 (3)0.039 (3)0.025 (3)0.006 (2)0.010 (2)0.008 (2)
O50.024 (3)0.043 (3)0.008 (2)0.010 (2)0.0059 (19)0.004 (2)
O60.035 (3)0.032 (3)0.018 (3)0.009 (2)0.004 (2)0.005 (2)
O70.031 (3)0.035 (3)0.015 (2)0.008 (2)0.009 (2)0.004 (2)
O80.028 (3)0.029 (3)0.010 (2)0.002 (2)0.001 (2)0.001 (2)
O90.022 (2)0.037 (3)0.012 (2)0.009 (2)0.0026 (19)0.004 (2)
O100.023 (2)0.030 (3)0.014 (2)0.004 (2)0.003 (2)0.004 (2)
O110.027 (3)0.031 (3)0.012 (2)0.002 (2)0.006 (2)0.005 (2)
O120.026 (3)0.026 (3)0.016 (2)0.001 (2)0.000 (2)0.000 (2)
O130.022 (2)0.028 (3)0.014 (2)0.003 (2)0.0019 (19)0.000 (2)
O140.024 (2)0.028 (3)0.010 (2)0.004 (2)0.0004 (18)0.0002 (19)
O150.019 (2)0.029 (3)0.012 (2)0.001 (2)0.0008 (19)0.001 (2)
O160.015 (2)0.030 (3)0.009 (2)0.002 (2)0.0010 (18)0.001 (2)
N50.184 (16)0.140 (16)0.141 (16)0.005 (12)0.035 (13)0.009 (12)
C350.158 (16)0.101 (15)0.121 (16)0.005 (12)0.011 (13)0.011 (12)
C360.089 (12)0.067 (11)0.064 (11)0.019 (10)0.023 (10)0.008 (9)
C370.066 (11)0.042 (10)0.080 (12)0.014 (9)0.002 (10)0.005 (9)
C380.077 (12)0.067 (10)0.077 (10)0.012 (9)0.003 (14)0.005 (14)
C390.112 (15)0.073 (13)0.099 (14)0.026 (11)0.017 (12)0.000 (11)
O170.063 (18)0.047 (17)0.09 (2)0.016 (13)0.008 (15)0.009 (15)
Geometric parameters (Å, º) top
Fe4—O161.890 (5)C15—H15C0.9800
Fe4—O152.016 (5)C16—O121.258 (8)
Fe4—O132.021 (4)C16—O131.262 (8)
Fe4—O102.023 (4)C16—C171.505 (9)
Fe4—O82.034 (4)C17—H17A0.9800
Fe4—O12.056 (4)C17—H17B0.9800
Fe3—O161.872 (4)C17—H17C0.9800
Fe3—O91.997 (5)C18—O151.263 (8)
Fe3—O52.020 (5)C18—O141.276 (8)
Fe3—O112.024 (5)C18—C191.469 (10)
Fe3—O72.037 (5)C19—H19A0.9800
Fe3—N42.170 (5)C19—H19B0.9800
Fe1—F11.843 (4)C19—H19C0.9800
Fe1—O21.978 (5)N2—C201.343 (8)
Fe1—O141.987 (4)N2—C241.345 (8)
Fe1—O12.043 (5)C20—C211.357 (9)
Fe1—N32.133 (5)C20—H200.9500
Fe1—N22.171 (5)C21—C221.379 (10)
Fe2—O31.902 (5)C21—H210.9500
Fe2—O161.925 (4)C22—C231.384 (10)
Fe2—O62.021 (5)C22—H220.9500
Fe2—O122.057 (5)C23—C241.372 (10)
Fe2—N12.083 (5)C23—H230.9500
Fe2—O42.084 (5)C24—H240.9500
C1—O21.287 (8)C25—N31.352 (9)
C1—N11.329 (8)C25—C261.374 (9)
C1—C21.461 (9)C25—H250.9500
C2—C71.412 (9)C26—C271.385 (11)
C2—C31.412 (9)C26—H260.9500
C3—C41.369 (10)C27—C281.372 (11)
C3—H30.9500C27—H270.9500
C4—C51.389 (10)C28—C291.389 (10)
C4—H40.9500C28—H280.9500
C5—C61.382 (10)C29—N31.343 (9)
C5—H50.9500C29—H290.9500
C6—C71.403 (10)C30—N41.357 (8)
C6—H60.9500C30—C311.386 (9)
C7—O31.325 (8)C30—H300.9500
C8—O41.252 (8)C31—C321.367 (9)
C8—O51.274 (9)C31—H310.9500
C8—C91.501 (11)C32—C331.388 (9)
C9—H9A0.9800C32—H320.9500
C9—H9B0.9800C33—C341.373 (9)
C9—H9C0.9800C33—H330.9500
C10—O71.243 (8)C34—N41.344 (8)
C10—O61.262 (8)C34—H340.9500
C10—C111.499 (10)N1—O11.411 (6)
C11—H11A0.9800N5—C351.35 (2)
C11—H11B0.9800N5—C391.35 (2)
C11—H11C0.9800C35—C361.35 (2)
C12—O91.253 (8)C35—H350.9500
C12—O81.261 (8)C36—C371.39 (2)
C12—C131.504 (9)C36—H360.9500
C13—H13A0.9800C37—C381.40 (3)
C13—H13B0.9800C37—H370.9500
C13—H13C0.9800C38—C391.39 (3)
C14—O101.259 (8)C38—H380.9500
C14—O111.267 (8)C39—H390.9500
C14—C151.502 (9)O17—H17D0.8564
C15—H15A0.9800O17—H17E0.8446
C15—H15B0.9800
O16—Fe4—O15178.35 (19)H15A—C15—H15C109.5
O16—Fe4—O1395.35 (18)H15B—C15—H15C109.5
O15—Fe4—O1384.96 (18)O12—C16—O13125.2 (6)
O16—Fe4—O1095.84 (18)O12—C16—C17118.1 (6)
O15—Fe4—O1083.89 (18)O13—C16—C17116.7 (6)
O13—Fe4—O10168.72 (19)C16—C17—H17A109.5
