research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris[tri­phenyl­anti­mony(V)]hexa(μ-oxido)­tellurium(VI): a mol­ecular complex with six Te—O—Sb bridges

crossmark logo

aInorganic Chemistry Department, National Taras Shevchenko University of Kyiv, Volodymyrska Str. 64/13, 01601 Kyiv, Ukraine
*Correspondence e-mail: dk@univ.kiev.ua

Edited by A. M. Chippindale, University of Reading, England (Received 4 October 2021; accepted 27 October 2021; online 4 November 2021)

In the structure of the title compound [systematic name hexa-μ-oxido-1:2κ4O:O;1:3κ4O:O;1:4κ4O:O-nona­phenyl-2κ3C,3κ3C,4κ3C-tri­anti­mony(V)tel­lur­ium(VI)], [Sb3Te(C6H5)9O6], the hexa­oxidotellurate(VI) ion is coordinated to three SbV ions via pairs of cis-positioned O atoms to form a discrete mol­ecular unit. The TeVI and SbV central ions exhibit distorted octa­hedral [TeO6] and distorted trigonal–bipyramidal [SbC3O2] coordination geometries, respectively. The linking of these polyhedra, by sharing the dioxide edges, results in the Te-based octa­hedron having a mer-configuration. The packing of the mol­ecules is dominated by C—H⋯O hydrogen bonding and weak dispersion forces, with a minor contribution from C—H⋯π bonds and ππ stacking inter­actions. According to the Hirshfeld surface analysis, the contributions of the H⋯H, H⋯C/C⋯H and H⋯O/O⋯H contacts are 58.0, 32.6 and 7.8%, respectively. The title structure provides a model for the bonding of triorgano­anti­mony dications to octa­hedral oxoanions, and the observed doubly bridged motifs, Te(μ-O)2Sb, may find application in the functionalization of polyoxometalate species.

1. Chemical context

Organo­anti­mony(V) species readily form covalent derivatives with a range of organic and inorganic oxo-ions and these can be used in the construction of metal–oxide clusters (Nicholson et al., 2011[Nicholson, B. K., Clark, C. J., Wright, C. E., Telfer, S. G. & Groutso, T. (2011). Organometallics, 30, 6612-6616.]). Unlike the series of mol­ecular fivefold-coordinated tetra­phenyl­anti­mony(V) compounds, which easily dissociate in solution to yield tetra­phenyl­stibonium cations, [Ph4Sb]+ (Domasevitch et al., 2000[Domasevitch, K. V., Gerasimchuk, N. N. & Mokhir, A. (2000). Inorg. Chem. 39, 1227-1237.]), the derivatives of tri­phenyl­anti­mony(V) are much more chemically robust and they are well suited for the preparation of covalent oxide materials. The inter­actions between the Ph3Sb2+ cations and oxoanions are particularly important as they potentially control the assembly of these units into either discrete oxo-clusters or polymers. For example, one-dimensional covalent chains of oxo-bridged Ph3Sb2+ moieties were identified as a possible motif for amorphous [Ph3SbO]n formation (Carmalt et al., 1996[Carmalt, C. J., Crossley, J. G., Norman, N. C. & Orpen, A. G. (1996). Chem. Commun. pp. 1675-1676.]). In addition, there are a few complexes known in which singly charged oxoanions form mol­ecular five-coordinate structures with terminal [ReO4] (Wirringa et al., 1992[Wirringa, U., Roesky, H. W., Schmidt, H.-G. & Noltemeyer, M. (1992). Chem. Ber. 125, 2359-2361.]) or [PhSO3] (Rüther et al., 1986[Rüther, R., Huber, F. & Preut, H. (1986). Z. Anorg. Allg. Chem. 539, 110-126.]) groups or bridging [Ph2PO2] groups (Srungavruksham & Baskar, 2013[Srungavruksham, N. K. & Baskar, V. (2013). Eur. J. Inorg. Chem. 2013, 4345-4352.]), while insoluble derivatives with tetra­hedral dianions, such as SO42−, SeO42− and CrO42−, are likely to be polymeric (Goel et al., 1969[Goel, R. G., Joshi, P. N., Ridley, D. R. & Beaumont, R. E. (1969). Can. J. Chem. 47, 1423-1427.]).

At the same time, Ph3Sb2+ units may coordinate to the O atoms of octa­hedral oxoanion species to form discrete mol­ecules: one can anti­cipate using Ph3Sb2+ for the functionalization of inorganic metal–oxide octa­hedra with the generation of doubly bridged M(μ-O)2Sb motifs. The latter are formally similar to 1,2-benzene­diolate chelates, which have been observed in mol­ecular organo­anti­mony compounds (Hall & Sowerby, 1980[Hall, M. & Sowerby, D. B. (1980). J. Am. Chem. Soc. 102, 628-632.]). Such double bridges are well suited for covalent immobilization of triorgano­anti­mony moieties at the developed metal–oxide surfaces of polyoxometalates. The coordination behaviour of such systems, however, does not appear to have been considered so far. In this context, we have examined a structurally simple and attractive inorganic oxoanion, namely octa­hedral hexa­oxidotellurate(VI). In the present contribution, we crystallize this unit with Ph3Sb2+ units and report the crystal structure of the title compound, (C18H15Sb)3TeO6, which features the formation of discrete clusters, [Te{(μ-O)2SbPh3}3].

[Scheme 1]

2. Structural commentary

The title compound crystallizes in the monoclinic space group, C2/c, and contains the discrete mol­ecular unit shown in Fig. 1[link]. The asymmetric tetra­nuclear mol­ecule comprises a [TeO6] octa­hedron and three [Ph3SbO2] polyhedra sharing oxide edges. Thus two oxide bridges are formed from TeVI to each of the three SbV ions with Te—O—Sb angles in the range 99.33 (13)–102.41 (13)° (Table 1[link]). The three Te(μ-O)2Sb rhombuses are nearly planar, with the maximum deviation of the Te atom from the corresponding mean plane being 0.0676 (12) Å, which occurs in the Te1(μ-O)2Sb2 unit. Such fully substituted organometallic hexa­oxotellurate(VI) units are exceedingly rare, with the only known example being an aliphatic SnIV derivative (Beckmann et al., 2002[Beckmann, J., Dakternieks, D., O'Connell, J., Jurkschat, K. & Schürmann, M. (2002). Eur. J. Inorg. Chem. pp. 1484-1487.]). In addition, only two tri­phenyl­tin(IV) analogues of the title compound are known, namely [(Ph3SnO)4Te(OH)2] and [(Ph3SnO)2Te(OMe)4] (Herntrich & Merzweiler, 2010[Herntrich, T. & Merzweiler, K. (2010). Z. Anorg. Allg. Chem. 636, 803-807.]).

Table 1
Selected geometric parameters (Å, °)

Te1—O2 1.904 (3) Sb2—O3 1.966 (3)
Te1—O5 1.904 (3) Sb2—O4 2.087 (3)
Te1—O4 1.918 (3) Sb2—C25 2.136 (5)
Te1—O1 1.949 (3) Sb2—C31 2.147 (5)
Te1—O6 1.964 (3) Sb2—C19 2.170 (4)
Te1—O3 1.968 (3) Sb3—O6 1.967 (3)
Sb1—O1 1.992 (3) Sb3—O5 2.110 (3)
Sb1—O2 2.091 (3) Sb3—C49 2.112 (5)
Sb1—C1 2.110 (5) Sb3—C43 2.122 (4)
Sb1—C13 2.128 (4) Sb3—C37 2.165 (4)
Sb1—C7 2.175 (4)    
       
O2—Te1—O5 97.67 (13) O3—Sb2—C25 118.46 (16)
O2—Te1—O4 166.37 (13) O4—Sb2—C25 88.80 (15)
O5—Te1—O4 94.67 (13) O3—Sb2—C31 119.67 (17)
O2—Te1—O1 81.53 (12) O4—Sb2—C31 87.58 (16)
O5—Te1—O1 95.83 (13) C25—Sb2—C31 118.87 (19)
O4—Te1—O1 91.49 (13) O3—Sb2—C19 88.62 (17)
O2—Te1—O6 94.01 (13) O4—Sb2—C19 164.73 (16)
O5—Te1—O6 81.51 (12) C25—Sb2—C19 101.04 (18)
O4—Te1—O6 93.53 (13) C31—Sb2—C19 97.6 (2)
O1—Te1—O6 174.49 (13) O6—Sb3—O5 76.45 (12)
O2—Te1—O3 88.47 (13) O6—Sb3—C49 116.47 (16)
O5—Te1—O3 168.81 (13) O5—Sb3—C49 89.13 (16)
O4—Te1—O3 80.35 (12) O6—Sb3—C43 126.74 (16)
O1—Te1—O3 94.32 (13) O5—Sb3—C43 87.41 (15)
O6—Te1—O3 88.77 (13) C49—Sb3—C43 113.58 (18)
O1—Sb1—O2 76.01 (12) O6—Sb3—C37 89.39 (16)
O1—Sb1—C1 119.50 (15) O5—Sb3—C37 165.43 (16)
O2—Sb1—C1 91.35 (15) C49—Sb3—C37 100.46 (19)
O1—Sb1—C13 124.71 (15) C43—Sb3—C37 98.58 (17)
O2—Sb1—C13 91.45 (14) Te1—O1—Sb1 102.08 (13)
C1—Sb1—C13 114.34 (17) Te1—O2—Sb1 100.07 (13)
O1—Sb1—C7 85.22 (15) Sb2—O3—Te1 102.41 (13)
O2—Sb1—C7 161.09 (15) Te1—O4—Sb2 99.85 (12)
C1—Sb1—C7 99.99 (18) Te1—O5—Sb3 99.33 (13)
C13—Sb1—C7 97.49 (17) Te1—O6—Sb3 102.36 (14)
O3—Sb2—O4 76.38 (12)    
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 40% probability level. Hydrogen atoms are represented by small circles of arbitrary radius.

The Te1 atom adopts a slightly distorted octa­hedral coord­ination, with the three trans O—Te—O bond angles lying within the range 166.37 (13)–174.49 (13)°. The fivefold coordination around each of three Sb-atoms can best be described as distorted trigonal bipyramidal, with the O2—Sb1—C7 = 161.09 (15)°, O4—Sb2—C19 = 164.73 (16)° and O5—Sb3—C37 = 165.43 (16)° bond angles defining the principal axes of the trigonal bipyramids. This assignment is supported by the calculated five-coordinate τ-indices, which are 0.69, 0.75 and 0.65 for Sb1, Sb2 and Sb3, respectively (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). These values are closer to unity, the value expected for a perfect trigonal–bipyramidal geometry, than to zero, which is expected for a square-based pyramidal geometry.

In each of the three Sb-based trigonal bipyramids, the axial Sb—Oax bonds, Sb1—O2, Sb2—O4 and Sb3—O5, are slightly longer [in the range 2.087 (3)–2.110 (3) Å] than the equatorial Sb—Oeq bonds, Sb1—O1, Sb2—O3 and Sb3—O6 [in the range 1.966 (3)–1.992 (3) Å]. This observation coincides with the differentiation of the Te—O bond lengths; three of which, Te1—O2, Te1—O4 and Te1—O5, lie in the range 1.904 (3)–1.918 (3) Å and three, Te1—O1, Te1—O3 and Te1—O6, lie in the range 1.949 (3)–1.968 (3) Å. Thus when considering the six Te—O—Sb bridges, the shorter Sb—O bonds are accompanied by the longer Te—O bonds and vice versa. The distribution of the Te—OaxSb and Te—OeqSb bonds indicates that the coordination octa­hedron around the Te atom has the mer-configuration (Fig. 2[link]). This is consistent with the mer-octa­hedral geometry adopted in the previously examined tris­ubstituted tellurates, e.g. mer-[(Bu3SnO)3Te(OH)3] (Beckmann et al., 2002[Beckmann, J., Dakternieks, D., O'Connell, J., Jurkschat, K. & Schürmann, M. (2002). Eur. J. Inorg. Chem. pp. 1484-1487.]).

[Figure 2]
Figure 2
The connection of the Te- and Sb-coordination polyhedra, showing the mer-configuration of the [TeO6] octa­hedron in the environment of three [SbC3O2] trigonal bipyramids. The principal axes of the trigonal bipyramids are marked with thick black bonds and their equatorial planes are indicated by blue lines.

3. Supra­molecular features

The relatively loose packing of the title compound is dominated by weak dispersion forces, with the calculated packing index of 67.5 approaching the lower limit of the 65-75% range expected for organic solids (Dunitz, 1995[Dunitz, J. D. (1995). X-ray Analysis and the Structure of Organic Solids, 2nd corrected reprint, pp. 106-111. Basel: Verlag Helvetica Chimica Acta.]). For comparison, the perceptibly denser packing of more symmetrical polyphenyl substituted species, e.g. 1,3,5,7-tetra­phenyl­adamantane, supporting a complex framework of aromatic inter­actions, has a packing index of 70.4 (Boldog et al., 2009[Boldog, I., Lysenko, A. B., Rusanov, E. B., Chernega, A. N. & Domasevitch, K. V. (2009). Acta Cryst. C65, o248-o252.]). In the absence of stronger bonding, the present supra­molecular array is mediated by a series of C—H⋯O and C—H⋯π hydrogen bonds with a minor contribution from π/π stacking inter­actions.

