Jerry P. Jasinski tribute\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Formation of 1-(thia­zol-2-yl)-4,5-di­hydro­pyrazoles from simple precursors: synthesis, spectroscopic characterization and the structures of an inter­mediate and two products

crossmark logo

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570 006, India, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore-574199, India, cDepartment of Bioinformatics, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya-824236, India, and dSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, UK
*Correspondence e-mail: yathirajan@hotmail.com, ravindranath.rathore@gmail.com

Edited by M. Zeller, Purdue University, USA (Received 6 July 2021; accepted 7 September 2021; online 10 September 2021)

Two new 1-(thia­zol-2-yl)-4,5-di­hydropyrazoles have been synthesized from simple precursors, and characterized both spectroscopically and structurally. In addition, two inter­mediates in the reaction pathway have been isolated and characterized, one of them structurally. The mol­ecules of the inter­mediate (E)-1-(4-meth­oxy­phen­yl)-3-[4-(prop-2-yn­yloxy)phen­yl]prop-2-en-1-one, C19H16O3 (I), are linked by a combination of C—H⋯O and C—H⋯π(arene) hydrogen bonds to form ribbons. The products (RS)-5-(4-meth­oxy­phen­yl)-1-(4-phenythiazol-2-yl)-3-[4-(prop-2-yn­­yloxy)phen­yl]-4,5-di­hydro-1H-pyrazole, C28H23N3O2S (II), and (RS)-5-(4-meth­oxy­phen­yl)-1-[4-(4-methyl­phen­yl)thia­zol-2-yl]-3-[4-(prop-2-yn­yloxy)phen­yl]-4,5-di­hydro-1H-pyrazole, C29H25N3O2S (III), are closely related – differing only by presence or absence of a methyl group at the aryl­thia­zolyl substituent – and crystallize in an isomorphous setting. Both mol­ecules contain an effectively planar di­hydro-pyrazole ring, and possess an overall T-shaped structure, which is a characteristic of triaryl-substituted 4,5-di­hydro-1-(thia­zol-2-yl)pyrazole compounds. The crystal packing is characterized by inter­molecular C—H⋯S and C—H⋯π (ar­yl/alkyne) inter­actions. A combination of two C—H⋯π(arene) hydrogen bonds links the product mol­ecules into sheets.

1. Chemical context

Pyrazole derivatives are an important class of N-heterocyclic compounds with a wide spectrum of biological activities including anti­bacterial (Song et al., 2013[Song, M.-X., Zheng, C.-J., Deng, X.-Q., Sun, L.-P., Wu, Y., Hong, L., Li, Y.-J., Liu, Y., Wei, Z.-Y., Jin, M.-J. & Piao, H.-R. (2013). Eur. J. Med. Chem. 60, 376-385.]; Yan et al., 2015[Yan, L., Wu, J., Chen, H., Zhang, S., Wang, Z., Wang, H. & Wu, F. (2015). RSC Adv. 5, 73660-73669.]), anti­fungal (Gondru et al., 2015[Gondru, R., Banothu, J., Thatipamula, R. K., Hussain, A. S. K. & Bavantula, R. (2015). RSC Adv. 5, 33562-33569.]), anti-inflammatory (El-Sayed et al., 2012[El-Sayed, M. A.-A., Abdel-Aziz, N. I., Abdel-Aziz, A. A.-M., El-Azab, A. S. & ElTahir, K. E. H. (2012). Bioorg. Med. Chem. 20, 3306-3316.]; Kadambar et al., 2021[Kadambar, A. K., Kalluraya, B., Singh, S., Agarwal, V. & Revanasiddappa, B. C. (2021). J. Heterocycl. Chem. 58, 654-664.]), anti­microbial (Manju, Kalluraya & Kumar, 2019[Manju, N., Kalluraya, B. Asma & Kumar, M. S. (2019). J. Mol. Struct. 1193, 386-397.]) and anti­tumor (Insuasty et al., 2010[Insuasty, B., Tigreros, A., Orozco, F., Quiroga, J., Abonía, R., Nogueras, M., Sanchez, A. & Cobo, J. (2010). Bioorg. Med. Chem. 18, 4965-4974.]; Alam et al., 2016[Alam, R., Wahi, D., Singh, R., Sinha, D., Tandon, V., Grover, A. & Rahisuddin (2016). Bioorg. Chem. 69, 77-90.]) activities. Thia­zole derivatives similarly also exhibit a broad spectrum of biological activity, including anti­cancer (Bansal et al., 2020[Bansal, K. K., Bhardwaj, J. K., Saraf, P., Thakur, V. K. & Sharma, P. C. (2020). Materials Today Chemistry, 17, 100335.]), anti-inflammatory (Sharma et al., 1998[Sharma, P. K., Sawnhney, S. N., Gupta, A., Singh, G. B. & Bani, S. (1998). Indian J. Chem. 37B, 376-381.]) and anti­microbial (Kalluraya et al., 2001[Kalluraya, B., Isloor, A. M. & Shenoy, S. (2001). Indian J. Heterocycl. Chem. 11, 159-162.]) activity.

Accordingly, we have sought to combine pyrazole and thia­zole pharmacophores in a single mol­ecular skeleton and synthesized triaryl-substituted (thia­zol-2-yl)pyrazole compounds (C3,C5-aryl substitutions on the pyrazole ring and C4-aryl substitution on the thia­zole ring). We report here the synthesis of 1-(thia­zolol-2-yl)-4,5-di­hydropyrazoles from simple precursors. The reaction sequence is summarized in Fig. 1[link]: a base-catalysed condensation reaction between 4-meth­oxy­benzaldehyde (A) and a substituted aceto­phenone (B) yields the chalcone inter­mediate (I)[link] (Shaibah et al., 2020[Shaibah, M. A. E., Yathirajan, H. S., Manju, N., Kalluraya, B., Rathore, R. S. & Glidewell, C. (2020). Acta Cryst. E76, 48-52.]). Compound (I)[link] undergoes a cyclo­condensation reaction with a thio­semicarbazide to provide thio­amide inter­mediate (C), which in turn undergoes a further cyclo­condensation reaction with a phenacyl bromide to give the thia­zolyl-di­hydro­pyrazoles (II)[link] and (III)[link] (Manju, Kalluraya, Asma et al., 2019[Manju, N., Kalluraya, B., Asma, Kumar, M. S., Revanasiddappa, B. & Chandra (2019). J. Med. Chem. Sci. 2, 101-109.]).

[Figure 1]
Figure 1
The reaction sequence leading to the formation of compounds (I)–(III).

Few triaryl-substituted (thia­zol-2-yl)pyrazoles have previously been synthesized and characterized. The synthesis and crystal structure of a new thia­zolyl-pyrazoline derivative bearing the 1,2,4-triazole moiety has been reported (CSD refcode BAKLOQ; Zeng et al., 2012[Zeng, Y.-M., Chen, S.-Q. & Liu, F. M. (2012). J. Chem. Crystallogr. 42, 24-28.]). A new series of 1,3-thia­zole integrated pyrazoline scaffolds have been synthesized and characterized (DADQIL, DADQEH; Salian et al., 2017[Salian, V. V., Narayana, B., Sarojini, B. K., Kumar, M. S., Nagananda, G. S., Byrappa, K. & Kudva, A. K. (2017). Spectrochim. Acta A Mol. Biomol. Spectrosc. 174, 254-271.]). The synthesis, fluorescence, TGA and crystal structure of a thia­zolyl-pyrazoline derived from chalcones has been described (JUNRAN; Suwunwong et al., 2015[Suwunwong, T., Chantrapromma, S. & Fun, H. K. (2015). Opt. Spectrosc. 118, 563-573.]). In addition, the following crystal structures of related compounds have been reported: 2-[3-(4-bromo­phen­yl)-5-(4-fluoro­phen­yl)-4,5-di­hydro-1H-pyrazol-1-yl]-4-phenyl-1,3-thia­zole (IDOMOF; Abdel-Wahab et al., 2013c[Abdel-Wahab, B. F., Mohamed, H. A., Ng, S. W. & Tiekink, E. R. T. (2013c). Acta Cryst. E69, o735.]), 2-[5-(4-fluoro­phen­yl)-3-(4-meth­yl­phen­yl)-4,5-di­hydro-1H-pyrazol-1-yl]-4-phenyl-1,3-thia­zol (MEWQUC; Abdel-Wahab et al., 2013a[Abdel-Wahab, B. F., Mohamed, H. A., Ng, S. W. & Tiekink, E. R. T. (2013a). Acta Cryst. E69, o392-o393.]), 2-[3-(4-chloro­phen­yl)-5-(4-fluoro­phen­yl)-4,5-di­hydro-1H-pyrazol-1-yl]-4-phenyl-1,3-thia­zole (WIGQIO; Abdel-Wahab et al., 2013b[Abdel-Wahab, B. F., Ng, S. W. & Tiekink, E. R. T. (2013b). Acta Cryst. E69, o576.]), 2-[3-(4-chloro­phen­yl)-5-(4-fluoro­phen­yl)-4,5-di­hydro-1H-pyra­zol-1-yl]-8H-indeno­[1,2-d]thia­zole (WOCFEC; El-Hiti et al., 2019[El-Hiti, G. A., Abdel-Wahab, B. F., Alqahtani, A., Hegazy, A. S. & Kariuki, B. M. (2019). IUCrData, 4, x190218.]) and 2-[3-(4-bromo­phen­yl)-5-(4-fluoro­phen­yl)-4,5-di­hydro-1H-pyrazol-1-yl]-8H-indeno­[1,2-d]thia­zole (PUVVAG; Alotaibi et al., 2020[Alotaibi, A. A., Abdel-Wahab, B. F., Hegazy, A. S., Kariuki, B. M. & El-Hiti, G. A. (2020). Z. Krist. New Cryst. Struct. 235, 897-899.]).

[Scheme 1]

The proposed synthetic route, as also applied to synthesize many of the aforementioned related compounds, was selected because in some cases, we have introduced mesoionic moieties like sydnone as a part of the triaryl. These sydnones are somewhat sensitive towards vigorous reaction conditions. Under the present conditions selected, the products are stable and the reactions gave reasonably good yields. The chosen synthetic routes of the reported compounds in this study are straightforward with limited steps and readily accessible, cheap starting materials, and yields are reasonably high (Nayak et al., 2013[Nayak, P. S., Narayana, B., Yathirajan, H. S., Jasinski, J. P. & Butcher, R. J. (2013). Acta Cryst. E69, o523.]; Bansal et al., 2020[Bansal, K. K., Bhardwaj, J. K., Saraf, P., Thakur, V. K. & Sharma, P. C. (2020). Materials Today Chemistry, 17, 100335.]). The biological activities of few of the related triaryl-substituted (thia­zol-2-yl)pyrazole compounds have been reported in the literature, such as Salian et al. (2017[Salian, V. V., Narayana, B., Sarojini, B. K., Kumar, M. S., Nagananda, G. S., Byrappa, K. & Kudva, A. K. (2017). Spectrochim. Acta A Mol. Biomol. Spectrosc. 174, 254-271.]) have demonstrated radical scavenging capacity owing to the destabilization of the radical formed during oxidation. In the present study, compounds (I)–(III) and the inter­mediate (C) have been characterized spectroscopically. Chalcone inter­mediate (I)[link] (Fig. 2[link]) and the di­hydro­(thia­zol­yl)pyrrazole products (II)[link] and (III)[link] (Figs. 3[link] and 4[link]) have also been characterized, and their structures will be described here.

[Figure 2]
Figure 2
The mol­ecular structure of compound (I)[link] showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3]
Figure 3
The mol­ecular structure of compound (II)[link] showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4]
Figure 4
The mol­ecular structure of compound (III)[link] showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

2. Structural commentary

For the thia­zolyl­pyrazole products (II)[link] and (III)[link], and for the inter­mediates (I)[link] and (C) (Fig. 1[link]), the 1H NMR spectra contained all of the expected signals (Section 5). In particular, the spectra of each of (I)[link], (II)[link] and (III)[link] contained signals from an ABX spin system arising from the H atoms bonded to atoms C4 and C5 (Figs. 2[link] and 3[link]), consistent with the formation of a new 4,5-di­hydro­pyrazole ring.

In the structure of the chalcone inter­mediate (I)[link] (Fig. 2[link]), the two aryl rings are both twisted away from the plane of the central spacer unit, atoms C11, C1, O1, C2, C3, C31 [maximum planar deviation of 0.033 (2) Å for C3 atom]. The dihedral angles between this spacer unit and the rings (C11–C16) and (C31–C36) are 21.48 (7) and 8.98 (7)°, respectively, while the dihedral angle between the (C11–C16) ring and the prop-2-yn­yloxy unit (O14, C17, C18, C19) is 73.48 (13)°. The mol­ecule of (I)[link] exhibits no inter­nal symmetry and so is conformationally chiral, but the centrosymmetric space group confirms that equal numbers of the two conformational enanti­omers are present.

Compounds (II)[link] and (III)[link], differing only in the presence or absence of a methyl group at the aryl­thia­zolyl substituent, and are isomorphous and isostructural (Fig. 1[link] and Table 2[link]). In the mol­ecules of (II)[link] and (III)[link], there is a stereogenic centre at atom C5 and, for each, the reference mol­ecule was selected as one having the R-configuration at atom C5. However, the space group confirms that both compounds have crystallized as racemic mixtures: this is as expected, as the synthesis of (II)[link] and (III)[link] involves no reagents that could plausibly induce enanti­oselectivity. In each of these compounds, the di­hydro-pyrazole ring is effectively planar (Alex & Kumar, 2014[Alex, J. M. & Kumar, R. (2014). J. Enzyme Inhib. Med. Chem. 29, 427-442.]). The maximum deviations from the mean planes through the ring atoms are 0.44 (3) Å for atom C4 in (II)[link] and only 0.012 (2) Å for atom C3 in (III)[link]. The di­hydro-pyrazole ring has been found to be effectively planar among triaryl-substituted (thia­zol-2-yl)pyrazole compounds available in the literature (see Chemical context and Database survey for references).

Table 2
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula C19H16O3 C28H23N3O2S C29H25N3O2S
Mr 292.32 465.55 479.58
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, Cc Monoclinic, Cc
Temperature (K) 297 297 297
a, b, c (Å) 8.6430 (15), 9.9526 (16), 10.0677 (18) 15.7724 (12), 17.6042 (15), 9.3589 (9) 16.5634 (17), 17.7250 (19), 9.4032 (11)
α, β, γ (°) 79.039 (6), 70.124 (6), 68.366 (5) 90, 114.259 (3), 90 90, 116.401 (3), 90
V3) 755.0 (2) 2369.1 (4) 2472.7 (5)
Z 2 4 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.09 0.17 0.16
Crystal size (mm) 0.16 × 0.15 × 0.12 0.20 × 0.18 × 0.15 0.18 × 0.16 × 0.15
 
Data collection
Diffractometer Bruker D8 Venture Bruker D8 Venture Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.966, 0.969 0.949, 0.975 0.949, 0.976
No. of measured, independent and observed [I > 2σ(I)] reflections 45325, 5029, 3072 46650, 6087, 4331 40416, 5578, 3802
Rint 0.066 0.062 0.058
(sin θ/λ)max−1) 0.735 0.692 0.652
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.162, 1.01 0.040, 0.103, 1.05 0.042, 0.121, 1.08
No. of reflections 5029 6087 5578
No. of parameters 200 308 318
No. of restraints 0 2 2
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.36, −0.20 0.12, −0.16 0.15, −0.17
Absolute structure Flack x determined using 1715 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Flack x determined using 1613 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.00 (3) −0.01 (3)
Computer programs: APEX3 (Bruker, 2016[Bruker (2016). APEX3, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]), APEX3, SAINT and XPREP (Bruker, 2016[Bruker (2016). APEX3, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

In each of (I)–(III), the meth­oxy C atom is coplanar with the adjacent aryl ring [the maximum deviation of atom C37 in (I)[link] and C57 in (II)[link] and (III)[link] from the respective planes are 0.003 (2), 0.529 (5) and 0.405 (7) Å, respectively).

Associated with this coplanarity, the values of the two exocyclic C—C—O angles, at atom C34 in (I)[link] and at atom C54 in each of (II)[link] and (III)[link], differ by ca 10°, as typically found in planar alk­oxy­arenes (Seip & Seip, 1973[Seip, H. M. & Seip, R. (1973). Acta Chem. Scand. 27, 4024-4027.]; Ferguson et al., 1996[Ferguson, G., Glidewell, C. & Patterson, I. L. J. (1996). Acta Cryst. C52, 420-423.]; Kiran Kumar, Yathirajan, Foro et al., 2019[Kiran Kumar, H., Yathirajan, H. S., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1494-1506.]; Kiran Kumar et al., 2020[Kiran Kumar, H., Yathirajan, H. S., Harish Chinthal, C., Foro, S. & Glidewell, C. (2020). Acta Cryst. E76, 488-495.]). Overall, both the mol­ecules (II)[link] and (III)[link] adopt a T-shaped structure with the pyrazole C5-substituent anisyl units forming the blade. The remaining part of mol­ecule, the thia­zolyl-pyrazole ring and its substituents form a more or less planar structure, which constitutes the stock of the T-shape. The angle between the plane of the anisyl unit and the remaining part of mol­ecule is 71.8 (1) and 75.3 (1)° in (II)[link] and (III)[link], respectively. Both mol­ecules adopt a more or less similar conformation and a superimposed image of (II)[link] and (III)[link] is shown in Fig. 5[link].

[Figure 5]
Figure 5
Superimposed image of (II)[link] (shown in green) and (III)[link].

3. Supra­molecular features

The supra­molecular assembly of the chalcone (I)[link] depends upon two hydrogen-bond-like inter­actions, one each of the C—H⋯O and the C—H⋯π(arene) type (Table 1[link]). The mol­ecules of (I)[link] are linked into a ribbon of centrosymmetric rings running parallel to the [010] direction (Fig. 6[link]), in which (propyn­yloxy-CH2) C17—H17B⋯O1 (carbon­yl) bonded R22(18) (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]; Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) rings centred at (0, n, 0.5) alternate with rings built from (propyn­yloxy-alkyne) C19—H19⋯π (arene of anis­yl) hydrogen bonds, which are centred at (0, n + 0.5, 0.5), where n represents an integer in each case. The C—H(alkyne)⋯π inter­action has been examined by Holme et al. (2013[Holme, A., Børve, K. J., Saethre, L. J. & Thomas, T. D. (2013). J. Phys. Chem. A, 117, 2007-2019.]). Another (propyn­yloxy-phen­yl) C12—H12⋯π (arene of anis­yl) inter­action is also observed.

Table 1
Hydrogen-bond parameters (Å, °)

Cg1 and Cg2 represent the centroids of the (C31—C36) and (C51—C56) rings, respectively.

Compound D—H⋯A D—H H⋯A DA D—H⋯A
(I) C17—H17B⋯O1i 0.97 2.59 3.456 (2) 148
  C19—H19⋯Cg1ii 0.93 2.73 3.660 (2) 177
  C12—H12⋯Cg1iii 0.93 2.89 3.5117 (18) 126
           
(II) C39—H39⋯Cg2iv 0.93 2.59 3.365 (5) 141
  C56—H56⋯Cg1v 0.93 2.91 3.688 (3) 142
           
(III) C39—H39⋯Cg2iv 0.93 2.93 3.802 (5) 156
  C56—H56⋯Cg1v 0.93 2.92 3.689 (3) 141
  C35—H35⋯S11vi 0.93 2.86 3.560 (4) 133
Symmetry codes: (i) −x, −y, 1 − z; (ii) −x, 1 − y, 1 − z; (iii) −1 + x, y, z; (iv) 1 + x, y, z; (v) −[{1\over 2}] + x, [{1\over 2}] − y, −[{1\over 2}] + z; (vi) [{1\over 2}] + x, [{1\over 2}] − y, [{1\over 2}] + z.
[Figure 6]
Figure 6
Part of the crystal structure of compound (I)[link] showing the formation of a hydrogen-bonded ribbon of centrosymmetric rings running parallel to the [010] direction. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to the C atoms which are not involved in the motifs shown have been omitted.

The structure of compound (II)[link] and (III)[link] contains two C—H⋯π(arene) hydrogen bonds, namely, (propyn­yloxy-alkyne) C39—H39⋯Cg2 (arene of anis­yl) and (anisyl-CarH) C56—H56⋯Cg1(propyn­yloxy-phen­yl). Together, the two inter­actions generate a sheet (Fig. 7[link]) lying parallel to (010) in the domain 0 < y < 0.5. The inter­action is augmented by a (propyn­yloxy-phen­yl) C35—H35⋯S11 inter­action (Ghosh et al., 2020[Ghosh, S., Chopra, P. & Wategaonkar, S. (2020). Phys. Chem. Chem. Phys. In the press. https://doi.org/10.1039/D0CP01508C]) in (III)[link]. In (II)[link] too, there is a short H35⋯S11 contact of 2.96 Å; however, it is only 0.04 Å shorter than the sum of van der Waals radii of the corresponding atoms. A second sheet of this type, related to the first by the action of the glide planes lies in the domain 0.5 < y < 1.0, but there are no direction-specific inter­actions between adjacent sheets. With the exception of this, there are no significant differences in the packing of (II)[link] and (III)[link].

[Figure 7]
Figure 7
Part of the crystal structure of compound (II)[link] showing the formation of a hydrogen-bonded sheet lying parallel to (010). Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms which are not involved in the motifs shown have been omitted.

In (III)[link], a C5—H5⋯π(alkyne) inter­action, also referred as a T-shaped C—H⋯π inter­action (McAdam et al., 2012[McAdam, C. J., Cameron, S. A., Hanton, L. R., Manning, A. R., Moratti, S. C. & Simpson, J. (2012). CrystEngComm, 14, 4369-4383.]) is observed, with the shortest H5⋯C38i [symmetry code: (i) −[{1\over 2}] + x, [{1\over 2}] − y, [{1\over 2}] + z] distance being 2.74 Å and a C5—H5⋯C38 angle of 159°. In (II)[link], two such short contacts of the C—H⋯π(alkyne) type are observed, with H4A⋯C39i and H5⋯C38i distances of 2.80 and 2.81 Å, respectively, which are only 0.10 and 0.09 Å shorter than the sum of of corresponding van der Waals radii.

Additional short intra­molecular C—H⋯O and C—H⋯N contacts are observed in (I)–(III). The packing is devoid of C(alkyne)—H⋯O hydrogen bonding, and no noticeable ππ inter­actions are observed.

4. Database survey

We briefly compare the structures reported here with those of some related compounds. A search for triaryl-substituted (thia­zol-2-yl)pyrazoles in the Cambridge Structural Database (Version 2021.1; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) yielded nine structures that have C3,C5-aryl substitutions in the pyrazole ring and C4-aryl substitution in the thia­zole ring, CSD entries: BAKLOQ, DADQEH, DADQIL, IDOMOF, JUNRAN, MEWQUC, WIGQIO, WOCFEC and PUVVAG (for references, see Chemical context). BAKLOQ, and PUVVAG have fused thia­zol and phenyl rings. All these structures are characterized by a T-shaped structure with pyrazole C5-aryl substituents forming its blade and the remaining part of the mol­ecule, the thia­zol-2-yl-pyrazole ring and its substituents, forming a more or less planar structure, which constitutes the stock of the T-shape. Classical hydrogen bonding is not observed in any of these compounds. The di­hydro­pyrazole rings are effectively planar in all these compounds.

Finally, we note that the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) records 55 chalcone structures, which were determined as part of the long-time collaboration between the Yathirajan group and the late Professor Jerry P. Jasinski.

5. Synthesis and crystallization

All reagents were obtained commercially, and all were used as received. For the synthesis of compound (I)[link], 4-meth­oxy­benzaldehyde (A), (see Fig. 1[link]) (1.80 g, 0.014 mol) was added to a well-stirred solution of 4-(prop-2-yn­yloxy)aceto­phenone (B) (2.00 g, 0.012 mol) and potassium hydroxide (0.90 g, 0.017 mol) in ethanol (10 ml), and this resulting mixture was stirred at ambient temperature for 5 h. When the reaction was complete, as judged from TLC, the mixture was poured into an excess of ice-cold water and the resulting solid product (I)[link] was collected by filtration and crystallized from a mixture of ethanol and N,N-di­methyl­formamide (3:2, v/v) (Shaibah et al., 2020[Shaibah, M. A. E., Yathirajan, H. S., Manju, N., Kalluraya, B., Rathore, R. S. & Glidewell, C. (2020). Acta Cryst. E76, 48-52.]). Yield 88%, m.p. 375–378 K. IR (cm−1) 2180 (alkyne), 1667 (C=O), 1620 (C=C). NMR (CDCl3) δ(1H) 2.79 (2H, d, J = 1.8 Hz O-CH2), 6.67 (1H, d, J = 15.6 Hz) (H-2) and 7.54 (1H, d, J = 15.6 Hz) (H-3), 7.06 (2H, d, J = 8.8Hz) and 7.16 (2H, d, J = 8.8Hz) (–C6H4–), 7.12–7.24 (4H, m, –C6H4–).

For the synthesis of compounds (II)[link] and (III)[link], the precursor chalcone was first converted to the carbo­thio­amide inter­mediate (C): thio­semicarbazide (0.155 g, 1.50 mmol) was added to a suspension of (I)[link] (0.50 g, 1.0 mmol) and potassium hydroxide (0.14 g, 2.5 mmol) in ethanol (10 ml). This mixture was then heated under reflux for 8 h, after which time the reaction was judged from TLC to be complete. The mixture was poured onto crushed ice and the resulting solid inter­mediate (C) was collected by filtration and crystallized from a mixture of ethanol and N,N-di­methyl­formamide (3:2, v/v). Yield 79%, m.p. 422–423 K. Analysis: found C 65.8, H 5.2, N 11.5%; C20H15N3O2S requires C 65.7, H 5.2, N 11.5%. IR (cm−1) 3339 (NH2), 2120 (alkyne). 1H NMR (DMSO-d6) δ 3.09 (1H, dd, J = 17.5 Hz and 3.2 Hz) and 3.71 (1H, dd, J = 17.5 Hz and 11.5 Hz) (pyrazole CH2), 3.69 (1H, t, J = 2.3 Hz, alkynic CH), 3.78 (3H, s, OMe), 4.52 (2H, d, J = 2.3 Hz, O-CH2), 5.76 (1H, dd, J = 11.5 Hz and 3.2 Hz, pyrazole CH), 6.75 (2H, d, J = 8.8 Hz) and 7.02 (2H, d, J = 8.8 Hz) (–C6H4–), 7.13 (2H, d, J = 8,1 Hz) and 7.64 (2H, d, J = 8.1 Hz) (–C6H4–). Mixtures of this inter­mediate (1.00 g, 2.0 mmol) and either phenacyl bromide (0.5 g, 2.0 mmol) for (II)[link] or 4-methyl­phenacyl bromide (0.58 g, 2.0 mmol) for (III)[link] in ethanol (20 ml) were heated under reflux for 1 h. The mixtures were then allowed to cool to ambient temperature and the resulting solid products were collected by filtration and then crystallized from mixtures of ethanol and N,N-di­methyl­formamide (3:2, v/v) (Manju, Kalluraya, Asma et al., 2019[Manju, N., Kalluraya, B., Asma, Kumar, M. S., Revanasiddappa, B. & Chandra (2019). J. Med. Chem. Sci. 2, 101-109.]). Compound (II)[link], yield 88%, m.p. 435–438 K. IR (cm−1 2198 (alkyne), 1618 (C=N), 1600 (C=C). 1H NMR (CDCl3) δ 2.41 (1H, t, J = 1.8 Hz), H-39), 3.46 (1H, dd, J = 16.9 Hz and 5.2 Hz) and 4.10 (1H, dd, J = 16.9 Hz and 12.4 Hz) (pyrazole CH2), 3.90 (3H, s, OMe), 4.56 (2H, d, J = 1.8 Hz, O-CH2), 5.43 (1H, dd, J = 12.4 Hz and 5.2 Hz, pyrazole CH), 6.95 (2H, d, J = 8.8 Hz) and 7.20 (2H, d, J = 8.8Hz, –C6H4–) 7.26–7.63 (9H, m, ar­yl), 7.90 (1H, s, H-15). Compound (III)[link], yield 82%, m.p. 453–455 K. IR (cm−1) 2210 (alkyne), 1620 (C=N), 1605 (C=C). 1H NMR (CDCl3) δ 2,32 (3H, s, C—CH3), 2.54 (1H, t, J = 2.0 Hz), H-39), 3.28 (1H, dd, J = 17.0 Hz and 6.4 Hz) and 3.84 (1H, dd, J = 17.0 Hz and 11.8 Hz) (pyrazole CH2), 3.77 (3H, s, OMe), 4.75 (2H, d, J = 2.0 Hz, O—CH2), 5.69 (1H, dd, J = 11.8 Hz and 5.4 Hz, pyrazole CH), 6.86 (2H, d, J = 8.8 Hz), 7.01 (2H, d, J = 8.8 Hz), 7.11 (2H, d, J = 8.8 Hz), 7.34 (2H, d, J = 8.8Hz), 7.57 (2H, d, J = 8.8 Hz) and 7.72 (2H, d, J = 8.8 Hz) (3 × –C6CH4–), 8.00 (1H, s, H-15). Crystals of compounds (I)–(III) that were suitable for single-crystal X-ray diffraction were selected directly from the prepared samples.

6. Refinement

Crystal data, data collection and refinement details are summarized in Table 2[link]. A number of low-angle reflections, which had been attenuated by the beam stop, were omitted from the data sets: for (I)[link], (100), (011), (0[\overline{1}]1), (110) and (111); for (II)[link], (11[\overline{1}]), ([\overline{1}]11) and (200); and for (III)[link], ([\overline{1}]11) and (200). All H atoms were located in difference maps and they were then treated as riding atoms in geometrically idealized positions with C—H distances of 0.98 Å (saturated aliphatic C—H), 0.97 Å (CH2), 0.96 Å (CH3) or 0.93 Å for all other H atoms, and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, and k = 1.2 for all other H atoms. For compounds (II)[link] and (III)[link], the correct orientation of the structures with respect to the polar axis directions was established by means of the Flack x parameter (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), calculated using quotients of the type (I+) - (I)]/[(I+) + (I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]). For (II)[link], x = 0.00 (3), calculated using 1715 quotients, and for (III)[link] x = −0.01 (3), calculated using 1613 quotients.

Supporting information


Computing details top

For all structures, data collection: APEX3 (Bruker, 2016); cell refinement: APEX3 and SAINT (Bruker, 2016); data reduction: SAINT and XPREP (Bruker, 2016); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b) and PLATON (Spek, 2020).

(E)-1-(4-Methoxyphenyl)-3-[4-(prop-2-ynyloxy)phenyl]prop-2-en-1-one (I) top
Crystal data top
C19H16O3Z = 2
Mr = 292.32F(000) = 308
Triclinic, P1Dx = 1.286 Mg m3
a = 8.6430 (15) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.9526 (16) ÅCell parameters from 5248 reflections
c = 10.0677 (18) Åθ = 2.7–32.5°
α = 79.039 (6)°µ = 0.09 mm1
β = 70.124 (6)°T = 297 K
γ = 68.366 (5)°Block, colourless
V = 755.0 (2) Å30.16 × 0.15 × 0.12 mm
Data collection top
Bruker D8 Venture
diffractometer
5029 independent reflections
Radiation source: INCOATEC high brilliance microfocus sealed tube3072 reflections with I > 2σ(I)
Multilayer mirror monochromatorRint = 0.066
φ and ω scansθmax = 31.5°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1212
Tmin = 0.966, Tmax = 0.969k = 1414
45325 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.162 w = 1/[σ2(Fo2) + (0.0578P)2 + 0.2039P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
5029 reflectionsΔρmax = 0.36 e Å3
200 parametersΔρmin = 0.20 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.35447 (18)0.15799 (16)0.42144 (16)0.0472 (3)
O10.36622 (16)0.11332 (14)0.31105 (12)0.0652 (3)
C20.47763 (19)0.22583 (17)0.42604 (16)0.0498 (3)
H20.45980.26430.50940.060*
C30.61295 (19)0.23433 (16)0.31606 (16)0.0480 (3)
H30.62850.19280.23510.058*
C110.21298 (18)0.14699 (14)0.55306 (15)0.0436 (3)
C120.06427 (19)0.13056 (16)0.54368 (16)0.0469 (3)
H120.05570.12660.45500.056*
C130.07138 (19)0.11992 (16)0.66299 (16)0.0485 (3)
H130.17070.11060.65450.058*
C140.05751 (18)0.12334 (15)0.79527 (15)0.0456 (3)
C150.0910 (2)0.13783 (17)0.80677 (16)0.0514 (3)
H150.10070.13900.89570.062*
C160.22343 (19)0.15049 (16)0.68757 (16)0.0496 (3)
H160.32160.16160.69650.060*
O140.18261 (15)0.11348 (14)0.92107 (11)0.0599 (3)
C170.3326 (2)0.0850 (2)0.91866 (19)0.0601 (4)
H17A0.38980.05201.01330.072*
H17B0.29500.00760.85730.072*
C180.4578 (2)0.2122 (2)0.86912 (17)0.0562 (4)
C190.5601 (3)0.3130 (2)0.8308 (2)0.0709 (5)
H190.64140.39320.80040.085*
C310.74006 (18)0.30161 (15)0.30821 (14)0.0439 (3)
C320.72813 (19)0.37748 (16)0.41724 (15)0.0485 (3)
H320.63490.38620.49950.058*
C330.8511 (2)0.43923 (17)0.40517 (16)0.0513 (3)
H330.83980.48960.47870.062*
C340.9922 (2)0.42693 (16)0.28368 (16)0.0485 (3)
C351.0071 (2)0.35335 (18)0.17388 (16)0.0551 (4)
H351.10060.34480.09180.066*
C360.8814 (2)0.29253 (18)0.18739 (16)0.0535 (4)
H360.89210.24380.11290.064*
O341.10894 (16)0.48771 (14)0.28515 (13)0.0648 (3)
C371.2544 (3)0.4817 (2)0.1633 (2)0.0728 (5)
H37A1.32120.38230.14490.109*
H37B1.32590.52770.17920.109*
H37C1.21450.53100.08330.109*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0429 (7)0.0456 (7)0.0533 (8)0.0111 (6)0.0155 (6)0.0091 (6)
O10.0602 (7)0.0829 (8)0.0585 (7)0.0276 (6)0.0111 (5)0.0229 (6)
C20.0463 (8)0.0541 (8)0.0498 (8)0.0162 (6)0.0111 (6)0.0119 (6)
C30.0460 (7)0.0493 (8)0.0485 (8)0.0130 (6)0.0136 (6)0.0097 (6)
C110.0419 (7)0.0390 (6)0.0507 (8)0.0105 (5)0.0160 (6)0.0067 (5)
C120.0489 (8)0.0475 (7)0.0503 (8)0.0157 (6)0.0201 (6)0.0078 (6)
C130.0458 (7)0.0528 (8)0.0556 (8)0.0203 (6)0.0204 (6)0.0055 (6)
C140.0444 (7)0.0463 (7)0.0482 (7)0.0164 (6)0.0167 (6)0.0004 (6)
C150.0502 (8)0.0626 (9)0.0472 (8)0.0186 (7)0.0228 (6)0.0017 (6)
C160.0435 (7)0.0559 (8)0.0561 (8)0.0172 (6)0.0212 (6)0.0055 (6)
O140.0540 (6)0.0838 (8)0.0505 (6)0.0341 (6)0.0190 (5)0.0056 (5)
C170.0565 (9)0.0690 (10)0.0619 (10)0.0341 (8)0.0172 (7)0.0058 (8)
C180.0520 (9)0.0707 (10)0.0522 (8)0.0287 (8)0.0116 (7)0.0086 (7)
C190.0636 (11)0.0788 (12)0.0701 (12)0.0172 (9)0.0236 (9)0.0106 (9)
C310.0413 (7)0.0449 (7)0.0423 (7)0.0104 (5)0.0111 (5)0.0062 (5)
C320.0422 (7)0.0549 (8)0.0428 (7)0.0098 (6)0.0088 (6)0.0106 (6)
C330.0527 (8)0.0546 (8)0.0482 (8)0.0136 (7)0.0162 (6)0.0136 (6)
C340.0492 (8)0.0474 (7)0.0520 (8)0.0160 (6)0.0183 (6)0.0043 (6)
C350.0518 (8)0.0662 (10)0.0451 (8)0.0241 (7)0.0032 (6)0.0101 (7)
C360.0550 (9)0.0632 (9)0.0442 (8)0.0224 (7)0.0078 (6)0.0152 (6)
O340.0631 (7)0.0746 (8)0.0666 (7)0.0335 (6)0.0154 (6)0.0131 (6)
C370.0687 (12)0.0856 (13)0.0734 (12)0.0436 (10)0.0164 (9)0.0015 (10)
Geometric parameters (Å, º) top
C1—O11.2332 (18)C17—H17A0.9700
C1—C21.472 (2)C17—H17B0.9700
C1—C111.485 (2)C18—C191.170 (3)
C2—C31.326 (2)C19—H190.9300
C2—H20.9300C31—C361.390 (2)
C3—C311.458 (2)C31—C321.402 (2)
C3—H30.9300C32—C331.374 (2)
C11—C121.3896 (19)C32—H320.9300
C11—C161.395 (2)C33—C341.390 (2)
C12—C131.384 (2)C33—H330.9300
C12—H120.9300C34—O341.3594 (18)
C13—C141.385 (2)C34—C351.384 (2)
C13—H130.9300C35—C361.385 (2)
C14—O141.3721 (17)C35—H350.9300
C14—C151.387 (2)C36—H360.9300
C15—C161.372 (2)O34—C371.419 (2)
C15—H150.9300C37—H37A0.9600
C16—H160.9300C37—H37B0.9600
O14—C171.4341 (19)C37—H37C0.9600
C17—C181.462 (2)
O1—C1—C2121.19 (14)O14—C17—H17B109.0
O1—C1—C11120.62 (13)C18—C17—H17B109.0
C2—C1—C11118.18 (13)H17A—C17—H17B107.8
C3—C2—C1122.60 (14)C19—C18—C17178.89 (19)
C3—C2—H2118.7C18—C19—H19180.0
C1—C2—H2118.7C36—C31—C32116.87 (13)
C2—C3—C31127.06 (14)C36—C31—C3119.67 (13)
C2—C3—H3116.5C32—C31—C3123.46 (13)
C31—C3—H3116.5C33—C32—C31121.46 (13)
C12—C11—C16117.96 (13)C33—C32—H32119.3
C12—C11—C1119.34 (13)C31—C32—H32119.3
C16—C11—C1122.70 (13)C32—C33—C34120.38 (13)
C13—C12—C11121.65 (13)C32—C33—H33119.8
C13—C12—H12119.2C34—C33—H33119.8
C11—C12—H12119.2O34—C34—C35125.05 (14)
C12—C13—C14119.22 (13)O34—C34—C33115.41 (13)
C12—C13—H13120.4C35—C34—C33119.53 (14)
C14—C13—H13120.4C34—C35—C36119.36 (14)
O14—C14—C13124.69 (13)C34—C35—H35120.3
O14—C14—C15115.39 (13)C36—C35—H35120.3
C13—C14—C15119.92 (14)C35—C36—C31122.40 (14)
C16—C15—C14120.30 (14)C35—C36—H36118.8
C16—C15—H15119.8C31—C36—H36118.8
C14—C15—H15119.8C34—O34—C37118.37 (13)
C15—C16—C11120.93 (13)O34—C37—H37A109.5
C15—C16—H16119.5O34—C37—H37B109.5
C11—C16—H16119.5H37A—C37—H37B109.5
C14—O14—C17118.59 (12)O34—C37—H37C109.5
O14—C17—C18112.83 (14)H37A—C37—H37C109.5
O14—C17—H17A109.0H37B—C37—H37C109.5
C18—C17—H17A109.0
O1—C1—C2—C34.4 (2)C13—C14—O14—C175.7 (2)
C11—C1—C2—C3176.67 (14)C15—C14—O14—C17174.36 (14)
C1—C2—C3—C31178.55 (14)C14—O14—C17—C1876.01 (19)
O1—C1—C11—C1220.5 (2)C2—C3—C31—C36175.71 (15)
C2—C1—C11—C12158.44 (13)C2—C3—C31—C324.6 (2)
O1—C1—C11—C16158.65 (15)C36—C31—C32—C330.3 (2)
C2—C1—C11—C1622.4 (2)C3—C31—C32—C33179.98 (14)
C16—C11—C12—C130.9 (2)C31—C32—C33—C340.4 (2)
C1—C11—C12—C13179.94 (13)C32—C33—C34—O34177.78 (13)
C11—C12—C13—C141.1 (2)C32—C33—C34—C350.8 (2)
C12—C13—C14—O14179.87 (13)O34—C34—C35—C36178.04 (15)
C12—C13—C14—C150.2 (2)C33—C34—C35—C360.3 (2)
O14—C14—C15—C16179.15 (13)C34—C35—C36—C310.4 (3)
C13—C14—C15—C160.8 (2)C32—C31—C36—C350.7 (2)
C14—C15—C16—C110.9 (2)C3—C31—C36—C35179.57 (14)
C12—C11—C16—C150.1 (2)C35—C34—O34—C372.8 (2)
C1—C11—C16—C15179.02 (14)C33—C34—O34—C37178.74 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17B···O1i0.972.593.456 (2)148
C3—H3···O10.932.502.827 (2)101
C12—H12···Cg1ii0.932.893.5117 (18)126
C19—H19···Cg1iii0.932.733.660 (2)177
Symmetry codes: (i) x, y, z+1; (ii) x1, y, z; (iii) x, y+1, z+1.
(RS)-5-(4-Methoxyphenyl)-1-(4-phenythiazol-2-yl)-3-(4-(prop-2-ynyloxy)phenyl)-4,5-dihydro-1H-pyrazole (II) top
Crystal data top
C28H23N3O2SF(000) = 976
Mr = 465.55Dx = 1.305 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 15.7724 (12) ÅCell parameters from 6124 reflections
b = 17.6042 (15) Åθ = 2.5–29.7°
c = 9.3589 (9) ŵ = 0.17 mm1
β = 114.259 (3)°T = 297 K
V = 2369.1 (4) Å3Block, colourless
Z = 40.20 × 0.18 × 0.15 mm
Data collection top
Bruker D8 Venture
diffractometer
6087 independent reflections
Radiation source: INCOATEC high brilliance microfocus sealed tube4331 reflections with I > 2σ(I)
Multilayer mirror monochromatorRint = 0.062
φ and ω scansθmax = 29.5°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 2117
Tmin = 0.949, Tmax = 0.975k = 2424
46650 measured reflectionsl = 1212
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0465P)2 + 0.3024P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.103(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.12 e Å3
6087 reflectionsΔρmin = 0.16 e Å3
308 parametersAbsolute structure: Flack x determined using 1715 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
2 restraintsAbsolute structure parameter: 0.00 (3)
Primary atom site location: difference Fourier map
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.37305 (18)0.29886 (13)0.5843 (3)0.0698 (7)
N20.44590 (16)0.30871 (13)0.5400 (3)0.0615 (6)
C30.50583 (18)0.25567 (14)0.6044 (3)0.0537 (6)
C40.48110 (19)0.20499 (17)0.7111 (4)0.0657 (7)
H4A0.52410.21180.81970.079*
H4B0.48090.15200.68280.079*
C50.38250 (19)0.23200 (15)0.6834 (3)0.0597 (6)
H50.38110.24750.78300.072*
S110.31763 (7)0.43908 (4)0.46457 (10)0.0756 (2)
C120.3097 (2)0.35556 (14)0.5592 (3)0.0619 (7)
N130.24061 (17)0.35145 (12)0.6003 (3)0.0640 (6)
C140.1866 (2)0.41709 (15)0.5544 (3)0.0639 (8)
C150.2173 (3)0.46935 (17)0.4794 (4)0.0760 (9)
H150.18800.51550.44110.091*
C1410.1032 (2)0.42337 (16)0.5869 (4)0.0668 (8)
C1420.0831 (2)0.36891 (19)0.6757 (4)0.0764 (9)
H1420.12410.32870.71800.092*
C1430.0035 (3)0.3734 (2)0.7022 (5)0.0927 (11)
H1430.00880.33580.76100.111*
C1440.0578 (3)0.4323 (3)0.6432 (4)0.0912 (11)
H1440.11140.43480.66140.109*
C1450.0390 (3)0.4872 (2)0.5573 (5)0.0928 (13)
H1450.07990.52770.51790.111*
C1460.0401 (3)0.48317 (19)0.5284 (4)0.0812 (10)
H1460.05140.52090.46890.097*
C310.59091 (18)0.24801 (14)0.5805 (3)0.0515 (6)
C320.6202 (2)0.30393 (16)0.5045 (3)0.0601 (7)
H320.58340.34670.46490.072*
C330.7017 (2)0.29701 (17)0.4871 (3)0.0646 (7)
H330.72030.33510.43750.078*
C340.75702 (19)0.23232 (16)0.5444 (3)0.0576 (6)
C350.7292 (2)0.17629 (15)0.6179 (3)0.0614 (7)
H350.76540.13290.65460.074*
C360.6477 (2)0.18442 (14)0.6373 (3)0.0583 (7)
H360.63020.14670.68940.070*
O340.83796 (15)0.23069 (13)0.5230 (2)0.0729 (6)
C370.8963 (3)0.1658 (2)0.5840 (5)0.0892 (11)
H37A0.86500.12060.52780.107*
H37B0.90900.15910.69380.107*
C380.9823 (3)0.1766 (2)0.5668 (4)0.0791 (9)
C391.0545 (3)0.1841 (2)0.5627 (5)0.0937 (11)
H391.11220.19020.55950.112*
C510.31025 (17)0.17114 (13)0.6070 (3)0.0497 (5)
C520.30167 (19)0.11341 (16)0.7020 (3)0.0593 (6)
H520.33870.11450.80910.071*
C530.2399 (2)0.05516 (16)0.6411 (4)0.0651 (7)
H530.23610.01670.70630.078*
C540.1830 (2)0.05331 (15)0.4823 (4)0.0626 (7)
C550.1922 (2)0.10879 (15)0.3862 (3)0.0621 (7)
H1550.15540.10730.27900.075*
C560.2559 (2)0.16685 (16)0.4487 (3)0.0576 (6)
H560.26220.20370.38240.069*
O540.11946 (19)0.00466 (13)0.4328 (3)0.0955 (8)
C570.0407 (3)0.0056 (2)0.2901 (5)0.1053 (13)
H57A0.05900.00250.20430.158*
H57B0.01380.05450.28990.158*
H57C0.00420.03330.27930.158*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0646 (14)0.0476 (12)0.0985 (18)0.0086 (11)0.0350 (13)0.0120 (12)
N20.0616 (14)0.0458 (12)0.0734 (15)0.0001 (10)0.0240 (11)0.0015 (10)
C30.0566 (15)0.0444 (12)0.0528 (14)0.0031 (11)0.0152 (11)0.0044 (11)
C40.0589 (16)0.0601 (16)0.0731 (18)0.0057 (13)0.0221 (14)0.0128 (14)
C50.0607 (16)0.0516 (14)0.0662 (17)0.0071 (12)0.0255 (13)0.0048 (12)
S110.0889 (5)0.0434 (3)0.0841 (5)0.0019 (4)0.0250 (4)0.0007 (4)
C120.0657 (17)0.0396 (12)0.0672 (18)0.0029 (12)0.0140 (14)0.0030 (12)
N130.0640 (15)0.0442 (12)0.0744 (16)0.0111 (10)0.0189 (12)0.0000 (10)
C140.0722 (18)0.0423 (13)0.0574 (16)0.0104 (12)0.0066 (13)0.0089 (11)
C150.089 (2)0.0418 (14)0.082 (2)0.0108 (14)0.0193 (17)0.0013 (14)
C1410.0698 (18)0.0490 (15)0.0601 (16)0.0152 (13)0.0050 (13)0.0135 (12)
C1420.085 (2)0.0637 (18)0.0719 (19)0.0242 (15)0.0232 (17)0.0024 (15)
C1430.101 (3)0.091 (3)0.084 (2)0.020 (2)0.036 (2)0.008 (2)
C1440.086 (2)0.096 (3)0.081 (2)0.022 (2)0.0222 (19)0.024 (2)
C1450.081 (2)0.076 (2)0.091 (3)0.0353 (19)0.0053 (19)0.021 (2)
C1460.083 (2)0.0587 (17)0.078 (2)0.0239 (16)0.0081 (17)0.0047 (15)
C310.0580 (15)0.0446 (12)0.0453 (13)0.0020 (10)0.0145 (10)0.0046 (10)
C320.0661 (17)0.0496 (14)0.0605 (16)0.0088 (12)0.0219 (13)0.0107 (12)
C330.0712 (19)0.0587 (16)0.0682 (18)0.0069 (13)0.0330 (15)0.0166 (13)
C340.0592 (16)0.0570 (15)0.0546 (15)0.0053 (12)0.0213 (12)0.0001 (12)
C350.0700 (18)0.0491 (14)0.0617 (16)0.0112 (12)0.0236 (13)0.0067 (12)
C360.0669 (17)0.0441 (13)0.0612 (16)0.0011 (12)0.0235 (13)0.0039 (11)
O340.0743 (14)0.0711 (13)0.0813 (14)0.0183 (11)0.0401 (11)0.0170 (10)
C370.086 (2)0.076 (2)0.114 (3)0.0243 (18)0.049 (2)0.025 (2)
C380.079 (2)0.075 (2)0.087 (2)0.0260 (17)0.0390 (19)0.0087 (16)
C390.086 (3)0.098 (3)0.105 (3)0.037 (2)0.047 (2)0.008 (2)
C510.0518 (13)0.0479 (12)0.0539 (13)0.0127 (10)0.0264 (11)0.0081 (10)
C520.0574 (15)0.0658 (16)0.0539 (14)0.0118 (13)0.0221 (12)0.0191 (12)
C530.0679 (17)0.0558 (16)0.0735 (19)0.0105 (13)0.0309 (15)0.0275 (14)
C540.0661 (17)0.0415 (13)0.079 (2)0.0066 (12)0.0284 (15)0.0074 (12)
C550.0788 (19)0.0509 (14)0.0501 (14)0.0075 (13)0.0199 (13)0.0026 (12)
C560.0750 (18)0.0475 (14)0.0550 (15)0.0093 (12)0.0313 (13)0.0121 (11)
O540.0909 (17)0.0512 (12)0.120 (2)0.0097 (11)0.0182 (15)0.0105 (12)
C570.094 (3)0.077 (2)0.115 (3)0.020 (2)0.013 (2)0.011 (2)
Geometric parameters (Å, º) top
N1—C121.363 (4)C32—C331.365 (4)
N1—N21.383 (3)C32—H320.9300
N1—C51.468 (4)C33—C341.401 (4)
N2—C31.289 (4)C33—H330.9300
C3—C311.455 (4)C34—O341.372 (3)
C3—C41.505 (4)C34—C351.373 (4)
C4—C51.543 (4)C35—C361.378 (4)
C4—H4A0.9700C35—H350.9300
C4—H4B0.9700C36—H360.9300
C5—C511.513 (4)O34—C371.430 (4)
C5—H50.9800C37—C381.443 (5)
S11—C151.729 (4)C37—H37A0.9700
S11—C121.747 (3)C37—H37B0.9700
C12—N131.298 (4)C38—C391.162 (5)
N13—C141.395 (3)C39—H390.9300
C14—C151.361 (5)C51—C561.375 (4)
C14—C1411.471 (5)C51—C521.393 (4)
C15—H150.9300C52—C531.367 (4)
C141—C1421.388 (5)C52—H520.9300
C141—C1461.397 (4)C53—C541.385 (4)
C142—C1431.379 (5)C53—H530.9300
C142—H1420.9300C54—O541.371 (4)
C143—C1441.370 (5)C54—C551.374 (4)
C143—H1430.9300C55—C561.384 (4)
C144—C1451.365 (6)C55—H1550.9300
C144—H1440.9300C56—H560.9300
C145—C1461.383 (6)O54—C571.412 (5)
C145—H1450.9300C57—H57A0.9600
C146—H1460.9300C57—H57B0.9600
C31—C361.396 (4)C57—H57C0.9600
C31—C321.400 (4)
C12—N1—N2119.8 (2)C32—C31—C3122.1 (2)
C12—N1—C5125.0 (3)C33—C32—C31121.4 (3)
N2—N1—C5114.1 (2)C33—C32—H32119.3
C3—N2—N1108.0 (2)C31—C32—H32119.3
N2—C3—C31122.7 (2)C32—C33—C34119.7 (3)
N2—C3—C4113.6 (2)C32—C33—H33120.1
C31—C3—C4123.7 (2)C34—C33—H33120.1
C3—C4—C5102.9 (2)O34—C34—C35124.5 (3)
C3—C4—H4A111.2O34—C34—C33115.6 (2)
C5—C4—H4A111.2C35—C34—C33119.9 (3)
C3—C4—H4B111.2C34—C35—C36119.9 (2)
C5—C4—H4B111.2C34—C35—H35120.1
H4A—C4—H4B109.1C36—C35—H35120.1
N1—C5—C51114.1 (2)C35—C36—C31121.4 (3)
N1—C5—C4100.8 (2)C35—C36—H36119.3
C51—C5—C4111.9 (2)C31—C36—H36119.3
N1—C5—H5109.9C34—O34—C37116.3 (2)
C51—C5—H5109.9O34—C37—C38109.3 (3)
C4—C5—H5109.9O34—C37—H37A109.8
C15—S11—C1287.71 (16)C38—C37—H37A109.8
N13—C12—N1123.6 (3)O34—C37—H37B109.8
N13—C12—S11116.2 (2)C38—C37—H37B109.8
N1—C12—S11120.2 (3)H37A—C37—H37B108.3
C12—N13—C14110.1 (3)C39—C38—C37175.7 (4)
C15—C14—N13114.7 (3)C38—C39—H39180.0
C15—C14—C141126.4 (3)C56—C51—C52117.8 (3)
N13—C14—C141118.9 (3)C56—C51—C5124.3 (2)
C14—C15—S11111.4 (2)C52—C51—C5117.8 (2)
C14—C15—H15124.3C53—C52—C51121.3 (3)
S11—C15—H15124.3C53—C52—H52119.3
C142—C141—C146117.0 (4)C51—C52—H52119.3
C142—C141—C14121.0 (3)C52—C53—C54120.1 (2)
C146—C141—C14121.9 (3)C52—C53—H53119.9
C143—C142—C141121.1 (3)C54—C53—H53119.9
C143—C142—H142119.4O54—C54—C55124.5 (3)
C141—C142—H142119.4O54—C54—C53116.2 (3)
C144—C143—C142121.0 (4)C55—C54—C53119.3 (3)
C144—C143—H143119.5C54—C55—C56120.1 (3)
C142—C143—H143119.5C54—C55—H155119.9
C145—C144—C143119.1 (4)C56—C55—H155119.9
C145—C144—H144120.5C51—C56—C55121.2 (2)
C143—C144—H144120.5C51—C56—H56119.4
C144—C145—C146120.7 (3)C55—C56—H56119.4
C144—C145—H145119.7C54—O54—C57117.5 (3)
C146—C145—H145119.7O54—C57—H57A109.5
C145—C146—C141121.1 (4)O54—C57—H57B109.5
C145—C146—H146119.5H57A—C57—H57B109.5
C141—C146—H146119.5O54—C57—H57C109.5
C36—C31—C32117.6 (3)H57A—C57—H57C109.5
C36—C31—C3120.3 (2)H57B—C57—H57C109.5
C12—N1—N2—C3166.6 (3)C142—C141—C146—C1450.4 (5)
C5—N1—N2—C32.0 (3)C14—C141—C146—C145178.5 (3)
N1—N2—C3—C31178.9 (2)N2—C3—C31—C36172.2 (2)
N1—N2—C3—C43.5 (3)C4—C3—C31—C3610.5 (4)
N2—C3—C4—C57.2 (3)N2—C3—C31—C329.5 (4)
C31—C3—C4—C5175.2 (2)C4—C3—C31—C32167.9 (3)
C12—N1—C5—C5178.2 (4)C36—C31—C32—C330.4 (4)
N2—N1—C5—C51113.9 (3)C3—C31—C32—C33178.0 (3)
C12—N1—C5—C4161.8 (3)C31—C32—C33—C340.8 (4)
N2—N1—C5—C46.1 (3)C32—C33—C34—O34179.4 (3)
C3—C4—C5—N17.3 (3)C32—C33—C34—C350.1 (4)
C3—C4—C5—C51114.4 (2)O34—C34—C35—C36178.2 (3)
N2—N1—C12—N13178.5 (3)C33—C34—C35—C361.0 (4)
C5—N1—C12—N1311.2 (5)C34—C35—C36—C311.5 (4)
N2—N1—C12—S112.5 (4)C32—C31—C36—C350.7 (4)
C5—N1—C12—S11169.8 (2)C3—C31—C36—C35179.1 (2)
C15—S11—C12—N131.3 (2)C35—C34—O34—C370.6 (4)
C15—S11—C12—N1177.9 (3)C33—C34—O34—C37178.6 (3)
N1—C12—N13—C14178.1 (3)C34—O34—C37—C38174.0 (3)
S11—C12—N13—C141.0 (3)N1—C5—C51—C5616.6 (4)
C12—N13—C14—C150.2 (4)C4—C5—C51—C5697.0 (3)
C12—N13—C14—C141178.7 (2)N1—C5—C51—C52167.0 (2)
N13—C14—C15—S110.8 (3)C4—C5—C51—C5279.4 (3)
C141—C14—C15—S11179.5 (2)C56—C51—C52—C531.4 (4)
C12—S11—C15—C141.1 (2)C5—C51—C52—C53178.0 (3)
C15—C14—C141—C142174.7 (3)C51—C52—C53—C541.2 (4)
N13—C14—C141—C1426.6 (4)C52—C53—C54—O54176.3 (3)
C15—C14—C141—C1466.3 (5)C52—C53—C54—C552.7 (4)
N13—C14—C141—C146172.4 (3)O54—C54—C55—C56177.2 (3)
C146—C141—C142—C1431.1 (5)C53—C54—C55—C561.7 (4)
C14—C141—C142—C143177.9 (3)C52—C51—C56—C552.5 (4)
C141—C142—C143—C1440.8 (5)C5—C51—C56—C55178.9 (3)
C142—C143—C144—C1450.1 (6)C54—C55—C56—C511.0 (4)
C143—C144—C145—C1460.8 (6)C55—C54—O54—C5721.0 (5)
C144—C145—C146—C1410.5 (5)C53—C54—O54—C57157.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C56—H56···N10.932.592.915 (4)101
C142—H142···N130.932.532.864 (5)101
C39—H39···Cg2i0.932.593.365 (5)141
C56—H56···Cg1ii0.932.913.688 (3)142
Symmetry codes: (i) x+1, y, z; (ii) x1/2, y+1/2, z1/2.
(RS)-5-(4-Methoxyphenyl)-1-[4-(4-methylphenyl)thiazol-2-yl]-3-[4-(prop-2-ynyloxy)phenyl]-4,5-dihydro-1H-pyrazole (III) top
Crystal data top
C29H25N3O2SF(000) = 1008
Mr = 479.58Dx = 1.288 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 16.5634 (17) ÅCell parameters from 5580 reflections
b = 17.7250 (19) Åθ = 2.5–27.6°
c = 9.4032 (11) ŵ = 0.16 mm1
β = 116.401 (3)°T = 297 K
V = 2472.7 (5) Å3Block, colourless
Z = 40.18 × 0.16 × 0.15 mm
Data collection top
Bruker D8 Venture
diffractometer
5578 independent reflections
Radiation source: INCOATEC high brilliance microfocus sealed tube3802 reflections with I > 2σ(I)
Multilayer mirror monochromatorRint = 0.058
φ and ω scansθmax = 27.6°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 2120
Tmin = 0.949, Tmax = 0.976k = 2223
40416 measured reflectionsl = 1212
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0501P)2 + 0.6209P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.121(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.15 e Å3
5578 reflectionsΔρmin = 0.17 e Å3
318 parametersAbsolute structure: Flack x determined using 1613 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
2 restraintsAbsolute structure parameter: 0.01 (3)
Primary atom site location: difference Fourier map
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3744 (3)0.29841 (18)0.5726 (4)0.0839 (9)
N20.4454 (2)0.30917 (17)0.5355 (4)0.0737 (8)
C30.5038 (3)0.25572 (19)0.6007 (4)0.0669 (9)
C40.4776 (3)0.2029 (2)0.6985 (5)0.0865 (12)
H4A0.52150.20440.80930.104*
H4B0.47250.15150.66000.104*
C50.3853 (3)0.2328 (2)0.6773 (5)0.0756 (10)
H50.39040.25050.77970.091*
S110.32183 (9)0.44056 (5)0.46246 (13)0.0854 (3)
C120.3157 (3)0.35575 (19)0.5522 (5)0.0724 (10)
N130.2519 (2)0.35085 (16)0.5945 (4)0.0747 (9)
C140.1990 (3)0.41597 (19)0.5524 (4)0.0709 (11)
C150.2266 (3)0.4692 (2)0.4798 (5)0.0824 (12)
H150.19790.51530.44370.099*
C1410.1221 (3)0.4193 (2)0.5878 (4)0.0713 (10)
C1420.1041 (3)0.3605 (2)0.6669 (5)0.0872 (12)
H1420.14280.31920.69970.105*
C1430.0302 (4)0.3619 (3)0.6979 (6)0.0973 (14)
H1430.02100.32160.75230.117*
C1440.0303 (3)0.4203 (3)0.6517 (5)0.0905 (13)
C1450.0122 (4)0.4792 (3)0.5748 (6)0.0996 (16)
H1450.05090.52050.54390.120*
C1460.0608 (4)0.4798 (2)0.5416 (6)0.0942 (14)
H1460.06970.52060.48810.113*
C1470.1117 (4)0.4210 (4)0.6812 (8)0.126 (2)
H14A0.09980.45090.77350.190*
H14B0.12600.37030.69810.190*
H14C0.16160.44220.59090.190*
C310.5854 (2)0.2478 (2)0.5802 (4)0.0656 (9)
C320.6106 (3)0.3016 (2)0.4991 (4)0.0738 (10)
H320.57440.34380.45690.089*
C330.6869 (3)0.2937 (2)0.4803 (5)0.0773 (11)
H330.70230.33030.42580.093*
C340.7425 (3)0.2308 (2)0.5428 (4)0.0717 (10)
C350.7184 (3)0.1771 (2)0.6216 (5)0.0769 (11)
H350.75440.13470.66210.092*
C360.6411 (3)0.1854 (2)0.6415 (5)0.0751 (10)
H360.62610.14880.69660.090*
O340.8184 (2)0.22817 (16)0.5206 (3)0.0846 (8)
C370.8746 (3)0.1632 (3)0.5821 (7)0.1023 (15)
H37A0.84160.11830.52880.123*
H37B0.89160.15820.69460.123*
C380.9547 (4)0.1703 (3)0.5582 (6)0.0952 (14)
C391.0224 (5)0.1735 (3)0.5477 (7)0.1132 (18)
H391.07620.17610.53930.136*
C510.3113 (2)0.17528 (19)0.6090 (4)0.0651 (9)
C520.2983 (3)0.1276 (2)0.7136 (5)0.0749 (10)
H520.33350.13350.82220.090*
C530.2344 (3)0.0719 (3)0.6598 (5)0.0817 (11)
H530.22730.04020.73220.098*
C540.1803 (3)0.0622 (2)0.4989 (5)0.0739 (10)
C550.1924 (3)0.1084 (2)0.3941 (5)0.0832 (12)
H1550.15680.10250.28560.100*
C560.2579 (3)0.1643 (2)0.4491 (5)0.0789 (11)
H560.26600.19500.37620.095*
O540.1169 (2)0.00585 (18)0.4582 (4)0.1059 (11)
C570.0440 (4)0.0079 (3)0.3046 (7)0.1147 (17)
H57A0.06550.00250.22720.172*
H57B0.01670.05700.28540.172*
H57C0.00020.02940.29690.172*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.099 (2)0.0566 (18)0.098 (3)0.0104 (16)0.046 (2)0.0159 (16)
N20.091 (2)0.0502 (15)0.073 (2)0.0009 (15)0.0296 (17)0.0010 (14)
C30.082 (2)0.0499 (17)0.0531 (19)0.0041 (16)0.0163 (16)0.0014 (14)
C40.089 (3)0.069 (2)0.094 (3)0.009 (2)0.033 (2)0.023 (2)
C50.091 (3)0.060 (2)0.073 (2)0.0107 (19)0.034 (2)0.0101 (17)
S110.1088 (8)0.0476 (4)0.0845 (6)0.0078 (5)0.0290 (5)0.0009 (5)
C120.087 (3)0.0471 (18)0.069 (2)0.0006 (17)0.022 (2)0.0008 (16)
N130.092 (2)0.0472 (15)0.071 (2)0.0099 (15)0.0238 (17)0.0051 (13)
C140.089 (3)0.0447 (17)0.056 (2)0.0020 (16)0.0108 (18)0.0061 (15)
C150.102 (3)0.0448 (17)0.083 (3)0.0007 (19)0.025 (2)0.0027 (18)
C1410.086 (3)0.0486 (17)0.057 (2)0.0062 (17)0.0117 (18)0.0087 (15)
C1420.108 (3)0.068 (2)0.079 (3)0.025 (2)0.036 (2)0.011 (2)
C1430.121 (4)0.081 (3)0.086 (3)0.013 (3)0.042 (3)0.003 (2)
C1440.093 (3)0.081 (3)0.078 (3)0.007 (2)0.021 (2)0.023 (2)
C1450.092 (3)0.079 (3)0.102 (4)0.025 (3)0.019 (3)0.013 (3)
C1460.108 (4)0.057 (2)0.091 (3)0.013 (2)0.020 (3)0.005 (2)
C1470.107 (4)0.138 (5)0.123 (5)0.005 (4)0.041 (3)0.042 (4)
C310.075 (2)0.0540 (18)0.0511 (19)0.0016 (16)0.0130 (16)0.0023 (14)
C320.081 (3)0.0548 (19)0.069 (2)0.0055 (17)0.0191 (19)0.0100 (16)
C330.084 (3)0.064 (2)0.074 (3)0.0034 (19)0.025 (2)0.0148 (19)
C340.083 (3)0.057 (2)0.061 (2)0.0065 (17)0.0198 (19)0.0017 (16)
C350.088 (3)0.055 (2)0.069 (2)0.0114 (18)0.019 (2)0.0077 (16)
C360.093 (3)0.0531 (19)0.068 (2)0.0006 (18)0.025 (2)0.0067 (16)
O340.0885 (19)0.0718 (17)0.0859 (18)0.0176 (15)0.0320 (15)0.0155 (13)
C370.107 (4)0.071 (3)0.121 (4)0.021 (2)0.044 (3)0.018 (3)
C380.105 (4)0.079 (3)0.090 (3)0.033 (3)0.033 (3)0.010 (2)
C390.104 (4)0.118 (4)0.110 (4)0.045 (3)0.041 (3)0.015 (3)
C510.078 (2)0.0539 (17)0.063 (2)0.0140 (15)0.0306 (17)0.0074 (15)
C520.076 (2)0.087 (3)0.058 (2)0.009 (2)0.0264 (18)0.0138 (18)
C530.080 (3)0.088 (3)0.076 (3)0.011 (2)0.034 (2)0.028 (2)
C540.073 (2)0.0547 (19)0.086 (3)0.0147 (18)0.028 (2)0.0107 (18)
C550.106 (3)0.065 (2)0.063 (2)0.004 (2)0.023 (2)0.0024 (19)
C560.114 (3)0.061 (2)0.061 (2)0.003 (2)0.039 (2)0.0118 (17)
O540.093 (2)0.078 (2)0.116 (3)0.0087 (16)0.0193 (19)0.0156 (17)
C570.101 (4)0.090 (3)0.120 (4)0.012 (3)0.020 (3)0.010 (3)
Geometric parameters (Å, º) top
N1—C121.359 (5)C31—C361.391 (5)
N1—N21.381 (5)C31—C321.396 (5)
N1—C51.482 (5)C32—C331.359 (6)
N2—C31.297 (5)C32—H320.9300
C3—C311.454 (5)C33—C341.399 (5)
C3—C41.505 (6)C33—H330.9300
C4—C51.544 (6)C34—O341.364 (5)
C4—H4A0.9700C34—C351.369 (6)
C4—H4B0.9700C35—C361.382 (6)
C5—C511.501 (5)C35—H350.9300
C5—H50.9800C36—H360.9300
S11—C151.732 (5)O34—C371.431 (5)
S11—C121.749 (4)C37—C381.447 (7)
C12—N131.287 (5)C37—H37A0.9700
N13—C141.396 (5)C37—H37B0.9700
C14—C151.357 (6)C38—C391.169 (8)
C14—C1411.454 (6)C39—H390.9300
C15—H150.9300C51—C561.378 (5)
C141—C1421.388 (6)C51—C521.384 (5)
C141—C1461.406 (6)C52—C531.369 (6)
C142—C1431.379 (6)C52—H520.9300
C142—H1420.9300C53—C541.384 (6)
C143—C1441.371 (7)C53—H530.9300
C143—H1430.9300C54—C551.364 (6)
C144—C1451.377 (8)C54—O541.374 (5)
C144—C1471.492 (8)C55—C561.387 (6)
C145—C1461.376 (7)C55—H1550.9300
C145—H1450.9300C56—H560.9300
C146—H1460.9300O54—C571.412 (7)
C147—H14A0.9600C57—H57A0.9600
C147—H14B0.9600C57—H57B0.9600
C147—H14C0.9600C57—H57C0.9600
C12—N1—N2119.8 (3)H14B—C147—H14C109.5
C12—N1—C5123.3 (3)C36—C31—C32117.7 (4)
N2—N1—C5114.2 (3)C36—C31—C3120.4 (3)
C3—N2—N1108.6 (3)C32—C31—C3121.9 (3)
N2—C3—C31123.3 (3)C33—C32—C31121.5 (3)
N2—C3—C4112.7 (4)C33—C32—H32119.3
C31—C3—C4124.0 (3)C31—C32—H32119.3
C3—C4—C5104.2 (3)C32—C33—C34120.2 (4)
C3—C4—H4A110.9C32—C33—H33119.9
C5—C4—H4A110.9C34—C33—H33119.9
C3—C4—H4B110.9O34—C34—C35124.7 (3)
C5—C4—H4B110.9O34—C34—C33116.2 (4)
H4A—C4—H4B108.9C35—C34—C33119.1 (4)
N1—C5—C51114.4 (3)C34—C35—C36120.6 (3)
N1—C5—C4100.2 (3)C34—C35—H35119.7
C51—C5—C4113.3 (3)C36—C35—H35119.7
N1—C5—H5109.5C35—C36—C31120.8 (4)
C51—C5—H5109.5C35—C36—H36119.6
C4—C5—H5109.5C31—C36—H36119.6
C15—S11—C1287.5 (2)C34—O34—C37116.3 (3)
N13—C12—N1122.6 (3)O34—C37—C38110.1 (4)
N13—C12—S11116.0 (3)O34—C37—H37A109.6
N1—C12—S11121.3 (3)C38—C37—H37A109.6
C12—N13—C14110.8 (3)O34—C37—H37B109.6
C15—C14—N13114.0 (4)C38—C37—H37B109.6
C15—C14—C141127.8 (4)H37A—C37—H37B108.2
N13—C14—C141118.2 (3)C39—C38—C37175.7 (5)
C14—C15—S11111.6 (3)C38—C39—H39180.0
C14—C15—H15124.2C56—C51—C52117.5 (4)
S11—C15—H15124.2C56—C51—C5124.6 (3)
C142—C141—C146116.1 (4)C52—C51—C5117.8 (3)
C142—C141—C14120.7 (3)C53—C52—C51121.1 (4)
C146—C141—C14123.1 (4)C53—C52—H52119.4
C143—C142—C141121.5 (4)C51—C52—H52119.4
C143—C142—H142119.3C52—C53—C54120.8 (4)
C141—C142—H142119.3C52—C53—H53119.6
C144—C143—C142122.6 (5)C54—C53—H53119.6
C144—C143—H143118.7C55—C54—O54125.1 (4)
C142—C143—H143118.7C55—C54—C53118.9 (4)
C143—C144—C145116.1 (5)O54—C54—C53116.0 (4)
C143—C144—C147122.7 (6)C54—C55—C56120.1 (4)
C145—C144—C147121.2 (5)C54—C55—H155119.9
C146—C145—C144122.9 (4)C56—C55—H155119.9
C146—C145—H145118.5C51—C56—C55121.6 (4)
C144—C145—H145118.5C51—C56—H56119.2
C145—C146—C141120.7 (5)C55—C56—H56119.2
C145—C146—H146119.6C54—O54—C57117.8 (4)
C141—C146—H146119.6O54—C57—H57A109.5
C144—C147—H14A109.5O54—C57—H57B109.5
C144—C147—H14B109.5H57A—C57—H57B109.5
H14A—C147—H14B109.5O54—C57—H57C109.5
C144—C147—H14C109.5H57A—C57—H57C109.5
H14A—C147—H14C109.5H57B—C57—H57C109.5
C12—N1—N2—C3163.9 (3)C144—C145—C146—C1410.9 (7)
C5—N1—N2—C31.9 (4)C142—C141—C146—C1450.1 (6)
N1—N2—C3—C31177.2 (3)C14—C141—C146—C145178.4 (4)
N1—N2—C3—C42.4 (5)N2—C3—C31—C36174.1 (3)
N2—C3—C4—C52.0 (5)C4—C3—C31—C365.5 (5)
C31—C3—C4—C5177.7 (3)N2—C3—C31—C325.7 (5)
C12—N1—C5—C5176.7 (5)C4—C3—C31—C32174.7 (4)
N2—N1—C5—C51122.1 (4)C36—C31—C32—C330.1 (5)
C12—N1—C5—C4161.9 (4)C3—C31—C32—C33179.9 (3)
N2—N1—C5—C40.6 (4)C31—C32—C33—C340.0 (6)
C3—C4—C5—N10.7 (4)C32—C33—C34—O34179.0 (3)
C3—C4—C5—C51121.6 (3)C32—C33—C34—C350.6 (6)
N2—N1—C12—N13175.2 (4)O34—C34—C35—C36178.5 (4)
C5—N1—C12—N1315.0 (6)C33—C34—C35—C361.0 (6)
N2—N1—C12—S116.0 (5)C34—C35—C36—C310.9 (6)
C5—N1—C12—S11166.3 (3)C32—C31—C36—C350.4 (5)
C15—S11—C12—N132.1 (3)C3—C31—C36—C35179.5 (3)
C15—S11—C12—N1176.8 (3)C35—C34—O34—C371.5 (6)
N1—C12—N13—C14176.8 (4)C33—C34—O34—C37179.0 (4)
S11—C12—N13—C142.0 (4)C34—O34—C37—C38176.6 (4)
C12—N13—C14—C150.8 (4)N1—C5—C51—C5625.0 (5)
C12—N13—C14—C141178.5 (3)C4—C5—C51—C5689.0 (4)
N13—C14—C15—S110.7 (4)N1—C5—C51—C52158.0 (3)
C141—C14—C15—S11179.9 (3)C4—C5—C51—C5288.0 (4)
C12—S11—C15—C141.4 (3)C56—C51—C52—C530.3 (6)
C15—C14—C141—C142178.4 (4)C5—C51—C52—C53177.5 (4)
N13—C14—C141—C1422.4 (5)C51—C52—C53—C540.7 (6)
C15—C14—C141—C1463.5 (6)C52—C53—C54—C551.0 (6)
N13—C14—C141—C146175.7 (4)C52—C53—C54—O54178.4 (4)
C146—C141—C142—C1430.1 (6)O54—C54—C55—C56179.1 (4)
C14—C141—C142—C143178.3 (4)C53—C54—C55—C560.3 (6)
C141—C142—C143—C1440.8 (7)C52—C51—C56—C551.0 (6)
C142—C143—C144—C1451.5 (7)C5—C51—C56—C55178.0 (4)
C142—C143—C144—C147178.3 (5)C54—C55—C56—C510.7 (7)
C143—C144—C145—C1461.5 (7)C55—C54—O54—C5717.9 (7)
C147—C144—C145—C146178.2 (4)C53—C54—O54—C57161.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C142—H142···N130.932.482.823 (6)102
C35—H35···S11i0.932.863.560 (4)133
C39—H39···Cg2ii0.932.933.802 (5)156
C56—H56···Cg1iii0.932.923.689 (3)141
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x1/2, y+1/2, z1/2.
Hydrogen-bond parameters (Å, °) top
Cg1 and Cg2 represent the centroids of the (C31-C36) and (C51-C56) rings, respectively.
CompoundD—H···AD—HH···AD···AD—H···A
(I)C17—H17B···O1i0.972.593.456 (2)148
C19—H19···Cg1ii0.932.733.660 (2)177
C12—H12···Cg1iii0.932.893.5117 (18)126
(II)C39—H39···Cg2iv0.932.593.365 (5)141
C56—H56···Cg1v0.932.913.688 (3)142
(III)C39—H39···Cg2iv0.932.933.802 (5)156
C56—H56···Cg1v0.932.923.689 (3)141
C35—H35···S11vi0.932.863.560 (4)133
Symmetry codes: (i) -x, -y, 1 - z; (ii) -x, 1 - y, 1 - z; (iii) -1 + x, y, z; (iv) 1 + x, y, z; (v) -1/2 + x, 1/2 - y, -1/2 + z; (vi) 1/2 + x, 1/2 - y, 1/2 + z.
 

Acknowledgements

NM thanks the University of Mysore for research facilities. RSR thanks the DST and the SAIF, IIT Madras, for access to their X-ray crystallography facilities.

Funding information

HSY is grateful to the UGC, New Delhi, for the award of a BSR Faculty Fellowship for three years.

References

First citationAbdel-Wahab, B. F., Mohamed, H. A., Ng, S. W. & Tiekink, E. R. T. (2013a). Acta Cryst. E69, o392–o393.  CSD CrossRef IUCr Journals Google Scholar
First citationAbdel-Wahab, B. F., Mohamed, H. A., Ng, S. W. & Tiekink, E. R. T. (2013c). Acta Cryst. E69, o735.  CSD CrossRef IUCr Journals Google Scholar
First citationAbdel-Wahab, B. F., Ng, S. W. & Tiekink, E. R. T. (2013b). Acta Cryst. E69, o576.  CSD CrossRef IUCr Journals Google Scholar
First citationAlam, R., Wahi, D., Singh, R., Sinha, D., Tandon, V., Grover, A. & Rahisuddin (2016). Bioorg. Chem. 69, 77–90.  Google Scholar
First citationAlex, J. M. & Kumar, R. (2014). J. Enzyme Inhib. Med. Chem. 29, 427–442.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAlotaibi, A. A., Abdel-Wahab, B. F., Hegazy, A. S., Kariuki, B. M. & El-Hiti, G. A. (2020). Z. Krist. New Cryst. Struct. 235, 897–899.  CAS Google Scholar
First citationBansal, K. K., Bhardwaj, J. K., Saraf, P., Thakur, V. K. & Sharma, P. C. (2020). Materials Today Chemistry, 17, 100335.  Web of Science CrossRef Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2016). APEX3, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl-Hiti, G. A., Abdel-Wahab, B. F., Alqahtani, A., Hegazy, A. S. & Kariuki, B. M. (2019). IUCrData, 4, x190218.  Google Scholar
First citationEl-Sayed, M. A.-A., Abdel-Aziz, N. I., Abdel-Aziz, A. A.-M., El-Azab, A. S. & ElTahir, K. E. H. (2012). Bioorg. Med. Chem. 20, 3306–3316.  Web of Science CAS PubMed Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C. & Patterson, I. L. J. (1996). Acta Cryst. C52, 420–423.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGhosh, S., Chopra, P. & Wategaonkar, S. (2020). Phys. Chem. Chem. Phys. In the press. https://doi.org/10.1039/D0CP01508C  Google Scholar
First citationGondru, R., Banothu, J., Thatipamula, R. K., Hussain, A. S. K. & Bavantula, R. (2015). RSC Adv. 5, 33562–33569.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHolme, A., Børve, K. J., Saethre, L. J. & Thomas, T. D. (2013). J. Phys. Chem. A, 117, 2007–2019.  Web of Science CrossRef CAS PubMed Google Scholar
First citationInsuasty, B., Tigreros, A., Orozco, F., Quiroga, J., Abonía, R., Nogueras, M., Sanchez, A. & Cobo, J. (2010). Bioorg. Med. Chem. 18, 4965–4974.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKadambar, A. K., Kalluraya, B., Singh, S., Agarwal, V. & Revanasiddappa, B. C. (2021). J. Heterocycl. Chem. 58, 654–664.  Web of Science CrossRef CAS Google Scholar
First citationKalluraya, B., Isloor, A. M. & Shenoy, S. (2001). Indian J. Heterocycl. Chem. 11, 159–162.  CAS Google Scholar
First citationKiran Kumar, H., Yathirajan, H. S., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1494–1506.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKiran Kumar, H., Yathirajan, H. S., Harish Chinthal, C., Foro, S. & Glidewell, C. (2020). Acta Cryst. E76, 488–495.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationManju, N., Kalluraya, B., Asma, Kumar, M. S., Revanasiddappa, B. & Chandra (2019). J. Med. Chem. Sci. 2, 101–109.  Google Scholar
First citationManju, N., Kalluraya, B. Asma & Kumar, M. S. (2019). J. Mol. Struct. 1193, 386–397.  Google Scholar
First citationMcAdam, C. J., Cameron, S. A., Hanton, L. R., Manning, A. R., Moratti, S. C. & Simpson, J. (2012). CrystEngComm, 14, 4369–4383.  Web of Science CSD CrossRef CAS Google Scholar
First citationNayak, P. S., Narayana, B., Yathirajan, H. S., Jasinski, J. P. & Butcher, R. J. (2013). Acta Cryst. E69, o523.  CSD CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSalian, V. V., Narayana, B., Sarojini, B. K., Kumar, M. S., Nagananda, G. S., Byrappa, K. & Kudva, A. K. (2017). Spectrochim. Acta A Mol. Biomol. Spectrosc. 174, 254–271.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSeip, H. M. & Seip, R. (1973). Acta Chem. Scand. 27, 4024–4027.  CrossRef CAS Web of Science Google Scholar
First citationShaibah, M. A. E., Yathirajan, H. S., Manju, N., Kalluraya, B., Rathore, R. S. & Glidewell, C. (2020). Acta Cryst. E76, 48–52.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSharma, P. K., Sawnhney, S. N., Gupta, A., Singh, G. B. & Bani, S. (1998). Indian J. Chem. 37B, 376–381.  CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSong, M.-X., Zheng, C.-J., Deng, X.-Q., Sun, L.-P., Wu, Y., Hong, L., Li, Y.-J., Liu, Y., Wei, Z.-Y., Jin, M.-J. & Piao, H.-R. (2013). Eur. J. Med. Chem. 60, 376–385.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSuwunwong, T., Chantrapromma, S. & Fun, H. K. (2015). Opt. Spectrosc. 118, 563–573.  Web of Science CSD CrossRef CAS Google Scholar
First citationYan, L., Wu, J., Chen, H., Zhang, S., Wang, Z., Wang, H. & Wu, F. (2015). RSC Adv. 5, 73660–73669.  Web of Science CrossRef CAS Google Scholar
First citationZeng, Y.-M., Chen, S.-Q. & Liu, F. M. (2012). J. Chem. Crystallogr. 42, 24–28.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds