research communications
trans-diaqua(1,4,8,11-tetraazaundecane)nickel(II) bis(pyridine-2,6-dicarboxylato)nickel(II)
ofaL. V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Prospekt Nauki 31, 03028 Kiev, Ukraine, and bInstitute of Inorganic Chemistry of the University of Vienna, Wahringer Str., 42, 1090 Vienna, Austria
*Correspondence e-mail: lampeka@adamant.net
The trans-diaqua(1,4,8,11-tetraazaundecane-κ4N1,N4,N8,N11)nickel(II) bis(pyridine-2,6-dicarboxylato-κ3O2,N,O6)nickel(II) {[Ni(L)(H2O)2][Ni(pdc)2] where L = 1,4,8,11-tetraazaundecane (C7H20N4) and pdc = the dianion of pyridine-2,6-dicarboxylic acid (C7H3NO42−)} consists of an [Ni(L)(H2O)2]2+ complex cation and a [Ni(pdc)2]2– anion. The metal ion in the cation is coordinated by the four N atoms of the tetraamine ligand and the mutually trans O atoms of the water molecules in a tetragonally elongated octahedral geometry with the average equatorial Ni—N bond length slightly shorter than the average axial Ni—O bond [2.087 (4) versus 2.128 (4) Å]. The ligand L adopts its energetically favored conformation with five-membered and six-membered chelate rings in gauche and chair conformations, respectively. In the complex anion, the NiII ion is coordinated by the two tridentate pdc2– ligands via their carboxylate and nitrogen atom donors in a distorted octahedral trans-NiO4N2 geometry with nearly orthogonal orientation of the planes defining the carboxylate rings and the average Ni—N bond length [1.965 (4) Å] shorter than the average Ni—O bond distance [2.113 (7) Å]. In the crystal, the NH donor groups of the tetraamine, the carboxylic groups of the pdc2– anion and the coordinated water molecules are involved in numerous N—H⋯O and O—H⋯O hydrogen bonds, leading to electroneutral sheets oriented parallel to the (001) plane.
of the title compound,Keywords: crystal structure; cyclam; nickel; pyridine-2,6-dicarboxylate; hydrogen bonds.
CCDC reference: 2115829
1. Chemical context
Crystalline coordination polymers possessing permanent porosity (metal–organic frameworks, MOFs) are of enormous current interest because of their potential for applications in different areas including gas storage, separation, catalysis, etc. (MacGillivray & Lukehart, 2014; Kaskel, 2016). Nickel(II) complexes of the 14-membered macrocyclic tetraamine ligands, in particular of cyclam and its C-alkylated derivatives (cyclam = 1,4,8,11-tetraazacyclotetradecane, C10H24N4), are widely used as metal-containing building units for the construction of MOFs (Lampeka & Tsymbal, 2004; Suh & Moon, 2007; Suh et al., 2012; Stackhouse & Ma, 2018; Lee & Moon, 2018). At the same time, nickel(II) complexes of 1,4,8,11-tetraazaundecane (C7H20N4; L) – the closest open-chain analogue of cyclam – are rarely utilized for the construction of MOFs and only a few examples of coordination polymers formed by the [Ni(L)]2+ cation with azide (Escuer et al., 1993), cyanide (Koo et al., 2003), and cyanometalate (Koo et al., 2003; Shek et al., 2005; Talukder et al., 2012; Ni et al., 2014) bridging anions have been characterized by single-crystal X-ray diffraction.
Multidentate aromatic carboxylates are known as the most common linkers in MOFs (Rao et al., 2004). Although the bridging properties of one of the simplest representative of this class of compounds, 1,3-benzenedicarboxylate, with macrocyclic nickel(II) cations are well studied (see, for example, Tsymbal et al., 2021), coordination polymers based on its structural analogue, pyridine-2,6-dicarboxylate (C7H3NO42–; pdc2–), are confined to a sole example (Choi et al., 2003). Interestingly, an attempt to prepare a coordination polymer containing the [Ni(cyclam)]2+ cation with pdc2– led to the ionic product [Ni(cyclam)(H2O)2][Ni(pdc)2]·2.5H2O due to sequestering of the metal ion from the cavity of the macrocycle by this chelating ligand (Park et al., 2007).
As part of our research on MOFs formed by nickel(II) tetraaza cations and aromatic carboxylates, we report here the synthesis and L)]2+ with pdc2–, namely [trans-diaqua(1,4,8,11-tetraazaundecane-k4N1N4N8N11)nickel(II)][bis(pyridine-2,6-dicarboxylato-κ3N,O,O)nickel(II)], [Ni(L)(H2O)2][Ni(pdc)2], I. Similar to the reaction of pyridine-2,6-dicarboxylate with the [Ni(cyclam)]2+ cation, the formation of the title compound is explained by the sequestering of the metal ion from the starting cation with the formation of the [Ni(pdc)2]2– anion. Additionally, to the best of our knowledge, the structure of the [trans-diaqua(1,4,8,11-tetraazaundecane)nickel(II)] moiety has not previously been reported in the literature.
of the product of the reaction of [Ni(2. Structural commentary
The molecular structure of the title compound I is shown in Fig. 1. Atom Ni1 is coordinated by the two tridentate pdc2– ligands via their carboxylate and nitrogen donors, resulting in the formation of the [Ni(pdc)2]2– divalent anion, which is charge-balanced by the [Ni(L)(H2O)2]2+ divalent cation formed by atom Ni2.