Very weak mutual C—H⋯O bonding [with the shortest separation C46⋯O6ii = 3.276 (6) Å; symmetry code (ii) x, y + 1, z; Table 2[link]] arranges the mol­ecules into chains running parallel to the b direction (Fig. 3[link]). Three out of the six above-mentioned inter­actions present are relatively directional, with the angles at the H atoms lying in the range 150-177°. Even weaker C—H⋯π inter­actions are observed between adjacent chains (Fig. 4[link]). The two shortest of these are C11—H11⋯Cg(C43–C48)iii and C41—H41⋯Cg(C13–C18)iv (where Cg is a ring centroid; symmetry codes: (iii) x, −y + 2, x − [{1\over 2}]; (iv) x, −y + 1, z + [{1\over 2}]), with C⋯π separations of 3.775 (6) and 3.505 (6) Å and C—H⋯π angles of 137 and 124°, respectively. This bonding connects the chains into bilayers, which lie parallel to the bc plane. In addition, to further consolidate the bilayers, there are weak slipped ππ stacking inter­actions between pairs of inversion-related phenyl rings, with a centroid-to-centroid distance, Cg(C1–C6)⋯Cg(C1–C6)v = 3.807 (6) Å, an inter­planar distance of 3.603 (5) Å and a slippage angle of 18.8 (5)° [symmetry code: (v) −x, −y + 1, −z]. There are no specific inter­actions between the bilayers, and the shortest of their C⋯C contacts [3.404 (6) Å] is not accompanied by any ππ overlap.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O1i 0.95 2.58 3.342 (6) 137
C17—H17⋯O5i 0.95 2.58 3.437 (6) 150
C21—H21⋯O4i 0.95 2.75 3.651 (8) 158
C46—H46⋯O6ii 0.95 2.67 3.276 (6) 122
C47—H47⋯O6ii 0.95 2.73 3.307 (6) 120
C47—H47⋯O2ii 0.95 2.70 3.645 (6) 177
Symmetry codes: (i) [x, y-1, z]; (ii) x, y+1, z.
[Figure 3]
Figure 3
One-dimensional chains running along the b-axis direction, in which translation-related mol­ecules of the title compound are linked by a series of weak C—H⋯O hydrogen bonds (shown as dashed blue lines). [Symmetry codes: (i) x, y − 1, z; (ii) x, y + 1, z.]
[Figure 4]
Figure 4
Crystal packing of the title compound, viewed down the b axis, showing how the C—H⋯O bonded chains (which are orthogonal to the drawing plane) are connected into layers by means of C–H⋯π and slipped ππ stacking inter­actions. The blue and grey colours indicate two separate bilayers, which lie parallel to the bc plane. [Symmetry codes: (iv) x, −y + 1, z + [{1\over 2}]; (v) −x, −y + 1, −z.]

4. Database Survey

In the Cambridge Structure Database (CSD, version 5.42, last update November 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), no organo­anti­mony tellurates have been deposited, while only five hits are found for other kinds of organometallic TeO6-containing compounds. These include the already mentioned organotin derivatives trans-[(Ph3SnO)4Te(OH)2] and trans-[(Ph3SnO)2Te(OMe)4] (refcodes: LUWHUH and LUWJAP, Herntrich & Merzweiler, 2010[Herntrich, T. & Merzweiler, K. (2010). Z. Anorg. Allg. Chem. 636, 803-807.]), trans-(Bu3SnO)2[CH2(Ph2SnO)2]2Te (refcode: MOGDER, Beckmann et al., 2002[Beckmann, J., Dakternieks, D., O'Connell, J., Jurkschat, K. & Schürmann, M. (2002). Eur. J. Inorg. Chem. pp. 1484-1487.]) and two sil­yloxy compounds bis­(μ2-oxo)-octa­kis­(tri­methyl­sil­yloxy)ditellurium and orthotelluric acid tris­(1,1,2,2-tetra­methyl­disilane-1,2-di­yl)ester (refcodes: FAQVUO and FAQWAV, Driess et al., 1999[Driess, M., von Hänisch, C. & Merz, K. (1999). Z. Anorg. Allg. Chem. 625, 493-496.]). The sixth known structure, (Bu3SnO)3Te(OH)3, (Beckmann et al., 2002[Beckmann, J., Dakternieks, D., O'Connell, J., Jurkschat, K. & Schürmann, M. (2002). Eur. J. Inorg. Chem. pp. 1484-1487.]) is not deposited in the CSD. All of the above compounds feature sixfold O6 octa­hedral coordination of the Te atoms, with just one example of a condensed ditellurate core in (RO)4Te(μ-O)2Te(OR)4 (R = Me3Si; FAQVUO). The latter contains double Te—O—Te bridges, which are formally similar to the double Te—O—Sb bridges found in the title compound. No tetra­hedral TeO4 fragments have been reported in organometallic series to date. The only known example of a tetra­hedral tellurate is the ionic salt [NEt4]2TeO4·2H2O (Konaka et al., 2008[Konaka, S., Ozawa, Y. & Yagasaki, A. (2008). Inorg. Chem. 47, 1244-1245.]).

5. Hirshfeld analysis

Supra­molecular inter­actions in the title structure were further accessed and visualized by Hirshfeld surface analysis (Spackman & Byrom, 1997[Spackman, M. A. & Byrom, P. G. A. (1997). Chem. Phys. Lett. 267, 215-220.]; McKinnon et al., 2004[McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627-668.]; Hirshfeld, 1977[Hirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]) performed using CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://crystalexplorer.scb.uwa.edu.au/.]). The two-dimensional fingerprint plots (Fig. 5[link]) suggest that the major contributors to the Hirshfeld surface are H⋯H (58.0%) and H⋯C/C⋯H (32.6%) contacts, while the H⋯O/O⋯H contacts contribute only 7.8%. The latter are identified by a pair of short and very diffuse spikes, at ca 2.6 Å, which are actually superimposed upon the regions for the H⋯C/C⋯H inter­actions (the shortest of which is ca 2.9 Å). These results are consistent with the weakness of the C—H⋯O bonds in the structure. It is evident that only a few of the H⋯C/C⋯H contacts correspond to C—H⋯π bonding. Therefore, the H⋯C/C⋯H plot represents a rather diffuse collection of points between the pair of poorly resolved features and there no `wings' at the upper left and lower right, which are characteristic of C—H⋯π inter­actions (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]). The fraction of C⋯C contacts is particularly low (1.6%), indicating only very minor significance of the stacking inter­actions. In fact, with the exception of the one ππ stack noted above, this kind of inter­action is irrelevant to the title structure.

[Figure 5]
Figure 5
The overall two-dimensional fingerprint plot for the title compound, and those delineated into H⋯H (58.0%), H⋯C/C⋯H (32.6%), H⋯O/O⋯H (7.8%) and C⋯C (1.6%) contacts.

6. Synthesis and crystallization

In previously reported syntheses, a range of silver salts were used in ion-exchange reactions to form Ph3SbCl2 (Goel et al., 1969[Goel, R. G., Joshi, P. N., Ridley, D. R. & Beaumont, R. E. (1969). Can. J. Chem. 47, 1423-1427.]) and Ph4SbBr (Goel, 1969[Goel, R. G. (1969). Can. J. Chem. 47, 4607-4612.]) derivatives cleanly and in high yields. Our attempts to prepare tellurate(VI) analogues of such compounds led to de­aryl­ation and the formation of mixtures. The title compound was prepared in low yield by reacting the silver salt, Ag3H3TeO6, with tetra­phenyl­anti­mony(V) bromide as follows:

