Jerry P. Jasinski tribute
Formation of 1-(thiazol-2-yl)-4,5-dihydropyrazoles from simple precursors: synthesis, spectroscopic characterization and the structures of an intermediate and two products
aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570 006, India, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore-574199, India, cDepartment of Bioinformatics, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya-824236, India, and dSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, UK
*Correspondence e-mail: yathirajan@hotmail.com, ravindranath.rathore@gmail.com
Two new 1-(thiazol-2-yl)-4,5-dihydropyrazoles have been synthesized from simple precursors, and characterized both spectroscopically and structurally. In addition, two intermediates in the reaction pathway have been isolated and characterized, one of them structurally. The molecules of the intermediate (E)-1-(4-methoxyphenyl)-3-[4-(prop-2-ynyloxy)phenyl]prop-2-en-1-one, C19H16O3 (I), are linked by a combination of C—H⋯O and C—H⋯π(arene) hydrogen bonds to form ribbons. The products (RS)-5-(4-methoxyphenyl)-1-(4-phenythiazol-2-yl)-3-[4-(prop-2-ynyloxy)phenyl]-4,5-dihydro-1H-pyrazole, C28H23N3O2S (II), and (RS)-5-(4-methoxyphenyl)-1-[4-(4-methylphenyl)thiazol-2-yl]-3-[4-(prop-2-ynyloxy)phenyl]-4,5-dihydro-1H-pyrazole, C29H25N3O2S (III), are closely related – differing only by presence or absence of a methyl group at the arylthiazolyl substituent – and crystallize in an isomorphous setting. Both molecules contain an effectively planar dihydro-pyrazole ring, and possess an overall T-shaped structure, which is a characteristic of triaryl-substituted 4,5-dihydro-1-(thiazol-2-yl)pyrazole compounds. The crystal packing is characterized by intermolecular C—H⋯S and C—H⋯π (aryl/alkyne) interactions. A combination of two C—H⋯π(arene) hydrogen bonds links the product molecules into sheets.
1. Chemical context
Pyrazole derivatives are an important class of N-heterocyclic compounds with a wide spectrum of biological activities including antibacterial (Song et al., 2013; Yan et al., 2015), antifungal (Gondru et al., 2015), anti-inflammatory (El-Sayed et al., 2012; Kadambar et al., 2021), antimicrobial (Manju, Kalluraya & Kumar, 2019) and antitumor (Insuasty et al., 2010; Alam et al., 2016) activities. Thiazole derivatives similarly also exhibit a broad spectrum of biological activity, including anticancer (Bansal et al., 2020), anti-inflammatory (Sharma et al., 1998) and antimicrobial (Kalluraya et al., 2001) activity.
Accordingly, we have sought to combine pyrazole and thiazole pharmacophores in a single molecular skeleton and synthesized triaryl-substituted (thiazol-2-yl)pyrazole compounds (C3,C5-aryl substitutions on the pyrazole ring and C4-aryl substitution on the thiazole ring). We report here the synthesis of 1-(thiazolol-2-yl)-4,5-dihydropyrazoles from simple precursors. The reaction sequence is summarized in Fig. 1: a base-catalysed condensation reaction between 4-methoxybenzaldehyde (A) and a substituted acetophenone (B) yields the chalcone intermediate (I) (Shaibah et al., 2020). Compound (I) undergoes a cyclocondensation reaction with a thiosemicarbazide to provide thioamide intermediate (C), which in turn undergoes a further cyclocondensation reaction with a phenacyl bromide to give the thiazolyl-dihydropyrazoles (II) and (III) (Manju, Kalluraya, Asma et al., 2019).
Few triaryl-substituted (thiazol-2-yl)pyrazoles have previously been synthesized and characterized. The synthesis and et al., 2012). A new series of 1,3-thiazole integrated pyrazoline scaffolds have been synthesized and characterized (DADQIL, DADQEH; Salian et al., 2017). The synthesis, fluorescence, TGA and of a thiazolyl-pyrazoline derived from has been described (JUNRAN; Suwunwong et al., 2015). In addition, the following crystal structures of related compounds have been reported: 2-[3-(4-bromophenyl)-5-(4-fluorophenyl)-4,5-dihydro-1H-pyrazol-1-yl]-4-phenyl-1,3-thiazole (IDOMOF; Abdel-Wahab et al., 2013c), 2-[5-(4-fluorophenyl)-3-(4-methylphenyl)-4,5-dihydro-1H-pyrazol-1-yl]-4-phenyl-1,3-thiazol (MEWQUC; Abdel-Wahab et al., 2013a), 2-[3-(4-chlorophenyl)-5-(4-fluorophenyl)-4,5-dihydro-1H-pyrazol-1-yl]-4-phenyl-1,3-thiazole (WIGQIO; Abdel-Wahab et al., 2013b), 2-[3-(4-chlorophenyl)-5-(4-fluorophenyl)-4,5-dihydro-1H-pyrazol-1-yl]-8H-indeno[1,2-d]thiazole (WOCFEC; El-Hiti et al., 2019) and 2-[3-(4-bromophenyl)-5-(4-fluorophenyl)-4,5-dihydro-1H-pyrazol-1-yl]-8H-indeno[1,2-d]thiazole (PUVVAG; Alotaibi et al., 2020).
of a new thiazolyl-pyrazoline derivative bearing the 1,2,4-triazole moiety has been reported (CSD refcode BAKLOQ; ZengThe proposed synthetic route, as also applied to synthesize many of the aforementioned related compounds, was selected because in some cases, we have introduced mesoionic moieties like sydnone as a part of the triaryl. These et al., 2013; Bansal et al., 2020). The biological activities of few of the related triaryl-substituted (thiazol-2-yl)pyrazole compounds have been reported in the literature, such as Salian et al. (2017) have demonstrated radical scavenging capacity owing to the destabilization of the radical formed during oxidation. In the present study, compounds (I)–(III) and the intermediate (C) have been characterized spectroscopically. Chalcone intermediate (I) (Fig. 2) and the dihydro(thiazolyl)pyrrazole products (II) and (III) (Figs. 3 and 4) have also been characterized, and their structures will be described here.
are somewhat sensitive towards vigorous reaction conditions. Under the present conditions selected, the products are stable and the reactions gave reasonably good yields. The chosen synthetic routes of the reported compounds in this study are straightforward with limited steps and readily accessible, cheap starting materials, and yields are reasonably high (Nayak2. Structural commentary
For the thiazolylpyrazole products (II) and (III), and for the intermediates (I) and (C) (Fig. 1), the 1H NMR spectra contained all of the expected signals (Section 5). In particular, the spectra of each of (I), (II) and (III) contained signals from an ABX spin system arising from the H atoms bonded to atoms C4 and C5 (Figs. 2 and 3), consistent with the formation of a new 4,5-dihydropyrazole ring.
In the structure of the chalcone intermediate (I) (Fig. 2), the two aryl rings are both twisted away from the plane of the central spacer unit, atoms C11, C1, O1, C2, C3, C31 [maximum planar deviation of 0.033 (2) Å for C3 atom]. The dihedral angles between this spacer unit and the rings (C11–C16) and (C31–C36) are 21.48 (7) and 8.98 (7)°, respectively, while the dihedral angle between the (C11–C16) ring and the prop-2-ynyloxy unit (O14, C17, C18, C19) is 73.48 (13)°. The molecule of (I) exhibits no internal symmetry and so is conformationally chiral, but the centrosymmetric confirms that equal numbers of the two conformational enantiomers are present.
Compounds (II) and (III), differing only in the presence or absence of a methyl group at the arylthiazolyl substituent, and are isomorphous and isostructural (Fig. 1 and Table 2). In the molecules of (II) and (III), there is a stereogenic centre at atom C5 and, for each, the reference molecule was selected as one having the R-configuration at atom C5. However, the confirms that both compounds have crystallized as racemic mixtures: this is as expected, as the synthesis of (II) and (III) involves no reagents that could plausibly induce enantioselectivity. In each of these compounds, the dihydro-pyrazole ring is effectively planar (Alex & Kumar, 2014). The maximum deviations from the mean planes through the ring atoms are 0.44 (3) Å for atom C4 in (II) and only 0.012 (2) Å for atom C3 in (III). The dihydro-pyrazole ring has been found to be effectively planar among triaryl-substituted (thiazol-2-yl)pyrazole compounds available in the literature (see Chemical context and Database survey for references).
In each of (I)–(III), the methoxy C atom is coplanar with the adjacent aryl ring [the maximum deviation of atom C37 in (I) and C57 in (II) and (III) from the respective planes are 0.003 (2), 0.529 (5) and 0.405 (7) Å, respectively).
Associated with this coplanarity, the values of the two exocyclic C—C—O angles, at atom C34 in (I) and at atom C54 in each of (II) and (III), differ by ca 10°, as typically found in planar alkoxyarenes (Seip & Seip, 1973; Ferguson et al., 1996; Kiran Kumar, Yathirajan, Foro et al., 2019; Kiran Kumar et al., 2020). Overall, both the molecules (II) and (III) adopt a T-shaped structure with the pyrazole C5-substituent anisyl units forming the blade. The remaining part of molecule, the thiazolyl-pyrazole ring and its substituents form a more or less planar structure, which constitutes the stock of the T-shape. The angle between the plane of the anisyl unit and the remaining part of molecule is 71.8 (1) and 75.3 (1)° in (II) and (III), respectively. Both molecules adopt a more or less similar conformation and a superimposed image of (II) and (III) is shown in Fig. 5.
3. Supramolecular features
The supramolecular assembly of the chalcone (I) depends upon two hydrogen-bond-like interactions, one each of the C—H⋯O and the C—H⋯π(arene) type (Table 1). The molecules of (I) are linked into a ribbon of centrosymmetric rings running parallel to the [010] direction (Fig. 6), in which (propynyloxy-CH2) C17—H17B⋯O1 (carbonyl) bonded R22(18) (Etter, 1990; Etter et al., 1990; Bernstein et al., 1995) rings centred at (0, n, 0.5) alternate with rings built from (propynyloxy-alkyne) C19—H19⋯π (arene of anisyl) hydrogen bonds, which are centred at (0, n + 0.5, 0.5), where n represents an integer in each case. The C—H(alkyne)⋯π interaction has been examined by Holme et al. (2013). Another (propynyloxy-phenyl) C12—H12⋯π (arene of anisyl) interaction is also observed.
|
The structure of compound (II) and (III) contains two C—H⋯π(arene) hydrogen bonds, namely, (propynyloxy-alkyne) C39—H39⋯Cg2 (arene of anisyl) and (anisyl-CarH) C56—H56⋯Cg1(propynyloxy-phenyl). Together, the two interactions generate a sheet (Fig. 7) lying parallel to (010) in the domain 0 < y < 0.5. The interaction is augmented by a (propynyloxy-phenyl) C35—H35⋯S11 interaction (Ghosh et al., 2020) in (III). In (II) too, there is a short H35⋯S11 contact of 2.96 Å; however, it is only 0.04 Å shorter than the sum of van der Waals radii of the corresponding atoms. A second sheet of this type, related to the first by the action of the glide planes lies in the domain 0.5 < y < 1.0, but there are no direction-specific interactions between adjacent sheets. With the exception of this, there are no significant differences in the packing of (II) and (III).
In (III), a C5—H5⋯π(alkyne) interaction, also referred as a T-shaped C—H⋯π interaction (McAdam et al., 2012) is observed, with the shortest H5⋯C38i [symmetry code: (i) − + x, − y, + z] distance being 2.74 Å and a C5—H5⋯C38 angle of 159°. In (II), two such short contacts of the C—H⋯π(alkyne) type are observed, with H4A⋯C39i and H5⋯C38i distances of 2.80 and 2.81 Å, respectively, which are only 0.10 and 0.09 Å shorter than the sum of of corresponding van der Waals radii.
Additional short intramolecular C—H⋯O and C—H⋯N contacts are observed in (I)–(III). The packing is devoid of C(alkyne)—H⋯O hydrogen bonding, and no noticeable π–π interactions are observed.
4. Database survey
We briefly compare the structures reported here with those of some related compounds. A search for triaryl-substituted (thiazol-2-yl)pyrazoles in the Cambridge Structural Database (Version 2021.1; Groom et al., 2016) yielded nine structures that have C3,C5-aryl substitutions in the pyrazole ring and C4-aryl substitution in the thiazole ring, CSD entries: BAKLOQ, DADQEH, DADQIL, IDOMOF, JUNRAN, MEWQUC, WIGQIO, WOCFEC and PUVVAG (for references, see Chemical context). BAKLOQ, and PUVVAG have fused thiazol and phenyl rings. All these structures are characterized by a T-shaped structure with pyrazole C5-aryl substituents forming its blade and the remaining part of the molecule, the thiazol-2-yl-pyrazole ring and its substituents, forming a more or less planar structure, which constitutes the stock of the T-shape. Classical hydrogen bonding is not observed in any of these compounds. The dihydropyrazole rings are effectively planar in all these compounds.
Finally, we note that the Cambridge Structural Database (Groom et al., 2016) records 55 chalcone structures, which were determined as part of the long-time collaboration between the Yathirajan group and the late Professor Jerry P. Jasinski.
5. Synthesis and crystallization
All reagents were obtained commercially, and all were used as received. For the synthesis of compound (I), 4-methoxybenzaldehyde (A), (see Fig. 1) (1.80 g, 0.014 mol) was added to a well-stirred solution of 4-(prop-2-ynyloxy)acetophenone (B) (2.00 g, 0.012 mol) and potassium hydroxide (0.90 g, 0.017 mol) in ethanol (10 ml), and this resulting mixture was stirred at ambient temperature for 5 h. When the reaction was complete, as judged from TLC, the mixture was poured into an excess of ice-cold water and the resulting solid product (I) was collected by filtration and crystallized from a mixture of ethanol and N,N-dimethylformamide (3:2, v/v) (Shaibah et al., 2020). Yield 88%, m.p. 375–378 K. IR (cm−1) 2180 (alkyne), 1667 (C=O), 1620 (C=C). NMR (CDCl3) δ(1H) 2.79 (2H, d, J = 1.8 Hz O-CH2), 6.67 (1H, d, J = 15.6 Hz) (H-2) and 7.54 (1H, d, J = 15.6 Hz) (H-3), 7.06 (2H, d, J = 8.8Hz) and 7.16 (2H, d, J = 8.8Hz) (–C6H4–), 7.12–7.24 (4H, m, –C6H4–).
For the synthesis of compounds (II) and (III), the precursor chalcone was first converted to the carbothioamide intermediate (C): thiosemicarbazide (0.155 g, 1.50 mmol) was added to a suspension of (I) (0.50 g, 1.0 mmol) and potassium hydroxide (0.14 g, 2.5 mmol) in ethanol (10 ml). This mixture was then heated under reflux for 8 h, after which time the reaction was judged from TLC to be complete. The mixture was poured onto crushed ice and the resulting solid intermediate (C) was collected by filtration and crystallized from a mixture of ethanol and N,N-dimethylformamide (3:2, v/v). Yield 79%, m.p. 422–423 K. Analysis: found C 65.8, H 5.2, N 11.5%; C20H15N3O2S requires C 65.7, H 5.2, N 11.5%. IR (cm−1) 3339 (NH2), 2120 (alkyne). 1H NMR (DMSO-d6) δ 3.09 (1H, dd, J = 17.5 Hz and 3.2 Hz) and 3.71 (1H, dd, J = 17.5 Hz and 11.5 Hz) (pyrazole CH2), 3.69 (1H, t, J = 2.3 Hz, alkynic CH), 3.78 (3H, s, OMe), 4.52 (2H, d, J = 2.3 Hz, O-CH2), 5.76 (1H, dd, J = 11.5 Hz and 3.2 Hz, pyrazole CH), 6.75 (2H, d, J = 8.8 Hz) and 7.02 (2H, d, J = 8.8 Hz) (–C6H4–), 7.13 (2H, d, J = 8,1 Hz) and 7.64 (2H, d, J = 8.1 Hz) (–C6H4–). Mixtures of this intermediate (1.00 g, 2.0 mmol) and either phenacyl bromide (0.5 g, 2.0 mmol) for (II) or 4-methylphenacyl bromide (0.58 g, 2.0 mmol) for (III) in ethanol (20 ml) were heated under reflux for 1 h. The mixtures were then allowed to cool to ambient temperature and the resulting solid products were collected by filtration and then crystallized from mixtures of ethanol and N,N-dimethylformamide (3:2, v/v) (Manju, Kalluraya, Asma et al., 2019). Compound (II), yield 88%, m.p. 435–438 K. IR (cm−1 2198 (alkyne), 1618 (C=N), 1600 (C=C). 1H NMR (CDCl3) δ 2.41 (1H, t, J = 1.8 Hz), H-39), 3.46 (1H, dd, J = 16.9 Hz and 5.2 Hz) and 4.10 (1H, dd, J = 16.9 Hz and 12.4 Hz) (pyrazole CH2), 3.90 (3H, s, OMe), 4.56 (2H, d, J = 1.8 Hz, O-CH2), 5.43 (1H, dd, J = 12.4 Hz and 5.2 Hz, pyrazole CH), 6.95 (2H, d, J = 8.8 Hz) and 7.20 (2H, d, J = 8.8Hz, –C6H4–) 7.26–7.63 (9H, m, aryl), 7.90 (1H, s, H-15). Compound (III), yield 82%, m.p. 453–455 K. IR (cm−1) 2210 (alkyne), 1620 (C=N), 1605 (C=C). 1H NMR (CDCl3) δ 2,32 (3H, s, C—CH3), 2.54 (1H, t, J = 2.0 Hz), H-39), 3.28 (1H, dd, J = 17.0 Hz and 6.4 Hz) and 3.84 (1H, dd, J = 17.0 Hz and 11.8 Hz) (pyrazole CH2), 3.77 (3H, s, OMe), 4.75 (2H, d, J = 2.0 Hz, O—CH2), 5.69 (1H, dd, J = 11.8 Hz and 5.4 Hz, pyrazole CH), 6.86 (2H, d, J = 8.8 Hz), 7.01 (2H, d, J = 8.8 Hz), 7.11 (2H, d, J = 8.8 Hz), 7.34 (2H, d, J = 8.8Hz), 7.57 (2H, d, J = 8.8 Hz) and 7.72 (2H, d, J = 8.8 Hz) (3 × –C6CH4–), 8.00 (1H, s, H-15). Crystals of compounds (I)–(III) that were suitable for single-crystal X-ray diffraction were selected directly from the prepared samples.
6. Refinement
Crystal data, data collection and . A number of low-angle reflections, which had been attenuated by the beam stop, were omitted from the data sets: for (I), (100), (011), (01), (110) and (111); for (II), (11), (11) and (200); and for (III), (11) and (200). All H atoms were located in difference maps and they were then treated as riding atoms in geometrically idealized positions with C—H distances of 0.98 Å (saturated aliphatic C—H), 0.97 Å (CH2), 0.96 Å (CH3) or 0.93 Å for all other H atoms, and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, and k = 1.2 for all other H atoms. For compounds (II) and (III), the correct orientation of the structures with respect to the polar axis directions was established by means of the Flack x parameter (Flack, 1983), calculated using quotients of the type (I+) - (I−)]/[(I+) + (I−)] (Parsons et al., 2013). For (II), x = 0.00 (3), calculated using 1715 quotients, and for (III) x = −0.01 (3), calculated using 1613 quotients.
details are summarized in Table 2Supporting information
https://doi.org/10.1107/S2056989021009312/zl5017sup1.cif
contains datablocks global, I, II, III. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021009312/zl5017Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989021009312/zl5017IIsup3.hkl
Structure factors: contains datablock III. DOI: https://doi.org/10.1107/S2056989021009312/zl5017IIIsup4.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021009312/zl5017Isup5.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989021009312/zl5017IIIsup6.cml
For all structures, data collection: APEX3 (Bruker, 2016); cell
APEX3 and SAINT (Bruker, 2016); data reduction: SAINT and XPREP (Bruker, 2016); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b) and PLATON (Spek, 2020).C19H16O3 | Z = 2 |
Mr = 292.32 | F(000) = 308 |
Triclinic, P1 | Dx = 1.286 Mg m−3 |
a = 8.6430 (15) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.9526 (16) Å | Cell parameters from 5248 reflections |
c = 10.0677 (18) Å | θ = 2.7–32.5° |
α = 79.039 (6)° | µ = 0.09 mm−1 |
β = 70.124 (6)° | T = 297 K |
γ = 68.366 (5)° | Block, colourless |
V = 755.0 (2) Å3 | 0.16 × 0.15 × 0.12 mm |
Bruker D8 Venture diffractometer | 5029 independent reflections |
Radiation source: INCOATEC high brilliance microfocus sealed tube | 3072 reflections with I > 2σ(I) |
Multilayer mirror monochromator | Rint = 0.066 |
φ and ω scans | θmax = 31.5°, θmin = 2.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | h = −12→12 |
Tmin = 0.966, Tmax = 0.969 | k = −14→14 |
45325 measured reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.053 | H-atom parameters constrained |
wR(F2) = 0.162 | w = 1/[σ2(Fo2) + (0.0578P)2 + 0.2039P] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max < 0.001 |
5029 reflections | Δρmax = 0.36 e Å−3 |
200 parameters | Δρmin = −0.20 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.35447 (18) | 0.15799 (16) | 0.42144 (16) | 0.0472 (3) | |
O1 | 0.36622 (16) | 0.11332 (14) | 0.31105 (12) | 0.0652 (3) | |
C2 | 0.47763 (19) | 0.22583 (17) | 0.42604 (16) | 0.0498 (3) | |
H2 | 0.4598 | 0.2643 | 0.5094 | 0.060* | |
C3 | 0.61295 (19) | 0.23433 (16) | 0.31606 (16) | 0.0480 (3) | |
H3 | 0.6285 | 0.1928 | 0.2351 | 0.058* | |
C11 | 0.21298 (18) | 0.14699 (14) | 0.55306 (15) | 0.0436 (3) | |
C12 | 0.06427 (19) | 0.13056 (16) | 0.54368 (16) | 0.0469 (3) | |
H12 | 0.0557 | 0.1266 | 0.4550 | 0.056* | |
C13 | −0.07138 (19) | 0.11992 (16) | 0.66299 (16) | 0.0485 (3) | |
H13 | −0.1707 | 0.1106 | 0.6545 | 0.058* | |
C14 | −0.05751 (18) | 0.12334 (15) | 0.79527 (15) | 0.0456 (3) | |
C15 | 0.0910 (2) | 0.13783 (17) | 0.80677 (16) | 0.0514 (3) | |
H15 | 0.1007 | 0.1390 | 0.8957 | 0.062* | |
C16 | 0.22343 (19) | 0.15049 (16) | 0.68757 (16) | 0.0496 (3) | |
H16 | 0.3216 | 0.1616 | 0.6965 | 0.060* | |
O14 | −0.18261 (15) | 0.11348 (14) | 0.92107 (11) | 0.0599 (3) | |
C17 | −0.3326 (2) | 0.0850 (2) | 0.91866 (19) | 0.0601 (4) | |
H17A | −0.3898 | 0.0520 | 1.0133 | 0.072* | |
H17B | −0.2950 | 0.0076 | 0.8573 | 0.072* | |
C18 | −0.4578 (2) | 0.2122 (2) | 0.86912 (17) | 0.0562 (4) | |
C19 | −0.5601 (3) | 0.3130 (2) | 0.8308 (2) | 0.0709 (5) | |
H19 | −0.6414 | 0.3932 | 0.8004 | 0.085* | |
C31 | 0.74006 (18) | 0.30161 (15) | 0.30821 (14) | 0.0439 (3) | |
C32 | 0.72813 (19) | 0.37748 (16) | 0.41724 (15) | 0.0485 (3) | |
H32 | 0.6349 | 0.3862 | 0.4995 | 0.058* | |
C33 | 0.8511 (2) | 0.43923 (17) | 0.40517 (16) | 0.0513 (3) | |
H33 | 0.8398 | 0.4896 | 0.4787 | 0.062* | |
C34 | 0.9922 (2) | 0.42693 (16) | 0.28368 (16) | 0.0485 (3) | |
C35 | 1.0071 (2) | 0.35335 (18) | 0.17388 (16) | 0.0551 (4) | |
H35 | 1.1006 | 0.3448 | 0.0918 | 0.066* | |
C36 | 0.8814 (2) | 0.29253 (18) | 0.18739 (16) | 0.0535 (4) | |
H36 | 0.8921 | 0.2438 | 0.1129 | 0.064* | |
O34 | 1.10894 (16) | 0.48771 (14) | 0.28515 (13) | 0.0648 (3) | |
C37 | 1.2544 (3) | 0.4817 (2) | 0.1633 (2) | 0.0728 (5) | |
H37A | 1.3212 | 0.3823 | 0.1449 | 0.109* | |
H37B | 1.3259 | 0.5277 | 0.1792 | 0.109* | |
H37C | 1.2145 | 0.5310 | 0.0833 | 0.109* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0429 (7) | 0.0456 (7) | 0.0533 (8) | −0.0111 (6) | −0.0155 (6) | −0.0091 (6) |
O1 | 0.0602 (7) | 0.0829 (8) | 0.0585 (7) | −0.0276 (6) | −0.0111 (5) | −0.0229 (6) |
C2 | 0.0463 (8) | 0.0541 (8) | 0.0498 (8) | −0.0162 (6) | −0.0111 (6) | −0.0119 (6) |
C3 | 0.0460 (7) | 0.0493 (8) | 0.0485 (8) | −0.0130 (6) | −0.0136 (6) | −0.0097 (6) |
C11 | 0.0419 (7) | 0.0390 (6) | 0.0507 (8) | −0.0105 (5) | −0.0160 (6) | −0.0067 (5) |
C12 | 0.0489 (8) | 0.0475 (7) | 0.0503 (8) | −0.0157 (6) | −0.0201 (6) | −0.0078 (6) |
C13 | 0.0458 (7) | 0.0528 (8) | 0.0556 (8) | −0.0203 (6) | −0.0204 (6) | −0.0055 (6) |
C14 | 0.0444 (7) | 0.0463 (7) | 0.0482 (7) | −0.0164 (6) | −0.0167 (6) | 0.0004 (6) |
C15 | 0.0502 (8) | 0.0626 (9) | 0.0472 (8) | −0.0186 (7) | −0.0228 (6) | −0.0017 (6) |
C16 | 0.0435 (7) | 0.0559 (8) | 0.0561 (8) | −0.0172 (6) | −0.0212 (6) | −0.0055 (6) |
O14 | 0.0540 (6) | 0.0838 (8) | 0.0505 (6) | −0.0341 (6) | −0.0190 (5) | 0.0056 (5) |
C17 | 0.0565 (9) | 0.0690 (10) | 0.0619 (10) | −0.0341 (8) | −0.0172 (7) | 0.0058 (8) |
C18 | 0.0520 (9) | 0.0707 (10) | 0.0522 (8) | −0.0287 (8) | −0.0116 (7) | −0.0086 (7) |
C19 | 0.0636 (11) | 0.0788 (12) | 0.0701 (12) | −0.0172 (9) | −0.0236 (9) | −0.0106 (9) |
C31 | 0.0413 (7) | 0.0449 (7) | 0.0423 (7) | −0.0104 (5) | −0.0111 (5) | −0.0062 (5) |
C32 | 0.0422 (7) | 0.0549 (8) | 0.0428 (7) | −0.0098 (6) | −0.0088 (6) | −0.0106 (6) |
C33 | 0.0527 (8) | 0.0546 (8) | 0.0482 (8) | −0.0136 (7) | −0.0162 (6) | −0.0136 (6) |
C34 | 0.0492 (8) | 0.0474 (7) | 0.0520 (8) | −0.0160 (6) | −0.0183 (6) | −0.0043 (6) |
C35 | 0.0518 (8) | 0.0662 (10) | 0.0451 (8) | −0.0241 (7) | −0.0032 (6) | −0.0101 (7) |
C36 | 0.0550 (9) | 0.0632 (9) | 0.0442 (8) | −0.0224 (7) | −0.0078 (6) | −0.0152 (6) |
O34 | 0.0631 (7) | 0.0746 (8) | 0.0666 (7) | −0.0335 (6) | −0.0154 (6) | −0.0131 (6) |
C37 | 0.0687 (12) | 0.0856 (13) | 0.0734 (12) | −0.0436 (10) | −0.0164 (9) | 0.0015 (10) |
C1—O1 | 1.2332 (18) | C17—H17A | 0.9700 |
C1—C2 | 1.472 (2) | C17—H17B | 0.9700 |
C1—C11 | 1.485 (2) | C18—C19 | 1.170 (3) |
C2—C3 | 1.326 (2) | C19—H19 | 0.9300 |
C2—H2 | 0.9300 | C31—C36 | 1.390 (2) |
C3—C31 | 1.458 (2) | C31—C32 | 1.402 (2) |
C3—H3 | 0.9300 | C32—C33 | 1.374 (2) |
C11—C12 | 1.3896 (19) | C32—H32 | 0.9300 |
C11—C16 | 1.395 (2) | C33—C34 | 1.390 (2) |
C12—C13 | 1.384 (2) | C33—H33 | 0.9300 |
C12—H12 | 0.9300 | C34—O34 | 1.3594 (18) |
C13—C14 | 1.385 (2) | C34—C35 | 1.384 (2) |
C13—H13 | 0.9300 | C35—C36 | 1.385 (2) |
C14—O14 | 1.3721 (17) | C35—H35 | 0.9300 |
C14—C15 | 1.387 (2) | C36—H36 | 0.9300 |
C15—C16 | 1.372 (2) | O34—C37 | 1.419 (2) |
C15—H15 | 0.9300 | C37—H37A | 0.9600 |
C16—H16 | 0.9300 | C37—H37B | 0.9600 |
O14—C17 | 1.4341 (19) | C37—H37C | 0.9600 |
C17—C18 | 1.462 (2) | ||
O1—C1—C2 | 121.19 (14) | O14—C17—H17B | 109.0 |
O1—C1—C11 | 120.62 (13) | C18—C17—H17B | 109.0 |
C2—C1—C11 | 118.18 (13) | H17A—C17—H17B | 107.8 |
C3—C2—C1 | 122.60 (14) | C19—C18—C17 | 178.89 (19) |
C3—C2—H2 | 118.7 | C18—C19—H19 | 180.0 |
C1—C2—H2 | 118.7 | C36—C31—C32 | 116.87 (13) |
C2—C3—C31 | 127.06 (14) | C36—C31—C3 | 119.67 (13) |
C2—C3—H3 | 116.5 | C32—C31—C3 | 123.46 (13) |
C31—C3—H3 | 116.5 | C33—C32—C31 | 121.46 (13) |
C12—C11—C16 | 117.96 (13) | C33—C32—H32 | 119.3 |
C12—C11—C1 | 119.34 (13) | C31—C32—H32 | 119.3 |
C16—C11—C1 | 122.70 (13) | C32—C33—C34 | 120.38 (13) |
C13—C12—C11 | 121.65 (13) | C32—C33—H33 | 119.8 |
C13—C12—H12 | 119.2 | C34—C33—H33 | 119.8 |
C11—C12—H12 | 119.2 | O34—C34—C35 | 125.05 (14) |
C12—C13—C14 | 119.22 (13) | O34—C34—C33 | 115.41 (13) |
C12—C13—H13 | 120.4 | C35—C34—C33 | 119.53 (14) |
C14—C13—H13 | 120.4 | C34—C35—C36 | 119.36 (14) |
O14—C14—C13 | 124.69 (13) | C34—C35—H35 | 120.3 |
O14—C14—C15 | 115.39 (13) | C36—C35—H35 | 120.3 |
C13—C14—C15 | 119.92 (14) | C35—C36—C31 | 122.40 (14) |
C16—C15—C14 | 120.30 (14) | C35—C36—H36 | 118.8 |
C16—C15—H15 | 119.8 | C31—C36—H36 | 118.8 |
C14—C15—H15 | 119.8 | C34—O34—C37 | 118.37 (13) |
C15—C16—C11 | 120.93 (13) | O34—C37—H37A | 109.5 |
C15—C16—H16 | 119.5 | O34—C37—H37B | 109.5 |
C11—C16—H16 | 119.5 | H37A—C37—H37B | 109.5 |
C14—O14—C17 | 118.59 (12) | O34—C37—H37C | 109.5 |
O14—C17—C18 | 112.83 (14) | H37A—C37—H37C | 109.5 |
O14—C17—H17A | 109.0 | H37B—C37—H37C | 109.5 |
C18—C17—H17A | 109.0 | ||
O1—C1—C2—C3 | −4.4 (2) | C13—C14—O14—C17 | 5.7 (2) |
C11—C1—C2—C3 | 176.67 (14) | C15—C14—O14—C17 | −174.36 (14) |
C1—C2—C3—C31 | 178.55 (14) | C14—O14—C17—C18 | −76.01 (19) |
O1—C1—C11—C12 | −20.5 (2) | C2—C3—C31—C36 | 175.71 (15) |
C2—C1—C11—C12 | 158.44 (13) | C2—C3—C31—C32 | −4.6 (2) |
O1—C1—C11—C16 | 158.65 (15) | C36—C31—C32—C33 | −0.3 (2) |
C2—C1—C11—C16 | −22.4 (2) | C3—C31—C32—C33 | −179.98 (14) |
C16—C11—C12—C13 | 0.9 (2) | C31—C32—C33—C34 | −0.4 (2) |
C1—C11—C12—C13 | −179.94 (13) | C32—C33—C34—O34 | −177.78 (13) |
C11—C12—C13—C14 | −1.1 (2) | C32—C33—C34—C35 | 0.8 (2) |
C12—C13—C14—O14 | −179.87 (13) | O34—C34—C35—C36 | 178.04 (15) |
C12—C13—C14—C15 | 0.2 (2) | C33—C34—C35—C36 | −0.3 (2) |
O14—C14—C15—C16 | −179.15 (13) | C34—C35—C36—C31 | −0.4 (3) |
C13—C14—C15—C16 | 0.8 (2) | C32—C31—C36—C35 | 0.7 (2) |
C14—C15—C16—C11 | −0.9 (2) | C3—C31—C36—C35 | −179.57 (14) |
C12—C11—C16—C15 | 0.1 (2) | C35—C34—O34—C37 | 2.8 (2) |
C1—C11—C16—C15 | −179.02 (14) | C33—C34—O34—C37 | −178.74 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
C17—H17B···O1i | 0.97 | 2.59 | 3.456 (2) | 148 |
C3—H3···O1 | 0.93 | 2.50 | 2.827 (2) | 101 |
C12—H12···Cg1ii | 0.93 | 2.89 | 3.5117 (18) | 126 |
C19—H19···Cg1iii | 0.93 | 2.73 | 3.660 (2) | 177 |
Symmetry codes: (i) −x, −y, −z+1; (ii) x−1, y, z; (iii) −x, −y+1, −z+1. |
C28H23N3O2S | F(000) = 976 |
Mr = 465.55 | Dx = 1.305 Mg m−3 |
Monoclinic, Cc | Mo Kα radiation, λ = 0.71073 Å |
a = 15.7724 (12) Å | Cell parameters from 6124 reflections |
b = 17.6042 (15) Å | θ = 2.5–29.7° |
c = 9.3589 (9) Å | µ = 0.17 mm−1 |
β = 114.259 (3)° | T = 297 K |
V = 2369.1 (4) Å3 | Block, colourless |
Z = 4 | 0.20 × 0.18 × 0.15 mm |
Bruker D8 Venture diffractometer | 6087 independent reflections |
Radiation source: INCOATEC high brilliance microfocus sealed tube | 4331 reflections with I > 2σ(I) |
Multilayer mirror monochromator | Rint = 0.062 |
φ and ω scans | θmax = 29.5°, θmin = 3.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | h = −21→17 |
Tmin = 0.949, Tmax = 0.975 | k = −24→24 |
46650 measured reflections | l = −12→12 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.040 | w = 1/[σ2(Fo2) + (0.0465P)2 + 0.3024P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.103 | (Δ/σ)max < 0.001 |
S = 1.05 | Δρmax = 0.12 e Å−3 |
6087 reflections | Δρmin = −0.16 e Å−3 |
308 parameters | Absolute structure: Flack x determined using 1715 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
2 restraints | Absolute structure parameter: 0.00 (3) |
Primary atom site location: difference Fourier map |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.37305 (18) | 0.29886 (13) | 0.5843 (3) | 0.0698 (7) | |
N2 | 0.44590 (16) | 0.30871 (13) | 0.5400 (3) | 0.0615 (6) | |
C3 | 0.50583 (18) | 0.25567 (14) | 0.6044 (3) | 0.0537 (6) | |
C4 | 0.48110 (19) | 0.20499 (17) | 0.7111 (4) | 0.0657 (7) | |
H4A | 0.5241 | 0.2118 | 0.8197 | 0.079* | |
H4B | 0.4809 | 0.1520 | 0.6828 | 0.079* | |
C5 | 0.38250 (19) | 0.23200 (15) | 0.6834 (3) | 0.0597 (6) | |
H5 | 0.3811 | 0.2475 | 0.7830 | 0.072* | |
S11 | 0.31763 (7) | 0.43908 (4) | 0.46457 (10) | 0.0756 (2) | |
C12 | 0.3097 (2) | 0.35556 (14) | 0.5592 (3) | 0.0619 (7) | |
N13 | 0.24061 (17) | 0.35145 (12) | 0.6003 (3) | 0.0640 (6) | |
C14 | 0.1866 (2) | 0.41709 (15) | 0.5544 (3) | 0.0639 (8) | |
C15 | 0.2173 (3) | 0.46935 (17) | 0.4794 (4) | 0.0760 (9) | |
H15 | 0.1880 | 0.5155 | 0.4411 | 0.091* | |
C141 | 0.1032 (2) | 0.42337 (16) | 0.5869 (4) | 0.0668 (8) | |
C142 | 0.0831 (2) | 0.36891 (19) | 0.6757 (4) | 0.0764 (9) | |
H142 | 0.1241 | 0.3287 | 0.7180 | 0.092* | |
C143 | 0.0035 (3) | 0.3734 (2) | 0.7022 (5) | 0.0927 (11) | |
H143 | −0.0088 | 0.3358 | 0.7610 | 0.111* | |
C144 | −0.0578 (3) | 0.4323 (3) | 0.6432 (4) | 0.0912 (11) | |
H144 | −0.1114 | 0.4348 | 0.6614 | 0.109* | |
C145 | −0.0390 (3) | 0.4872 (2) | 0.5573 (5) | 0.0928 (13) | |
H145 | −0.0799 | 0.5277 | 0.5179 | 0.111* | |
C146 | 0.0401 (3) | 0.48317 (19) | 0.5284 (4) | 0.0812 (10) | |
H146 | 0.0514 | 0.5209 | 0.4689 | 0.097* | |
C31 | 0.59091 (18) | 0.24801 (14) | 0.5805 (3) | 0.0515 (6) | |
C32 | 0.6202 (2) | 0.30393 (16) | 0.5045 (3) | 0.0601 (7) | |
H32 | 0.5834 | 0.3467 | 0.4649 | 0.072* | |
C33 | 0.7017 (2) | 0.29701 (17) | 0.4871 (3) | 0.0646 (7) | |
H33 | 0.7203 | 0.3351 | 0.4375 | 0.078* | |
C34 | 0.75702 (19) | 0.23232 (16) | 0.5444 (3) | 0.0576 (6) | |
C35 | 0.7292 (2) | 0.17629 (15) | 0.6179 (3) | 0.0614 (7) | |
H35 | 0.7654 | 0.1329 | 0.6546 | 0.074* | |
C36 | 0.6477 (2) | 0.18442 (14) | 0.6373 (3) | 0.0583 (7) | |
H36 | 0.6302 | 0.1467 | 0.6894 | 0.070* | |
O34 | 0.83796 (15) | 0.23069 (13) | 0.5230 (2) | 0.0729 (6) | |
C37 | 0.8963 (3) | 0.1658 (2) | 0.5840 (5) | 0.0892 (11) | |
H37A | 0.8650 | 0.1206 | 0.5278 | 0.107* | |
H37B | 0.9090 | 0.1591 | 0.6938 | 0.107* | |
C38 | 0.9823 (3) | 0.1766 (2) | 0.5668 (4) | 0.0791 (9) | |
C39 | 1.0545 (3) | 0.1841 (2) | 0.5627 (5) | 0.0937 (11) | |
H39 | 1.1122 | 0.1902 | 0.5595 | 0.112* | |
C51 | 0.31025 (17) | 0.17114 (13) | 0.6070 (3) | 0.0497 (5) | |
C52 | 0.30167 (19) | 0.11341 (16) | 0.7020 (3) | 0.0593 (6) | |
H52 | 0.3387 | 0.1145 | 0.8091 | 0.071* | |
C53 | 0.2399 (2) | 0.05516 (16) | 0.6411 (4) | 0.0651 (7) | |
H53 | 0.2361 | 0.0167 | 0.7063 | 0.078* | |
C54 | 0.1830 (2) | 0.05331 (15) | 0.4823 (4) | 0.0626 (7) | |
C55 | 0.1922 (2) | 0.10879 (15) | 0.3862 (3) | 0.0621 (7) | |
H155 | 0.1554 | 0.1073 | 0.2790 | 0.075* | |
C56 | 0.2559 (2) | 0.16685 (16) | 0.4487 (3) | 0.0576 (6) | |
H56 | 0.2622 | 0.2037 | 0.3824 | 0.069* | |
O54 | 0.11946 (19) | −0.00466 (13) | 0.4328 (3) | 0.0955 (8) | |
C57 | 0.0407 (3) | 0.0056 (2) | 0.2901 (5) | 0.1053 (13) | |
H57A | 0.0590 | 0.0025 | 0.2043 | 0.158* | |
H57B | 0.0138 | 0.0545 | 0.2899 | 0.158* | |
H57C | −0.0042 | −0.0333 | 0.2793 | 0.158* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0646 (14) | 0.0476 (12) | 0.0985 (18) | 0.0086 (11) | 0.0350 (13) | 0.0120 (12) |
N2 | 0.0616 (14) | 0.0458 (12) | 0.0734 (15) | 0.0001 (10) | 0.0240 (11) | 0.0015 (10) |
C3 | 0.0566 (15) | 0.0444 (12) | 0.0528 (14) | −0.0031 (11) | 0.0152 (11) | −0.0044 (11) |
C4 | 0.0589 (16) | 0.0601 (16) | 0.0731 (18) | 0.0057 (13) | 0.0221 (14) | 0.0128 (14) |
C5 | 0.0607 (16) | 0.0516 (14) | 0.0662 (17) | 0.0071 (12) | 0.0255 (13) | 0.0048 (12) |
S11 | 0.0889 (5) | 0.0434 (3) | 0.0841 (5) | −0.0019 (4) | 0.0250 (4) | 0.0007 (4) |
C12 | 0.0657 (17) | 0.0396 (12) | 0.0672 (18) | 0.0029 (12) | 0.0140 (14) | −0.0030 (12) |
N13 | 0.0640 (15) | 0.0442 (12) | 0.0744 (16) | 0.0111 (10) | 0.0189 (12) | 0.0000 (10) |
C14 | 0.0722 (18) | 0.0423 (13) | 0.0574 (16) | 0.0104 (12) | 0.0066 (13) | −0.0089 (11) |
C15 | 0.089 (2) | 0.0418 (14) | 0.082 (2) | 0.0108 (14) | 0.0193 (17) | −0.0013 (14) |
C141 | 0.0698 (18) | 0.0490 (15) | 0.0601 (16) | 0.0152 (13) | 0.0050 (13) | −0.0135 (12) |
C142 | 0.085 (2) | 0.0637 (18) | 0.0719 (19) | 0.0242 (15) | 0.0232 (17) | −0.0024 (15) |
C143 | 0.101 (3) | 0.091 (3) | 0.084 (2) | 0.020 (2) | 0.036 (2) | −0.008 (2) |
C144 | 0.086 (2) | 0.096 (3) | 0.081 (2) | 0.022 (2) | 0.0222 (19) | −0.024 (2) |
C145 | 0.081 (2) | 0.076 (2) | 0.091 (3) | 0.0353 (19) | 0.0053 (19) | −0.021 (2) |
C146 | 0.083 (2) | 0.0587 (17) | 0.078 (2) | 0.0239 (16) | 0.0081 (17) | −0.0047 (15) |
C31 | 0.0580 (15) | 0.0446 (12) | 0.0453 (13) | −0.0020 (10) | 0.0145 (10) | −0.0046 (10) |
C32 | 0.0661 (17) | 0.0496 (14) | 0.0605 (16) | 0.0088 (12) | 0.0219 (13) | 0.0107 (12) |
C33 | 0.0712 (19) | 0.0587 (16) | 0.0682 (18) | 0.0069 (13) | 0.0330 (15) | 0.0166 (13) |
C34 | 0.0592 (16) | 0.0570 (15) | 0.0546 (15) | 0.0053 (12) | 0.0213 (12) | 0.0001 (12) |
C35 | 0.0700 (18) | 0.0491 (14) | 0.0617 (16) | 0.0112 (12) | 0.0236 (13) | 0.0067 (12) |
C36 | 0.0669 (17) | 0.0441 (13) | 0.0612 (16) | 0.0011 (12) | 0.0235 (13) | 0.0039 (11) |
O34 | 0.0743 (14) | 0.0711 (13) | 0.0813 (14) | 0.0183 (11) | 0.0401 (11) | 0.0170 (10) |
C37 | 0.086 (2) | 0.076 (2) | 0.114 (3) | 0.0243 (18) | 0.049 (2) | 0.025 (2) |
C38 | 0.079 (2) | 0.075 (2) | 0.087 (2) | 0.0260 (17) | 0.0390 (19) | 0.0087 (16) |
C39 | 0.086 (3) | 0.098 (3) | 0.105 (3) | 0.037 (2) | 0.047 (2) | 0.008 (2) |
C51 | 0.0518 (13) | 0.0479 (12) | 0.0539 (13) | 0.0127 (10) | 0.0264 (11) | 0.0081 (10) |
C52 | 0.0574 (15) | 0.0658 (16) | 0.0539 (14) | 0.0118 (13) | 0.0221 (12) | 0.0191 (12) |
C53 | 0.0679 (17) | 0.0558 (16) | 0.0735 (19) | 0.0105 (13) | 0.0309 (15) | 0.0275 (14) |
C54 | 0.0661 (17) | 0.0415 (13) | 0.079 (2) | 0.0066 (12) | 0.0284 (15) | 0.0074 (12) |
C55 | 0.0788 (19) | 0.0509 (14) | 0.0501 (14) | 0.0075 (13) | 0.0199 (13) | 0.0026 (12) |
C56 | 0.0750 (18) | 0.0475 (14) | 0.0550 (15) | 0.0093 (12) | 0.0313 (13) | 0.0121 (11) |
O54 | 0.0909 (17) | 0.0512 (12) | 0.120 (2) | −0.0097 (11) | 0.0182 (15) | 0.0105 (12) |
C57 | 0.094 (3) | 0.077 (2) | 0.115 (3) | −0.020 (2) | 0.013 (2) | −0.011 (2) |
N1—C12 | 1.363 (4) | C32—C33 | 1.365 (4) |
N1—N2 | 1.383 (3) | C32—H32 | 0.9300 |
N1—C5 | 1.468 (4) | C33—C34 | 1.401 (4) |
N2—C3 | 1.289 (4) | C33—H33 | 0.9300 |
C3—C31 | 1.455 (4) | C34—O34 | 1.372 (3) |
C3—C4 | 1.505 (4) | C34—C35 | 1.373 (4) |
C4—C5 | 1.543 (4) | C35—C36 | 1.378 (4) |
C4—H4A | 0.9700 | C35—H35 | 0.9300 |
C4—H4B | 0.9700 | C36—H36 | 0.9300 |
C5—C51 | 1.513 (4) | O34—C37 | 1.430 (4) |
C5—H5 | 0.9800 | C37—C38 | 1.443 (5) |
S11—C15 | 1.729 (4) | C37—H37A | 0.9700 |
S11—C12 | 1.747 (3) | C37—H37B | 0.9700 |
C12—N13 | 1.298 (4) | C38—C39 | 1.162 (5) |
N13—C14 | 1.395 (3) | C39—H39 | 0.9300 |
C14—C15 | 1.361 (5) | C51—C56 | 1.375 (4) |
C14—C141 | 1.471 (5) | C51—C52 | 1.393 (4) |
C15—H15 | 0.9300 | C52—C53 | 1.367 (4) |
C141—C142 | 1.388 (5) | C52—H52 | 0.9300 |
C141—C146 | 1.397 (4) | C53—C54 | 1.385 (4) |
C142—C143 | 1.379 (5) | C53—H53 | 0.9300 |
C142—H142 | 0.9300 | C54—O54 | 1.371 (4) |
C143—C144 | 1.370 (5) | C54—C55 | 1.374 (4) |
C143—H143 | 0.9300 | C55—C56 | 1.384 (4) |
C144—C145 | 1.365 (6) | C55—H155 | 0.9300 |
C144—H144 | 0.9300 | C56—H56 | 0.9300 |
C145—C146 | 1.383 (6) | O54—C57 | 1.412 (5) |
C145—H145 | 0.9300 | C57—H57A | 0.9600 |
C146—H146 | 0.9300 | C57—H57B | 0.9600 |
C31—C36 | 1.396 (4) | C57—H57C | 0.9600 |
C31—C32 | 1.400 (4) | ||
C12—N1—N2 | 119.8 (2) | C32—C31—C3 | 122.1 (2) |
C12—N1—C5 | 125.0 (3) | C33—C32—C31 | 121.4 (3) |
N2—N1—C5 | 114.1 (2) | C33—C32—H32 | 119.3 |
C3—N2—N1 | 108.0 (2) | C31—C32—H32 | 119.3 |
N2—C3—C31 | 122.7 (2) | C32—C33—C34 | 119.7 (3) |
N2—C3—C4 | 113.6 (2) | C32—C33—H33 | 120.1 |
C31—C3—C4 | 123.7 (2) | C34—C33—H33 | 120.1 |
C3—C4—C5 | 102.9 (2) | O34—C34—C35 | 124.5 (3) |
C3—C4—H4A | 111.2 | O34—C34—C33 | 115.6 (2) |
C5—C4—H4A | 111.2 | C35—C34—C33 | 119.9 (3) |
C3—C4—H4B | 111.2 | C34—C35—C36 | 119.9 (2) |
C5—C4—H4B | 111.2 | C34—C35—H35 | 120.1 |
H4A—C4—H4B | 109.1 | C36—C35—H35 | 120.1 |
N1—C5—C51 | 114.1 (2) | C35—C36—C31 | 121.4 (3) |
N1—C5—C4 | 100.8 (2) | C35—C36—H36 | 119.3 |
C51—C5—C4 | 111.9 (2) | C31—C36—H36 | 119.3 |
N1—C5—H5 | 109.9 | C34—O34—C37 | 116.3 (2) |
C51—C5—H5 | 109.9 | O34—C37—C38 | 109.3 (3) |
C4—C5—H5 | 109.9 | O34—C37—H37A | 109.8 |
C15—S11—C12 | 87.71 (16) | C38—C37—H37A | 109.8 |
N13—C12—N1 | 123.6 (3) | O34—C37—H37B | 109.8 |
N13—C12—S11 | 116.2 (2) | C38—C37—H37B | 109.8 |
N1—C12—S11 | 120.2 (3) | H37A—C37—H37B | 108.3 |
C12—N13—C14 | 110.1 (3) | C39—C38—C37 | 175.7 (4) |
C15—C14—N13 | 114.7 (3) | C38—C39—H39 | 180.0 |
C15—C14—C141 | 126.4 (3) | C56—C51—C52 | 117.8 (3) |
N13—C14—C141 | 118.9 (3) | C56—C51—C5 | 124.3 (2) |
C14—C15—S11 | 111.4 (2) | C52—C51—C5 | 117.8 (2) |
C14—C15—H15 | 124.3 | C53—C52—C51 | 121.3 (3) |
S11—C15—H15 | 124.3 | C53—C52—H52 | 119.3 |
C142—C141—C146 | 117.0 (4) | C51—C52—H52 | 119.3 |
C142—C141—C14 | 121.0 (3) | C52—C53—C54 | 120.1 (2) |
C146—C141—C14 | 121.9 (3) | C52—C53—H53 | 119.9 |
C143—C142—C141 | 121.1 (3) | C54—C53—H53 | 119.9 |
C143—C142—H142 | 119.4 | O54—C54—C55 | 124.5 (3) |
C141—C142—H142 | 119.4 | O54—C54—C53 | 116.2 (3) |
C144—C143—C142 | 121.0 (4) | C55—C54—C53 | 119.3 (3) |
C144—C143—H143 | 119.5 | C54—C55—C56 | 120.1 (3) |
C142—C143—H143 | 119.5 | C54—C55—H155 | 119.9 |
C145—C144—C143 | 119.1 (4) | C56—C55—H155 | 119.9 |
C145—C144—H144 | 120.5 | C51—C56—C55 | 121.2 (2) |
C143—C144—H144 | 120.5 | C51—C56—H56 | 119.4 |
C144—C145—C146 | 120.7 (3) | C55—C56—H56 | 119.4 |
C144—C145—H145 | 119.7 | C54—O54—C57 | 117.5 (3) |
C146—C145—H145 | 119.7 | O54—C57—H57A | 109.5 |
C145—C146—C141 | 121.1 (4) | O54—C57—H57B | 109.5 |
C145—C146—H146 | 119.5 | H57A—C57—H57B | 109.5 |
C141—C146—H146 | 119.5 | O54—C57—H57C | 109.5 |
C36—C31—C32 | 117.6 (3) | H57A—C57—H57C | 109.5 |
C36—C31—C3 | 120.3 (2) | H57B—C57—H57C | 109.5 |
C12—N1—N2—C3 | 166.6 (3) | C142—C141—C146—C145 | −0.4 (5) |
C5—N1—N2—C3 | −2.0 (3) | C14—C141—C146—C145 | 178.5 (3) |
N1—N2—C3—C31 | 178.9 (2) | N2—C3—C31—C36 | −172.2 (2) |
N1—N2—C3—C4 | −3.5 (3) | C4—C3—C31—C36 | 10.5 (4) |
N2—C3—C4—C5 | 7.2 (3) | N2—C3—C31—C32 | 9.5 (4) |
C31—C3—C4—C5 | −175.2 (2) | C4—C3—C31—C32 | −167.9 (3) |
C12—N1—C5—C51 | 78.2 (4) | C36—C31—C32—C33 | −0.4 (4) |
N2—N1—C5—C51 | −113.9 (3) | C3—C31—C32—C33 | 178.0 (3) |
C12—N1—C5—C4 | −161.8 (3) | C31—C32—C33—C34 | 0.8 (4) |
N2—N1—C5—C4 | 6.1 (3) | C32—C33—C34—O34 | −179.4 (3) |
C3—C4—C5—N1 | −7.3 (3) | C32—C33—C34—C35 | −0.1 (4) |
C3—C4—C5—C51 | 114.4 (2) | O34—C34—C35—C36 | 178.2 (3) |
N2—N1—C12—N13 | −178.5 (3) | C33—C34—C35—C36 | −1.0 (4) |
C5—N1—C12—N13 | −11.2 (5) | C34—C35—C36—C31 | 1.5 (4) |
N2—N1—C12—S11 | 2.5 (4) | C32—C31—C36—C35 | −0.7 (4) |
C5—N1—C12—S11 | 169.8 (2) | C3—C31—C36—C35 | −179.1 (2) |
C15—S11—C12—N13 | −1.3 (2) | C35—C34—O34—C37 | −0.6 (4) |
C15—S11—C12—N1 | 177.9 (3) | C33—C34—O34—C37 | 178.6 (3) |
N1—C12—N13—C14 | −178.1 (3) | C34—O34—C37—C38 | −174.0 (3) |
S11—C12—N13—C14 | 1.0 (3) | N1—C5—C51—C56 | 16.6 (4) |
C12—N13—C14—C15 | −0.2 (4) | C4—C5—C51—C56 | −97.0 (3) |
C12—N13—C14—C141 | 178.7 (2) | N1—C5—C51—C52 | −167.0 (2) |
N13—C14—C15—S11 | −0.8 (3) | C4—C5—C51—C52 | 79.4 (3) |
C141—C14—C15—S11 | −179.5 (2) | C56—C51—C52—C53 | −1.4 (4) |
C12—S11—C15—C14 | 1.1 (2) | C5—C51—C52—C53 | −178.0 (3) |
C15—C14—C141—C142 | −174.7 (3) | C51—C52—C53—C54 | −1.2 (4) |
N13—C14—C141—C142 | 6.6 (4) | C52—C53—C54—O54 | −176.3 (3) |
C15—C14—C141—C146 | 6.3 (5) | C52—C53—C54—C55 | 2.7 (4) |
N13—C14—C141—C146 | −172.4 (3) | O54—C54—C55—C56 | 177.2 (3) |
C146—C141—C142—C143 | 1.1 (5) | C53—C54—C55—C56 | −1.7 (4) |
C14—C141—C142—C143 | −177.9 (3) | C52—C51—C56—C55 | 2.5 (4) |
C141—C142—C143—C144 | −0.8 (5) | C5—C51—C56—C55 | 178.9 (3) |
C142—C143—C144—C145 | −0.1 (6) | C54—C55—C56—C51 | −1.0 (4) |
C143—C144—C145—C146 | 0.8 (6) | C55—C54—O54—C57 | −21.0 (5) |
C144—C145—C146—C141 | −0.5 (5) | C53—C54—O54—C57 | 157.9 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C56—H56···N1 | 0.93 | 2.59 | 2.915 (4) | 101 |
C142—H142···N13 | 0.93 | 2.53 | 2.864 (5) | 101 |
C39—H39···Cg2i | 0.93 | 2.59 | 3.365 (5) | 141 |
C56—H56···Cg1ii | 0.93 | 2.91 | 3.688 (3) | 142 |
Symmetry codes: (i) x+1, y, z; (ii) x−1/2, −y+1/2, z−1/2. |
C29H25N3O2S | F(000) = 1008 |
Mr = 479.58 | Dx = 1.288 Mg m−3 |
Monoclinic, Cc | Mo Kα radiation, λ = 0.71073 Å |
a = 16.5634 (17) Å | Cell parameters from 5580 reflections |
b = 17.7250 (19) Å | θ = 2.5–27.6° |
c = 9.4032 (11) Å | µ = 0.16 mm−1 |
β = 116.401 (3)° | T = 297 K |
V = 2472.7 (5) Å3 | Block, colourless |
Z = 4 | 0.18 × 0.16 × 0.15 mm |
Bruker D8 Venture diffractometer | 5578 independent reflections |
Radiation source: INCOATEC high brilliance microfocus sealed tube | 3802 reflections with I > 2σ(I) |
Multilayer mirror monochromator | Rint = 0.058 |
φ and ω scans | θmax = 27.6°, θmin = 3.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | h = −21→20 |
Tmin = 0.949, Tmax = 0.976 | k = −22→23 |
40416 measured reflections | l = −12→12 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.042 | w = 1/[σ2(Fo2) + (0.0501P)2 + 0.6209P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.121 | (Δ/σ)max < 0.001 |
S = 1.08 | Δρmax = 0.15 e Å−3 |
5578 reflections | Δρmin = −0.17 e Å−3 |
318 parameters | Absolute structure: Flack x determined using 1613 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
2 restraints | Absolute structure parameter: −0.01 (3) |
Primary atom site location: difference Fourier map |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.3744 (3) | 0.29841 (18) | 0.5726 (4) | 0.0839 (9) | |
N2 | 0.4454 (2) | 0.30917 (17) | 0.5355 (4) | 0.0737 (8) | |
C3 | 0.5038 (3) | 0.25572 (19) | 0.6007 (4) | 0.0669 (9) | |
C4 | 0.4776 (3) | 0.2029 (2) | 0.6985 (5) | 0.0865 (12) | |
H4A | 0.5215 | 0.2044 | 0.8093 | 0.104* | |
H4B | 0.4725 | 0.1515 | 0.6600 | 0.104* | |
C5 | 0.3853 (3) | 0.2328 (2) | 0.6773 (5) | 0.0756 (10) | |
H5 | 0.3904 | 0.2505 | 0.7797 | 0.091* | |
S11 | 0.32183 (9) | 0.44056 (5) | 0.46246 (13) | 0.0854 (3) | |
C12 | 0.3157 (3) | 0.35575 (19) | 0.5522 (5) | 0.0724 (10) | |
N13 | 0.2519 (2) | 0.35085 (16) | 0.5945 (4) | 0.0747 (9) | |
C14 | 0.1990 (3) | 0.41597 (19) | 0.5524 (4) | 0.0709 (11) | |
C15 | 0.2266 (3) | 0.4692 (2) | 0.4798 (5) | 0.0824 (12) | |
H15 | 0.1979 | 0.5153 | 0.4437 | 0.099* | |
C141 | 0.1221 (3) | 0.4193 (2) | 0.5878 (4) | 0.0713 (10) | |
C142 | 0.1041 (3) | 0.3605 (2) | 0.6669 (5) | 0.0872 (12) | |
H142 | 0.1428 | 0.3192 | 0.6997 | 0.105* | |
C143 | 0.0302 (4) | 0.3619 (3) | 0.6979 (6) | 0.0973 (14) | |
H143 | 0.0210 | 0.3216 | 0.7523 | 0.117* | |
C144 | −0.0303 (3) | 0.4203 (3) | 0.6517 (5) | 0.0905 (13) | |
C145 | −0.0122 (4) | 0.4792 (3) | 0.5748 (6) | 0.0996 (16) | |
H145 | −0.0509 | 0.5205 | 0.5439 | 0.120* | |
C146 | 0.0608 (4) | 0.4798 (2) | 0.5416 (6) | 0.0942 (14) | |
H146 | 0.0697 | 0.5206 | 0.4881 | 0.113* | |
C147 | −0.1117 (4) | 0.4210 (4) | 0.6812 (8) | 0.126 (2) | |
H14A | −0.0998 | 0.4509 | 0.7735 | 0.190* | |
H14B | −0.1260 | 0.3703 | 0.6981 | 0.190* | |
H14C | −0.1616 | 0.4422 | 0.5909 | 0.190* | |
C31 | 0.5854 (2) | 0.2478 (2) | 0.5802 (4) | 0.0656 (9) | |
C32 | 0.6106 (3) | 0.3016 (2) | 0.4991 (4) | 0.0738 (10) | |
H32 | 0.5744 | 0.3438 | 0.4569 | 0.089* | |
C33 | 0.6869 (3) | 0.2937 (2) | 0.4803 (5) | 0.0773 (11) | |
H33 | 0.7023 | 0.3303 | 0.4258 | 0.093* | |
C34 | 0.7425 (3) | 0.2308 (2) | 0.5428 (4) | 0.0717 (10) | |
C35 | 0.7184 (3) | 0.1771 (2) | 0.6216 (5) | 0.0769 (11) | |
H35 | 0.7544 | 0.1347 | 0.6621 | 0.092* | |
C36 | 0.6411 (3) | 0.1854 (2) | 0.6415 (5) | 0.0751 (10) | |
H36 | 0.6261 | 0.1488 | 0.6966 | 0.090* | |
O34 | 0.8184 (2) | 0.22817 (16) | 0.5206 (3) | 0.0846 (8) | |
C37 | 0.8746 (3) | 0.1632 (3) | 0.5821 (7) | 0.1023 (15) | |
H37A | 0.8416 | 0.1183 | 0.5288 | 0.123* | |
H37B | 0.8916 | 0.1582 | 0.6946 | 0.123* | |
C38 | 0.9547 (4) | 0.1703 (3) | 0.5582 (6) | 0.0952 (14) | |
C39 | 1.0224 (5) | 0.1735 (3) | 0.5477 (7) | 0.1132 (18) | |
H39 | 1.0762 | 0.1761 | 0.5393 | 0.136* | |
C51 | 0.3113 (2) | 0.17528 (19) | 0.6090 (4) | 0.0651 (9) | |
C52 | 0.2983 (3) | 0.1276 (2) | 0.7136 (5) | 0.0749 (10) | |
H52 | 0.3335 | 0.1335 | 0.8222 | 0.090* | |
C53 | 0.2344 (3) | 0.0719 (3) | 0.6598 (5) | 0.0817 (11) | |
H53 | 0.2273 | 0.0402 | 0.7322 | 0.098* | |
C54 | 0.1803 (3) | 0.0622 (2) | 0.4989 (5) | 0.0739 (10) | |
C55 | 0.1924 (3) | 0.1084 (2) | 0.3941 (5) | 0.0832 (12) | |
H155 | 0.1568 | 0.1025 | 0.2856 | 0.100* | |
C56 | 0.2579 (3) | 0.1643 (2) | 0.4491 (5) | 0.0789 (11) | |
H56 | 0.2660 | 0.1950 | 0.3762 | 0.095* | |
O54 | 0.1169 (2) | 0.00585 (18) | 0.4582 (4) | 0.1059 (11) | |
C57 | 0.0440 (4) | 0.0079 (3) | 0.3046 (7) | 0.1147 (17) | |
H57A | 0.0655 | −0.0025 | 0.2272 | 0.172* | |
H57B | 0.0167 | 0.0570 | 0.2854 | 0.172* | |
H57C | 0.0002 | −0.0294 | 0.2969 | 0.172* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.099 (2) | 0.0566 (18) | 0.098 (3) | 0.0104 (16) | 0.046 (2) | 0.0159 (16) |
N2 | 0.091 (2) | 0.0502 (15) | 0.073 (2) | 0.0009 (15) | 0.0296 (17) | 0.0010 (14) |
C3 | 0.082 (2) | 0.0499 (17) | 0.0531 (19) | −0.0041 (16) | 0.0163 (16) | −0.0014 (14) |
C4 | 0.089 (3) | 0.069 (2) | 0.094 (3) | 0.009 (2) | 0.033 (2) | 0.023 (2) |
C5 | 0.091 (3) | 0.060 (2) | 0.073 (2) | 0.0107 (19) | 0.034 (2) | 0.0101 (17) |
S11 | 0.1088 (8) | 0.0476 (4) | 0.0845 (6) | −0.0078 (5) | 0.0290 (5) | −0.0009 (5) |
C12 | 0.087 (3) | 0.0471 (18) | 0.069 (2) | 0.0006 (17) | 0.022 (2) | 0.0008 (16) |
N13 | 0.092 (2) | 0.0472 (15) | 0.071 (2) | 0.0099 (15) | 0.0238 (17) | 0.0051 (13) |
C14 | 0.089 (3) | 0.0447 (17) | 0.056 (2) | 0.0020 (16) | 0.0108 (18) | −0.0061 (15) |
C15 | 0.102 (3) | 0.0448 (17) | 0.083 (3) | 0.0007 (19) | 0.025 (2) | −0.0027 (18) |
C141 | 0.086 (3) | 0.0486 (17) | 0.057 (2) | 0.0062 (17) | 0.0117 (18) | −0.0087 (15) |
C142 | 0.108 (3) | 0.068 (2) | 0.079 (3) | 0.025 (2) | 0.036 (2) | 0.011 (2) |
C143 | 0.121 (4) | 0.081 (3) | 0.086 (3) | 0.013 (3) | 0.042 (3) | 0.003 (2) |
C144 | 0.093 (3) | 0.081 (3) | 0.078 (3) | 0.007 (2) | 0.021 (2) | −0.023 (2) |
C145 | 0.092 (3) | 0.079 (3) | 0.102 (4) | 0.025 (3) | 0.019 (3) | −0.013 (3) |
C146 | 0.108 (4) | 0.057 (2) | 0.091 (3) | 0.013 (2) | 0.020 (3) | 0.005 (2) |
C147 | 0.107 (4) | 0.138 (5) | 0.123 (5) | 0.005 (4) | 0.041 (3) | −0.042 (4) |
C31 | 0.075 (2) | 0.0540 (18) | 0.0511 (19) | −0.0016 (16) | 0.0130 (16) | −0.0023 (14) |
C32 | 0.081 (3) | 0.0548 (19) | 0.069 (2) | 0.0055 (17) | 0.0191 (19) | 0.0100 (16) |
C33 | 0.084 (3) | 0.064 (2) | 0.074 (3) | 0.0034 (19) | 0.025 (2) | 0.0148 (19) |
C34 | 0.083 (3) | 0.057 (2) | 0.061 (2) | 0.0065 (17) | 0.0198 (19) | 0.0017 (16) |
C35 | 0.088 (3) | 0.055 (2) | 0.069 (2) | 0.0114 (18) | 0.019 (2) | 0.0077 (16) |
C36 | 0.093 (3) | 0.0531 (19) | 0.068 (2) | 0.0006 (18) | 0.025 (2) | 0.0067 (16) |
O34 | 0.0885 (19) | 0.0718 (17) | 0.0859 (18) | 0.0176 (15) | 0.0320 (15) | 0.0155 (13) |
C37 | 0.107 (4) | 0.071 (3) | 0.121 (4) | 0.021 (2) | 0.044 (3) | 0.018 (3) |
C38 | 0.105 (4) | 0.079 (3) | 0.090 (3) | 0.033 (3) | 0.033 (3) | 0.010 (2) |
C39 | 0.104 (4) | 0.118 (4) | 0.110 (4) | 0.045 (3) | 0.041 (3) | 0.015 (3) |
C51 | 0.078 (2) | 0.0539 (17) | 0.063 (2) | 0.0140 (15) | 0.0306 (17) | 0.0074 (15) |
C52 | 0.076 (2) | 0.087 (3) | 0.058 (2) | 0.009 (2) | 0.0264 (18) | 0.0138 (18) |
C53 | 0.080 (3) | 0.088 (3) | 0.076 (3) | 0.011 (2) | 0.034 (2) | 0.028 (2) |
C54 | 0.073 (2) | 0.0547 (19) | 0.086 (3) | 0.0147 (18) | 0.028 (2) | 0.0107 (18) |
C55 | 0.106 (3) | 0.065 (2) | 0.063 (2) | 0.004 (2) | 0.023 (2) | 0.0024 (19) |
C56 | 0.114 (3) | 0.061 (2) | 0.061 (2) | 0.003 (2) | 0.039 (2) | 0.0118 (17) |
O54 | 0.093 (2) | 0.078 (2) | 0.116 (3) | −0.0087 (16) | 0.0193 (19) | 0.0156 (17) |
C57 | 0.101 (4) | 0.090 (3) | 0.120 (4) | −0.012 (3) | 0.020 (3) | −0.010 (3) |
N1—C12 | 1.359 (5) | C31—C36 | 1.391 (5) |
N1—N2 | 1.381 (5) | C31—C32 | 1.396 (5) |
N1—C5 | 1.482 (5) | C32—C33 | 1.359 (6) |
N2—C3 | 1.297 (5) | C32—H32 | 0.9300 |
C3—C31 | 1.454 (5) | C33—C34 | 1.399 (5) |
C3—C4 | 1.505 (6) | C33—H33 | 0.9300 |
C4—C5 | 1.544 (6) | C34—O34 | 1.364 (5) |
C4—H4A | 0.9700 | C34—C35 | 1.369 (6) |
C4—H4B | 0.9700 | C35—C36 | 1.382 (6) |
C5—C51 | 1.501 (5) | C35—H35 | 0.9300 |
C5—H5 | 0.9800 | C36—H36 | 0.9300 |
S11—C15 | 1.732 (5) | O34—C37 | 1.431 (5) |
S11—C12 | 1.749 (4) | C37—C38 | 1.447 (7) |
C12—N13 | 1.287 (5) | C37—H37A | 0.9700 |
N13—C14 | 1.396 (5) | C37—H37B | 0.9700 |
C14—C15 | 1.357 (6) | C38—C39 | 1.169 (8) |
C14—C141 | 1.454 (6) | C39—H39 | 0.9300 |
C15—H15 | 0.9300 | C51—C56 | 1.378 (5) |
C141—C142 | 1.388 (6) | C51—C52 | 1.384 (5) |
C141—C146 | 1.406 (6) | C52—C53 | 1.369 (6) |
C142—C143 | 1.379 (6) | C52—H52 | 0.9300 |
C142—H142 | 0.9300 | C53—C54 | 1.384 (6) |
C143—C144 | 1.371 (7) | C53—H53 | 0.9300 |
C143—H143 | 0.9300 | C54—C55 | 1.364 (6) |
C144—C145 | 1.377 (8) | C54—O54 | 1.374 (5) |
C144—C147 | 1.492 (8) | C55—C56 | 1.387 (6) |
C145—C146 | 1.376 (7) | C55—H155 | 0.9300 |
C145—H145 | 0.9300 | C56—H56 | 0.9300 |
C146—H146 | 0.9300 | O54—C57 | 1.412 (7) |
C147—H14A | 0.9600 | C57—H57A | 0.9600 |
C147—H14B | 0.9600 | C57—H57B | 0.9600 |
C147—H14C | 0.9600 | C57—H57C | 0.9600 |
C12—N1—N2 | 119.8 (3) | H14B—C147—H14C | 109.5 |
C12—N1—C5 | 123.3 (3) | C36—C31—C32 | 117.7 (4) |
N2—N1—C5 | 114.2 (3) | C36—C31—C3 | 120.4 (3) |
C3—N2—N1 | 108.6 (3) | C32—C31—C3 | 121.9 (3) |
N2—C3—C31 | 123.3 (3) | C33—C32—C31 | 121.5 (3) |
N2—C3—C4 | 112.7 (4) | C33—C32—H32 | 119.3 |
C31—C3—C4 | 124.0 (3) | C31—C32—H32 | 119.3 |
C3—C4—C5 | 104.2 (3) | C32—C33—C34 | 120.2 (4) |
C3—C4—H4A | 110.9 | C32—C33—H33 | 119.9 |
C5—C4—H4A | 110.9 | C34—C33—H33 | 119.9 |
C3—C4—H4B | 110.9 | O34—C34—C35 | 124.7 (3) |
C5—C4—H4B | 110.9 | O34—C34—C33 | 116.2 (4) |
H4A—C4—H4B | 108.9 | C35—C34—C33 | 119.1 (4) |
N1—C5—C51 | 114.4 (3) | C34—C35—C36 | 120.6 (3) |
N1—C5—C4 | 100.2 (3) | C34—C35—H35 | 119.7 |
C51—C5—C4 | 113.3 (3) | C36—C35—H35 | 119.7 |
N1—C5—H5 | 109.5 | C35—C36—C31 | 120.8 (4) |
C51—C5—H5 | 109.5 | C35—C36—H36 | 119.6 |
C4—C5—H5 | 109.5 | C31—C36—H36 | 119.6 |
C15—S11—C12 | 87.5 (2) | C34—O34—C37 | 116.3 (3) |
N13—C12—N1 | 122.6 (3) | O34—C37—C38 | 110.1 (4) |
N13—C12—S11 | 116.0 (3) | O34—C37—H37A | 109.6 |
N1—C12—S11 | 121.3 (3) | C38—C37—H37A | 109.6 |
C12—N13—C14 | 110.8 (3) | O34—C37—H37B | 109.6 |
C15—C14—N13 | 114.0 (4) | C38—C37—H37B | 109.6 |
C15—C14—C141 | 127.8 (4) | H37A—C37—H37B | 108.2 |
N13—C14—C141 | 118.2 (3) | C39—C38—C37 | 175.7 (5) |
C14—C15—S11 | 111.6 (3) | C38—C39—H39 | 180.0 |
C14—C15—H15 | 124.2 | C56—C51—C52 | 117.5 (4) |
S11—C15—H15 | 124.2 | C56—C51—C5 | 124.6 (3) |
C142—C141—C146 | 116.1 (4) | C52—C51—C5 | 117.8 (3) |
C142—C141—C14 | 120.7 (3) | C53—C52—C51 | 121.1 (4) |
C146—C141—C14 | 123.1 (4) | C53—C52—H52 | 119.4 |
C143—C142—C141 | 121.5 (4) | C51—C52—H52 | 119.4 |
C143—C142—H142 | 119.3 | C52—C53—C54 | 120.8 (4) |
C141—C142—H142 | 119.3 | C52—C53—H53 | 119.6 |
C144—C143—C142 | 122.6 (5) | C54—C53—H53 | 119.6 |
C144—C143—H143 | 118.7 | C55—C54—O54 | 125.1 (4) |
C142—C143—H143 | 118.7 | C55—C54—C53 | 118.9 (4) |
C143—C144—C145 | 116.1 (5) | O54—C54—C53 | 116.0 (4) |
C143—C144—C147 | 122.7 (6) | C54—C55—C56 | 120.1 (4) |
C145—C144—C147 | 121.2 (5) | C54—C55—H155 | 119.9 |
C146—C145—C144 | 122.9 (4) | C56—C55—H155 | 119.9 |
C146—C145—H145 | 118.5 | C51—C56—C55 | 121.6 (4) |
C144—C145—H145 | 118.5 | C51—C56—H56 | 119.2 |
C145—C146—C141 | 120.7 (5) | C55—C56—H56 | 119.2 |
C145—C146—H146 | 119.6 | C54—O54—C57 | 117.8 (4) |
C141—C146—H146 | 119.6 | O54—C57—H57A | 109.5 |
C144—C147—H14A | 109.5 | O54—C57—H57B | 109.5 |
C144—C147—H14B | 109.5 | H57A—C57—H57B | 109.5 |
H14A—C147—H14B | 109.5 | O54—C57—H57C | 109.5 |
C144—C147—H14C | 109.5 | H57A—C57—H57C | 109.5 |
H14A—C147—H14C | 109.5 | H57B—C57—H57C | 109.5 |
C12—N1—N2—C3 | 163.9 (3) | C144—C145—C146—C141 | −0.9 (7) |
C5—N1—N2—C3 | 1.9 (4) | C142—C141—C146—C145 | 0.1 (6) |
N1—N2—C3—C31 | 177.2 (3) | C14—C141—C146—C145 | 178.4 (4) |
N1—N2—C3—C4 | −2.4 (5) | N2—C3—C31—C36 | −174.1 (3) |
N2—C3—C4—C5 | 2.0 (5) | C4—C3—C31—C36 | 5.5 (5) |
C31—C3—C4—C5 | −177.7 (3) | N2—C3—C31—C32 | 5.7 (5) |
C12—N1—C5—C51 | 76.7 (5) | C4—C3—C31—C32 | −174.7 (4) |
N2—N1—C5—C51 | −122.1 (4) | C36—C31—C32—C33 | −0.1 (5) |
C12—N1—C5—C4 | −161.9 (4) | C3—C31—C32—C33 | −179.9 (3) |
N2—N1—C5—C4 | −0.6 (4) | C31—C32—C33—C34 | 0.0 (6) |
C3—C4—C5—N1 | −0.7 (4) | C32—C33—C34—O34 | −179.0 (3) |
C3—C4—C5—C51 | 121.6 (3) | C32—C33—C34—C35 | 0.6 (6) |
N2—N1—C12—N13 | −175.2 (4) | O34—C34—C35—C36 | 178.5 (4) |
C5—N1—C12—N13 | −15.0 (6) | C33—C34—C35—C36 | −1.0 (6) |
N2—N1—C12—S11 | 6.0 (5) | C34—C35—C36—C31 | 0.9 (6) |
C5—N1—C12—S11 | 166.3 (3) | C32—C31—C36—C35 | −0.4 (5) |
C15—S11—C12—N13 | −2.1 (3) | C3—C31—C36—C35 | 179.5 (3) |
C15—S11—C12—N1 | 176.8 (3) | C35—C34—O34—C37 | 1.5 (6) |
N1—C12—N13—C14 | −176.8 (4) | C33—C34—O34—C37 | −179.0 (4) |
S11—C12—N13—C14 | 2.0 (4) | C34—O34—C37—C38 | −176.6 (4) |
C12—N13—C14—C15 | −0.8 (4) | N1—C5—C51—C56 | 25.0 (5) |
C12—N13—C14—C141 | 178.5 (3) | C4—C5—C51—C56 | −89.0 (4) |
N13—C14—C15—S11 | −0.7 (4) | N1—C5—C51—C52 | −158.0 (3) |
C141—C14—C15—S11 | −179.9 (3) | C4—C5—C51—C52 | 88.0 (4) |
C12—S11—C15—C14 | 1.4 (3) | C56—C51—C52—C53 | −0.3 (6) |
C15—C14—C141—C142 | −178.4 (4) | C5—C51—C52—C53 | −177.5 (4) |
N13—C14—C141—C142 | 2.4 (5) | C51—C52—C53—C54 | −0.7 (6) |
C15—C14—C141—C146 | 3.5 (6) | C52—C53—C54—C55 | 1.0 (6) |
N13—C14—C141—C146 | −175.7 (4) | C52—C53—C54—O54 | −178.4 (4) |
C146—C141—C142—C143 | −0.1 (6) | O54—C54—C55—C56 | 179.1 (4) |
C14—C141—C142—C143 | −178.3 (4) | C53—C54—C55—C56 | −0.3 (6) |
C141—C142—C143—C144 | 0.8 (7) | C52—C51—C56—C55 | 1.0 (6) |
C142—C143—C144—C145 | −1.5 (7) | C5—C51—C56—C55 | 178.0 (4) |
C142—C143—C144—C147 | 178.3 (5) | C54—C55—C56—C51 | −0.7 (7) |
C143—C144—C145—C146 | 1.5 (7) | C55—C54—O54—C57 | −17.9 (7) |
C147—C144—C145—C146 | −178.2 (4) | C53—C54—O54—C57 | 161.5 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C142—H142···N13 | 0.93 | 2.48 | 2.823 (6) | 102 |
C35—H35···S11i | 0.93 | 2.86 | 3.560 (4) | 133 |
C39—H39···Cg2ii | 0.93 | 2.93 | 3.802 (5) | 156 |
C56—H56···Cg1iii | 0.93 | 2.92 | 3.689 (3) | 141 |
Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) x+1, y, z; (iii) x−1/2, −y+1/2, z−1/2. |
Cg1 and Cg2 represent the centroids of the (C31-C36) and (C51-C56) rings, respectively. |
Compound | D—H···A | D—H | H···A | D···A | D—H···A |
(I) | C17—H17B···O1i | 0.97 | 2.59 | 3.456 (2) | 148 |
C19—H19···Cg1ii | 0.93 | 2.73 | 3.660 (2) | 177 | |
C12—H12···Cg1iii | 0.93 | 2.89 | 3.5117 (18) | 126 | |
(II) | C39—H39···Cg2iv | 0.93 | 2.59 | 3.365 (5) | 141 |
C56—H56···Cg1v | 0.93 | 2.91 | 3.688 (3) | 142 | |
(III) | C39—H39···Cg2iv | 0.93 | 2.93 | 3.802 (5) | 156 |
C56—H56···Cg1v | 0.93 | 2.92 | 3.689 (3) | 141 | |
C35—H35···S11vi | 0.93 | 2.86 | 3.560 (4) | 133 |
Symmetry codes: (i) -x, -y, 1 - z; (ii) -x, 1 - y, 1 - z; (iii) -1 + x, y, z; (iv) 1 + x, y, z; (v) -1/2 + x, 1/2 - y, -1/2 + z; (vi) 1/2 + x, 1/2 - y, 1/2 + z. |
Acknowledgements
NM thanks the University of Mysore for research facilities. RSR thanks the DST and the SAIF, IIT Madras, for access to their X-ray crystallography facilities.
Funding information
HSY is grateful to the UGC, New Delhi, for the award of a BSR Faculty Fellowship for three years.
References
Abdel-Wahab, B. F., Mohamed, H. A., Ng, S. W. & Tiekink, E. R. T. (2013a). Acta Cryst. E69, o392–o393. CSD CrossRef IUCr Journals Google Scholar
Abdel-Wahab, B. F., Mohamed, H. A., Ng, S. W. & Tiekink, E. R. T. (2013c). Acta Cryst. E69, o735. CSD CrossRef IUCr Journals Google Scholar
Abdel-Wahab, B. F., Ng, S. W. & Tiekink, E. R. T. (2013b). Acta Cryst. E69, o576. CSD CrossRef IUCr Journals Google Scholar
Alam, R., Wahi, D., Singh, R., Sinha, D., Tandon, V., Grover, A. & Rahisuddin (2016). Bioorg. Chem. 69, 77–90. Google Scholar
Alex, J. M. & Kumar, R. (2014). J. Enzyme Inhib. Med. Chem. 29, 427–442. Web of Science CrossRef CAS PubMed Google Scholar
Alotaibi, A. A., Abdel-Wahab, B. F., Hegazy, A. S., Kariuki, B. M. & El-Hiti, G. A. (2020). Z. Krist. New Cryst. Struct. 235, 897–899. CAS Google Scholar
Bansal, K. K., Bhardwaj, J. K., Saraf, P., Thakur, V. K. & Sharma, P. C. (2020). Materials Today Chemistry, 17, 100335. Web of Science CrossRef Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2016). APEX3, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
El-Hiti, G. A., Abdel-Wahab, B. F., Alqahtani, A., Hegazy, A. S. & Kariuki, B. M. (2019). IUCrData, 4, x190218. Google Scholar
El-Sayed, M. A.-A., Abdel-Aziz, N. I., Abdel-Aziz, A. A.-M., El-Azab, A. S. & ElTahir, K. E. H. (2012). Bioorg. Med. Chem. 20, 3306–3316. Web of Science CAS PubMed Google Scholar
Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Ferguson, G., Glidewell, C. & Patterson, I. L. J. (1996). Acta Cryst. C52, 420–423. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Ghosh, S., Chopra, P. & Wategaonkar, S. (2020). Phys. Chem. Chem. Phys. In the press. https://doi.org/10.1039/D0CP01508C Google Scholar
Gondru, R., Banothu, J., Thatipamula, R. K., Hussain, A. S. K. & Bavantula, R. (2015). RSC Adv. 5, 33562–33569. Web of Science CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Holme, A., Børve, K. J., Saethre, L. J. & Thomas, T. D. (2013). J. Phys. Chem. A, 117, 2007–2019. Web of Science CrossRef CAS PubMed Google Scholar
Insuasty, B., Tigreros, A., Orozco, F., Quiroga, J., Abonía, R., Nogueras, M., Sanchez, A. & Cobo, J. (2010). Bioorg. Med. Chem. 18, 4965–4974. Web of Science CrossRef CAS PubMed Google Scholar
Kadambar, A. K., Kalluraya, B., Singh, S., Agarwal, V. & Revanasiddappa, B. C. (2021). J. Heterocycl. Chem. 58, 654–664. Web of Science CrossRef CAS Google Scholar
Kalluraya, B., Isloor, A. M. & Shenoy, S. (2001). Indian J. Heterocycl. Chem. 11, 159–162. CAS Google Scholar
Kiran Kumar, H., Yathirajan, H. S., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1494–1506. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kiran Kumar, H., Yathirajan, H. S., Harish Chinthal, C., Foro, S. & Glidewell, C. (2020). Acta Cryst. E76, 488–495. Web of Science CSD CrossRef IUCr Journals Google Scholar
Manju, N., Kalluraya, B., Asma, Kumar, M. S., Revanasiddappa, B. & Chandra (2019). J. Med. Chem. Sci. 2, 101–109. Google Scholar
Manju, N., Kalluraya, B. Asma & Kumar, M. S. (2019). J. Mol. Struct. 1193, 386–397. Google Scholar
McAdam, C. J., Cameron, S. A., Hanton, L. R., Manning, A. R., Moratti, S. C. & Simpson, J. (2012). CrystEngComm, 14, 4369–4383. Web of Science CSD CrossRef CAS Google Scholar
Nayak, P. S., Narayana, B., Yathirajan, H. S., Jasinski, J. P. & Butcher, R. J. (2013). Acta Cryst. E69, o523. CSD CrossRef IUCr Journals Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Salian, V. V., Narayana, B., Sarojini, B. K., Kumar, M. S., Nagananda, G. S., Byrappa, K. & Kudva, A. K. (2017). Spectrochim. Acta A Mol. Biomol. Spectrosc. 174, 254–271. Web of Science CSD CrossRef CAS PubMed Google Scholar
Seip, H. M. & Seip, R. (1973). Acta Chem. Scand. 27, 4024–4027. CrossRef CAS Web of Science Google Scholar
Shaibah, M. A. E., Yathirajan, H. S., Manju, N., Kalluraya, B., Rathore, R. S. & Glidewell, C. (2020). Acta Cryst. E76, 48–52. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sharma, P. K., Sawnhney, S. N., Gupta, A., Singh, G. B. & Bani, S. (1998). Indian J. Chem. 37B, 376–381. CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Song, M.-X., Zheng, C.-J., Deng, X.-Q., Sun, L.-P., Wu, Y., Hong, L., Li, Y.-J., Liu, Y., Wei, Z.-Y., Jin, M.-J. & Piao, H.-R. (2013). Eur. J. Med. Chem. 60, 376–385. Web of Science CrossRef CAS PubMed Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Suwunwong, T., Chantrapromma, S. & Fun, H. K. (2015). Opt. Spectrosc. 118, 563–573. Web of Science CSD CrossRef CAS Google Scholar
Yan, L., Wu, J., Chen, H., Zhang, S., Wang, Z., Wang, H. & Wu, F. (2015). RSC Adv. 5, 73660–73669. Web of Science CrossRef CAS Google Scholar
Zeng, Y.-M., Chen, S.-Q. & Liu, F. M. (2012). J. Chem. Crystallogr. 42, 24–28. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.