The II in the complex anion ion can be described as a tetragonally compressed trans-NiO4N2 octahedron with the Ni—N bond lengths [average value 1.965 (4) Å] shorter than the Ni—O ones [average value 2.113 (7) Å] (Table 1). Another source of distortion is the alternating displacement (by ca 0.43 Å) of the coordinated oxygen atoms of deprotonated carboxylic groups from the mean equatorial plane formed by the four oxygen atoms. The values of the bite angles in the five-membered chelate rings in the complex anion are very similar (Table 1). The pdc2– carboxylate rings are oriented nearly orthogonally with an angle of 81.5 (3)° between their mean planes.
of Ni1
|
The Ni2II ion in the complex cation is coordinated by the four N atoms of the ligand L and the mutually trans O atoms of the water molecules in a tetragonally elongated trans-NiN4O2 octahedral geometry with the average equatorial Ni—N bond length slightly shorter than the average axial Ni—O bond [2.087 (4) and 2.128 (4) Å, respectively (Table 1)]. The ligand L in I adopts its energetically favored conformation with the five-membered and six-membered chelate rings in gauche and chair conformations, respectively, which resemble the trans-III configuration usually observed in cyclam complexes (Bosnich et al., 1965). This conformation is also characteristic of the macrocyclic ligand in [Ni(cyclam)(H2O)2]2+ (Park et al., 2007), although the bite angles in the five-membered (85.54°) and six-membered (94.46°) chelate rings are correspondingly larger and smaller compared to those in I (Table 1).
3. Supramolecular features
The crystals of I are composed of [Ni(L)(H2O)2]2+ complex cations and [Ni(pdc)2]2– anions connected by numerous hydrogen bonds (Table 2). Each ion is surrounded by four counter-ions (Figs. 2 and 3); the cation acts as the hydrogen-bond donor due to the presence of the N—H fragments of amino groups and the O—H groups of coordinated water molecules, while the anion displays proton-acceptor properties because of the availability of the carboxylic groups. These aggregates are further arranged into two-dimensional sheets oriented parallel to the (001) plane (Fig. 4). There are no hydrogen-bonding contacts between the sheets, and the three-dimensional coherence of the crystal is provided by van der Waals interactions.
4. Database survey
A search of the Cambridge Structural Database (CSD, version 5.42, last update February 2021; Groom et al., 2016) indicated that no compounds containing the [Ni(L)(H2O)2]2+ cation have been structurally characterized to date, the closest analogue being the complex [Ni(L)(H2O)(Cl)]Cl (refcode UMOFEH; Oblezov et al., 2003). In general, the geometrical parameters of both cations in these compounds are similar, although the Ni—O bond length in the latter is longer (2.182 Å), probably because of the trans influence of the chloride ligand.
As far as the structures of the cations in the compounds with the same bis(pyridine-2,6-dicarboxylato)-nickel(II) anion are concerned, {[Ni(L)(H2O)2]2+ in I and [Ni(cyclam)(H2O)2]2+ in TICJEV (Park et al., 2007)}, a higher tetragonal distortion of the in the latter case [average Ni—N bond length of 2.068 (6) Å and Ni—O bond length of 2.152 Å] should be mentioned, which can be explained by the stronger cis influence of the macrocyclic ligand compared to the non-cyclic one (Yatsimirskii & Lampeka, 1985).
5. Synthesis and crystallization
All chemicals and solvents used in this work were purchased from Sigma–Aldrich and used without further purification. The complex [Ni(L)](ClO4)2 was prepared by mixing equimolar amount of L and nickel perchlorate hexahydrate in ethanol. The title compound I was prepared as follows. A solution of [Ni(L)](ClO4)2 (11 mg, 0.026 mmol) in 1 ml of DMF was added to 0.4 ml of an aqueous solution of Na2(pdc) (2.7 mg, 0.013 mmol). Blue crystals formed in a day, which were filtered off, washed with diethyl ether and dried in air. Yield: 1.3 mg (15.5%). Analysis calculated for C21H30N6Ni2O10: C 39.17, H 4.66, N 13.06%. Found: C 39.04, H 5.0, N 13.21%. Single crystals of I suitable for X-ray were selected from the sample resulting from the synthesis.
Safety note: Perchlorate salts of metal complexes are potentially explosive and should be handled with care.
6. Refinement
Crystal data, data collection and structure . H atoms in I were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.95 (ring H atoms) or 0.99 Å (aliphatic H atoms), N—H distances of 0.91 (primary amino groups) or 1.00 Å (secondary aminogroups) with Uiso(H) values of 1.2Ueq of the parent atoms. Water H atoms were positioned geometrically (O—H = 0.71–0.85 Å) and refined as riding with Uiso(H) = 1.5Ueq(O).
details are summarized in Table 3
|
Supporting information
CCDC reference: 2115829
https://doi.org/10.1107/S2056989021011178/hb7995sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021011178/hb7995Isup2.hkl
Data collection: CrysAlis PRO (Rigaku OD, 2019); cell
CrysAlis PRO (Rigaku OD, 2019); data reduction: CrysAlis PRO (Rigaku OD, 2019); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).[Ni(C7H20N4)(H2O)2][Ni(C7H3NO4)2] | Dx = 1.659 Mg m−3 |
Mr = 643.93 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 8341 reflections |
a = 9.3219 (6) Å | θ = 2.5–25.3° |
b = 16.3211 (10) Å | µ = 1.53 mm−1 |
c = 16.9483 (8) Å | T = 100 K |
V = 2578.6 (3) Å3 | Prism, clear light pink |
Z = 4 | 0.25 × 0.2 × 0.2 mm |
F(000) = 1336 |
Bruker APEXII CCD diffractometer | 4668 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.045 |
φ and ω scans | θmax = 25.7°, θmin = 2.4° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2019) | h = −11→11 |
Tmin = 0.705, Tmax = 0.737 | k = −19→19 |
36128 measured reflections | l = −20→20 |
4909 independent reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.021 | w = 1/[σ2(Fo2) + (0.0243P)2 + 0.7375P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.050 | (Δ/σ)max = 0.002 |
S = 1.04 | Δρmax = 0.49 e Å−3 |
4909 reflections | Δρmin = −0.26 e Å−3 |
356 parameters | Absolute structure: Flack x determined using 1953 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
0 restraints | Absolute structure parameter: −0.010 (4) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 1.09379 (4) | 0.79146 (2) | 0.79300 (2) | 0.01132 (9) | |
O1 | 0.9734 (2) | 0.89973 (12) | 0.80207 (12) | 0.0156 (4) | |
O3 | 1.2374 (2) | 0.69917 (13) | 0.82970 (11) | 0.0150 (4) | |
O2 | 0.9525 (2) | 1.01235 (13) | 0.87640 (12) | 0.0190 (5) | |
O4 | 1.3661 (3) | 0.65997 (13) | 0.93534 (13) | 0.0250 (5) | |
O5 | 0.9208 (2) | 0.71131 (13) | 0.81555 (11) | 0.0178 (4) | |
O7 | 1.2475 (2) | 0.85377 (12) | 0.72153 (10) | 0.0151 (4) | |
O6 | 0.7669 (2) | 0.62760 (13) | 0.75366 (12) | 0.0208 (5) | |
O8 | 1.2894 (2) | 0.88805 (13) | 0.59530 (12) | 0.0197 (5) | |
N1 | 1.1543 (3) | 0.83219 (15) | 0.89664 (13) | 0.0117 (5) | |
N2 | 1.0390 (3) | 0.75735 (15) | 0.68573 (13) | 0.0124 (5) | |
C1 | 1.0034 (3) | 0.94313 (19) | 0.86156 (17) | 0.0147 (6) | |
C2 | 1.1083 (3) | 0.90574 (17) | 0.91977 (15) | 0.0136 (6) | |
C3 | 1.1561 (3) | 0.93967 (19) | 0.98988 (17) | 0.0160 (6) | |
H3 | 1.127255 | 0.993102 | 1.005442 | 0.019* | |
C4 | 1.2481 (3) | 0.89317 (19) | 1.03707 (17) | 0.0178 (7) | |
H4 | 1.278944 | 0.913881 | 1.086623 | 0.021* | |
C5 | 1.2944 (3) | 0.81687 (19) | 1.01178 (16) | 0.0155 (6) | |
H5 | 1.357733 | 0.785035 | 1.043217 | 0.019* | |
C6 | 1.2463 (3) | 0.78819 (18) | 0.93978 (16) | 0.0136 (6) | |
C7 | 1.2889 (3) | 0.70808 (19) | 0.90009 (17) | 0.0154 (6) | |
C8 | 0.8683 (3) | 0.67716 (17) | 0.75527 (17) | 0.0149 (6) | |
C9 | 0.9355 (3) | 0.70262 (18) | 0.67704 (17) | 0.0131 (6) | |
C10 | 0.8957 (4) | 0.67512 (17) | 0.60250 (17) | 0.0166 (6) | |
H10 | 0.821798 | 0.635587 | 0.596314 | 0.020* | |
C11 | 0.9667 (3) | 0.7068 (2) | 0.53760 (18) | 0.0194 (7) | |
H11 | 0.941943 | 0.688728 | 0.486084 | 0.023* | |
C12 | 1.0745 (3) | 0.76525 (18) | 0.54766 (16) | 0.0164 (6) | |