The starting material, Ag3H3TeO6, was synthesized according to the method of Gospodinov (1992[Gospodinov, G. G. (1992). Thermochim. Acta, 208, 269-274.]). 0.220 g (0.4 mmol) of Ag3H3TeO6 were added to a solution containing 0.612 g (1.2 mmol) of Ph4SbBr in 20 mL of aceto­nitrile. The mixture was stirred for 3 h and then the AgBr precipitate removed by filtration. Evaporation of the solution yielded a colourless glassy material, which was then dissolved in 10 mL of a 1:1 v/v mixture of benzene and butyl acetate. Slow evaporation of the solution to a volume of 2–3 mL afforded 0.138 g (27%) of the product in the form of long colourless prisms. The crystals were filtered and dried in air. Analysis (%) for C54H45O6Sb3Te: Found: C 50.12, H 3.39; Calculated: C 50.56, H 3.54. IR (KBr, cm−1): 454s, 520m, 610s, 692vs, 732vs, 772w, 996w, 1066m, 1434s, 1478m, 1576w, 2824w, 3052m.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All the hydrogen atoms were located in difference-Fourier maps and then refined as riding with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula [Sb3Te(C6H5)9O6]
Mr 1282.75
Crystal system, space group Monoclinic, C2/c
Temperature (K) 173
a, b, c (Å) 47.714 (2), 9.1176 (4), 22.9324 (10)
β (°) 104.168 (4)
V3) 9672.9 (8)
Z 8
Radiation type Mo Kα
μ (mm−1) 2.31
Crystal size (mm) 0.28 × 0.22 × 0.21
 
Data collection
Diffractometer Stoe IPDS
Absorption correction Numerical [X-RED (Stoe & Cie, 2001[Stoe & Cie (2001). X-RED. Stoe & Cie GmbH, Darmstadt, Germany.]) and X-SHAPE (Stoe & Cie, 1999[Stoe & Cie (1999). X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.])]
Tmin, Tmax 0.499, 0.572
No. of measured, independent and observed [I > 2σ(I)] reflections 29796, 10754, 8356
Rint 0.053
(sin θ/λ)max−1) 0.644
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.096, 0.93
No. of reflections 10754
No. of parameters 577
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.00, −1.24
Computer programs: IPDS Software (Stoe & Cie, 2000[Stoe & Cie (2000). IPDS Software. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/1 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: IPDS Software (Stoe & Cie, 2000); cell refinement: IPDS Software (Stoe & Cie, 2000); data reduction: IPDS Software (Stoe & Cie, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012).

Hexa-µ-oxido-1:2κ4O:O;1:3κ4O:O;1:4κ4O:O-nonaphenyl-2κ3C,3κ3C,4κ3C-triantimony(V)tellurium(VI) top
Crystal data top
[Sb3Te(C6H5)9O6]F(000) = 4976
Mr = 1282.75Dx = 1.762 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 47.714 (2) ÅCell parameters from 8000 reflections
b = 9.1176 (4) Åθ = 2.2–27.2°
c = 22.9324 (10) ŵ = 2.31 mm1
β = 104.168 (4)°T = 173 K
V = 9672.9 (8) Å3Prism, colorless
Z = 80.28 × 0.22 × 0.21 mm
Data collection top
Stoe IPDS
diffractometer
8356 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.053
φ oscillation scansθmax = 27.2°, θmin = 2.2°
Absorption correction: numerical
[X-RED (Stoe & Cie, 2001) and X-SHAPE (Stoe & Cie, 1999)]
h = 6161
Tmin = 0.499, Tmax = 0.572k = 1111
29796 measured reflectionsl = 2229
10754 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0636P)2]
where P = (Fo2 + 2Fc2)/3
10754 reflections(Δ/σ)max = 0.001
577 parametersΔρmax = 1.00 e Å3
0 restraintsΔρmin = 1.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Te10.11716 (2)0.68140 (3)0.04796 (2)0.02091 (7)
Sb10.07040 (2)0.57473 (3)0.06047 (2)0.02250 (7)
Sb20.17996 (2)0.60629 (3)0.04935 (2)0.02511 (8)
Sb30.11281 (2)0.81559 (3)0.16789 (2)0.02307 (8)
O10.10263 (7)0.7188 (3)0.03781 (13)0.0251 (6)
O20.08497 (7)0.5513 (3)0.03277 (13)0.0242 (6)
O30.14157 (7)0.5152 (3)0.03645 (14)0.0272 (7)
O40.15241 (7)0.7840 (3)0.04941 (14)0.0259 (6)
O50.09873 (7)0.8455 (3)0.07399 (13)0.0242 (6)
O60.12791 (7)0.6419 (3)0.13479 (13)0.0256 (6)
C10.02873 (10)0.6340 (5)0.0526 (2)0.0283 (9)
C20.02482 (13)0.7519 (6)0.0164 (3)0.0481 (14)
H20.0409970.8065330.0052570.058*
C30.00268 (15)0.7882 (7)0.0124 (3)0.0578 (17)
H30.0053730.8703500.0111270.069*
C40.02669 (13)0.7065 (7)0.0423 (3)0.0523 (16)
H40.0455210.7310290.0385950.063*
C50.02249 (12)0.5895 (7)0.0773 (3)0.0491 (14)
H50.0386240.5334560.0981830.059*
C60.00518 (11)0.5525 (6)0.0826 (2)0.0392 (12)
H60.0078040.4713730.1066530.047*
C70.06772 (10)0.6452 (5)0.15228 (19)0.0279 (9)
C80.04299 (14)0.7081 (8)0.1870 (3)0.0572 (17)
H80.0262700.7182760.1718240.069*
C90.04280 (16)0.7567 (10)0.2448 (3)0.075 (2)
H90.0257600.7996980.2690740.090*
C100.06683 (17)0.7434 (9)0.2672 (3)0.065 (2)
H100.0664850.7755600.3067530.078*
C110.09166 (15)0.6821 (7)0.2310 (3)0.0541 (16)
H110.1085360.6735330.2457380.065*
C120.09213 (13)0.6338 (7)0.1741 (2)0.0453 (13)
H120.1092990.5924380.1497390.054*
C130.07579 (10)0.3464 (5)0.0738 (2)0.0253 (9)
C140.06436 (11)0.2885 (5)0.1306 (2)0.0332 (11)
H140.0553960.3516040.1626920.040*
C150.06591 (12)0.1384 (5)0.1409 (2)0.0381 (12)
H150.0578390.0985660.1796580.046*
C160.07947 (13)0.0479 (5)0.0935 (3)0.0418 (13)
H160.0806220.0545770.1000170.050*
C170.09124 (13)0.1054 (5)0.0373 (2)0.0392 (12)
H170.1007710.0428650.0055050.047*
C180.08920 (12)0.2546 (5)0.0271 (2)0.0351 (11)
H180.0970030.2938220.0118310.042*
C190.19842 (11)0.3885 (5)0.0503 (2)0.0339 (11)
C200.17987 (13)0.2677 (5)0.0376 (2)0.0398 (12)
H200.1595500.2825260.0285640.048*
C210.19088 (16)0.1249 (7)0.0382 (3)0.0596 (18)
H210.1782640.0429090.0293350.071*
C220.22051 (19)0.1063 (7)0.0519 (4)0.074 (2)
H220.2282370.0101320.0525580.089*
C230.23914 (15)0.2243 (8)0.0646 (3)0.0610 (19)
H230.2594490.2091390.0734950.073*
C240.22796 (13)0.3664 (7)0.0644 (3)0.0454 (13)
H240.2407140.4476470.0740620.054*
C250.19205 (10)0.7018 (5)0.0260 (2)0.0296 (10)
C260.21692 (14)0.6580 (8)0.0415 (3)0.0564 (17)
H260.2286890.5831150.0192060.068*
C270.22468 (14)0.7237 (9)0.0897 (3)0.0628 (19)
H270.2420170.6944530.0998210.075*
C280.20786 (15)0.8293 (7)0.1229 (3)0.0537 (16)
H280.2136140.8755250.1552490.064*
C290.18223 (19)0.8685 (9)0.1089 (3)0.073 (2)
H290.1699400.9391380.1328700.088*
C300.17436 (15)0.8053 (7)0.0601 (3)0.0571 (17)
H300.1568800.8334910.0503830.068*
C310.20271 (10)0.6711 (6)0.1384 (2)0.0324 (10)
C320.21543 (12)0.5654 (7)0.1800 (2)0.0436 (13)
H320.2155060.4653020.1685230.052*
C330.22812 (15)0.6083 (9)0.2390 (3)0.0637 (19)
H330.2370720.5371430.2678740.076*
C340.22770 (15)0.7527 (10)0.2555 (3)0.071 (2)
H340.2361350.7809780.2958230.085*
C350.21508 (13)0.8571 (8)0.2136 (3)0.0560 (16)
H350.2152940.9572480.2252070.067*
C360.20219 (12)0.8174 (6)0.1554 (3)0.0425 (13)
H360.1930280.8891050.1270080.051*
C370.13421 (11)0.7432 (5)0.2576 (2)0.0302 (10)
C380.15596 (16)0.6418 (7)0.2671 (3)0.0572 (18)
H380.1621760.6019760.2341310.069*
C390.1691 (2)0.5966 (8)0.3264 (3)0.079 (3)
H390.1834980.5223090.3329760.095*
C400.16135 (16)0.6588 (8)0.3746 (3)0.0568 (17)
H400.1702790.6288730.4144960.068*
C410.14045 (14)0.7650 (7)0.3639 (2)0.0484 (14)
H410.1352490.8105050.3970140.058*
C420.12681 (13)0.8076 (6)0.3065 (2)0.0428 (13)
H420.1122900.8811840.3003250.051*
C430.12967 (10)1.0318 (5)0.1727 (2)0.0273 (9)
C440.15430 (12)1.0674 (5)0.2163 (3)0.0393 (12)
H440.1633340.9969600.2454190.047*
C450.16574 (14)1.2099 (6)0.2169 (3)0.0506 (15)
H450.1830741.2352750.2455200.061*
C460.15185 (13)1.3118 (6)0.1761 (3)0.0442 (13)
H460.1600021.4068210.1760950.053*
C470.12629 (14)1.2793 (5)0.1352 (2)0.0421 (13)
H470.1160821.3531120.1092150.050*
C480.11567 (12)1.1371 (5)0.1323 (2)0.0341 (11)
H480.0987271.1118170.1025540.041*
C490.06918 (10)0.8064 (5)0.1725 (2)0.0313 (10)
C500.04935 (12)0.9103 (6)0.1435 (3)0.0455 (13)
H500.0552280.9854290.1203480.055*
C510.02094 (13)0.9043 (8)0.1483 (3)0.0571 (17)
H510.0074060.9759920.1287870.069*
C520.01240 (14)0.7942 (9)0.1813 (3)0.0604 (19)
H520.0068830.7918900.1857520.072*
C530.03177 (14)0.6876 (8)0.2080 (3)0.0540 (17)
H530.0254820.6082180.2283990.065*
C540.06031 (13)0.6957 (6)0.2051 (2)0.0416 (12)
H540.0738560.6251890.2255520.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Te10.02428 (14)0.01463 (12)0.02401 (14)0.00024 (9)0.00627 (11)0.00027 (9)
Sb10.02552 (14)0.01608 (13)0.02517 (15)0.00021 (10)0.00482 (11)0.00089 (10)
Sb20.02550 (15)0.02110 (14)0.02942 (16)0.00203 (10)0.00803 (12)0.00078 (11)
Sb30.02859 (15)0.01667 (13)0.02517 (15)0.00063 (10)0.00892 (11)0.00024 (10)
O10.0306 (16)0.0175 (13)0.0268 (15)0.0019 (12)0.0061 (12)0.0028 (12)
O20.0329 (16)0.0194 (14)0.0204 (14)0.0021 (12)0.0070 (12)0.0023 (11)
O30.0292 (16)0.0177 (14)0.0353 (17)0.0009 (12)0.0088 (13)0.0024 (12)
O40.0295 (16)0.0148 (13)0.0338 (17)0.0025 (12)0.0084 (13)0.0003 (12)
O50.0320 (16)0.0166 (13)0.0258 (15)0.0045 (12)0.0104 (13)0.0015 (11)
O60.0323 (17)0.0184 (14)0.0259 (15)0.0011 (12)0.0068 (13)0.0033 (12)
C10.030 (2)0.023 (2)0.032 (2)0.0038 (18)0.0075 (19)0.0069 (18)
C20.042 (3)0.036 (3)0.069 (4)0.005 (2)0.019 (3)0.013 (3)
C30.054 (4)0.049 (3)0.078 (5)0.017 (3)0.031 (3)0.002 (3)
C40.037 (3)0.065 (4)0.061 (4)0.015 (3)0.023 (3)0.020 (3)
C50.029 (3)0.068 (4)0.050 (3)0.006 (3)0.009 (2)0.008 (3)
C60.032 (3)0.047 (3)0.038 (3)0.006 (2)0.008 (2)0.003 (2)
C70.037 (3)0.026 (2)0.020 (2)0.0048 (18)0.0071 (18)0.0057 (17)
C80.045 (3)0.075 (4)0.048 (3)0.000 (3)0.002 (3)0.030 (3)
C90.056 (4)0.108 (6)0.051 (4)0.005 (4)0.003 (3)0.042 (4)
C100.078 (5)0.076 (5)0.039 (3)0.011 (4)0.010 (3)0.023 (3)
C110.063 (4)0.064 (4)0.043 (3)0.006 (3)0.028 (3)0.007 (3)
C120.049 (3)0.055 (3)0.034 (3)0.007 (3)0.015 (2)0.010 (3)
C130.030 (2)0.0191 (19)0.027 (2)0.0001 (16)0.0080 (18)0.0004 (17)
C140.035 (3)0.023 (2)0.039 (3)0.0023 (19)0.003 (2)0.0012 (19)
C150.049 (3)0.025 (2)0.037 (3)0.001 (2)0.003 (2)0.006 (2)
C160.060 (3)0.017 (2)0.052 (3)0.001 (2)0.020 (3)0.003 (2)
C170.064 (4)0.023 (2)0.031 (3)0.011 (2)0.014 (2)0.0077 (19)
C180.050 (3)0.026 (2)0.029 (2)0.006 (2)0.011 (2)0.0035 (19)
C190.043 (3)0.025 (2)0.039 (3)0.014 (2)0.020 (2)0.0072 (19)
C200.050 (3)0.026 (2)0.047 (3)0.011 (2)0.020 (2)0.006 (2)
C210.077 (5)0.028 (3)0.081 (5)0.020 (3)0.032 (4)0.008 (3)
C220.099 (6)0.036 (3)0.102 (6)0.032 (4)0.053 (5)0.025 (4)
C230.055 (4)0.066 (4)0.072 (4)0.037 (3)0.035 (3)0.022 (4)
C240.045 (3)0.047 (3)0.048 (3)0.019 (3)0.016 (3)0.006 (3)
C250.031 (2)0.029 (2)0.031 (2)0.0031 (18)0.0125 (19)0.0010 (18)
C260.046 (3)0.075 (4)0.057 (4)0.023 (3)0.030 (3)0.027 (3)
C270.042 (3)0.097 (5)0.056 (4)0.010 (3)0.024 (3)0.025 (4)
C280.058 (4)0.064 (4)0.046 (3)0.010 (3)0.026 (3)0.007 (3)
C290.095 (6)0.082 (5)0.054 (4)0.036 (5)0.043 (4)0.034 (4)
C300.063 (4)0.059 (4)0.058 (4)0.025 (3)0.032 (3)0.024 (3)
C310.023 (2)0.043 (3)0.028 (2)0.0029 (19)0.0010 (18)0.004 (2)
C320.041 (3)0.053 (3)0.034 (3)0.010 (2)0.003 (2)0.004 (2)
C330.058 (4)0.091 (5)0.034 (3)0.020 (4)0.005 (3)0.005 (3)
C340.051 (4)0.105 (6)0.045 (4)0.005 (4)0.009 (3)0.027 (4)
C350.039 (3)0.066 (4)0.057 (4)0.004 (3)0.000 (3)0.023 (3)
C360.033 (3)0.042 (3)0.051 (3)0.006 (2)0.007 (2)0.012 (2)
C370.039 (3)0.027 (2)0.022 (2)0.0041 (19)0.0024 (19)0.0011 (17)
C380.080 (5)0.051 (3)0.029 (3)0.032 (3)0.007 (3)0.005 (2)
C390.113 (7)0.065 (5)0.046 (4)0.048 (5)0.009 (4)0.000 (3)
C400.077 (5)0.057 (4)0.032 (3)0.004 (3)0.005 (3)0.010 (3)
C410.056 (4)0.059 (4)0.030 (3)0.002 (3)0.010 (2)0.000 (3)
C420.046 (3)0.051 (3)0.033 (3)0.005 (3)0.012 (2)0.000 (2)
C430.033 (2)0.019 (2)0.032 (2)0.0050 (17)0.0105 (19)0.0021 (17)
C440.040 (3)0.025 (2)0.048 (3)0.004 (2)0.002 (2)0.003 (2)
C450.052 (3)0.034 (3)0.056 (4)0.013 (2)0.006 (3)0.002 (3)
C460.057 (4)0.029 (3)0.046 (3)0.015 (2)0.011 (3)0.001 (2)
C470.071 (4)0.023 (2)0.031 (3)0.007 (2)0.010 (2)0.0050 (19)
C480.049 (3)0.021 (2)0.032 (2)0.001 (2)0.009 (2)0.0022 (18)
C490.029 (2)0.032 (2)0.034 (2)0.0050 (18)0.0103 (19)0.0072 (19)
C500.040 (3)0.045 (3)0.055 (3)0.009 (2)0.017 (3)0.008 (3)
C510.037 (3)0.072 (4)0.063 (4)0.010 (3)0.013 (3)0.010 (3)
C520.038 (3)0.103 (6)0.043 (3)0.024 (4)0.016 (3)0.023 (4)
C530.046 (3)0.079 (5)0.039 (3)0.028 (3)0.013 (3)0.001 (3)
C540.045 (3)0.048 (3)0.033 (3)0.009 (2)0.010 (2)0.003 (2)
Geometric parameters (Å, º) top
Te1—O21.904 (3)C22—C231.380 (11)
Te1—O51.904 (3)C22—H220.9500
Te1—O41.918 (3)C23—C241.401 (8)
Te1—O11.949 (3)C23—H230.9500
Te1—O61.964 (3)C24—H240.9500
Te1—O31.968 (3)C25—C301.376 (7)
Sb1—O11.992 (3)C25—C261.378 (8)
Sb1—O22.091 (3)C26—C271.386 (9)
Sb1—C12.110 (5)C26—H260.9500
Sb1—C132.128 (4)C27—C281.361 (9)
Sb1—C72.175 (4)C27—H270.9500
Sb2—O31.966 (3)C28—C291.385 (10)
Sb2—O42.087 (3)C28—H280.9500
Sb2—C252.136 (5)C29—C301.390 (9)
Sb2—C312.147 (5)C29—H290.9500
Sb2—C192.170 (4)C30—H300.9500
Sb3—O61.967 (3)C31—C321.387 (7)
Sb3—O52.110 (3)C31—C361.392 (7)
Sb3—C492.112 (5)C32—C331.397 (8)
Sb3—C432.122 (4)C32—H320.9500
Sb3—C372.165 (4)C33—C341.371 (11)
C1—C61.381 (7)C33—H330.9500
C1—C21.399 (7)C34—C351.381 (11)
C2—C31.378 (8)C34—H340.9500
C2—H20.9500C35—C361.376 (8)
C3—C41.398 (10)C35—H350.9500
C3—H30.9500C36—H360.9500
C4—C51.379 (9)C37—C381.367 (8)
C4—H40.9500C37—C421.385 (7)
C5—C61.396 (8)C38—C391.412 (8)
C5—H50.9500C38—H380.9500
C6—H60.9500C39—C401.371 (10)
C7—C81.377 (7)C39—H390.9500
C7—C121.380 (8)C40—C411.368 (9)
C8—C91.396 (9)C40—H400.9500
C8—H80.9500C41—C421.374 (8)
C9—C101.371 (11)C41—H410.9500
C9—H90.9500C42—H420.9500
C10—C111.387 (10)C43—C441.383 (7)
C10—H100.9500C43—C481.387 (7)
C11—C121.371 (8)C44—C451.408 (7)
C11—H110.9500C44—H440.9500
C12—H120.9500C45—C461.368 (8)
C13—C181.386 (6)C45—H450.9500
C13—C141.387 (7)C46—C471.377 (8)
C14—C151.394 (7)C46—H460.9500
C14—H140.9500C47—C481.387 (7)
C15—C161.391 (7)C47—H470.9500
C15—H150.9500C48—H480.9500
C16—C171.377 (8)C49—C541.382 (7)
C16—H160.9500C49—C501.388 (7)
C17—C181.388 (7)C50—C511.387 (8)
C17—H170.9500C50—H500.9500
C18—H180.9500C51—C521.379 (10)
C19—C241.382 (8)C51—H510.9500
C19—C201.398 (8)C52—C531.377 (10)
C20—C211.403 (7)C52—H520.9500
C20—H200.9500C53—C541.382 (8)
C21—C221.381 (11)C53—H530.9500
C21—H210.9500C54—H540.9500
O2—Te1—O597.67 (13)C20—C19—Sb2118.9 (4)
O2—Te1—O4166.37 (13)C19—C20—C21120.8 (6)
O5—Te1—O494.67 (13)C19—C20—H20119.6
O2—Te1—O181.53 (12)C21—C20—H20119.6
O5—Te1—O195.83 (13)C22—C21—C20118.4 (7)
O4—Te1—O191.49 (13)C22—C21—H21120.8
O2—Te1—O694.01 (13)C20—C21—H21120.8
O5—Te1—O681.51 (12)C23—C22—C21121.5 (6)
O4—Te1—O693.53 (13)C23—C22—H22119.2
O1—Te1—O6174.49 (13)C21—C22—H22119.2
O2—Te1—O388.47 (13)C22—C23—C24119.7 (6)
O5—Te1—O3168.81 (13)C22—C23—H23120.2
O4—Te1—O380.35 (12)C24—C23—H23120.2
O1—Te1—O394.32 (13)C19—C24—C23120.1 (6)
O6—Te1—O388.77 (13)C19—C24—H24119.9
O1—Sb1—O276.01 (12)C23—C24—H24119.9
O1—Sb1—C1119.50 (15)C30—C25—C26119.9 (5)
O2—Sb1—C191.35 (15)C30—C25—Sb2119.3 (4)
O1—Sb1—C13124.71 (15)C26—C25—Sb2120.7 (4)
O2—Sb1—C1391.45 (14)C25—C26—C27119.7 (6)
C1—Sb1—C13114.34 (17)C25—C26—H26120.1
O1—Sb1—C785.22 (15)C27—C26—H26120.1
O2—Sb1—C7161.09 (15)C28—C27—C26121.1 (6)
C1—Sb1—C799.99 (18)C28—C27—H27119.5
C13—Sb1—C797.49 (17)C26—C27—H27119.5
O3—Sb2—O476.38 (12)C27—C28—C29119.1 (6)
O3—Sb2—C25118.46 (16)C27—C28—H28120.4
O4—Sb2—C2588.80 (15)C29—C28—H28120.4
O3—Sb2—C31119.67 (17)C28—C29—C30120.5 (6)
O4—Sb2—C3187.58 (16)C28—C29—H29119.7
C25—Sb2—C31118.87 (19)C30—C29—H29119.7
O3—Sb2—C1988.62 (17)C25—C30—C29119.6 (6)
O4—Sb2—C19164.73 (16)C25—C30—H30120.2
C25—Sb2—C19101.04 (18)C29—C30—H30120.2
C31—Sb2—C1997.6 (2)C32—C31—C36120.5 (5)
O6—Sb3—O576.45 (12)C32—C31—Sb2119.8 (4)
O6—Sb3—C49116.47 (16)C36—C31—Sb2119.4 (4)
O5—Sb3—C4989.13 (16)C31—C32—C33119.0 (6)
O6—Sb3—C43126.74 (16)C31—C32—H32120.5
O5—Sb3—C4387.41 (15)C33—C32—H32120.5
C49—Sb3—C43113.58 (18)C34—C33—C32120.2 (6)
O6—Sb3—C3789.39 (16)C34—C33—H33119.9
O5—Sb3—C37165.43 (16)C32—C33—H33119.9
C49—Sb3—C37100.46 (19)C33—C34—C35120.3 (6)
C43—Sb3—C3798.58 (17)C33—C34—H34119.9
Te1—O1—Sb1102.08 (13)C35—C34—H34119.9
Te1—O2—Sb1100.07 (13)C36—C35—C34120.5 (6)
Sb2—O3—Te1102.41 (13)C36—C35—H35119.7
Te1—O4—Sb299.85 (12)C34—C35—H35119.7
Te1—O5—Sb399.33 (13)C35—C36—C31119.4 (6)
Te1—O6—Sb3102.36 (14)C35—C36—H36120.3
C6—C1—C2119.8 (5)C31—C36—H36120.3
C6—C1—Sb1119.3 (4)C38—C37—C42119.4 (5)
C2—C1—Sb1120.8 (4)C38—C37—Sb3121.4 (4)
C3—C2—C1119.4 (6)C42—C37—Sb3119.1 (4)
C3—C2—H2120.3C37—C38—C39119.5 (6)
C1—C2—H2120.3C37—C38—H38120.3
C2—C3—C4121.2 (6)C39—C38—H38120.3
C2—C3—H3119.4C40—C39—C38120.8 (6)
C4—C3—H3119.4C40—C39—H39119.6
C5—C4—C3118.7 (6)C38—C39—H39119.6
C5—C4—H4120.7C41—C40—C39118.5 (5)
C3—C4—H4120.7C41—C40—H40120.8
C4—C5—C6120.8 (5)C39—C40—H40120.8
C4—C5—H5119.6C40—C41—C42121.7 (6)
C6—C5—H5119.6C40—C41—H41119.2
C1—C6—C5119.9 (5)C42—C41—H41119.2
C1—C6—H6120.0C41—C42—C37120.0 (5)
C5—C6—H6120.0C41—C42—H42120.0
C8—C7—C12120.1 (5)C37—C42—H42120.0
C8—C7—Sb1121.5 (4)C44—C43—C48120.4 (4)
C12—C7—Sb1118.3 (4)C44—C43—Sb3120.0 (3)
C7—C8—C9119.2 (6)C48—C43—Sb3119.6 (3)
C7—C8—H8120.4C43—C44—C45118.8 (5)
C9—C8—H8120.4C43—C44—H44120.6
C10—C9—C8121.0 (6)C45—C44—H44120.6
C10—C9—H9119.5C46—C45—C44119.9 (5)
C8—C9—H9119.5C46—C45—H45120.1
C9—C10—C11118.8 (6)C44—C45—H45120.1
C9—C10—H10120.6C45—C46—C47121.3 (5)
C11—C10—H10120.6C45—C46—H46119.3
C12—C11—C10120.8 (6)C47—C46—H46119.3
C12—C11—H11119.6C46—C47—C48119.0 (5)
C10—C11—H11119.6C46—C47—H47120.5
C11—C12—C7120.2 (5)C48—C47—H47120.5
C11—C12—H12119.9C43—C48—C47120.3 (5)
C7—C12—H12119.9C43—C48—H48119.8
C18—C13—C14119.7 (4)C47—C48—H48119.8
C18—C13—Sb1122.0 (3)C54—C49—C50119.6 (5)
C14—C13—Sb1118.3 (3)C54—C49—Sb3119.5 (4)
C13—C14—C15120.6 (4)C50—C49—Sb3120.9 (4)
C13—C14—H14119.7C51—C50—C49120.0 (6)
C15—C14—H14119.7C51—C50—H50120.0
C16—C15—C14118.9 (5)C49—C50—H50120.0
C16—C15—H15120.5C52—C51—C50119.9 (6)
C14—C15—H15120.5C52—C51—H51120.1
C17—C16—C15120.7 (4)C50—C51—H51120.1
C17—C16—H16119.7C53—C52—C51120.1 (6)
C15—C16—H16119.7C53—C52—H52120.0
C16—C17—C18120.1 (5)C51—C52—H52120.0
C16—C17—H17120.0C52—C53—C54120.3 (6)
C18—C17—H17120.0C52—C53—H53119.9
C13—C18—C17120.0 (5)C54—C53—H53119.9
C13—C18—H18120.0C53—C54—C49120.0 (6)
C17—C18—H18120.0C53—C54—H54120.0
C24—C19—C20119.4 (5)C49—C54—H54120.0
C24—C19—Sb2121.6 (4)
C6—C1—C2—C31.9 (9)C27—C28—C29—C302.7 (12)
Sb1—C1—C2—C3179.8 (5)C26—C25—C30—C292.1 (10)
C1—C2—C3—C42.1 (10)Sb2—C25—C30—C29179.6 (6)
C2—C3—C4—C51.4 (10)C28—C29—C30—C250.8 (12)
C3—C4—C5—C60.5 (9)C36—C31—C32—C331.0 (9)
C2—C1—C6—C51.1 (8)Sb2—C31—C32—C33174.9 (5)
Sb1—C1—C6—C5179.4 (4)C31—C32—C33—C340.6 (10)
C4—C5—C6—C10.3 (9)C32—C33—C34—C350.9 (12)
C12—C7—C8—C91.5 (10)C33—C34—C35—C361.5 (11)
Sb1—C7—C8—C9177.5 (6)C34—C35—C36—C311.9 (10)
C7—C8—C9—C100.4 (12)C32—C31—C36—C351.6 (9)
C8—C9—C10—C110.8 (13)Sb2—C31—C36—C35175.5 (5)
C9—C10—C11—C120.9 (11)C42—C37—C38—C394.5 (10)
C10—C11—C12—C70.3 (10)Sb3—C37—C38—C39179.4 (6)
C8—C7—C12—C111.5 (9)C37—C38—C39—C403.4 (13)
Sb1—C7—C12—C11177.5 (5)C38—C39—C40—C410.4 (13)
C18—C13—C14—C150.9 (8)C39—C40—C41—C421.5 (11)
Sb1—C13—C14—C15176.5 (4)C40—C41—C42—C370.4 (10)
C13—C14—C15—C160.9 (8)C38—C37—C42—C412.7 (9)
C14—C15—C16—C170.1 (9)Sb3—C37—C42—C41178.9 (5)
C15—C16—C17—C181.2 (9)C48—C43—C44—C453.4 (8)
C14—C13—C18—C170.2 (8)Sb3—C43—C44—C45177.3 (5)
Sb1—C13—C18—C17177.5 (4)C43—C44—C45—C462.5 (10)
C16—C17—C18—C131.2 (9)C44—C45—C46—C471.7 (10)
C24—C19—C20—C211.1 (8)C45—C46—C47—C485.0 (10)
Sb2—C19—C20—C21179.5 (5)C44—C43—C48—C470.2 (8)
C19—C20—C21—C220.4 (10)Sb3—C43—C48—C47179.5 (4)
C20—C21—C22—C230.2 (12)C46—C47—C48—C434.0 (9)
C21—C22—C23—C240.7 (12)C54—C49—C50—C511.3 (9)
C20—C19—C24—C231.5 (9)Sb3—C49—C50—C51178.4 (5)
Sb2—C19—C24—C23180.0 (4)C49—C50—C51—C520.7 (10)
C22—C23—C24—C191.4 (10)C50—C51—C52—C532.1 (10)
C30—C25—C26—C273.1 (10)C51—C52—C53—C544.3 (9)
Sb2—C25—C26—C27178.6 (6)C52—C53—C54—C493.7 (9)
C25—C26—C27—C281.2 (12)C50—C49—C54—C530.9 (8)
C26—C27—C28—C291.7 (12)Sb3—C49—C54—C53179.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O1i0.952.583.342 (6)137
C17—H17···O5i0.952.583.437 (6)150
C21—H21···O4i0.952.753.651 (8)158
C46—H46···O6ii0.952.673.276 (6)122
C47—H47···O6ii0.952.733.307 (6)120
C47—H47···O2ii0.952.703.645 (6)177
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.
 

Funding information

This work was supported by the Ministry of Education and Science of Ukraine (project No. 19BF037–05).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBeckmann, J., Dakternieks, D., O'Connell, J., Jurkschat, K. & Schürmann, M. (2002). Eur. J. Inorg. Chem. pp. 1484–1487.  CrossRef Google Scholar
First citationBoldog, I., Lysenko, A. B., Rusanov, E. B., Chernega, A. N. & Domasevitch, K. V. (2009). Acta Cryst. C65, o248–o252.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCarmalt, C. J., Crossley, J. G., Norman, N. C. & Orpen, A. G. (1996). Chem. Commun. pp. 1675–1676.  CrossRef Web of Science Google Scholar
First citationDomasevitch, K. V., Gerasimchuk, N. N. & Mokhir, A. (2000). Inorg. Chem. 39, 1227–1237.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDriess, M., von Hänisch, C. & Merz, K. (1999). Z. Anorg. Allg. Chem. 625, 493–496.  CrossRef CAS Google Scholar
First citationDunitz, J. D. (1995). X-ray Analysis and the Structure of Organic Solids, 2nd corrected reprint, pp. 106–111. Basel: Verlag Helvetica Chimica Acta.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGoel, R. G. (1969). Can. J. Chem. 47, 4607–4612.  CrossRef CAS Web of Science Google Scholar
First citationGoel, R. G., Joshi, P. N., Ridley, D. R. & Beaumont, R. E. (1969). Can. J. Chem. 47, 1423–1427.  CrossRef CAS Web of Science Google Scholar
First citationGospodinov, G. G. (1992). Thermochim. Acta, 208, 269–274.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHall, M. & Sowerby, D. B. (1980). J. Am. Chem. Soc. 102, 628–632.  CSD CrossRef CAS Web of Science Google Scholar
First citationHerntrich, T. & Merzweiler, K. (2010). Z. Anorg. Allg. Chem. 636, 803–807.  Web of Science CSD CrossRef CAS Google Scholar
First citationHirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationKonaka, S., Ozawa, Y. & Yagasaki, A. (2008). Inorg. Chem. 47, 1244–1245.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMcKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNicholson, B. K., Clark, C. J., Wright, C. E., Telfer, S. G. & Groutso, T. (2011). Organometallics, 30, 6612–6616.  Web of Science CSD CrossRef CAS Google Scholar
First citationRüther, R., Huber, F. & Preut, H. (1986). Z. Anorg. Allg. Chem. 539, 110–126.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Byrom, P. G. A. (1997). Chem. Phys. Lett. 267, 215–220.  CrossRef CAS Web of Science Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSrungavruksham, N. K. & Baskar, V. (2013). Eur. J. Inorg. Chem. 2013, 4345–4352.  Web of Science CSD CrossRef CAS Google Scholar
First citationStoe & Cie (1999). X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationStoe & Cie (2000). IPDS Software. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationStoe & Cie (2001). X-RED. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://crystalexplorer.scb.uwa.edu.au/Google Scholar
First citationWirringa, U., Roesky, H. W., Schmidt, H.-G. & Noltemeyer, M. (1992). Chem. Ber. 125, 2359–2361.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds