research communications
μ-chlorido-bis[(acetonitrile-κN)chlorido(ethyl 5-methyl-1H-pyrazole-3-carboxylate-κ2N2,O)copper(II)]
and Hirshfeld surface analysis of di-aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska str. 64/13, 01601 Kyiv, Ukraine, bEnamine Ltd, Oleksandra Matrosova Str. 23, Kyiv 01103, Ukraine, and c"Poni Petru" Institute of Macromolecular Chemistry, Aleea Gr. Ghica, Voda 41A, 700487 Iasi, Romania
*Correspondence e-mail: igolenya@ua.fm
The title compound, [Cu2Cl4(C5H10N2O2)2(CH3CN)2] or [Cu2(μ2-Cl)2(CH3—Pz-COOCH2CH3)2Cl2(CH3CN)2], was synthesized using a one-pot reaction of copper powder, copper(II) chloride dihydrate and ethyl 5-methyl-1H-pyrazole-3-carboxylate (CH3—Pz-COOCH2CH3) in acetonitrile under ambient conditions. This complex consists of discrete binuclear molecules with a {Cu2(μ2-Cl)2} core, in which the Cu⋯Cu distance is 3.8002 (7) Å. The pyrazole-based ligands are bidentate coordinated, leading to the formation of two five-membered chelate rings. The coordination geometry of both copper atoms (ON2Cl3) can be described as distorted octahedral on account of the acetonitrile coordination. A Hirshfeld surface analysis suggests that the most important contributions to the surface contacts are from H⋯H (40%), H⋯Cl/Cl⋯H (24.3%), H⋯O/O⋯H (11.8%), H⋯C/C⋯H (9.2%) and H⋯N/N⋯H (8.3%) interactions.
Keywords: copper; copper complexes; crystal structure; pyrazole; X-ray crystallography; Hirshfeld surface analysis; one-pot reaction; direct synthesis; oxidative dissolution.
CCDC reference: 2115608
1. Chemical context
Pyrazoles can form structures of various nuclearities, ranging from mononuclear (Mighell et al., 1975; Liu et al., 2001; Małecka et al., 2003) to polynuclear complexes (He, 2011; Contaldi et al., 2009; Chandrasekhar et al., 2008) and metallacycles (Vynohradov et al., 2020a; Surmann et al., 2016; Galassi et al., 2012) with specific molecular topologies. By performing the synthesis of metal complexes by oxidative dissolution of metals, commonly known as direct synthesis (Kokozay et al., 2018; Plyuta et al., 2020; Sirenko et al., 2020; Li et al., 2021), copper can be introduced in a zerovalent state. Copper powder can be oxidized in solution in the presence of proton-donating agents, such as pyrazoles, to form polynuclear complexes, where two copper atoms are connected by a bidentate-bridging deprotonated pyrazole (Vynohradov et al., 2020b; Davydenko et al., 2013). Many examples of copper coordination compounds have been synthesized and described in which two copper atoms are connected by halogen bridges, for example, through chlorine anions, deprotonated ligand molecules and also hydroxyl groups (Vincent et al., 2018; Wei et al., 2012; Mezei et al., 2004). Copper(II) pyrazolate complexes have attracted considerable interest for their interesting magnetic properties (Malinkin et al., 2012; Spodine et al., 1999) and abilities to bind DNA (Vafazadeh et al., 2015; Kulkarni et al., 2011). Finally, the antioxidant (Kupcewicz et al., 2013) and anticancer (Santini et al., 2014) activities of these compounds should be noted. Relatively few unsymmetrical pyrazole-containing ligands with different chelating arms in the 3- and 5-positions and their coordination compounds have been investigated so far (Konrad et al., 2001; Dubs et al., 2006; Krämer et al., 2002; Röder et al., 2002; Penkova et al., 2010). Considering the above, we understand the importance of accumulating a theoretical information base on such coordination compounds, and therefore in this article we report the synthesis, and Hirshfeld surface analysis of a new binuclear copper(II) complex with unsymmetrical pyrazole ethyl 5-methyl-1H-pyrazole-3-carboxylate – [Cu2(μ2-Cl)2(CH3-Pz-COOCH2CH3)2Cl2(CH3CN)2].