H12 | 1.123225 | 0.787779 | 0.503466 | 0.020* | |
C13 | 1.1087 (3) | 0.78960 (17) | 0.62377 (16) | 0.0132 (6) | |
C14 | 1.2247 (3) | 0.84969 (18) | 0.64704 (16) | 0.0147 (6) | |
Ni2 | 0.58765 (4) | 1.01066 (2) | 0.76468 (2) | 0.01201 (9) | |
O1W | 0.8016 (2) | 1.04716 (13) | 0.73792 (12) | 0.0192 (5) | |
H1WA | 0.869828 | 1.041746 | 0.771368 | 0.031 (10)* | |
H1WB | 0.797698 | 1.092906 | 0.712918 | 0.040 (11)* | |
O2W | 0.3684 (2) | 0.98471 (13) | 0.78767 (12) | 0.0172 (4) | |
H2WA | 0.325706 | 0.939783 | 0.772223 | 0.042 (12)* | |
H2WB | 0.308376 | 1.025333 | 0.781113 | 0.069 (16)* | |
N3 | 0.5586 (3) | 1.00016 (16) | 0.64375 (14) | 0.0192 (6) | |
H3A | 0.465077 | 0.989548 | 0.632344 | 0.023* | |
H3B | 0.584859 | 1.047317 | 0.618999 | 0.023* | |
N4 | 0.6569 (3) | 0.88925 (15) | 0.75663 (15) | 0.0174 (5) | |
H4A | 0.763467 | 0.890194 | 0.763131 | 0.021* | |
N5 | 0.6255 (3) | 1.01005 (15) | 0.88651 (13) | 0.0163 (5) | |
H5A | 0.731507 | 1.013124 | 0.894920 | 0.020* | |
N6 | 0.5419 (3) | 1.13467 (15) | 0.78184 (14) | 0.0170 (6) | |
H6A | 0.586732 | 1.165700 | 0.744666 | 0.020* | |
H6B | 0.445736 | 1.143679 | 0.778488 | 0.020* | |
C15 | 0.6505 (4) | 0.9317 (2) | 0.61828 (18) | 0.0236 (7) | |
H15A | 0.752369 | 0.948818 | 0.618268 | 0.028* | |
H15B | 0.624339 | 0.914509 | 0.564135 | 0.028* | |
C16 | 0.6286 (4) | 0.8613 (2) | 0.67532 (19) | 0.0226 (8) | |
H16A | 0.528893 | 0.840840 | 0.671222 | 0.027* | |
H16B | 0.694390 | 0.815805 | 0.661796 | 0.027* | |
C17 | 0.6005 (4) | 0.83218 (18) | 0.81722 (18) | 0.0210 (7) | |
H17A | 0.639786 | 0.776760 | 0.807346 | 0.025* | |
H17B | 0.494866 | 0.829025 | 0.812244 | 0.025* | |
C18 | 0.6383 (4) | 0.8580 (2) | 0.90014 (19) | 0.0234 (8) | |
H18A | 0.743906 | 0.863351 | 0.903632 | 0.028* | |
H18B | 0.609403 | 0.813510 | 0.936547 | 0.028* | |
C19 | 0.5716 (4) | 0.93725 (19) | 0.92903 (18) | 0.0230 (7) | |
H19A | 0.466236 | 0.934035 | 0.922537 | 0.028* | |
H19B | 0.592126 | 0.943637 | 0.986010 | 0.028* | |
C20 | 0.5617 (4) | 1.0860 (2) | 0.91737 (18) | 0.0216 (8) | |
H20A | 0.601711 | 1.098266 | 0.970176 | 0.026* | |
H20B | 0.456571 | 1.079348 | 0.922625 | 0.026* | |
C21 | 0.5947 (4) | 1.15564 (18) | 0.86117 (17) | 0.0207 (7) | |
H21A | 0.547856 | 1.206507 | 0.879817 | 0.025* | |
H21B | 0.699559 | 1.165229 | 0.859354 | 0.025* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.01194 (18) | 0.01160 (18) | 0.01043 (16) | −0.00100 (17) | −0.00079 (17) | −0.00127 (13) |
O1 | 0.0139 (10) | 0.0152 (11) | 0.0177 (10) | 0.0013 (9) | −0.0033 (8) | −0.0023 (9) |
O3 | 0.0179 (11) | 0.0130 (11) | 0.0142 (10) | 0.0014 (9) | −0.0025 (9) | −0.0030 (8) |
O2 | 0.0168 (11) | 0.0133 (11) | 0.0270 (11) | 0.0034 (9) | −0.0032 (8) | −0.0013 (9) |
O4 | 0.0324 (14) | 0.0204 (13) | 0.0222 (11) | 0.0110 (10) | −0.0066 (10) | −0.0003 (9) |
O5 | 0.0170 (11) | 0.0199 (11) | 0.0164 (10) | −0.0050 (11) | 0.0015 (9) | −0.0006 (8) |
O7 | 0.0161 (11) | 0.0165 (11) | 0.0126 (11) | −0.0039 (9) | −0.0008 (8) | −0.0009 (8) |
O6 | 0.0182 (12) | 0.0174 (11) | 0.0267 (12) | −0.0069 (10) | 0.0006 (9) | −0.0020 (9) |
O8 | 0.0209 (12) | 0.0198 (12) | 0.0185 (11) | −0.0028 (10) | 0.0058 (9) | 0.0036 (9) |
N1 | 0.0110 (12) | 0.0126 (13) | 0.0115 (12) | −0.0015 (10) | 0.0003 (10) | −0.0001 (10) |
N2 | 0.0113 (12) | 0.0116 (13) | 0.0141 (12) | 0.0025 (10) | −0.0014 (9) | −0.0013 (10) |
C1 | 0.0084 (16) | 0.0155 (17) | 0.0203 (15) | 0.0004 (13) | 0.0032 (12) | 0.0010 (12) |
C2 | 0.0135 (16) | 0.0124 (15) | 0.0148 (13) | −0.0028 (13) | 0.0030 (12) | 0.0004 (11) |
C3 | 0.0179 (16) | 0.0148 (17) | 0.0153 (14) | −0.0031 (13) | 0.0037 (12) | −0.0031 (12) |
C4 | 0.0216 (18) | 0.0201 (17) | 0.0117 (13) | −0.0037 (14) | 0.0006 (12) | −0.0027 (12) |
C5 | 0.0159 (16) | 0.0180 (17) | 0.0127 (14) | −0.0021 (13) | −0.0009 (12) | 0.0028 (12) |
C6 | 0.0123 (15) | 0.0138 (15) | 0.0148 (14) | −0.0024 (13) | 0.0020 (11) | 0.0025 (11) |
C7 | 0.0150 (15) | 0.0151 (16) | 0.0160 (14) | 0.0002 (13) | 0.0029 (12) | 0.0002 (12) |
C8 | 0.0126 (16) | 0.0118 (15) | 0.0204 (16) | 0.0002 (12) | 0.0017 (12) | 0.0001 (12) |
C9 | 0.0103 (15) | 0.0100 (14) | 0.0190 (14) | 0.0026 (12) | −0.0021 (11) | −0.0010 (11) |
C10 | 0.0160 (16) | 0.0127 (15) | 0.0212 (15) | 0.0007 (14) | −0.0074 (14) | −0.0018 (11) |
C11 | 0.0226 (17) | 0.0200 (17) | 0.0154 (14) | 0.0049 (14) | −0.0060 (12) | −0.0026 (13) |
C12 | 0.0194 (17) | 0.0177 (16) | 0.0122 (13) | 0.0032 (14) | −0.0009 (12) | 0.0019 (11) |
C13 | 0.0132 (15) | 0.0121 (14) | 0.0142 (13) | 0.0041 (13) | 0.0001 (12) | 0.0012 (11) |
C14 | 0.0110 (15) | 0.0142 (16) | 0.0191 (15) | 0.0044 (13) | 0.0012 (12) | −0.0013 (12) |
Ni2 | 0.01145 (18) | 0.01053 (18) | 0.01407 (17) | −0.00027 (16) | −0.00135 (15) | 0.00039 (13) |
O1W | 0.0169 (12) | 0.0177 (12) | 0.0231 (11) | −0.0015 (9) | −0.0018 (9) | 0.0056 (9) |
O2W | 0.0143 (10) | 0.0127 (11) | 0.0247 (11) | 0.0001 (9) | −0.0021 (8) | 0.0009 (9) |
N3 | 0.0191 (15) | 0.0190 (15) | 0.0195 (13) | −0.0019 (12) | −0.0024 (10) | 0.0010 (11) |
N4 | 0.0147 (13) | 0.0142 (14) | 0.0232 (13) | 0.0001 (11) | −0.0017 (10) | −0.0007 (11) |
N5 | 0.0148 (14) | 0.0166 (13) | 0.0174 (12) | −0.0005 (11) | −0.0015 (10) | 0.0031 (10) |
N6 | 0.0156 (13) | 0.0147 (13) | 0.0207 (14) | 0.0001 (10) | 0.0007 (10) | 0.0028 (11) |
C15 | 0.0248 (18) | 0.0260 (19) | 0.0201 (16) | 0.0000 (15) | −0.0007 (13) | −0.0062 (14) |
C16 | 0.0199 (19) | 0.0188 (18) | 0.0292 (17) | 0.0016 (14) | −0.0029 (13) | −0.0074 (14) |
C17 | 0.0163 (16) | 0.0118 (15) | 0.0350 (17) | 0.0008 (14) | 0.0018 (15) | 0.0018 (12) |
C18 | 0.0204 (18) | 0.0197 (18) | 0.0301 (18) | −0.0005 (14) | 0.0004 (14) | 0.0097 (14) |
C19 | 0.0228 (19) | 0.0250 (19) | 0.0213 (15) | −0.0020 (15) | 0.0025 (14) | 0.0091 (13) |
C20 | 0.025 (2) | 0.0221 (18) | 0.0179 (15) | 0.0019 (14) | 0.0001 (13) | −0.0043 (13) |
C21 | 0.0234 (17) | 0.0136 (15) | 0.0252 (16) | −0.0018 (16) | 0.0012 (16) | −0.0046 (12) |
Ni1—O1 | 2.099 (2) | Ni2—N3 | 2.074 (2) |
Ni1—O3 | 2.109 (2) | Ni2—N4 | 2.088 (2) |
Ni1—O5 | 2.111 (2) | Ni2—N5 | 2.095 (2) |
Ni1—O7 | 2.1343 (19) | Ni2—N6 | 2.089 (3) |
Ni1—N1 | 1.961 (2) | O1W—H1WA | 0.8563 |
Ni1—N2 | 1.969 (2) | O1W—H1WB | 0.8593 |
O1—C1 | 1.264 (4) | O2W—H2WA | 0.8743 |
O3—C7 | 1.294 (3) | O2W—H2WB | 0.8744 |
O2—C1 | 1.251 (4) | N3—H3A | 0.9100 |
O4—C7 | 1.221 (4) | N3—H3B | 0.9100 |
O5—C8 | 1.262 (3) | N3—C15 | 1.473 (4) |
O7—C14 | 1.282 (3) | N4—H4A | 1.0000 |
O6—C8 | 1.245 (3) | N4—C16 | 1.475 (4) |
O8—C14 | 1.235 (4) | N4—C17 | 1.483 (4) |
N1—C2 | 1.334 (4) | N5—H5A | 1.0000 |
N1—C6 | 1.336 (4) | N5—C19 | 1.477 (4) |
N2—C9 | 1.323 (4) | N5—C20 | 1.471 (4) |
N2—C13 | 1.343 (4) | N6—H6A | 0.9100 |
C1—C2 | 1.517 (4) | N6—H6B | 0.9100 |
C2—C3 | 1.385 (4) | N6—C21 | 1.472 (4) |
C3—H3 | 0.9500 | C15—H15A | 0.9900 |
C3—C4 | 1.396 (4) | C15—H15B | 0.9900 |
C4—H4 | 0.9500 | C15—C16 | 1.515 (5) |
C4—C5 | 1.386 (4) | C16—H16A | 0.9900 |
C5—H5 | 0.9500 | C16—H16B | 0.9900 |
C5—C6 | 1.382 (4) | C17—H17A | 0.9900 |
C6—C7 | 1.523 (4) | C17—H17B | 0.9900 |
C8—C9 | 1.524 (4) | C17—C18 | 1.509 (4) |
C9—C10 | 1.391 (4) | C18—H18A | 0.9900 |
C10—H10 | 0.9500 | C18—H18B | 0.9900 |
C10—C11 | 1.384 (4) | C18—C19 | 1.517 (5) |
C11—H11 | 0.9500 | C19—H19A | 0.9900 |
C11—C12 | 1.396 (5) | C19—H19B | 0.9900 |
C12—H12 | 0.9500 | C20—H20A | 0.9900 |
C12—C13 | 1.387 (4) | C20—H20B | 0.9900 |
C13—C14 | 1.512 (4) | C20—C21 | 1.515 (4) |
Ni2—O1W | 2.131 (2) | C21—H21A | 0.9900 |
Ni2—O2W | 2.124 (2) | C21—H21B | 0.9900 |
O1—Ni1—O3 | 156.79 (8) | N5—Ni2—O1W | 93.07 (9) |
O1—Ni1—O5 | 95.74 (8) | N5—Ni2—O2W | 88.86 (9) |
O1—Ni1—O7 | 89.96 (8) | N6—Ni2—O1W | 87.13 (9) |
O3—Ni1—O5 | 89.36 (8) | N6—Ni2—O2W | 88.34 (9) |
O3—Ni1—O7 | 94.68 (8) | N6—Ni2—N5 | 84.36 (10) |
O5—Ni1—O7 | 155.62 (7) | Ni2—O1W—H1WA | 121.7 |
N1—Ni1—O1 | 78.63 (9) | Ni2—O1W—H1WB | 107.9 |
N1—Ni1—O3 | 78.19 (9) | H1WA—O1W—H1WB | 116.6 |
N1—Ni1—O5 | 105.53 (9) | Ni2—O2W—H2WA | 123.4 |
N1—Ni1—O7 | 98.84 (9) | Ni2—O2W—H2WB | 116.2 |
N1—Ni1—N2 | 176.06 (10) | H2WA—O2W—H2WB | 107.9 |
N2—Ni1—O1 | 99.61 (9) | Ni2—N3—H3A | 110.5 |
N2—Ni1—O3 | 103.60 (9) | Ni2—N3—H3B | 110.5 |
N2—Ni1—O5 | 78.10 (9) | H3A—N3—H3B | 108.7 |
N2—Ni1—O7 | 77.58 (9) | C15—N3—Ni2 | 106.06 (18) |
C1—O1—Ni1 | 114.33 (19) | C15—N3—H3A | 110.5 |
C7—O3—Ni1 | 115.29 (18) | C15—N3—H3B | 110.5 |
C8—O5—Ni1 | 115.02 (18) | Ni2—N4—H4A | 106.6 |
C14—O7—Ni1 | 115.00 (19) | C16—N4—Ni2 | 107.41 (19) |
C2—N1—Ni1 | 118.40 (19) | C16—N4—H4A | 106.6 |
C2—N1—C6 | 122.0 (3) | C16—N4—C17 | 112.9 (2) |
C6—N1—Ni1 | 119.5 (2) | C17—N4—Ni2 | 116.20 (19) |
C9—N2—Ni1 | 118.88 (19) | C17—N4—H4A | 106.6 |
C9—N2—C13 | 122.1 (2) | Ni2—N5—H5A | 107.9 |
C13—N2—Ni1 | 119.07 (19) | C19—N5—Ni2 | 115.30 (19) |
O1—C1—C2 | 115.9 (3) | C19—N5—H5A | 107.9 |
O2—C1—O1 | 125.6 (3) | C20—N5—Ni2 | 106.17 (18) |
O2—C1—C2 | 118.5 (3) | C20—N5—H5A | 107.9 |
N1—C2—C1 | 112.2 (2) | C20—N5—C19 | 111.5 (2) |
N1—C2—C3 | 120.6 (3) | Ni2—N6—H6A | 110.4 |
C3—C2—C1 | 127.2 (3) | Ni2—N6—H6B | 110.4 |
C2—C3—H3 | 120.9 | H6A—N6—H6B | 108.6 |
C2—C3—C4 | 118.1 (3) | C21—N6—Ni2 | 106.50 (18) |
C4—C3—H3 | 120.9 | C21—N6—H6A | 110.4 |
C3—C4—H4 | 119.9 | C21—N6—H6B | 110.4 |
C5—C4—C3 | 120.2 (3) | N3—C15—H15A | 110.1 |
C5—C4—H4 | 119.9 | N3—C15—H15B | 110.1 |
C4—C5—H5 | 120.8 | N3—C15—C16 | 108.1 (3) |
C6—C5—C4 | 118.4 (3) | H15A—C15—H15B | 108.4 |
C6—C5—H5 | 120.8 | C16—C15—H15A | 110.1 |
N1—C6—C5 | 120.6 (3) | C16—C15—H15B | 110.1 |
N1—C6—C7 | 112.8 (2) | N4—C16—C15 | 109.7 (3) |
C5—C6—C7 | 126.6 (3) | N4—C16—H16A | 109.7 |
O3—C7—C6 | 114.0 (3) | N4—C16—H16B | 109.7 |
O4—C7—O3 | 126.7 (3) | C15—C16—H16A | 109.7 |
O4—C7—C6 | 119.3 (3) | C15—C16—H16B | 109.7 |
O5—C8—C9 | 115.1 (2) | H16A—C16—H16B | 108.2 |
O6—C8—O5 | 126.8 (3) | N4—C17—H17A | 109.0 |
O6—C8—C9 | 118.0 (3) | N4—C17—H17B | 109.0 |
N2—C9—C8 | 112.7 (2) | N4—C17—C18 | 112.8 (3) |
N2—C9—C10 | 120.9 (3) | H17A—C17—H17B | 107.8 |
C10—C9—C8 | 126.4 (3) | C18—C17—H17A | 109.0 |
C9—C10—H10 | 120.8 | C18—C17—H17B | 109.0 |
C11—C10—C9 | 118.3 (3) | C17—C18—H18A | 108.2 |
C11—C10—H10 | 120.8 | C17—C18—H18B | 108.2 |
C10—C11—H11 | 119.9 | C17—C18—C19 | 116.3 (3) |
C10—C11—C12 | 120.1 (3) | H18A—C18—H18B | 107.4 |
C12—C11—H11 | 119.9 | C19—C18—H18A | 108.2 |
C11—C12—H12 | 120.8 | C19—C18—H18B | 108.2 |
C13—C12—C11 | 118.4 (3) | N5—C19—C18 | 112.9 (3) |
C13—C12—H12 | 120.8 | N5—C19—H19A | 109.0 |
N2—C13—C12 | 120.2 (3) | N5—C19—H19B | 109.0 |
N2—C13—C14 | 113.4 (2) | C18—C19—H19A | 109.0 |
C12—C13—C14 | 126.4 (3) | C18—C19—H19B | 109.0 |
O7—C14—C13 | 114.2 (3) | H19A—C19—H19B | 107.8 |
O8—C14—O7 | 126.3 (3) | N5—C20—H20A | 109.9 |
O8—C14—C13 | 119.5 (3) | N5—C20—H20B | 109.9 |
O2W—Ni2—O1W | 174.88 (8) | N5—C20—C21 | 109.1 (2) |
N3—Ni2—O1W | 86.26 (9) | H20A—C20—H20B | 108.3 |
N3—Ni2—O2W | 92.25 (9) | C21—C20—H20A | 109.9 |
N3—Ni2—N4 | 84.10 (10) | C21—C20—H20B | 109.9 |
N3—Ni2—N5 | 174.54 (10) | N6—C21—C20 | 109.4 (2) |
N3—Ni2—N6 | 101.01 (10) | N6—C21—H21A | 109.8 |
N4—Ni2—O1W | 87.83 (9) | N6—C21—H21B | 109.8 |
N4—Ni2—O2W | 96.90 (9) | C20—C21—H21A | 109.8 |
N4—Ni2—N5 | 90.45 (10) | C20—C21—H21B | 109.8 |
N4—Ni2—N6 | 172.57 (10) | H21A—C21—H21B | 108.2 |
Ni1—O1—C1—O2 | 175.1 (2) | C2—C3—C4—C5 | 3.0 (4) |
Ni1—O1—C1—C2 | −6.2 (3) | C3—C4—C5—C6 | −0.7 (4) |
Ni1—O3—C7—O4 | 175.0 (3) | C4—C5—C6—N1 | −1.7 (4) |
Ni1—O3—C7—C6 | −5.5 (3) | C4—C5—C6—C7 | 177.3 (3) |
Ni1—O5—C8—O6 | 179.7 (2) | C5—C6—C7—O3 | −174.5 (3) |
Ni1—O5—C8—C9 | −2.3 (3) | C5—C6—C7—O4 | 5.0 (5) |
Ni1—O7—C14—O8 | 171.5 (2) | C6—N1—C2—C1 | −179.3 (2) |
Ni1—O7—C14—C13 | −10.1 (3) | C6—N1—C2—C3 | 0.7 (4) |
Ni1—N1—C2—C1 | 4.6 (3) | C8—C9—C10—C11 | 178.3 (3) |
Ni1—N1—C2—C3 | −175.4 (2) | C9—N2—C13—C12 | −0.7 (4) |
Ni1—N1—C6—C5 | 177.8 (2) | C9—N2—C13—C14 | −178.9 (3) |
Ni1—N1—C6—C7 | −1.4 (3) | C9—C10—C11—C12 | −0.4 (4) |
Ni1—N2—C9—C8 | 2.9 (3) | C10—C11—C12—C13 | 0.6 (5) |
Ni1—N2—C9—C10 | −178.3 (2) | C11—C12—C13—N2 | −0.1 (4) |
Ni1—N2—C13—C12 | 178.5 (2) | C11—C12—C13—C14 | 177.9 (3) |
Ni1—N2—C13—C14 | 0.3 (3) | C12—C13—C14—O7 | −171.3 (3) |
O1—C1—C2—N1 | 1.4 (4) | C12—C13—C14—O8 | 7.2 (5) |
O1—C1—C2—C3 | −178.6 (3) | C13—N2—C9—C8 | −177.9 (2) |
O2—C1—C2—N1 | −179.8 (3) | C13—N2—C9—C10 | 1.0 (4) |
O2—C1—C2—C3 | 0.2 (5) | Ni2—N3—C15—C16 | 45.9 (3) |
O5—C8—C9—N2 | −0.2 (4) | Ni2—N4—C16—C15 | 34.9 (3) |
O5—C8—C9—C10 | −178.9 (3) | Ni2—N4—C17—C18 | −59.1 (3) |
O6—C8—C9—N2 | 178.0 (3) | Ni2—N5—C19—C18 | 60.4 (3) |
O6—C8—C9—C10 | −0.8 (4) | Ni2—N5—C20—C21 | −41.5 (3) |
N1—C2—C3—C4 | −3.0 (4) | Ni2—N6—C21—C20 | −40.1 (3) |
N1—C6—C7—O3 | 4.6 (4) | N3—C15—C16—N4 | −55.3 (3) |
N1—C6—C7—O4 | −175.8 (3) | N4—C17—C18—C19 | 65.8 (4) |
N2—C9—C10—C11 | −0.4 (4) | N5—C20—C21—N6 | 56.4 (3) |
N2—C13—C14—O7 | 6.8 (4) | C16—N4—C17—C18 | 176.1 (3) |
N2—C13—C14—O8 | −174.7 (3) | C17—N4—C16—C15 | 164.3 (3) |
C1—C2—C3—C4 | 177.0 (3) | C17—C18—C19—N5 | −67.0 (4) |
C2—N1—C6—C5 | 1.8 (4) | C19—N5—C20—C21 | −167.8 (3) |
C2—N1—C6—C7 | −177.4 (3) | C20—N5—C19—C18 | −178.4 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···O8i | 0.91 | 2.41 | 3.213 (3) | 147 |
N3—H3B···O4ii | 0.91 | 2.11 | 3.015 (3) | 176 |
N4—H4A···O1 | 1.00 | 2.07 | 3.054 (3) | 167 |
N5—H5A···O2 | 1.00 | 2.08 | 3.054 (3) | 163 |
N6—H6A···O3ii | 0.91 | 2.14 | 2.986 (3) | 154 |
N6—H6B···O6iii | 0.91 | 2.07 | 2.943 (3) | 160 |
O1W—H1WA···O1 | 0.86 | 2.56 | 3.088 (3) | 121 |
O1W—H1WA···O2 | 0.86 | 2.00 | 2.795 (3) | 154 |
O1W—H1WB···O3ii | 0.86 | 1.91 | 2.757 (3) | 170 |
O2W—H2WA···O7i | 0.87 | 1.80 | 2.663 (3) | 169 |
O2W—H2WB···O6iii | 0.87 | 1.90 | 2.742 (3) | 160 |
Symmetry codes: (i) x−1, y, z; (ii) −x+2, y+1/2, −z+3/2; (iii) −x+1, y+1/2, −z+3/2. |
References
Bosnich, B., Poon, C. K. & Tobe, M. C. (1965). Inorg. Chem. 4, 1102–1108. CrossRef CAS Web of Science Google Scholar
Choi, K.-Y., Ryu, H., Lim, Y.-M., Sung, N.-D., Shin, U.-S. & Suh, M. (2003). Inorg. Chem. Commun. 6, 412–415. Web of Science CSD CrossRef CAS Google Scholar
Escuer, A., Vicente, R., Ribas, J., El Fallah, M. S., Solans, X. & Font-Bardia, M. (1993). Inorg. Chem. 32, 3727–3732. CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Kaskel, S. (2016). Editor. The Chemistry of Metal–Organic Frameworks: Synthesis, Characterization and Applications. Weinheim: Wiley-VCH. Google Scholar
Koo, J. E., Kim, D. H., Kim, Y. S. & Do, Y. (2003). Inorg. Chem. 42, 2983–2987. CrossRef PubMed CAS Google Scholar
Lampeka, Ya. D. & Tsymbal, L. V. (2004). Theor. Exp. Chem. 40, 345–371. CrossRef CAS Google Scholar
Lee, J. H. & Moon, H. R. (2018). J. Incl Phenom. Macrocycl Chem. 92, 237–249. Web of Science CrossRef CAS Google Scholar
MacGillivray, L. R. & Lukehart, C. M. (2014). Editors. Metal–Organic Framework Materials. Hoboken: John Wiley and Sons. Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ni, W.-W., Chen, X., Cui, A.-L., Liu, C.-M. & Kou, H.-Z. (2014). Polyhedron, 81, 450–456. CrossRef CAS Google Scholar
Oblezov, A. E., Talham, D. R. & Abboud, K. A. (2003). Acta Cryst. E59, m1070–m1071. CrossRef IUCr Journals Google Scholar
Park, H., Lough, A. J., Kim, J. C., Jeong, M. H. & Kang, Y. S. (2007). Inorg. Chim. Acta, 360, 2819–2823. Web of Science CSD CrossRef CAS Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466–1496. Web of Science CrossRef CAS Google Scholar
Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Shek, I. Y., Yeung, W.-F., Lau, T.-C., Zhang, J., Gao, S., Szeto, L. & Wong, W.-T. (2005). Eur. J. Inorg. Chem. pp. 364–370. CrossRef Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stackhouse, C. A. & Ma, S. (2018). Polyhedron, 145, 154–165. Web of Science CrossRef CAS Google Scholar
Suh, M. P. & Moon, H. R. (2007). Advances in Inorganic Chemistry, Vol. 59, edited by R. van Eldik & K. Bowman-James, pp. 39–79. San Diego: Academic Press. Google Scholar
Suh, M. P., Park, H. J., Prasad, T. K. & Lim, D.-W. (2012). Chem. Rev. 112, 782–835. Web of Science CrossRef CAS PubMed Google Scholar
Talukder, P., Shit, S., Nöth, H., Westerhausen, M., Kneifel, A. N. & Mitra, S. (2012). Transition Met. Chem. 37, 71–77. CrossRef CAS Google Scholar
Tsymbal, L. V., Andriichuk, I. L., Shova, S., Trzybiński, D., Woźniak, K., Arion, V. B. & Lampeka, Ya. D. (2021). Cryst. Growth Des. 21, 2355–2370. CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yatsimirskii, K. B. & Lampeka, Ya. D. (1985). Physicochemistry of Metal Complexes with Macrocyclic Ligands, Kiev: Naukova Dumka. (In Russian.) Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.