O16—Fe4—O894.97 (18)C16—C17—H17B109.5
O15—Fe4—O886.66 (18)H17A—C17—H17B109.5
O13—Fe4—O887.52 (18)C16—C17—H17C109.5
O10—Fe4—O890.07 (18)H17A—C17—H17C109.5
O16—Fe4—O189.18 (18)H17B—C17—H17C109.5
O15—Fe4—O189.19 (18)O15—C18—O14122.8 (6)
O13—Fe4—O191.19 (18)O15—C18—C19119.2 (6)
O10—Fe4—O190.42 (18)O14—C18—C19118.0 (6)
O8—Fe4—O1175.74 (18)C18—C19—H19A109.5
O16—Fe3—O994.78 (18)C18—C19—H19B109.5
O16—Fe3—O596.68 (18)H19A—C19—H19B109.5
O9—Fe3—O5168.52 (18)C18—C19—H19C109.5
O16—Fe3—O1195.43 (18)H19A—C19—H19C109.5
O9—Fe3—O1191.8 (2)H19B—C19—H19C109.5
O5—Fe3—O1187.8 (2)C20—N2—C24116.7 (6)
O16—Fe3—O796.08 (19)C20—N2—Fe1125.0 (4)
O9—Fe3—O787.2 (2)C24—N2—Fe1118.3 (5)
O5—Fe3—O790.9 (2)N2—C20—C21123.2 (6)
O11—Fe3—O7168.49 (18)N2—C20—H20118.4
O16—Fe3—N4178.5 (2)C21—C20—H20118.4
O9—Fe3—N484.23 (19)C20—C21—C22119.7 (7)
O5—Fe3—N484.33 (18)C20—C21—H21120.1
O11—Fe3—N483.47 (19)C22—C21—H21120.1
O7—Fe3—N485.02 (19)C21—C22—C23118.3 (7)
F1—Fe1—O293.63 (18)C21—C22—H22120.9
F1—Fe1—O1497.73 (18)C23—C22—H22120.9
O2—Fe1—O14168.62 (18)C24—C23—C22118.5 (7)
F1—Fe1—O1170.62 (18)C24—C23—H23120.8
O2—Fe1—O177.18 (18)C22—C23—H23120.8
O14—Fe1—O191.44 (17)N2—C24—C23123.6 (7)
F1—Fe1—N389.35 (19)N2—C24—H24118.2
O2—Fe1—N393.10 (19)C23—C24—H24118.2
O14—Fe1—N387.6 (2)N3—C25—C26122.2 (7)
O1—Fe1—N393.0 (2)N3—C25—H25118.9
F1—Fe1—N287.15 (18)C26—C25—H25118.9
O2—Fe1—N288.72 (19)C25—C26—C27119.8 (7)
O14—Fe1—N291.2 (2)C25—C26—H26120.1
O1—Fe1—N290.74 (19)C27—C26—H26120.1
N3—Fe1—N2176.2 (2)C28—C27—C26118.3 (7)
O3—Fe2—O16171.98 (19)C28—C27—H27120.8
O3—Fe2—O692.3 (2)C26—C27—H27120.8
O16—Fe2—O695.12 (19)C27—C28—C29119.5 (7)
O3—Fe2—O1291.36 (19)C27—C28—H28120.2
O16—Fe2—O1292.38 (18)C29—C28—H28120.2
O6—Fe2—O1285.01 (19)N3—C29—C28122.3 (7)
O3—Fe2—N186.4 (2)N3—C29—H29118.9
O16—Fe2—N186.6 (2)C28—C29—H29118.9
O6—Fe2—N1174.8 (2)N4—C30—C31122.1 (6)
O12—Fe2—N190.0 (2)N4—C30—H30118.9
O3—Fe2—O485.9 (2)C31—C30—H30118.9
O16—Fe2—O490.72 (19)C32—C31—C30119.4 (6)
O6—Fe2—O492.3 (2)C32—C31—H31120.3
O12—Fe2—O4176.1 (2)C30—C31—H31120.3
N1—Fe2—O492.6 (2)C31—C32—C33119.1 (6)
O2—C1—N1120.3 (6)C31—C32—H32120.5
O2—C1—C2119.7 (6)C33—C32—H32120.5
N1—C1—C2120.0 (6)C34—C33—C32118.7 (6)
C7—C2—C3118.3 (6)C34—C33—H33120.6
C7—C2—C1124.5 (6)C32—C33—H33120.6
C3—C2—C1116.9 (6)N4—C34—C33123.3 (6)
C4—C3—C2122.0 (6)N4—C34—H34118.4
C4—C3—H3119.0C33—C34—H34118.4
C2—C3—H3119.0C1—N1—O1111.7 (5)
C3—C4—C5119.5 (6)C1—N1—Fe2129.6 (4)
C3—C4—H4120.2O1—N1—Fe2118.7 (3)
C5—C4—H4120.2C29—N3—C25117.9 (6)
C6—C5—C4120.2 (7)C29—N3—Fe1119.5 (5)
C6—C5—H5119.9C25—N3—Fe1122.4 (5)
C4—C5—H5119.9C34—N4—C30117.4 (5)
C5—C6—C7121.2 (7)C34—N4—Fe3120.9 (4)
C5—C6—H6119.4C30—N4—Fe3121.7 (4)
C7—C6—H6119.4N1—O1—Fe1113.7 (3)
O3—C7—C6118.0 (6)N1—O1—Fe4114.3 (3)
O3—C7—C2123.1 (6)Fe1—O1—Fe4131.7 (2)
C6—C7—C2118.8 (6)C1—O2—Fe1116.5 (4)
O4—C8—O5124.8 (7)C7—O3—Fe2132.4 (4)
O4—C8—C9119.4 (7)C8—O4—Fe2134.9 (5)
O5—C8—C9115.9 (7)C8—O5—Fe3130.5 (4)
C8—C9—H9A109.5C10—O6—Fe2132.7 (5)
C8—C9—H9B109.5C10—O7—Fe3131.9 (4)
H9A—C9—H9B109.5C12—O8—Fe4132.9 (4)
C8—C9—H9C109.5C12—O9—Fe3129.9 (4)
H9A—C9—H9C109.5C14—O10—Fe4129.0 (4)
H9B—C9—H9C109.5C14—O11—Fe3134.5 (4)
O7—C10—O6124.9 (7)C16—O12—Fe2132.4 (4)
O7—C10—C11117.7 (6)C16—O13—Fe4131.3 (4)
O6—C10—C11117.3 (6)C18—O14—Fe1138.3 (5)
C10—C11—H11A109.5C18—O15—Fe4133.9 (4)
C10—C11—H11B109.5Fe3—O16—Fe4120.9 (2)
H11A—C11—H11B109.5Fe3—O16—Fe2121.7 (2)