2. Structural commentary
The title compound (Fig. 1) is a binuclear cyclic copper(II) pyrazole-containing complex which crystallized in the monoclinic P21/c The consists of one copper ion, one ethyl 5-methyl-1H-pyrazole-3-carboxylate ligand, one coordinated acetonitrile molecule and two chlorine ions. One of these chlorine ions bridges two metal centers, thus connecting two symmetry-generated fragments. The structure of this complex can be described as a dimer of formula [CuCl2(C7H10N2O2)(CH3CN)]2 in which the CH3-Pz-COOCH2CH3 ligand is coordinated in a bidentate way and remains protonated. The copper atom has a distorted octahedral coordination environment formed by three chlorine atoms, one nitrogen atom of the acetonitrile molecule and two atoms of the unsymmetrical pyrazole ligand – the pyridine-like N1 atom and atom O 1 of the ester substituent in position 3 of the pyrazole ring. The bidentate coordination of the pyrazole ligand leads to the formation of a five-membered chelate ring. The atoms in the ring deviate only slightly from planarity [the Cu1 atom is out of the Cu1/N1/C4/C5/O1 plane by 0.0222 (8) Å; N1 by −0.0406 (14) Å; C4 by 0.0326 (15) Å; C5 by 0.0031 (18) Å and O1 by −0.0172 (14) Å]. Both the copper atoms and the bridging chlorine atoms lie in the same plane without deviations from planarity. The intermetallic distance in the dimer unit is 3.8002 (7) Å while the chlorine–chlorine separation in the four-membered bimetallic cycle is 3.5894 (15) Å.
An overlay of the asymmetric units of the structures of the title compound (red) and a similar complex with methyl 5-methyl-1H-pyrazole-3-carboxylate (green) is presented in Fig. 2. The structures were compared using OLEX2 software (Dolomanov et al., 2009). It was found that the structure of the complex does not change regardless of the organic radical R in the COOR ester group, whether –CH3 or –CH2—CH3. The crystal structures of these compounds are also similar. In addition, the intermetallic distance in the above structures differs approximately by 0.1 Å and the chlorine–chlorine separation in the four-membered bimetallic ring differs by 0.05 Å [Cu⋯Cu = 3.7047 (7) Å and Cl⋯Cl = 3.5364 (11) Å for the methyl analogue]. The molecular structure is stabilized by intramolecular N—H⋯Cl and C—H⋯Cl hydrogen bonds (Table 1).
3. Supramolecular features
The crystal packing of the title compound (Fig. 3) consists of discrete binuclear molecules with a {Cu2(μ2-Cl)2} core, which form a planar bimetallic ring. The four-membered Cu1/Cl1/Cu1i/Cl1i planes of the bimetallic rings are situated perpendicular to the b axis, while the chelate ring planes are located approximately parallel. No intermolecular hydrogen bonds were identified in the The minimum separation between the Cl atoms of neighbouring molecules inside one is 4.4013 (13) Å for Cl1i and Cl1ii [symmetry codes: (i) 1 − x, 1 − y, 2 − z; (ii) x, y, −1 + z] while the minimum distance between two copper atoms is 7.6498 (3) Å for Cu1 and Cu1ii.
4. Hirshfeld surface analysis
The Hirshfeld surface analysis and the associated two-dimensional fingerprint plots were performed using Crystal Explorer 17.5 (Turner et al., 2018), with a standard resolution of the three-dimensional dnorm surfaces plotted over a fixed colour scale of −0.1996 (red) to 1.1926 (blue) a.u. The pale-red spots in Fig. 4 represent short contacts and negative dnorm values on the surface corresponding to the interactions described above. The Hirshfeld surfaces mapped over dnorm are shown for the H⋯H, H⋯Cl/Cl⋯H, H⋯O/O⋯H, H⋯C/C⋯H and H⋯N/N⋯H contacts, the overall two-dimensional fingerprint plot and the decomposed two-dimensional fingerprint plots are given in Fig. 5. Twelve short interatomic contacts in the range 2.34–2.8 Å are indicated by the faint red spots. Two pairs of intermolecular C—H⋯O contacts between the O1 atom of the ester substituent and the hydrogen atom of the methyl group of the coordinated acetonitrile were the shortest. Also, four intermolecular C—H⋯Cl contacts with a length of 2.685 Å, which are present between the terminal chlorine atoms and the hydrogen atoms of the ethyl group (hydrogen atom near C7) of the ester substituent are also short. Finally, four intermolecular C—H⋯Cl contacts with a length of 2.8 Å are observed between the terminal chlorine atoms and the hydrogen atoms of the –CH3 group of the acetonitrile molecule. For the title compound, the most significant contributions to the overall crystal packing are from H⋯H (40%), H⋯Cl/Cl⋯H (24.3%), H⋯O/O⋯H (11.8%), H⋯C/C⋯H (9.2%) and H⋯N/N⋯H (8.3%) contacts. The small contribution of the other weak intermolecular C⋯C (2.9%), C⋯O/O⋯C (2.1%), C⋯N/N⋯C (0.8%), C⋯Cl/Cl⋯C (0.3%), O⋯N/N⋯O (0.3%) and Cl⋯Cl (0.1%) contacts has a negligible effect on the packing. In addition, quantitative physical properties of the Hirshfeld surface for the title compound were obtained, such as molecular volume (657.89 Å3), surface area (571.56 Å2), globularity (0.640), as well as asphericity (0.147).
5. Database survey
Six similar structures are registered in the Cambridge Structural Database (Version 2021.1; Groom et al., 2016): two reports of complexes with methyl 5-methyl-1H-pyrazole-3-carboxylate [UMUXEI (Rheingold, 2021) and ZEQGUZ (Shakirova et al., 2012)], two reports of the free ligand ethyl 5-methyl-1H-pyrazole-3-carboxylate [FAQSAR01 (Mague et al., 2018) and FAQSAR02 (Kusakiewicz-Dawid et al., 2019)] and two structure reports of the same ligand with a different name and cell parameters (Elguero et al., 1999) [3-ethoxycarbonyl-5-methylpyrazole (FAQSAR) and 4-bromo-3-ethoxycarbonyl-5-methylpyrazole (FAQTAS)].
6. Synthesis and crystallization
[Cu2(μ2-Cl)2(CH3-Pz-COOCH2CH3)2Cl2(CH3CN)2] was synthesized at room temperature by the oxidative dissolution method by the addition of a copper powder (1.56 mmol, 0.1 g) and copper(II) chloride dihydrate (3.1 mmol, 0.53 g) mixture to an acetonitrile (9 ml) solution of ethyl 5-methyl-1H-pyrazole-3-carboxylate (4.67 mmol, 0.72 g). The mixture was stirred without heating for three h with free air access until dissolution of the copper powder and a green precipitate of the product was obtained. The precipitate was filtered off and re-dissolved in acetonitrile. Green crystals suitable for X-ray analysis were obtained by slow evaporation of the solvent. The IR spectra of the starting pyrazole ligand and the obtained green crystals of the title coordination compound are given in the supporting information.
7. Refinement
Crystal data, data collection and structure . C-bound H atoms were positioned geometrically (C—H = 0.93–0.97) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-methyl). N-bound H atoms were refined with Uiso(H) = 1.2Ueq(N).
details are summarized in Table 2Supporting information
CCDC reference: 2115608
https://doi.org/10.1107/S2056989021010653/zq2267sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021010653/zq2267Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021010653/zq2267Isup3.cdx
IR spectrum of the title compound. DOI: https://doi.org/10.1107/S2056989021010653/zq2267sup4.txt
IR spectrum of the free ligand. DOI: https://doi.org/10.1107/S2056989021010653/zq2267sup5.txt
Data collection: CrysAlis PRO (Rigaku OD, 2021); cell
CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXLT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Cu2Cl4(C5H10N2O2)2(C2H3N)2] | F(000) = 668 |
Mr = 659.33 | Dx = 1.637 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 11.3934 (4) Å | Cell parameters from 3607 reflections |
b = 15.9822 (5) Å | θ = 2.3–27.2° |
c = 7.6498 (3) Å | µ = 2.03 mm−1 |
β = 106.226 (4)° | T = 293 K |
V = 1337.48 (9) Å3 | Block, green |
Z = 2 | 0.45 × 0.2 × 0.1 mm |
Rigaku Xcalibur, Eos diffractometer | 3062 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 2380 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
Detector resolution: 16.1593 pixels mm-1 | θmax = 28.3°, θmin = 1.9° |
ω scans | h = −14→14 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) | k = −18→21 |
Tmin = 0.839, Tmax = 1.000 | l = −9→9 |
9132 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.036 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.083 | w = 1/[σ2(Fo2) + (0.0338P)2 + 0.250P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
3062 reflections | Δρmax = 0.30 e Å−3 |
158 parameters | Δρmin = −0.34 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.32946 (3) | 0.47882 (2) | 0.91290 (4) | 0.03655 (12) | |
Cl1 | 0.45100 (6) | 0.48716 (4) | 1.20189 (9) | 0.04438 (18) | |
Cl2 | 0.23810 (6) | 0.60138 (4) | 0.93837 (10) | 0.04752 (19) | |
O1 | 0.14691 (18) | 0.38325 (11) | 0.9411 (3) | 0.0501 (5) | |
O2 | 0.12145 (16) | 0.24499 (11) | 0.9610 (3) | 0.0471 (5) | |
N1 | 0.37558 (18) | 0.35720 (12) | 0.9058 (3) | 0.0359 (5) | |
N2 | 0.4841 (2) | 0.32429 (13) | 0.9131 (3) | 0.0406 (6) | |
H2 | 0.541 (2) | 0.3509 (10) | 0.9021 (5) | 0.049* | |
N3 | 0.2412 (2) | 0.47671 (13) | 0.6418 (3) | 0.0452 (6) | |
C1 | 0.4879 (2) | 0.24100 (15) | 0.9412 (4) | 0.0414 (7) | |
C2 | 0.6021 (3) | 0.19159 (18) | 0.9591 (5) | 0.0628 (10) | |
H2A | 0.624715 | 0.194792 | 0.847440 | 0.094* | |
H2B | 0.588090 | 0.134232 | 0.984660 | 0.094* | |
H2C | 0.666779 | 0.214025 | 1.056683 | 0.094* | |
C3 | 0.3747 (2) | 0.21906 (15) | 0.9510 (4) | 0.0417 (6) | |
H3 | 0.347635 | 0.165569 | 0.967998 | 0.050* | |
C4 | 0.3075 (2) | 0.29279 (15) | 0.9307 (3) | 0.0356 (6) | |
C5 | 0.1848 (2) | 0.31277 (16) | 0.9433 (4) | 0.0375 (6) | |
C6 | 0.0021 (2) | 0.2595 (2) | 0.9877 (4) | 0.0567 (8) | |
H6A | −0.049565 | 0.289751 | 0.884815 | 0.068* | |
H6B | 0.009748 | 0.292321 | 1.096964 | 0.068* | |
C7 | −0.0522 (3) | 0.1761 (2) | 1.0052 (5) | 0.0624 (9) | |
H7A | −0.071569 | 0.147755 | 0.890001 | 0.094* | |
H7B | −0.125387 | 0.183416 | 1.042309 | 0.094* | |
H7C | 0.005383 | 0.143312 | 1.094653 | 0.094* | |
C8 | 0.1955 (3) | 0.48097 (15) | 0.4916 (4) | 0.0417 (6) | |
C9 | 0.1373 (4) | 0.4863 (2) | 0.2988 (4) | 0.0710 (10) | |
H9A | 0.150266 | 0.435166 | 0.241128 | 0.107* | |
H9B | 0.171560 | 0.532163 | 0.248413 | 0.107* | |
H9C | 0.051142 | 0.495250 | 0.278268 | 0.107* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0379 (2) | 0.03067 (19) | 0.0376 (2) | 0.00332 (12) | 0.00486 (14) | −0.00063 (12) |
Cl1 | 0.0504 (4) | 0.0426 (4) | 0.0359 (4) | 0.0007 (3) | 0.0049 (3) | 0.0039 (3) |
Cl2 | 0.0448 (4) | 0.0378 (4) | 0.0559 (5) | 0.0095 (3) | 0.0074 (3) | −0.0022 (3) |
O1 | 0.0491 (12) | 0.0414 (11) | 0.0637 (14) | 0.0052 (9) | 0.0224 (10) | −0.0034 (9) |
O2 | 0.0351 (10) | 0.0452 (11) | 0.0642 (14) | −0.0029 (8) | 0.0190 (9) | 0.0025 (9) |
N1 | 0.0305 (11) | 0.0312 (11) | 0.0449 (14) | −0.0011 (9) | 0.0088 (10) | −0.0021 (9) |
N2 | 0.0329 (12) | 0.0353 (12) | 0.0544 (16) | −0.0048 (9) | 0.0133 (11) | −0.0057 (10) |
N3 | 0.0471 (14) | 0.0425 (13) | 0.0431 (15) | 0.0053 (10) | 0.0077 (12) | −0.0029 (10) |
C1 | 0.0382 (15) | 0.0301 (13) | 0.0526 (18) | 0.0006 (11) | 0.0074 (13) | −0.0075 (11) |
C2 | 0.0442 (17) | 0.0463 (17) | 0.094 (3) | 0.0062 (13) | 0.0121 (18) | −0.0150 (16) |
C3 | 0.0399 (15) | 0.0311 (13) | 0.0517 (18) | −0.0041 (11) | 0.0085 (13) | −0.0003 (11) |
C4 | 0.0338 (13) | 0.0329 (13) | 0.0382 (16) | −0.0032 (10) | 0.0069 (11) | −0.0037 (10) |
C5 | 0.0370 (14) | 0.0385 (15) | 0.0368 (16) | −0.0040 (11) | 0.0101 (12) | −0.0034 (11) |
C6 | 0.0422 (17) | 0.073 (2) | 0.059 (2) | 0.0066 (14) | 0.0209 (16) | 0.0057 (16) |
C7 | 0.0416 (17) | 0.084 (2) | 0.062 (2) | −0.0189 (15) | 0.0156 (16) | −0.0033 (17) |
C8 | 0.0464 (16) | 0.0391 (15) | 0.0406 (18) | 0.0057 (11) | 0.0136 (13) | −0.0044 (11) |
C9 | 0.090 (3) | 0.083 (2) | 0.038 (2) | 0.0103 (19) | 0.0133 (19) | −0.0022 (16) |
Cu1—Cl1i | 2.9242 (8) | C2—H2A | 0.9600 |
Cu1—Cl1 | 2.2609 (7) | C2—H2B | 0.9600 |
Cu1—Cl2 | 2.2521 (7) | C2—H2C | 0.9600 |
Cu1—O1 | 2.637 (2) | C3—H3 | 0.9300 |
Cu1—N1 | 2.0182 (19) | C3—C4 | 1.390 (3) |
Cu1—N3 | 2.036 (2) | C4—C5 | 1.462 (4) |
O1—C5 | 1.205 (3) | C6—H6A | 0.9700 |
O2—C5 | 1.330 (3) | C6—H6B | 0.9700 |
O2—C6 | 1.449 (3) | C6—C7 | 1.492 (4) |
N1—N2 | 1.330 (3) | C7—H7A | 0.9600 |
N1—C4 | 1.335 (3) | C7—H7B | 0.9600 |
N2—H2 | 0.80 (3) | C7—H7C | 0.9600 |
N2—C1 | 1.347 (3) | C8—C9 | 1.441 (4) |
N3—C8 | 1.123 (4) | C9—H9A | 0.9600 |
C1—C2 | 1.495 (4) | C9—H9B | 0.9600 |
C1—C3 | 1.360 (4) | C9—H9C | 0.9600 |
Cl1—Cu1—Cl1i | 86.62 (3) | H2A—C2—H2C | 109.5 |
Cl1—Cu1—O1 | 103.64 (5) | H2B—C2—H2C | 109.5 |
Cl2—Cu1—Cl1 | 92.05 (3) | C1—C3—H3 | 127.0 |
Cl2—Cu1—Cl1i | 108.61 (3) | C1—C3—C4 | 106.1 (2) |
Cl2—Cu1—O1 | 95.89 (5) | C4—C3—H3 | 127.0 |
O1—Cu1—Cl1i | 153.19 (4) | N1—C4—C3 | 110.2 (2) |
N1—Cu1—Cl1 | 89.44 (6) | N1—C4—C5 | 116.5 (2) |
N1—Cu1—Cl1i | 85.41 (6) | C3—C4—C5 | 133.2 (2) |
N1—Cu1—Cl2 | 165.96 (7) | O1—C5—O2 | 124.1 (2) |
N1—Cu1—O1 | 70.22 (7) | O1—C5—C4 | 123.3 (2) |
N1—Cu1—N3 | 90.84 (8) | O2—C5—C4 | 112.6 (2) |
N3—Cu1—Cl1 | 171.83 (7) | O2—C6—H6A | 110.2 |
N3—Cu1—Cl1i | 85.27 (7) | O2—C6—H6B | 110.2 |
N3—Cu1—Cl2 | 89.66 (6) | O2—C6—C7 | 107.4 (2) |
N3—Cu1—O1 | 84.12 (8) | H6A—C6—H6B | 108.5 |
C5—O1—Cu1 | 104.76 (17) | C7—C6—H6A | 110.2 |
C5—O2—C6 | 116.2 (2) | C7—C6—H6B | 110.2 |
N2—N1—Cu1 | 128.73 (16) | C6—C7—H7A | 109.5 |
N2—N1—C4 | 105.05 (19) | C6—C7—H7B | 109.5 |
C4—N1—Cu1 | 124.95 (17) | C6—C7—H7C | 109.5 |
N1—N2—H2 | 123.6 | H7A—C7—H7B | 109.5 |
N1—N2—C1 | 112.7 (2) | H7A—C7—H7C | 109.5 |
C1—N2—H2 | 123.6 | H7B—C7—H7C | 109.5 |
C8—N3—Cu1 | 175.2 (2) | N3—C8—C9 | 179.8 (4) |
N2—C1—C2 | 121.7 (2) | C8—C9—H9A | 109.5 |
N2—C1—C3 | 105.9 (2) | C8—C9—H9B | 109.5 |
C3—C1—C2 | 132.4 (2) | C8—C9—H9C | 109.5 |
C1—C2—H2A | 109.5 | H9A—C9—H9B | 109.5 |
C1—C2—H2B | 109.5 | H9A—C9—H9C | 109.5 |
C1—C2—H2C | 109.5 | H9B—C9—H9C | 109.5 |
H2A—C2—H2B | 109.5 | ||
Cu1—O1—C5—O2 | 178.2 (2) | N2—C1—C3—C4 | −1.0 (3) |
Cu1—O1—C5—C4 | −0.4 (3) | C1—C3—C4—N1 | 1.1 (3) |
Cu1—N1—N2—C1 | 167.66 (19) | C1—C3—C4—C5 | −174.1 (3) |
Cu1—N1—C4—C3 | −168.89 (18) | C2—C1—C3—C4 | 177.7 (3) |
Cu1—N1—C4—C5 | 7.2 (3) | C3—C4—C5—O1 | 171.4 (3) |
N1—N2—C1—C2 | −178.3 (3) | C3—C4—C5—O2 | −7.4 (4) |
N1—N2—C1—C3 | 0.5 (3) | C4—N1—N2—C1 | 0.2 (3) |
N1—C4—C5—O1 | −3.7 (4) | C5—O2—C6—C7 | −179.7 (2) |
N1—C4—C5—O2 | 177.6 (2) | C6—O2—C5—O1 | −3.1 (4) |
N2—N1—C4—C3 | −0.8 (3) | C6—O2—C5—C4 | 175.7 (2) |
N2—N1—C4—C5 | 175.3 (2) |
Symmetry code: (i) −x+1, −y+1, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···Cl1i | 0.80 (2) | 2.72 (2) | 3.281 (2) | 129 (2) |
N2—H2···Cl2i | 0.80 (2) | 2.59 (2) | 3.273 (2) | 145 (1) |
C7—H7A···Cl2ii | 0.96 | 2.79 | 3.662 (4) | 151 |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x, y−1/2, −z+3/2. |
Funding information
This work was supported by the Ministry of Education and Science of Ukraine: Grant of the Ministry of Education and Science of Ukraine for perspective development of a scientific direction "Mathematical sciences and natural sciences" at Taras Shevchenko National University of Kyive (grant No. 21BNN-06).
References
Chandrasekhar, V., Nagarajan, L., Clérac, R., Ghosh, S., Senapati, T. & Verma, S. (2008). Inorg. Chem. 47, 5347–5354. CSD CrossRef PubMed CAS Google Scholar
Contaldi, S., Di Nicola, C., Garau, F., Karabach, Y. Y., Martins, L. M. D. R. S., Monari, M., Pandolfo, L., Pettinari, C. & Pombeiro, A. J. L. (2009). Dalton Trans. pp. 4928–4941. CSD CrossRef Google Scholar
Davydenko, Y. M., Demeshko, S., Pavlenko, V. A., Dechert, S., Meyer, F. & Fritsky, I. O. (2013). Z. Anorg. Allg. Chem. 639, 1472–1476. CSD CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dubs, C., Yamamoto, T., Inagaki, A. & Akita, M. (2006). Organometallics, 25, 1344–1358. CSD CrossRef CAS Google Scholar
Elguero, J., Infantes, L., Foces-Foces, C. M., Claramunt, R., López, C. & Jagerovic, N. (1999). Heterocycles, 50, 227–242. CSD CrossRef Google Scholar
Galassi, R., Burini, A. & Mohamed, A. A. (2012). Eur. J. Inorg. Chem. 2012, 3257–3261. CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
He, H. (2011). Acta Cryst. E67, m140. CSD CrossRef IUCr Journals Google Scholar
Kokozay, V. N., Vassilyeva, O. Yu. & Makhankova, V. G. (2018). Direct Synthesis of Metal Complexes, edited by B. I. Kharisov, pp. 183–237. Amsterdam: Elsevier. Google Scholar
Konrad, M., Wuthe, S., Meyer, F. & Kaifer, E. (2001). Eur. J. Inorg. Chem. pp. 2233–2240. CrossRef Google Scholar
Krämer, R., Fritsky, I. O., Pritzkow, H. & Kovbasyuk, L. A. (2002). J. Chem. Soc. Dalton Trans. pp. 1307–1314.. Google Scholar
Kulkarni, N. V., Kamath, A., Budagumpi, S. & Revankar, V. K. (2011). J. Mol. Struct. 1006, 580–588. CrossRef CAS Google Scholar
Kupcewicz, B., Sobiesiak, K., Malinowska, K., Koprowska, K., Czyz, M., Keppler, B. & Budzisz, E. (2013). Med. Chem. Res. 22, 2395–2402. CrossRef CAS PubMed Google Scholar
Kusakiewicz-Dawid, A., Porada, M., Dziuk, B. & Siodłak, D. (2019). Molecules, 24, 2632. Google Scholar
Li, X. & Binnemans, K. (2021). Chem. Rev. 121, 4506–4530. CrossRef CAS PubMed Google Scholar
Liu, X.-M., Kilner, C. A., Thornton-Pett, M. & Halcrow, M. A. (2001). Acta Cryst. C57, 1253–1255. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mague, J. & Ramli, Y. (2018). CSD Communication (CCDC 1872098). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc20v287 Google Scholar
Małecka, M. & Chęcińska, L. (2003). Acta Cryst. C59, m115–m117. CSD CrossRef IUCr Journals Google Scholar
Malinkin, S. O., Moroz, Y. S., Penkova, L. V., Bon, V. V., Gumienna-Kontecka, E., Pavlenko, V. A., Pekhnyo, V. I., Meyer, F. & Fritsky, I. O. (2012). Polyhedron, 37, 77–84. CSD CrossRef CAS Google Scholar
Mezei, G. & Raptis, R. G. (2004). Inorg. Chim. Acta, 357, 3279–3288. Web of Science CSD CrossRef CAS Google Scholar
Mighell, A., Santoro, A., Prince, E. & Reimann, C. (1975). Acta Cryst. B31, 2479–2482. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Penkova, L., Demeshko, S., Pavlenko, V. A., Dechert, S., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chim. Acta, 363, 3036–3040. Web of Science CSD CrossRef CAS Google Scholar
Plyuta, N., Vassilyeva, O. Yu., Kokozay, V. N., Omelchenko, I. & Petrusenko, S. (2020). Acta Cryst. E76, 423–426. CSD CrossRef IUCr Journals Google Scholar
Rheingold, A. L. (2021). CSD Communication (CCDC 869805). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.ccy637g. Google Scholar
Rigaku OD (2021). CrysAlis PRO.Rigaku Inc., Tokyo, Japan. Google Scholar
Röder, J. C., Meyer, F., Winter, R. F. & Kaifer, E. (2002). J. Organomet. Chem. 641, 113–120. Google Scholar
Santini, C., Pellei, M., Gandin, V., Porchia, M., Tisato, F. & Marzano, C. (2014). Chem. Rev. 114, 815–862. Web of Science CrossRef CAS PubMed Google Scholar
Shakirova, O. G., Lavrenova, L. G., Kuratieva, N. V., Naumov, D. Y., Bogomyakov, A. S., Sheludyakova, L. A., Mikhailovskaya, T. F. & Vasilevsky, S. F. (2012). Russ. J. Coord. Chem. 38, 552–559. CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sirenko, V. Y., Kucheriv, O. I., Rotaru, A., Fritsky, I. O. & Gural'skiy, I. A. (2020). Eur. J. Inorg. Chem. pp. 4523–4531. CSD CrossRef Google Scholar
Spodine, E., Atria, A. M., Valenzuela, J., Jalocha, J., Manzur, J., García, A. M., Garland, M. T., Peña, O. & Saillard, J.-Y. J. (1999). J. Chem. Soc. Dalton Trans. pp. 3029–3034. CSD CrossRef Google Scholar
Surmann, S. A. & Mezei, G. (2016). Acta Cryst. E72, 1517–1520. CSD CrossRef IUCr Journals Google Scholar
Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2018). CrystalExplorer 17.5. Google Scholar
Vafazadeh, R. C., Willis, A., Mehdi Heidari, M. & Hasanzade, N. (2015). Acta Chim. Slov. 2015, 62, 122–129. Google Scholar
Vincent, C. J., Giles, I. D. & Deschamps, J. R. (2018). Acta Cryst. E74, 357–362. Web of Science CSD CrossRef IUCr Journals Google Scholar
Vynohradov, O. S., Pavlenko, V. A., Fritsky, I. O., Gural'skiy, I. A. & Shova, S. (2020a). Russ. J. Inorg. Chem. 65, 1481–1488. CSD CrossRef CAS Google Scholar
Vynohradov, O. S., Pavlenko, V. A., Naumova, D. D., Partsevska, S. V., Shova, S. & Safarmamadov, S. M. (2020b). Acta Cryst. E76, 1641–1644. CSD CrossRef IUCr Journals Google Scholar
Wei, W. & Xu, Y. (2012). Acta Cryst. E68, m557. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.