C10—C11—H11C109.5Fe4—O16—Fe2117.4 (2)
H11A—C11—H11C109.5C35—N5—C39116 (2)
H11B—C11—H11C109.5C36—C35—N5124 (2)
O9—C12—O8125.4 (6)C36—C35—H35117.9
O9—C12—C13117.8 (6)N5—C35—H35117.9
O8—C12—C13116.8 (6)C35—C36—C37119 (2)
C12—C13—H13A109.5C35—C36—H36120.4
C12—C13—H13B109.5C37—C36—H36120.4
H13A—C13—H13B109.5C36—C37—C38117.3 (19)
C12—C13—H13C109.5C36—C37—H37121.4
H13A—C13—H13C109.5C38—C37—H37121.4
H13B—C13—H13C109.5C39—C38—C37118 (3)
O10—C14—O11125.0 (6)C39—C38—H38120.9
O10—C14—C15117.2 (6)C37—C38—H38120.9
O11—C14—C15117.7 (6)N5—C39—C38123 (2)
C14—C15—H15A109.5N5—C39—H39118.5
C14—C15—H15B109.5C38—C39—H39118.5
H15A—C15—H15B109.5H17D—O17—H17E103.3
C14—C15—H15C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···N5i0.982.373.23 (3)146
C13—H13A···F1ii0.982.543.389 (7)145
C15—H15B···F1iii0.982.493.454 (8)168
C17—H17A···O17iv0.982.603.42 (3)142
C19—H19B···F1iii0.982.603.520 (9)156
C19—H19C···O11v0.982.473.446 (8)172
C20—H20···O130.952.643.269 (8)124
C20—H20···O150.952.493.365 (8)153
C23—H23···O5i0.952.553.473 (9)164
C25—H25···O10.952.603.149 (8)117
C26—H26···O6vi0.952.643.431 (8)141
C29—H29···F10.952.462.930 (8)110
C31—H31···O2ii0.952.483.282 (8)143
C39—H39···O6vii0.952.543.27 (2)134
O17—H17E···O13viii0.842.152.97 (3)164
Symmetry codes: (i) x+1/4, y+3/4, z+3/4; (ii) x, y, z1; (iii) x+1, y+1/2, z1/2; (iv) x+3/4, y+1/4, z+3/4; (v) x+1, y+1/2, z+1/2; (vi) x1/4, y+3/4, z+1/4; (vii) x1/4, y+3/4, z3/4; (viii) x+3/4, y1/4, z3/4.
Hexa-µ-acetato-chlorido(µ-N,2-dioxodobenzene-1-carboximidato)-µ3-oxido-tetrairon(III)–water (1/1) (1-Cl) top
Crystal data top
[Fe4(C2H3O2)6(C7H4O3)ClO(C5H5N)3]·H2ODx = 1.639 Mg m3
Mr = 1034.54Melting point: 238 K
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 11.8460 (6) ÅCell parameters from 9996 reflections
b = 15.5041 (7) Åθ = 2.3–24.9°
c = 12.6425 (6) ŵ = 1.50 mm1
β = 115.449 (1)°T = 100 K
V = 2096.64 (17) Å3Block, dark brown
Z = 20.28 × 0.28 × 0.14 mm
F(000) = 1056
Data collection top
Bruker APEXII CCD
diffractometer
7877 reflections with I > 2σ(I)
φ and ω scansRint = 0.048
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 26.5°, θmin = 1.9°
Tmin = 0.688, Tmax = 0.745h = 1414
52843 measured reflectionsk = 1919
8621 independent reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.0296P)2 + 1.4211P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
8621 reflectionsΔρmax = 0.43 e Å3
570 parametersΔρmin = 0.34 e Å3
7 restraintsAbsolute structure: Refined as an inversion twin
Primary atom site location: dualAbsolute structure parameter: 0.014 (16)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a two-component inversion twin. A lattice water containing O17 was refined over two sites with a PART command and the occupancies were refined using a free variable. H atoms were found on the difference map and refined with DFIX and DANG commands. Minor disorder of the pyridine containing N4 was not refined and is likely due to the disorder of the lattice water.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.46846 (12)0.72584 (9)0.49062 (11)0.0297 (3)
Fe20.12283 (6)0.75827 (4)0.96279 (6)0.01283 (15)
Fe40.08443 (6)0.69044 (4)0.70471 (6)0.01401 (15)
Fe10.25727 (6)0.71218 (4)0.60363 (6)0.01778 (16)
Fe30.28619 (6)0.84403 (4)0.83141 (6)0.01368 (15)
C10.1641 (4)0.7441 (3)0.8433 (4)0.0134 (10)
C20.1680 (4)0.7585 (3)0.9578 (4)0.0132 (9)
C30.2869 (5)0.7669 (3)0.9550 (5)0.0205 (11)
H30.3583890.7677250.8816050.025*
C40.3023 (5)0.7740 (4)1.0561 (5)0.0254 (12)
H40.3833260.7800591.0531800.031*
C50.1969 (5)0.7722 (3)1.1630 (5)0.0245 (12)
H50.2064970.7759011.2337060.029*
C60.0793 (5)0.7651 (3)1.1678 (4)0.0195 (11)
H60.0086490.7643131.2417870.023*
C70.0619 (5)0.7589 (3)1.0642 (4)0.0155 (9)
C160.1488 (5)0.5709 (3)0.9094 (4)0.0188 (11)
C170.1697 (6)0.4792 (4)0.9525 (5)0.0346 (14)
H17A0.1877040.4779331.0357740.052*
H17B0.2404960.4547360.9420550.052*
H17C0.0944030.4450830.9078250.052*
C100.3908 (5)0.8117 (3)1.0937 (4)0.0198 (11)
C110.5042 (5)0.8197 (4)1.2090 (5)0.0342 (15)
H11A0.5750400.8403361.1953860.051*
H11B0.5244240.7632211.2474350.051*
H11C0.4869720.8607361.2591510.051*
C80.1256 (5)0.9514 (3)0.9086 (4)0.0171 (10)
C90.0811 (6)1.0401 (3)0.9203 (5)0.0294 (13)
H9A0.0055821.0370040.9101080.044*
H9B0.0857871.0780030.8601820.044*
H9C0.1341561.0633010.9980780.044*
C140.1095 (4)0.8432 (3)0.5730 (4)0.0168 (10)
C150.0728 (5)0.8871 (4)0.4569 (4)0.0276 (13)
H15A0.0016680.8591090.3976870.041*
H15B0.1416640.8828580.4337460.041*
H15C0.0546270.9479740.4636930.041*
C120.3554 (5)0.6848 (3)0.7421 (4)0.0198 (10)
C130.4548 (5)0.6284 (4)0.7343 (5)0.0305 (13)
H13A0.5028150.6616810.7016700.046*
H13B0.4155160.5789840.6833360.046*
H13C0.5109370.6077450.8126490.046*
C180.1213 (5)0.6292 (3)0.4774 (4)0.0192 (11)
C190.1451 (6)0.5866 (4)0.3639 (4)0.0327 (14)
H19A0.2029460.5382370.3505300.049*
H19B0.0660660.5651320.3666130.049*
H19C0.1819150.6283720.2999340.049*
C300.4475 (5)1.0113 (4)0.8995 (5)0.0286 (13)
H300.4124111.0157500.9541650.034*
C310.5223 (5)1.0776 (4)0.8928 (5)0.0348 (14)
H310.5372591.1268590.9417080.042*
C320.5751 (6)1.0719 (4)0.8145 (5)0.0385 (16)
H320.6252851.1171590.8070690.046*
C330.5522 (5)0.9987 (4)0.7481 (5)0.0323 (14)
H330.5895370.9917130.6954260.039*
C340.4756 (5)0.9350 (4)0.7568 (4)0.0247 (12)
H340.4597360.8853580.7083640.030*
C200.1920 (5)0.5370 (3)0.7353 (4)0.0241 (12)
H200.1252340.5705440.7898160.029*
C210.2018 (5)0.4517 (4)0.7622 (5)0.0286 (13)
H210.1434500.4275670.8339430.034*
C220.2970 (5)0.4025 (4)0.6837 (5)0.0291 (13)
H220.3054800.3436940.6998430.035*
C230.3809 (6)0.4403 (4)0.5798 (5)0.0368 (15)
H230.4474670.4075850.5237090.044*
C240.3659 (5)0.5263 (4)0.5595 (5)0.0302 (13)
H240.4238840.5521290.4888930.036*
C250.2080 (8)0.9070 (4)0.6453 (6)0.051 (2)
H250.2037350.8917070.7197150.062*
C260.1904 (9)0.9928 (5)0.6251 (7)0.073 (3)
H260.1757301.0351070.6839790.088*
C270.1947 (8)1.0154 (6)0.5189 (8)0.067 (3)
H270.1817551.0735110.5029070.080*
C280.2185 (6)0.9516 (6)0.4351 (7)0.052 (2)
H280.2232060.9653510.3600920.063*
C290.2350 (6)0.8685 (4)0.4624 (5)0.0359 (15)
H290.2505730.8252140.4045690.043*
N10.0574 (4)0.7339 (2)0.8375 (3)0.0140 (8)
N40.4229 (4)0.9407 (3)0.8313 (4)0.0196 (9)
N20.2723 (4)0.5746 (3)0.6361 (4)0.0206 (9)
N30.2304 (4)0.8448 (3)0.5661 (4)0.0254 (10)
O10.0757 (3)0.7135 (2)0.7220 (2)0.0147 (7)
O20.2688 (3)0.7401 (2)0.7496 (3)0.0182 (8)
O30.0537 (3)0.7516 (2)1.0747 (3)0.0164 (7)
O160.1694 (3)0.7641 (2)0.8334 (3)0.0143 (7)
O120.1617 (3)0.6289 (2)0.9829 (3)0.0205 (8)
O130.1159 (3)0.5825 (2)0.8016 (3)0.0208 (8)
O60.2944 (3)0.7771 (2)1.0935 (3)0.0216 (8)
O70.4011 (3)0.8406 (2)1.0054 (3)0.0204 (7)
O40.0908 (3)0.8899 (2)0.9526 (3)0.0191 (8)
O50.1963 (3)0.9458 (2)0.8581 (3)0.0196 (7)
O100.0420 (3)0.7825 (2)0.5788 (3)0.0178 (7)
O110.2077 (3)0.8700 (2)0.6584 (3)0.0182 (8)
O80.2429 (3)0.6626 (2)0.6858 (3)0.0207 (8)
O90.3926 (3)0.7530 (2)0.8034 (3)0.0192 (7)
O150.0180 (3)0.6149 (2)0.5639 (3)0.0213 (8)
O140.2075 (3)0.6755 (2)0.4795 (3)0.0232 (8)
O170.2126 (7)0.6698 (6)0.2870 (8)0.076 (4)0.715 (13)
H17D0.289 (5)0.680 (9)0.332 (10)0.115*0.715 (13)
H17E0.181 (10)0.704 (7)0.230 (8)0.115*0.715 (13)
O17A0.2102 (17)0.6965 (16)0.3790 (16)0.061 (7)0.285 (13)
H17F0.269 (19)0.670 (18)0.434 (16)0.091*0.285 (13)
H17G0.16 (2)0.71 (2)0.41 (2)0.091*0.285 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0217 (6)0.0401 (8)0.0221 (6)0.0020 (6)0.0044 (5)0.0074 (6)
Fe20.0166 (3)0.0122 (3)0.0120 (3)0.0007 (3)0.0084 (3)0.0021 (3)
Fe40.0166 (3)0.0132 (3)0.0144 (3)0.0023 (3)0.0087 (3)0.0046 (3)
Fe10.0165 (3)0.0243 (4)0.0122 (3)0.0019 (3)0.0058 (3)0.0018 (3)
Fe30.0163 (3)0.0135 (3)0.0128 (3)0.0024 (3)0.0078 (3)0.0021 (3)
C10.017 (2)0.010 (2)0.016 (2)0.0008 (19)0.009 (2)0.0005 (17)
C20.021 (2)0.008 (2)0.015 (2)0.000 (2)0.012 (2)0.0008 (19)
C30.021 (3)0.017 (3)0.028 (3)0.004 (2)0.015 (2)0.005 (2)
C40.024 (3)0.029 (3)0.033 (3)0.006 (2)0.021 (3)0.011 (2)
C50.034 (3)0.024 (3)0.024 (3)0.002 (2)0.020 (3)0.004 (2)
C60.031 (3)0.017 (3)0.015 (2)0.005 (2)0.015 (2)0.001 (2)
C70.026 (3)0.006 (2)0.019 (2)0.001 (2)0.014 (2)0.0007 (19)
C160.017 (3)0.015 (3)0.024 (3)0.000 (2)0.009 (2)0.002 (2)
C170.054 (4)0.018 (3)0.028 (3)0.005 (3)0.013 (3)0.002 (2)
C100.020 (3)0.023 (3)0.021 (3)0.007 (2)0.012 (2)0.000 (2)
C110.022 (3)0.066 (5)0.017 (3)0.001 (3)0.010 (2)0.002 (3)
C80.021 (3)0.015 (2)0.014 (2)0.001 (2)0.006 (2)0.0025 (19)
C90.042 (3)0.015 (3)0.038 (3)0.006 (3)0.024 (3)0.001 (2)
C140.021 (3)0.019 (2)0.017 (2)0.002 (2)0.014 (2)0.002 (2)
C150.031 (3)0.037 (3)0.012 (3)0.012 (3)0.007 (2)0.001 (2)
C120.021 (3)0.022 (3)0.020 (2)0.003 (2)0.012 (2)0.004 (2)
C130.028 (3)0.025 (3)0.045 (4)0.001 (2)0.022 (3)0.010 (3)
C180.027 (3)0.015 (3)0.016 (3)0.009 (2)0.009 (2)0.001 (2)
C190.052 (4)0.026 (3)0.015 (3)0.006 (3)0.009 (3)0.005 (2)
C300.029 (3)0.027 (3)0.029 (3)0.009 (2)0.012 (3)0.007 (2)
C310.031 (3)0.024 (3)0.041 (4)0.013 (3)0.007 (3)0.004 (3)
C320.030 (3)0.042 (4)0.033 (3)0.016 (3)0.003 (3)0.007 (3)
C330.026 (3)0.044 (4)0.022 (3)0.011 (3)0.005 (3)0.007 (3)
C340.025 (3)0.032 (3)0.018 (3)0.005 (2)0.010 (2)0.005 (2)
C200.031 (3)0.023 (3)0.016 (3)0.004 (2)0.008 (2)0.001 (2)
C210.036 (3)0.028 (3)0.024 (3)0.003 (3)0.015 (3)0.006 (2)
C220.038 (3)0.024 (3)0.029 (3)0.004 (3)0.018 (3)0.002 (2)
C230.040 (4)0.029 (3)0.035 (3)0.015 (3)0.010 (3)0.004 (3)
C240.031 (3)0.031 (3)0.020 (3)0.010 (3)0.003 (3)0.003 (2)
C250.079 (5)0.038 (4)0.026 (3)0.016 (4)0.011 (4)0.014 (3)
C260.101 (7)0.043 (5)0.046 (5)0.031 (5)0.004 (5)0.013 (4)
C270.060 (5)0.060 (5)0.066 (5)0.013 (4)0.013 (4)0.041 (5)
C280.034 (4)0.080 (6)0.051 (4)0.021 (4)0.026 (3)0.047 (4)
C290.036 (3)0.045 (4)0.033 (3)0.018 (3)0.021 (3)0.023 (3)
N10.018 (2)0.015 (2)0.0102 (18)0.0002 (16)0.0081 (16)0.0008 (15)
N40.017 (2)0.022 (2)0.017 (2)0.0036 (18)0.0053 (18)0.0004 (18)
N20.024 (2)0.024 (2)0.014 (2)0.0051 (19)0.0081 (19)0.0025 (17)
N30.024 (2)0.030 (3)0.022 (2)0.001 (2)0.0095 (19)0.010 (2)
O10.0172 (16)0.0210 (18)0.0071 (14)0.0009 (14)0.0062 (13)0.0020 (13)
O20.0154 (17)0.024 (2)0.0163 (17)0.0009 (14)0.0078 (14)0.0014 (14)
O30.0202 (17)0.0175 (17)0.0138 (16)0.0008 (15)0.0097 (14)0.0008 (14)
O160.0166 (17)0.0129 (17)0.0150 (16)0.0017 (14)0.0083 (14)0.0001 (14)
O120.027 (2)0.0153 (18)0.0218 (19)0.0031 (15)0.0130 (16)0.0024 (15)
O130.027 (2)0.0151 (18)0.0211 (19)0.0010 (15)0.0110 (16)0.0016 (14)
O60.0217 (19)0.028 (2)0.0166 (18)0.0034 (16)0.0097 (16)0.0021 (15)
O70.0196 (18)0.0269 (19)0.0148 (17)0.0044 (16)0.0075 (14)0.0033 (15)
O40.029 (2)0.0138 (18)0.0187 (18)0.0010 (15)0.0140 (16)0.0011 (14)
O50.0238 (19)0.0136 (17)0.0241 (19)0.0008 (15)0.0128 (16)0.0004 (14)
O100.0186 (18)0.0202 (18)0.0143 (17)0.0048 (14)0.0069 (15)0.0021 (13)
O110.0226 (19)0.0199 (19)0.0113 (17)0.0067 (15)0.0066 (15)0.0037 (14)
O80.0207 (19)0.0213 (19)0.0242 (19)0.0028 (15)0.0135 (16)0.0108 (15)
O90.0197 (17)0.0185 (18)0.0225 (18)0.0017 (15)0.0120 (15)0.0064 (15)
O150.028 (2)0.0177 (19)0.0164 (18)0.0035 (15)0.0073 (16)0.0070 (14)
O140.0224 (19)0.031 (2)0.0153 (17)0.0058 (17)0.0076 (15)0.0001 (15)
O170.062 (5)0.106 (8)0.076 (7)0.042 (5)0.043 (5)0.068 (6)
O17A0.047 (11)0.094 (16)0.048 (12)0.002 (11)0.027 (9)0.016 (11)
Geometric parameters (Å, º) top
Cl1—Fe12.2963 (14)C14—O101.256 (6)
Fe2—O31.918 (3)C14—O111.269 (6)
Fe2—O161.940 (3)C14—C151.503 (7)
Fe2—O62.015 (4)C15—H15A0.9800
Fe2—O122.050 (3)C15—H15B0.9800
Fe2—O42.070 (3)C15—H15C0.9800
Fe2—N12.075 (4)C12—O81.259 (6)
Fe4—O161.886 (3)C12—O91.272 (6)
Fe4—O132.011 (3)C12—C131.504 (7)
Fe4—O12.033 (3)C13—H13A0.9800
Fe4—O102.035 (3)C13—H13B0.9800
Fe4—O82.039 (3)C13—H13C0.9800
Fe4—O152.039 (3)C18—O141.258 (6)
Fe1—O21.957 (3)C18—O151.262 (6)
Fe1—O141.982 (3)C18—C191.493 (7)
Fe1—O12.025 (3)C19—H19A0.9800
Fe1—N32.165 (5)C19—H19B0.9800
Fe1—N22.194 (4)C19—H19C0.9800
Fe3—O161.866 (3)C30—N41.346 (7)
Fe3—O52.012 (3)C30—C311.383 (8)
Fe3—O112.016 (3)C30—H300.9500
Fe3—O92.023 (3)C31—C321.382 (9)
Fe3—O72.030 (3)C31—H310.9500
Fe3—N42.206 (4)C32—C331.369 (9)
C1—O21.297 (6)C32—H320.9500
C1—N11.306 (6)C33—C341.378 (8)
C1—C21.485 (6)C33—H330.9500
C2—C71.392 (7)C34—N41.338 (6)
C2—C31.400 (6)C34—H340.9500
C3—C41.370 (7)C20—N21.338 (7)
C3—H30.9500C20—C211.383 (8)
C4—C51.392 (8)C20—H200.9500
C4—H40.9500C21—C221.369 (8)
C5—C61.372 (7)C21—H210.9500
C5—H50.9500C22—C231.390 (8)
C6—C71.414 (6)C22—H220.9500
C6—H60.9500C23—C241.383 (8)
C7—O31.322 (6)C23—H230.9500
C16—O121.254 (6)C24—N21.343 (7)
C16—O131.260 (6)C24—H240.9500
C16—C171.505 (7)C25—N31.332 (8)
C17—H17A0.9800C25—C261.388 (9)
C17—H17B0.9800C25—H250.9500
C17—H17C0.9800C26—C271.367 (11)
C10—O71.257 (6)C26—H260.9500
C10—O61.260 (6)C27—C281.387 (12)
C10—C111.504 (8)C27—H270.9500
C11—H11A0.9800C28—C291.370 (10)
C11—H11B0.9800C28—H280.9500
C11—H11C0.9800C29—N31.339 (7)
C8—O51.255 (6)C29—H290.9500
C8—O41.259 (6)N1—O11.416 (4)
C8—C91.502 (7)O17—H17D0.85 (3)
C9—H9A0.9800O17—H17E0.84 (3)
C9—H9B0.9800O17A—H17F0.86 (3)
C9—H9C0.9800O17A—H17G0.85 (3)
O3—Fe2—O16172.17 (14)H9B—C9—H9C109.5
O3—Fe2—O690.17 (14)O10—C14—O11124.7 (4)
O16—Fe2—O697.63 (13)O10—C14—C15118.1 (4)
O3—Fe2—O1290.00 (14)O11—C14—C15117.2 (4)
O16—Fe2—O1291.14 (14)C14—C15—H15A109.5
O6—Fe2—O1286.91 (14)C14—C15—H15B109.5
O3—Fe2—O488.54 (14)H15A—C15—H15B109.5
O16—Fe2—O490.71 (13)C14—C15—H15C109.5
O6—Fe2—O490.10 (14)H15A—C15—H15C109.5
O12—Fe2—O4176.67 (15)H15B—C15—H15C109.5
O3—Fe2—N185.84 (14)O8—C12—O9125.3 (5)
O16—Fe2—N186.39 (14)O8—C12—C13118.2 (5)
O6—Fe2—N1175.53 (15)O9—C12—C13116.5 (4)
O12—Fe2—N191.08 (15)C12—C13—H13A109.5
O4—Fe2—N191.80 (15)C12—C13—H13B109.5
O16—Fe4—O1395.04 (14)H13A—C13—H13B109.5
O16—Fe4—O188.71 (13)C12—C13—H13C109.5
O13—Fe4—O191.05 (14)H13A—C13—H13C109.5
O16—Fe4—O1096.37 (13)H13B—C13—H13C109.5
O13—Fe4—O10168.28 (14)O14—C18—O15125.1 (5)
O1—Fe4—O1091.88 (13)O14—C18—C19117.0 (5)
O16—Fe4—O893.00 (13)O15—C18—C19117.9 (5)
O13—Fe4—O887.50 (14)C18—C19—H19A109.5
O1—Fe4—O8177.85 (14)C18—C19—H19B109.5
O10—Fe4—O889.23 (14)H19A—C19—H19B109.5
O16—Fe4—O15176.24 (14)C18—C19—H19C109.5
O13—Fe4—O1586.51 (14)H19A—C19—H19C109.5
O1—Fe4—O1587.84 (14)H19B—C19—H19C109.5
O10—Fe4—O1582.26 (13)N4—C30—C31122.3 (5)
O8—Fe4—O1590.48 (14)N4—C30—H30118.9
O2—Fe1—O14167.24 (14)C31—C30—H30118.9
O2—Fe1—O177.46 (12)C32—C31—C30119.7 (6)
O14—Fe1—O190.32 (13)C32—C31—H31120.2
O2—Fe1—N394.22 (15)C30—C31—H31120.2
O14—Fe1—N388.66 (16)C33—C32—C31117.5 (6)
O1—Fe1—N386.72 (15)C33—C32—H32121.3
O2—Fe1—N289.67 (15)C31—C32—H32121.3
O14—Fe1—N286.85 (16)C32—C33—C34120.6 (6)
O1—Fe1—N290.99 (15)C32—C33—H33119.7
N3—Fe1—N2174.96 (17)C34—C33—H33119.7
O2—Fe1—Cl193.87 (10)N4—C34—C33122.1 (5)
O14—Fe1—Cl198.56 (11)N4—C34—H34118.9
O1—Fe1—Cl1170.45 (10)C33—C34—H34118.9
N3—Fe1—Cl189.97 (12)N2—C20—C21123.1 (5)
N2—Fe1—Cl192.98 (12)N2—C20—H20118.5
O16—Fe3—O593.99 (14)C21—C20—H20118.5
O16—Fe3—O1198.53 (13)C22—C21—C20119.0 (5)
O5—Fe3—O1189.69 (14)C22—C21—H21120.5
O16—Fe3—O993.46 (14)C20—C21—H21120.5
O5—Fe3—O9172.54 (14)C21—C22—C23118.8 (5)
O11—Fe3—O988.91 (14)C21—C22—H22120.6
O16—Fe3—O797.10 (14)C23—C22—H22120.6
O5—Fe3—O789.76 (14)C24—C23—C22119.0 (5)
O11—Fe3—O7164.36 (14)C24—C23—H23120.5
O9—Fe3—O789.61 (14)C22—C23—H23120.5
O16—Fe3—N4178.69 (15)N2—C24—C23122.3 (5)
O5—Fe3—N484.80 (15)N2—C24—H24118.8
O11—Fe3—N481.96 (14)C23—C24—H24118.8
O9—Fe3—N487.76 (15)N3—C25—C26123.5 (7)
O7—Fe3—N482.43 (15)N3—C25—H25118.2
O2—C1—N1120.8 (4)C26—C25—H25118.2
O2—C1—C2118.6 (4)C27—C26—C25118.8 (8)
N1—C1—C2120.6 (4)C27—C26—H26120.6
C7—C2—C3120.3 (4)C25—C26—H26120.6
C7—C2—C1123.3 (4)C26—C27—C28118.5 (7)
C3—C2—C1116.2 (4)C26—C27—H27120.8
C4—C3—C2121.3 (5)C28—C27—H27120.8
C4—C3—H3119.4C29—C28—C27118.9 (6)
C2—C3—H3119.4C29—C28—H28120.6
C3—C4—C5118.8 (5)C27—C28—H28120.6
C3—C4—H4120.6N3—C29—C28123.6 (7)
C5—C4—H4120.6N3—C29—H29118.2
C6—C5—C4120.9 (5)C28—C29—H29118.2
C6—C5—H5119.5C1—N1—O1111.2 (4)
C4—C5—H5119.5C1—N1—Fe2129.6 (3)
C5—C6—C7120.9 (5)O1—N1—Fe2118.6 (2)
C5—C6—H6119.5C34—N4—C30117.8 (5)
C7—C6—H6119.5C34—N4—Fe3121.4 (4)
O3—C7—C2124.2 (4)C30—N4—Fe3120.6 (4)
O3—C7—C6118.0 (4)C20—N2—C24117.8 (5)
C2—C7—C6117.7 (4)C20—N2—Fe1121.1 (3)
O12—C16—O13125.6 (4)C24—N2—Fe1121.0 (4)
O12—C16—C17117.4 (5)C25—N3—C29116.7 (5)
O13—C16—C17117.0 (4)C25—N3—Fe1121.5 (4)
C16—C17—H17A109.5C29—N3—Fe1121.8 (4)
C16—C17—H17B109.5N1—O1—Fe1114.1 (2)
H17A—C17—H17B109.5N1—O1—Fe4114.4 (2)
C16—C17—H17C109.5Fe1—O1—Fe4131.50 (15)
H17A—C17—H17C109.5C1—O2—Fe1116.4 (3)
H17B—C17—H17C109.5C7—O3—Fe2132.3 (3)
O7—C10—O6125.7 (5)Fe3—O16—Fe4120.97 (16)
O7—C10—C11116.3 (5)Fe3—O16—Fe2121.56 (17)
O6—C10—C11117.9 (5)Fe4—O16—Fe2117.36 (16)
C10—C11—H11A109.5C16—O12—Fe2131.3 (3)
C10—C11—H11B109.5C16—O13—Fe4131.9 (3)
H11A—C11—H11B109.5C10—O6—Fe2131.0 (3)
C10—C11—H11C109.5C10—O7—Fe3134.1 (3)
H11A—C11—H11C109.5C8—O4—Fe2133.5 (3)
H11B—C11—H11C109.5C8—O5—Fe3131.1 (3)
O5—C8—O4126.0 (4)C14—O10—Fe4128.4 (3)
O5—C8—C9116.9 (5)C14—O11—Fe3133.1 (3)
O4—C8—C9117.1 (4)C12—O8—Fe4132.8 (3)
C8—C9—H9A109.5C12—O9—Fe3127.4 (3)
C8—C9—H9B109.5C18—O15—Fe4130.4 (3)
H9A—C9—H9B109.5C18—O14—Fe1134.5 (3)
C8—C9—H9C109.5H17D—O17—H17E114 (7)
H9A—C9—H9C109.5H17F—O17A—H17G104 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O17Ai0.952.643.486 (19)149
C15—H15C···O15ii0.982.623.581 (7)166
C19—H19A···O11iii0.982.613.424 (7)141
C20—H20···N10.952.653.429 (7)140
C20—H20···O10.952.533.100 (6)118
C21—H21···O4iv0.952.563.403 (6)148
C23—H23···Cl1v0.952.973.697 (6)135
C24—H24···Cl10.952.753.301 (6)118
C25—H25···O20.952.553.126 (7)119
C26—H26···O17ii0.952.203.014 (12)144
C26—H26···O17Aii0.952.603.17 (3)118
C29—H29···O140.952.483.007 (7)115
O17—H17D···Cl1vi0.85 (3)2.80 (3)3.647 (9)174 (15)
O17—H17E···O3vii0.84 (3)2.03 (5)2.830 (8)159 (12)
Symmetry codes: (i) x, y, z+1; (ii) x, y+1/2, z+1; (iii) x, y1/2, z+1; (iv) x, y1/2, z+2; (v) x1, y1/2, z+1; (vi) x+1, y, z; (vii) x, y, z1.
Geometric information (Å) for 1-F top
Metal IDCoordination numberShapeAverage bond lengthBond-valence sumaFe—O(oxo)bond lengthFe—N(pyridine) bond length
Fe16Octahedral2.1032.9532.164, 2.194
Fe26Octahedral2.0113.1911.940
Fe36Octahedral2.0263.1161.8662.207
Fe46Octahedral2.0073.1581.886
Note: (a) Zheng et al. (2017).
Geometric information (Å) for 1-Cl top
Metal IDCoordination numberShapeAverage bond lengthBond-valence sumaFe—O(oxo)bond lengthFe—N(pyridine) bond length
Fe16Octahedral2.0263.0322.133, 2.171
Fe26Octahedral2.0123.1991.925
Fe36Octahedral2.0203.1491.8712.169
Fe46Octahedral2.0123.1181.890
 

Acknowledgements

The authors have no conflict of inter­est to declare. The authors acknowledge Professor Charles Winter for use of his FTIR instrument.

Funding information

Funding for this research was provided by: National Institutes of Health (grant No. EB027103 to Matthew J. Allen); Wayne State University (award to Jacob C. Lutter).

References

First citationBruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChow, C. Y., Guillot, R., Rivière, E., Kampf, J. W., Mallah, T. & Pecoraro, V. L. (2016). Inorg. Chem. 55, 10238–10247.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationChow, C. Y., Trivedi, E. R., Pecoraro, V. L. & Zaleski, C. M. (2015). Comments Inorg. Chem. 35, 214–253.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLah, M. S., Kirk, M. L., Hatfield, W. & Pecoraro, V. L. (1989). J. Chem. Soc. Chem. Commun. pp. 1606–1608.  CSD CrossRef Web of Science Google Scholar
First citationLah, M. S. & Pecoraro, V. L. (1989). J. Am. Chem. Soc. 111, 7258–7259.  CSD CrossRef CAS Web of Science Google Scholar
First citationLutter, J. C., Zaleski, C. M. & Pecoraro, V. L. (2018). Advances in Inorganic Chemistry, Vol. 71, Supramolecular Chemistry, edited by R. Eldik & L. Puchta, pp 177–246. Cambridge: Academic Press.  Google Scholar
First citationMezei, G., Zaleski, C. M. & Pecoraro, V. L. (2007). Chem. Rev. 107, 4933–5003.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPecoraro, V. L. (1989). Inorg. Chim. Acta, 155, 171–173.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZheng, H., Langner, K. M., Shields, G. P., Hou, J., Kowiel, M., Allen, F. H., Murshudov, G. & Minor, W. (2017). Acta Cryst. D73, 316–325.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds