research communications
Tris[triphenylantimony(V)]hexa(μ-oxido)tellurium(VI): a molecular complex with six Te—O—Sb bridges
aInorganic Chemistry Department, National Taras Shevchenko University of Kyiv, Volodymyrska Str. 64/13, 01601 Kyiv, Ukraine
*Correspondence e-mail: dk@univ.kiev.ua
In the structure of the title compound [systematic name hexa-μ-oxido-1:2κ4O:O;1:3κ4O:O;1:4κ4O:O-nonaphenyl-2κ3C,3κ3C,4κ3C-triantimony(V)tellurium(VI)], [Sb3Te(C6H5)9O6], the hexaoxidotellurate(VI) ion is coordinated to three SbV ions via pairs of cis-positioned O atoms to form a discrete molecular unit. The TeVI and SbV central ions exhibit distorted octahedral [TeO6] and distorted trigonal–bipyramidal [SbC3O2] coordination geometries, respectively. The linking of these polyhedra, by sharing the dioxide edges, results in the Te-based octahedron having a mer-configuration. The packing of the molecules is dominated by C—H⋯O hydrogen bonding and weak dispersion forces, with a minor contribution from C—H⋯π bonds and π–π stacking interactions. According to the Hirshfeld surface analysis, the contributions of the H⋯H, H⋯C/C⋯H and H⋯O/O⋯H contacts are 58.0, 32.6 and 7.8%, respectively. The title structure provides a model for the bonding of triorganoantimony dications to octahedral oxoanions, and the observed doubly bridged motifs, Te(μ-O)2Sb, may find application in the functionalization of polyoxometalate species.
Keywords: crystal structure; triorganoantimony(V); hexaoxidotellurate(VI); polyoxoanions; oxide clusters; Hirshfeld surface.
CCDC reference: 2118082
1. Chemical context
Organoantimony(V) species readily form covalent derivatives with a range of organic and inorganic oxo-ions and these can be used in the construction of metal–oxide clusters (Nicholson et al., 2011). Unlike the series of molecular fivefold-coordinated tetraphenylantimony(V) compounds, which easily dissociate in solution to yield tetraphenylstibonium cations, [Ph4Sb]+ (Domasevitch et al., 2000), the derivatives of triphenylantimony(V) are much more chemically robust and they are well suited for the preparation of covalent oxide materials. The interactions between the Ph3Sb2+ cations and oxoanions are particularly important as they potentially control the assembly of these units into either discrete oxo-clusters or polymers. For example, one-dimensional covalent chains of oxo-bridged Ph3Sb2+ moieties were identified as a possible motif for amorphous [Ph3SbO]n formation (Carmalt et al., 1996). In addition, there are a few complexes known in which singly charged oxoanions form molecular five-coordinate structures with terminal [ReO4]− (Wirringa et al., 1992) or [PhSO3]− (Rüther et al., 1986) groups or bridging [Ph2PO2]− groups (Srungavruksham & Baskar, 2013), while insoluble derivatives with tetrahedral dianions, such as SO42−, SeO42− and CrO42−, are likely to be polymeric (Goel et al., 1969).
At the same time, Ph3Sb2+ units may coordinate to the O atoms of octahedral oxoanion species to form discrete molecules: one can anticipate using Ph3Sb2+ for the functionalization of inorganic metal–oxide octahedra with the generation of doubly bridged M(μ-O)2Sb motifs. The latter are formally similar to 1,2-benzenediolate chelates, which have been observed in molecular organoantimony compounds (Hall & Sowerby, 1980). Such double bridges are well suited for covalent immobilization of triorganoantimony moieties at the developed metal–oxide surfaces of polyoxometalates. The coordination behaviour of such systems, however, does not appear to have been considered so far. In this context, we have examined a structurally simple and attractive inorganic oxoanion, namely octahedral hexaoxidotellurate(VI). In the present contribution, we crystallize this unit with Ph3Sb2+ units and report the of the title compound, (C18H15Sb)3TeO6, which features the formation of discrete clusters, [Te{(μ-O)2SbPh3}3].
2. Structural commentary
The title compound crystallizes in the monoclinic C2/c, and contains the discrete molecular unit shown in Fig. 1. The asymmetric tetranuclear molecule comprises a [TeO6] octahedron and three [Ph3SbO2] polyhedra sharing oxide edges. Thus two oxide bridges are formed from TeVI to each of the three SbV ions with Te—O—Sb angles in the range 99.33 (13)–102.41 (13)° (Table 1). The three Te(μ-O)2Sb rhombuses are nearly planar, with the maximum deviation of the Te atom from the corresponding mean plane being 0.0676 (12) Å, which occurs in the Te1(μ-O)2Sb2 unit. Such fully substituted organometallic hexaoxotellurate(VI) units are exceedingly rare, with the only known example being an aliphatic SnIV derivative (Beckmann et al., 2002). In addition, only two triphenyltin(IV) analogues of the title compound are known, namely [(Ph3SnO)4Te(OH)2] and [(Ph3SnO)2Te(OMe)4] (Herntrich & Merzweiler, 2010).
|
The Te1 atom adopts a slightly distorted octahedral coordination, with the three trans O—Te—O bond angles lying within the range 166.37 (13)–174.49 (13)°. The fivefold coordination around each of three Sb-atoms can best be described as distorted trigonal bipyramidal, with the O2—Sb1—C7 = 161.09 (15)°, O4—Sb2—C19 = 164.73 (16)° and O5—Sb3—C37 = 165.43 (16)° bond angles defining the principal axes of the trigonal bipyramids. This assignment is supported by the calculated five-coordinate τ-indices, which are 0.69, 0.75 and 0.65 for Sb1, Sb2 and Sb3, respectively (Addison et al., 1984). These values are closer to unity, the value expected for a perfect trigonal–bipyramidal geometry, than to zero, which is expected for a square-based pyramidal geometry.
In each of the three Sb-based trigonal bipyramids, the axial Sb—Oax bonds, Sb1—O2, Sb2—O4 and Sb3—O5, are slightly longer [in the range 2.087 (3)–2.110 (3) Å] than the equatorial Sb—Oeq bonds, Sb1—O1, Sb2—O3 and Sb3—O6 [in the range 1.966 (3)–1.992 (3) Å]. This observation coincides with the differentiation of the Te—O bond lengths; three of which, Te1—O2, Te1—O4 and Te1—O5, lie in the range 1.904 (3)–1.918 (3) Å and three, Te1—O1, Te1—O3 and Te1—O6, lie in the range 1.949 (3)–1.968 (3) Å. Thus when considering the six Te—O—Sb bridges, the shorter Sb—O bonds are accompanied by the longer Te—O bonds and vice versa. The distribution of the Te—OaxSb and Te—OeqSb bonds indicates that the coordination octahedron around the Te atom has the mer-configuration (Fig. 2). This is consistent with the mer-octahedral geometry adopted in the previously examined trisubstituted tellurates, e.g. mer-[(Bu3SnO)3Te(OH)3] (Beckmann et al., 2002).
3. Supramolecular features
The relatively loose packing of the title compound is dominated by weak dispersion forces, with the calculated packing index of 67.5 approaching the lower limit of the 65-75% range expected for organic solids (Dunitz, 1995). For comparison, the perceptibly denser packing of more symmetrical polyphenyl substituted species, e.g. 1,3,5,7-tetraphenyladamantane, supporting a complex framework of aromatic interactions, has a packing index of 70.4 (Boldog et al., 2009). In the absence of stronger bonding, the present supramolecular array is mediated by a series of C—H⋯O and C—H⋯π hydrogen bonds with a minor contribution from π/π stacking interactions.
Very weak mutual C—H⋯O bonding [with the shortest separation C46⋯O6ii = 3.276 (6) Å; symmetry code (ii) x, y + 1, z; Table 2] arranges the molecules into chains running parallel to the b direction (Fig. 3). Three out of the six above-mentioned interactions present are relatively directional, with the angles at the H atoms lying in the range 150-177°. Even weaker C—H⋯π interactions are observed between adjacent chains (Fig. 4). The two shortest of these are C11—H11⋯Cg(C43–C48)iii and C41—H41⋯Cg(C13–C18)iv (where Cg is a ring centroid; symmetry codes: (iii) x, −y + 2, x − ; (iv) x, −y + 1, z + ), with C⋯π separations of 3.775 (6) and 3.505 (6) Å and C—H⋯π angles of 137 and 124°, respectively. This bonding connects the chains into bilayers, which lie parallel to the bc plane. In addition, to further consolidate the bilayers, there are weak slipped π–π stacking interactions between pairs of inversion-related phenyl rings, with a centroid-to-centroid distance, Cg(C1–C6)⋯Cg(C1–C6)v = 3.807 (6) Å, an interplanar distance of 3.603 (5) Å and a slippage angle of 18.8 (5)° [symmetry code: (v) −x, −y + 1, −z]. There are no specific interactions between the bilayers, and the shortest of their C⋯C contacts [3.404 (6) Å] is not accompanied by any π–π overlap.
4. Database Survey
In the Cambridge Structure Database (CSD, version 5.42, last update November 2020; Groom et al., 2016), no organoantimony tellurates have been deposited, while only five hits are found for other kinds of organometallic TeO6-containing compounds. These include the already mentioned organotin derivatives trans-[(Ph3SnO)4Te(OH)2] and trans-[(Ph3SnO)2Te(OMe)4] (refcodes: LUWHUH and LUWJAP, Herntrich & Merzweiler, 2010), trans-(Bu3SnO)2[CH2(Ph2SnO)2]2Te (refcode: MOGDER, Beckmann et al., 2002) and two silyloxy compounds bis(μ2-oxo)-octakis(trimethylsilyloxy)ditellurium and orthotelluric acid tris(1,1,2,2-tetramethyldisilane-1,2-diyl)ester (refcodes: FAQVUO and FAQWAV, Driess et al., 1999). The sixth known structure, (Bu3SnO)3Te(OH)3, (Beckmann et al., 2002) is not deposited in the CSD. All of the above compounds feature sixfold O6 octahedral coordination of the Te atoms, with just one example of a condensed ditellurate core in (RO)4Te(μ-O)2Te(OR)4 (R = Me3Si; FAQVUO). The latter contains double Te—O—Te bridges, which are formally similar to the double Te—O—Sb bridges found in the title compound. No tetrahedral TeO4 fragments have been reported in organometallic series to date. The only known example of a tetrahedral tellurate is the ionic salt [NEt4]2TeO4·2H2O (Konaka et al., 2008).
5. Hirshfeld analysis
Supramolecular interactions in the title structure were further accessed and visualized by Hirshfeld surface analysis (Spackman & Byrom, 1997; McKinnon et al., 2004; Hirshfeld, 1977; Spackman & McKinnon, 2002) performed using CrystalExplorer17 (Turner et al., 2017). The two-dimensional fingerprint plots (Fig. 5) suggest that the major contributors to the Hirshfeld surface are H⋯H (58.0%) and H⋯C/C⋯H (32.6%) contacts, while the H⋯O/O⋯H contacts contribute only 7.8%. The latter are identified by a pair of short and very diffuse spikes, at ca 2.6 Å, which are actually superimposed upon the regions for the H⋯C/C⋯H interactions (the shortest of which is ca 2.9 Å). These results are consistent with the weakness of the C—H⋯O bonds in the structure. It is evident that only a few of the H⋯C/C⋯H contacts correspond to C—H⋯π bonding. Therefore, the H⋯C/C⋯H plot represents a rather diffuse collection of points between the pair of poorly resolved features and there no `wings' at the upper left and lower right, which are characteristic of C—H⋯π interactions (Spackman & McKinnon, 2002). The fraction of C⋯C contacts is particularly low (1.6%), indicating only very minor significance of the stacking interactions. In fact, with the exception of the one π–π stack noted above, this kind of interaction is irrelevant to the title structure.
6. Synthesis and crystallization
In previously reported syntheses, a range of silver salts were used in ion-exchange reactions to form Ph3SbCl2 (Goel et al., 1969) and Ph4SbBr (Goel, 1969) derivatives cleanly and in high yields. Our attempts to prepare tellurate(VI) analogues of such compounds led to dearylation and the formation of mixtures. The title compound was prepared in low yield by reacting the silver salt, Ag3H3TeO6, with tetraphenylantimony(V) bromide as follows:
The starting material, Ag3H3TeO6, was synthesized according to the method of Gospodinov (1992). 0.220 g (0.4 mmol) of Ag3H3TeO6 were added to a solution containing 0.612 g (1.2 mmol) of Ph4SbBr in 20 mL of acetonitrile. The mixture was stirred for 3 h and then the AgBr precipitate removed by filtration. Evaporation of the solution yielded a colourless glassy material, which was then dissolved in 10 mL of a 1:1 v/v mixture of benzene and butyl acetate. Slow evaporation of the solution to a volume of 2–3 mL afforded 0.138 g (27%) of the product in the form of long colourless prisms. The crystals were filtered and dried in air. Analysis (%) for C54H45O6Sb3Te: Found: C 50.12, H 3.39; Calculated: C 50.56, H 3.54. IR (KBr, cm−1): 454s, 520m, 610s, 692vs, 732vs, 772w, 996w, 1066m, 1434s, 1478m, 1576w, 2824w, 3052m.
7. Refinement
Crystal data, data collection and structure . All the hydrogen atoms were located in difference-Fourier maps and then refined as riding with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C).
details are summarized in Table 3Supporting information
CCDC reference: 2118082
https://doi.org/10.1107/S2056989021011294/cq2048sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021011294/cq2048Isup2.hkl
Data collection: IPDS Software (Stoe & Cie, 2000); cell
IPDS Software (Stoe & Cie, 2000); data reduction: IPDS Software (Stoe & Cie, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012).[Sb3Te(C6H5)9O6] | F(000) = 4976 |
Mr = 1282.75 | Dx = 1.762 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 47.714 (2) Å | Cell parameters from 8000 reflections |
b = 9.1176 (4) Å | θ = 2.2–27.2° |
c = 22.9324 (10) Å | µ = 2.31 mm−1 |
β = 104.168 (4)° | T = 173 K |
V = 9672.9 (8) Å3 | Prism, colorless |
Z = 8 | 0.28 × 0.22 × 0.21 mm |
Stoe IPDS diffractometer | 8356 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.053 |
φ oscillation scans | θmax = 27.2°, θmin = 2.2° |
Absorption correction: numerical [X-RED (Stoe & Cie, 2001) and X-SHAPE (Stoe & Cie, 1999)] | h = −61→61 |
Tmin = 0.499, Tmax = 0.572 | k = −11→11 |
29796 measured reflections | l = −22→29 |
10754 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.096 | H-atom parameters constrained |
S = 0.93 | w = 1/[σ2(Fo2) + (0.0636P)2] where P = (Fo2 + 2Fc2)/3 |
10754 reflections | (Δ/σ)max = 0.001 |
577 parameters | Δρmax = 1.00 e Å−3 |
0 restraints | Δρmin = −1.24 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Te1 | 0.11716 (2) | 0.68140 (3) | 0.04796 (2) | 0.02091 (7) | |
Sb1 | 0.07040 (2) | 0.57473 (3) | −0.06047 (2) | 0.02250 (7) | |
Sb2 | 0.17996 (2) | 0.60629 (3) | 0.04935 (2) | 0.02511 (8) | |
Sb3 | 0.11281 (2) | 0.81559 (3) | 0.16789 (2) | 0.02307 (8) | |
O1 | 0.10263 (7) | 0.7188 (3) | −0.03781 (13) | 0.0251 (6) | |
O2 | 0.08497 (7) | 0.5513 (3) | 0.03277 (13) | 0.0242 (6) | |
O3 | 0.14157 (7) | 0.5152 (3) | 0.03645 (14) | 0.0272 (7) | |
O4 | 0.15241 (7) | 0.7840 (3) | 0.04941 (14) | 0.0259 (6) | |
O5 | 0.09873 (7) | 0.8455 (3) | 0.07399 (13) | 0.0242 (6) | |
O6 | 0.12791 (7) | 0.6419 (3) | 0.13479 (13) | 0.0256 (6) | |
C1 | 0.02873 (10) | 0.6340 (5) | −0.0526 (2) | 0.0283 (9) | |
C2 | 0.02482 (13) | 0.7519 (6) | −0.0164 (3) | 0.0481 (14) | |
H2 | 0.040997 | 0.806533 | 0.005257 | 0.058* | |
C3 | −0.00268 (15) | 0.7882 (7) | −0.0124 (3) | 0.0578 (17) | |
H3 | −0.005373 | 0.870350 | 0.011127 | 0.069* | |
C4 | −0.02669 (13) | 0.7065 (7) | −0.0423 (3) | 0.0523 (16) | |
H4 | −0.045521 | 0.731029 | −0.038595 | 0.063* | |
C5 | −0.02249 (12) | 0.5895 (7) | −0.0773 (3) | 0.0491 (14) | |
H5 | −0.038624 | 0.533456 | −0.098183 | 0.059* | |
C6 | 0.00518 (11) | 0.5525 (6) | −0.0826 (2) | 0.0392 (12) | |
H6 | 0.007804 | 0.471373 | −0.106653 | 0.047* | |
C7 | 0.06772 (10) | 0.6452 (5) | −0.15228 (19) | 0.0279 (9) | |
C8 | 0.04299 (14) | 0.7081 (8) | −0.1870 (3) | 0.0572 (17) | |
H8 | 0.026270 | 0.718276 | −0.171824 | 0.069* | |
C9 | 0.04280 (16) | 0.7567 (10) | −0.2448 (3) | 0.075 (2) | |
H9 | 0.025760 | 0.799698 | −0.269074 | 0.090* | |
C10 | 0.06683 (17) | 0.7434 (9) | −0.2672 (3) | 0.065 (2) | |
H10 | 0.066485 | 0.775560 | −0.306753 | 0.078* | |
C11 | 0.09166 (15) | 0.6821 (7) | −0.2310 (3) | 0.0541 (16) | |
H11 | 0.108536 | 0.673533 | −0.245738 | 0.065* | |
C12 | 0.09213 (13) | 0.6338 (7) | −0.1741 (2) | 0.0453 (13) | |
H12 | 0.109299 | 0.592438 | −0.149739 | 0.054* | |
C13 | 0.07579 (10) | 0.3464 (5) | −0.0738 (2) | 0.0253 (9) | |
C14 | 0.06436 (11) | 0.2885 (5) | −0.1306 (2) | 0.0332 (11) | |
H14 | 0.055396 | 0.351604 | −0.162692 | 0.040* | |
C15 | 0.06591 (12) | 0.1384 (5) | −0.1409 (2) | 0.0381 (12) | |
H15 | 0.057839 | 0.098566 | −0.179658 | 0.046* | |
C16 | 0.07947 (13) | 0.0479 (5) | −0.0935 (3) | 0.0418 (13) | |
H16 | 0.080622 | −0.054577 | −0.100017 | 0.050* | |
C17 | 0.09124 (13) | 0.1054 (5) | −0.0373 (2) | 0.0392 (12) | |
H17 | 0.100771 | 0.042865 | −0.005505 | 0.047* | |
C18 | 0.08920 (12) | 0.2546 (5) | −0.0271 (2) | 0.0351 (11) | |
H18 | 0.097003 | 0.293822 | 0.011831 | 0.042* | |
C19 | 0.19842 (11) | 0.3885 (5) | 0.0503 (2) | 0.0339 (11) | |
C20 | 0.17987 (13) | 0.2677 (5) | 0.0376 (2) | 0.0398 (12) | |
H20 | 0.159550 | 0.282526 | 0.028564 | 0.048* | |
C21 | 0.19088 (16) | 0.1249 (7) | 0.0382 (3) | 0.0596 (18) | |
H21 | 0.178264 | 0.042909 | 0.029335 | 0.071* | |
C22 | 0.22051 (19) | 0.1063 (7) | 0.0519 (4) | 0.074 (2) | |
H22 | 0.228237 | 0.010132 | 0.052558 | 0.089* | |
C23 | 0.23914 (15) | 0.2243 (8) | 0.0646 (3) | 0.0610 (19) | |
H23 | 0.259449 | 0.209139 | 0.073495 | 0.073* | |
C24 | 0.22796 (13) | 0.3664 (7) | 0.0644 (3) | 0.0454 (13) | |
H24 | 0.240714 | 0.447647 | 0.074062 | 0.054* | |
C25 | 0.19205 (10) | 0.7018 (5) | −0.0260 (2) | 0.0296 (10) | |
C26 | 0.21692 (14) | 0.6580 (8) | −0.0415 (3) | 0.0564 (17) | |
H26 | 0.228689 | 0.583115 | −0.019206 | 0.068* | |
C27 | 0.22468 (14) | 0.7237 (9) | −0.0897 (3) | 0.0628 (19) | |
H27 | 0.242017 | 0.694453 | −0.099821 | 0.075* | |
C28 | 0.20786 (15) | 0.8293 (7) | −0.1229 (3) | 0.0537 (16) | |
H28 | 0.213614 | 0.875525 | −0.155249 | 0.064* | |
C29 | 0.18223 (19) | 0.8685 (9) | −0.1089 (3) | 0.073 (2) | |
H29 | 0.169940 | 0.939138 | −0.132870 | 0.088* | |
C30 | 0.17436 (15) | 0.8053 (7) | −0.0601 (3) | 0.0571 (17) | |
H30 | 0.156880 | 0.833491 | −0.050383 | 0.068* | |
C31 | 0.20271 (10) | 0.6711 (6) | 0.1384 (2) | 0.0324 (10) | |
C32 | 0.21543 (12) | 0.5654 (7) | 0.1800 (2) | 0.0436 (13) | |
H32 | 0.215506 | 0.465302 | 0.168523 | 0.052* | |
C33 | 0.22812 (15) | 0.6083 (9) | 0.2390 (3) | 0.0637 (19) | |
H33 | 0.237072 | 0.537143 | 0.267874 | 0.076* | |
C34 | 0.22770 (15) | 0.7527 (10) | 0.2555 (3) | 0.071 (2) | |
H34 | 0.236135 | 0.780978 | 0.295823 | 0.085* | |
C35 | 0.21508 (13) | 0.8571 (8) | 0.2136 (3) | 0.0560 (16) | |
H35 | 0.215294 | 0.957248 | 0.225207 | 0.067* | |
C36 | 0.20219 (12) | 0.8174 (6) | 0.1554 (3) | 0.0425 (13) | |
H36 | 0.193028 | 0.889105 | 0.127008 | 0.051* | |
C37 | 0.13421 (11) | 0.7432 (5) | 0.2576 (2) | 0.0302 (10) | |
C38 | 0.15596 (16) | 0.6418 (7) | 0.2671 (3) | 0.0572 (18) | |
H38 | 0.162176 | 0.601976 | 0.234131 | 0.069* | |
C39 | 0.1691 (2) | 0.5966 (8) | 0.3264 (3) | 0.079 (3) | |
H39 | 0.183498 | 0.522309 | 0.332976 | 0.095* | |
C40 | 0.16135 (16) | 0.6588 (8) | 0.3746 (3) | 0.0568 (17) | |
H40 | 0.170279 | 0.628873 | 0.414496 | 0.068* | |
C41 | 0.14045 (14) | 0.7650 (7) | 0.3639 (2) | 0.0484 (14) | |
H41 | 0.135249 | 0.810505 | 0.397014 | 0.058* | |
C42 | 0.12681 (13) | 0.8076 (6) | 0.3065 (2) | 0.0428 (13) | |
H42 | 0.112290 | 0.881184 | 0.300325 | 0.051* | |
C43 | 0.12967 (10) | 1.0318 (5) | 0.1727 (2) | 0.0273 (9) | |
C44 | 0.15430 (12) | 1.0674 (5) | 0.2163 (3) | 0.0393 (12) | |
H44 | 0.163334 | 0.996960 | 0.245419 | 0.047* | |
C45 | 0.16574 (14) | 1.2099 (6) | 0.2169 (3) | 0.0506 (15) | |
H45 | 0.183074 | 1.235275 | 0.245520 | 0.061* | |
C46 | 0.15185 (13) | 1.3118 (6) | 0.1761 (3) | 0.0442 (13) | |
H46 | 0.160002 | 1.406821 | 0.176095 | 0.053* | |
C47 | 0.12629 (14) | 1.2793 (5) | 0.1352 (2) | 0.0421 (13) | |
H47 | 0.116082 | 1.353112 | 0.109215 | 0.050* | |
C48 | 0.11567 (12) | 1.1371 (5) | 0.1323 (2) | 0.0341 (11) | |
H48 | 0.098727 | 1.111817 | 0.102554 | 0.041* | |
C49 | 0.06918 (10) | 0.8064 (5) | 0.1725 (2) | 0.0313 (10) | |
C50 | 0.04935 (12) | 0.9103 (6) | 0.1435 (3) | 0.0455 (13) | |
H50 | 0.055228 | 0.985429 | 0.120348 | 0.055* | |
C51 | 0.02094 (13) | 0.9043 (8) | 0.1483 (3) | 0.0571 (17) | |
H51 | 0.007406 | 0.975992 | 0.128787 | 0.069* | |
C52 | 0.01240 (14) | 0.7942 (9) | 0.1813 (3) | 0.0604 (19) | |
H52 | −0.006883 | 0.791890 | 0.185752 | 0.072* | |
C53 | 0.03177 (14) | 0.6876 (8) | 0.2080 (3) | 0.0540 (17) | |
H53 | 0.025482 | 0.608218 | 0.228399 | 0.065* | |
C54 | 0.06031 (13) | 0.6957 (6) | 0.2051 (2) | 0.0416 (12) | |
H54 | 0.073856 | 0.625189 | 0.225552 | 0.050* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Te1 | 0.02428 (14) | 0.01463 (12) | 0.02401 (14) | 0.00024 (9) | 0.00627 (11) | 0.00027 (9) |
Sb1 | 0.02552 (14) | 0.01608 (13) | 0.02517 (15) | 0.00021 (10) | 0.00482 (11) | 0.00089 (10) |
Sb2 | 0.02550 (15) | 0.02110 (14) | 0.02942 (16) | 0.00203 (10) | 0.00803 (12) | 0.00078 (11) |
Sb3 | 0.02859 (15) | 0.01667 (13) | 0.02517 (15) | −0.00063 (10) | 0.00892 (11) | 0.00024 (10) |
O1 | 0.0306 (16) | 0.0175 (13) | 0.0268 (15) | −0.0019 (12) | 0.0061 (12) | 0.0028 (12) |
O2 | 0.0329 (16) | 0.0194 (14) | 0.0204 (14) | −0.0021 (12) | 0.0070 (12) | 0.0023 (11) |
O3 | 0.0292 (16) | 0.0177 (14) | 0.0353 (17) | 0.0009 (12) | 0.0088 (13) | −0.0024 (12) |
O4 | 0.0295 (16) | 0.0148 (13) | 0.0338 (17) | −0.0025 (12) | 0.0084 (13) | −0.0003 (12) |
O5 | 0.0320 (16) | 0.0166 (13) | 0.0258 (15) | 0.0045 (12) | 0.0104 (13) | −0.0015 (11) |
O6 | 0.0323 (17) | 0.0184 (14) | 0.0259 (15) | 0.0011 (12) | 0.0068 (13) | −0.0033 (12) |
C1 | 0.030 (2) | 0.023 (2) | 0.032 (2) | 0.0038 (18) | 0.0075 (19) | 0.0069 (18) |
C2 | 0.042 (3) | 0.036 (3) | 0.069 (4) | 0.005 (2) | 0.019 (3) | −0.013 (3) |
C3 | 0.054 (4) | 0.049 (3) | 0.078 (5) | 0.017 (3) | 0.031 (3) | −0.002 (3) |
C4 | 0.037 (3) | 0.065 (4) | 0.061 (4) | 0.015 (3) | 0.023 (3) | 0.020 (3) |
C5 | 0.029 (3) | 0.068 (4) | 0.050 (3) | −0.006 (3) | 0.009 (2) | 0.008 (3) |
C6 | 0.032 (3) | 0.047 (3) | 0.038 (3) | −0.006 (2) | 0.008 (2) | −0.003 (2) |
C7 | 0.037 (3) | 0.026 (2) | 0.020 (2) | −0.0048 (18) | 0.0071 (18) | 0.0057 (17) |
C8 | 0.045 (3) | 0.075 (4) | 0.048 (3) | 0.000 (3) | 0.002 (3) | 0.030 (3) |
C9 | 0.056 (4) | 0.108 (6) | 0.051 (4) | −0.005 (4) | −0.003 (3) | 0.042 (4) |
C10 | 0.078 (5) | 0.076 (5) | 0.039 (3) | −0.011 (4) | 0.010 (3) | 0.023 (3) |
C11 | 0.063 (4) | 0.064 (4) | 0.043 (3) | −0.006 (3) | 0.028 (3) | 0.007 (3) |
C12 | 0.049 (3) | 0.055 (3) | 0.034 (3) | 0.007 (3) | 0.015 (2) | 0.010 (3) |
C13 | 0.030 (2) | 0.0191 (19) | 0.027 (2) | 0.0001 (16) | 0.0080 (18) | −0.0004 (17) |
C14 | 0.035 (3) | 0.023 (2) | 0.039 (3) | 0.0023 (19) | 0.003 (2) | −0.0012 (19) |
C15 | 0.049 (3) | 0.025 (2) | 0.037 (3) | −0.001 (2) | 0.003 (2) | −0.006 (2) |
C16 | 0.060 (3) | 0.017 (2) | 0.052 (3) | 0.001 (2) | 0.020 (3) | −0.003 (2) |
C17 | 0.064 (4) | 0.023 (2) | 0.031 (3) | 0.011 (2) | 0.014 (2) | 0.0077 (19) |
C18 | 0.050 (3) | 0.026 (2) | 0.029 (2) | 0.006 (2) | 0.011 (2) | 0.0035 (19) |
C19 | 0.043 (3) | 0.025 (2) | 0.039 (3) | 0.014 (2) | 0.020 (2) | 0.0072 (19) |
C20 | 0.050 (3) | 0.026 (2) | 0.047 (3) | 0.011 (2) | 0.020 (2) | 0.006 (2) |
C21 | 0.077 (5) | 0.028 (3) | 0.081 (5) | 0.020 (3) | 0.032 (4) | 0.008 (3) |
C22 | 0.099 (6) | 0.036 (3) | 0.102 (6) | 0.032 (4) | 0.053 (5) | 0.025 (4) |
C23 | 0.055 (4) | 0.066 (4) | 0.072 (4) | 0.037 (3) | 0.035 (3) | 0.022 (4) |
C24 | 0.045 (3) | 0.047 (3) | 0.048 (3) | 0.019 (3) | 0.016 (3) | 0.006 (3) |
C25 | 0.031 (2) | 0.029 (2) | 0.031 (2) | −0.0031 (18) | 0.0125 (19) | −0.0010 (18) |
C26 | 0.046 (3) | 0.075 (4) | 0.057 (4) | 0.023 (3) | 0.030 (3) | 0.027 (3) |
C27 | 0.042 (3) | 0.097 (5) | 0.056 (4) | 0.010 (3) | 0.024 (3) | 0.025 (4) |
C28 | 0.058 (4) | 0.064 (4) | 0.046 (3) | −0.010 (3) | 0.026 (3) | 0.007 (3) |
C29 | 0.095 (6) | 0.082 (5) | 0.054 (4) | 0.036 (5) | 0.043 (4) | 0.034 (4) |
C30 | 0.063 (4) | 0.059 (4) | 0.058 (4) | 0.025 (3) | 0.032 (3) | 0.024 (3) |
C31 | 0.023 (2) | 0.043 (3) | 0.028 (2) | −0.0029 (19) | 0.0010 (18) | −0.004 (2) |
C32 | 0.041 (3) | 0.053 (3) | 0.034 (3) | 0.010 (2) | 0.003 (2) | 0.004 (2) |
C33 | 0.058 (4) | 0.091 (5) | 0.034 (3) | 0.020 (4) | −0.005 (3) | 0.005 (3) |
C34 | 0.051 (4) | 0.105 (6) | 0.045 (4) | 0.005 (4) | −0.009 (3) | −0.027 (4) |
C35 | 0.039 (3) | 0.066 (4) | 0.057 (4) | −0.004 (3) | 0.000 (3) | −0.023 (3) |
C36 | 0.033 (3) | 0.042 (3) | 0.051 (3) | −0.006 (2) | 0.007 (2) | −0.012 (2) |
C37 | 0.039 (3) | 0.027 (2) | 0.022 (2) | −0.0041 (19) | 0.0024 (19) | 0.0011 (17) |
C38 | 0.080 (5) | 0.051 (3) | 0.029 (3) | 0.032 (3) | −0.007 (3) | −0.005 (2) |
C39 | 0.113 (7) | 0.065 (5) | 0.046 (4) | 0.048 (5) | −0.009 (4) | 0.000 (3) |
C40 | 0.077 (5) | 0.057 (4) | 0.032 (3) | 0.004 (3) | 0.005 (3) | 0.010 (3) |
C41 | 0.056 (4) | 0.059 (4) | 0.030 (3) | 0.002 (3) | 0.010 (2) | 0.000 (3) |
C42 | 0.046 (3) | 0.051 (3) | 0.033 (3) | 0.005 (3) | 0.012 (2) | 0.000 (2) |
C43 | 0.033 (2) | 0.019 (2) | 0.032 (2) | −0.0050 (17) | 0.0105 (19) | −0.0021 (17) |
C44 | 0.040 (3) | 0.025 (2) | 0.048 (3) | −0.004 (2) | 0.002 (2) | 0.003 (2) |
C45 | 0.052 (3) | 0.034 (3) | 0.056 (4) | −0.013 (2) | −0.006 (3) | 0.002 (3) |
C46 | 0.057 (4) | 0.029 (3) | 0.046 (3) | −0.015 (2) | 0.011 (3) | −0.001 (2) |
C47 | 0.071 (4) | 0.023 (2) | 0.031 (3) | −0.007 (2) | 0.010 (2) | 0.0050 (19) |
C48 | 0.049 (3) | 0.021 (2) | 0.032 (2) | −0.001 (2) | 0.009 (2) | 0.0022 (18) |
C49 | 0.029 (2) | 0.032 (2) | 0.034 (2) | −0.0050 (18) | 0.0103 (19) | −0.0072 (19) |
C50 | 0.040 (3) | 0.045 (3) | 0.055 (3) | 0.009 (2) | 0.017 (3) | 0.008 (3) |
C51 | 0.037 (3) | 0.072 (4) | 0.063 (4) | 0.010 (3) | 0.013 (3) | −0.010 (3) |
C52 | 0.038 (3) | 0.103 (6) | 0.043 (3) | −0.024 (4) | 0.016 (3) | −0.023 (4) |
C53 | 0.046 (3) | 0.079 (5) | 0.039 (3) | −0.028 (3) | 0.013 (3) | −0.001 (3) |
C54 | 0.045 (3) | 0.048 (3) | 0.033 (3) | −0.009 (2) | 0.010 (2) | 0.003 (2) |
Te1—O2 | 1.904 (3) | C22—C23 | 1.380 (11) |
Te1—O5 | 1.904 (3) | C22—H22 | 0.9500 |
Te1—O4 | 1.918 (3) | C23—C24 | 1.401 (8) |
Te1—O1 | 1.949 (3) | C23—H23 | 0.9500 |
Te1—O6 | 1.964 (3) | C24—H24 | 0.9500 |
Te1—O3 | 1.968 (3) | C25—C30 | 1.376 (7) |
Sb1—O1 | 1.992 (3) | C25—C26 | 1.378 (8) |
Sb1—O2 | 2.091 (3) | C26—C27 | 1.386 (9) |
Sb1—C1 | 2.110 (5) | C26—H26 | 0.9500 |
Sb1—C13 | 2.128 (4) | C27—C28 | 1.361 (9) |
Sb1—C7 | 2.175 (4) | C27—H27 | 0.9500 |
Sb2—O3 | 1.966 (3) | C28—C29 | 1.385 (10) |
Sb2—O4 | 2.087 (3) | C28—H28 | 0.9500 |
Sb2—C25 | 2.136 (5) | C29—C30 | 1.390 (9) |
Sb2—C31 | 2.147 (5) | C29—H29 | 0.9500 |
Sb2—C19 | 2.170 (4) | C30—H30 | 0.9500 |
Sb3—O6 | 1.967 (3) | C31—C32 | 1.387 (7) |
Sb3—O5 | 2.110 (3) | C31—C36 | 1.392 (7) |
Sb3—C49 | 2.112 (5) | C32—C33 | 1.397 (8) |
Sb3—C43 | 2.122 (4) | C32—H32 | 0.9500 |
Sb3—C37 | 2.165 (4) | C33—C34 | 1.371 (11) |
C1—C6 | 1.381 (7) | C33—H33 | 0.9500 |
C1—C2 | 1.399 (7) | C34—C35 | 1.381 (11) |
C2—C3 | 1.378 (8) | C34—H34 | 0.9500 |
C2—H2 | 0.9500 | C35—C36 | 1.376 (8) |
C3—C4 | 1.398 (10) | C35—H35 | 0.9500 |
C3—H3 | 0.9500 | C36—H36 | 0.9500 |
C4—C5 | 1.379 (9) | C37—C38 | 1.367 (8) |
C4—H4 | 0.9500 | C37—C42 | 1.385 (7) |
C5—C6 | 1.396 (8) | C38—C39 | 1.412 (8) |
C5—H5 | 0.9500 | C38—H38 | 0.9500 |
C6—H6 | 0.9500 | C39—C40 | 1.371 (10) |
C7—C8 | 1.377 (7) | C39—H39 | 0.9500 |
C7—C12 | 1.380 (8) | C40—C41 | 1.368 (9) |
C8—C9 | 1.396 (9) | C40—H40 | 0.9500 |
C8—H8 | 0.9500 | C41—C42 | 1.374 (8) |
C9—C10 | 1.371 (11) | C41—H41 | 0.9500 |
C9—H9 | 0.9500 | C42—H42 | 0.9500 |
C10—C11 | 1.387 (10) | C43—C44 | 1.383 (7) |
C10—H10 | 0.9500 | C43—C48 | 1.387 (7) |
C11—C12 | 1.371 (8) | C44—C45 | 1.408 (7) |
C11—H11 | 0.9500 | C44—H44 | 0.9500 |
C12—H12 | 0.9500 | C45—C46 | 1.368 (8) |
C13—C18 | 1.386 (6) | C45—H45 | 0.9500 |
C13—C14 | 1.387 (7) | C46—C47 | 1.377 (8) |
C14—C15 | 1.394 (7) | C46—H46 | 0.9500 |
C14—H14 | 0.9500 | C47—C48 | 1.387 (7) |
C15—C16 | 1.391 (7) | C47—H47 | 0.9500 |
C15—H15 | 0.9500 | C48—H48 | 0.9500 |
C16—C17 | 1.377 (8) | C49—C54 | 1.382 (7) |
C16—H16 | 0.9500 | C49—C50 | 1.388 (7) |
C17—C18 | 1.388 (7) | C50—C51 | 1.387 (8) |
C17—H17 | 0.9500 | C50—H50 | 0.9500 |
C18—H18 | 0.9500 | C51—C52 | 1.379 (10) |
C19—C24 | 1.382 (8) | C51—H51 | 0.9500 |
C19—C20 | 1.398 (8) | C52—C53 | 1.377 (10) |
C20—C21 | 1.403 (7) | C52—H52 | 0.9500 |
C20—H20 | 0.9500 | C53—C54 | 1.382 (8) |
C21—C22 | 1.381 (11) | C53—H53 | 0.9500 |
C21—H21 | 0.9500 | C54—H54 | 0.9500 |
O2—Te1—O5 | 97.67 (13) | C20—C19—Sb2 | 118.9 (4) |
O2—Te1—O4 | 166.37 (13) | C19—C20—C21 | 120.8 (6) |
O5—Te1—O4 | 94.67 (13) | C19—C20—H20 | 119.6 |
O2—Te1—O1 | 81.53 (12) | C21—C20—H20 | 119.6 |
O5—Te1—O1 | 95.83 (13) | C22—C21—C20 | 118.4 (7) |
O4—Te1—O1 | 91.49 (13) | C22—C21—H21 | 120.8 |
O2—Te1—O6 | 94.01 (13) | C20—C21—H21 | 120.8 |
O5—Te1—O6 | 81.51 (12) | C23—C22—C21 | 121.5 (6) |
O4—Te1—O6 | 93.53 (13) | C23—C22—H22 | 119.2 |
O1—Te1—O6 | 174.49 (13) | C21—C22—H22 | 119.2 |
O2—Te1—O3 | 88.47 (13) | C22—C23—C24 | 119.7 (6) |
O5—Te1—O3 | 168.81 (13) | C22—C23—H23 | 120.2 |
O4—Te1—O3 | 80.35 (12) | C24—C23—H23 | 120.2 |
O1—Te1—O3 | 94.32 (13) | C19—C24—C23 | 120.1 (6) |
O6—Te1—O3 | 88.77 (13) | C19—C24—H24 | 119.9 |
O1—Sb1—O2 | 76.01 (12) | C23—C24—H24 | 119.9 |
O1—Sb1—C1 | 119.50 (15) | C30—C25—C26 | 119.9 (5) |
O2—Sb1—C1 | 91.35 (15) | C30—C25—Sb2 | 119.3 (4) |
O1—Sb1—C13 | 124.71 (15) | C26—C25—Sb2 | 120.7 (4) |
O2—Sb1—C13 | 91.45 (14) | C25—C26—C27 | 119.7 (6) |
C1—Sb1—C13 | 114.34 (17) | C25—C26—H26 | 120.1 |
O1—Sb1—C7 | 85.22 (15) | C27—C26—H26 | 120.1 |
O2—Sb1—C7 | 161.09 (15) | C28—C27—C26 | 121.1 (6) |
C1—Sb1—C7 | 99.99 (18) | C28—C27—H27 | 119.5 |
C13—Sb1—C7 | 97.49 (17) | C26—C27—H27 | 119.5 |
O3—Sb2—O4 | 76.38 (12) | C27—C28—C29 | 119.1 (6) |
O3—Sb2—C25 | 118.46 (16) | C27—C28—H28 | 120.4 |
O4—Sb2—C25 | 88.80 (15) | C29—C28—H28 | 120.4 |
O3—Sb2—C31 | 119.67 (17) | C28—C29—C30 | 120.5 (6) |
O4—Sb2—C31 | 87.58 (16) | C28—C29—H29 | 119.7 |
C25—Sb2—C31 | 118.87 (19) | C30—C29—H29 | 119.7 |
O3—Sb2—C19 | 88.62 (17) | C25—C30—C29 | 119.6 (6) |
O4—Sb2—C19 | 164.73 (16) | C25—C30—H30 | 120.2 |
C25—Sb2—C19 | 101.04 (18) | C29—C30—H30 | 120.2 |
C31—Sb2—C19 | 97.6 (2) | C32—C31—C36 | 120.5 (5) |
O6—Sb3—O5 | 76.45 (12) | C32—C31—Sb2 | 119.8 (4) |
O6—Sb3—C49 | 116.47 (16) | C36—C31—Sb2 | 119.4 (4) |
O5—Sb3—C49 | 89.13 (16) | C31—C32—C33 | 119.0 (6) |
O6—Sb3—C43 | 126.74 (16) | C31—C32—H32 | 120.5 |
O5—Sb3—C43 | 87.41 (15) | C33—C32—H32 | 120.5 |
C49—Sb3—C43 | 113.58 (18) | C34—C33—C32 | 120.2 (6) |
O6—Sb3—C37 | 89.39 (16) | C34—C33—H33 | 119.9 |
O5—Sb3—C37 | 165.43 (16) | C32—C33—H33 | 119.9 |
C49—Sb3—C37 | 100.46 (19) | C33—C34—C35 | 120.3 (6) |
C43—Sb3—C37 | 98.58 (17) | C33—C34—H34 | 119.9 |
Te1—O1—Sb1 | 102.08 (13) | C35—C34—H34 | 119.9 |
Te1—O2—Sb1 | 100.07 (13) | C36—C35—C34 | 120.5 (6) |
Sb2—O3—Te1 | 102.41 (13) | C36—C35—H35 | 119.7 |
Te1—O4—Sb2 | 99.85 (12) | C34—C35—H35 | 119.7 |
Te1—O5—Sb3 | 99.33 (13) | C35—C36—C31 | 119.4 (6) |
Te1—O6—Sb3 | 102.36 (14) | C35—C36—H36 | 120.3 |
C6—C1—C2 | 119.8 (5) | C31—C36—H36 | 120.3 |
C6—C1—Sb1 | 119.3 (4) | C38—C37—C42 | 119.4 (5) |
C2—C1—Sb1 | 120.8 (4) | C38—C37—Sb3 | 121.4 (4) |
C3—C2—C1 | 119.4 (6) | C42—C37—Sb3 | 119.1 (4) |
C3—C2—H2 | 120.3 | C37—C38—C39 | 119.5 (6) |
C1—C2—H2 | 120.3 | C37—C38—H38 | 120.3 |
C2—C3—C4 | 121.2 (6) | C39—C38—H38 | 120.3 |
C2—C3—H3 | 119.4 | C40—C39—C38 | 120.8 (6) |
C4—C3—H3 | 119.4 | C40—C39—H39 | 119.6 |
C5—C4—C3 | 118.7 (6) | C38—C39—H39 | 119.6 |
C5—C4—H4 | 120.7 | C41—C40—C39 | 118.5 (5) |
C3—C4—H4 | 120.7 | C41—C40—H40 | 120.8 |
C4—C5—C6 | 120.8 (5) | C39—C40—H40 | 120.8 |
C4—C5—H5 | 119.6 | C40—C41—C42 | 121.7 (6) |
C6—C5—H5 | 119.6 | C40—C41—H41 | 119.2 |
C1—C6—C5 | 119.9 (5) | C42—C41—H41 | 119.2 |
C1—C6—H6 | 120.0 | C41—C42—C37 | 120.0 (5) |
C5—C6—H6 | 120.0 | C41—C42—H42 | 120.0 |
C8—C7—C12 | 120.1 (5) | C37—C42—H42 | 120.0 |
C8—C7—Sb1 | 121.5 (4) | C44—C43—C48 | 120.4 (4) |
C12—C7—Sb1 | 118.3 (4) | C44—C43—Sb3 | 120.0 (3) |
C7—C8—C9 | 119.2 (6) | C48—C43—Sb3 | 119.6 (3) |
C7—C8—H8 | 120.4 | C43—C44—C45 | 118.8 (5) |
C9—C8—H8 | 120.4 | C43—C44—H44 | 120.6 |
C10—C9—C8 | 121.0 (6) | C45—C44—H44 | 120.6 |
C10—C9—H9 | 119.5 | C46—C45—C44 | 119.9 (5) |
C8—C9—H9 | 119.5 | C46—C45—H45 | 120.1 |
C9—C10—C11 | 118.8 (6) | C44—C45—H45 | 120.1 |
C9—C10—H10 | 120.6 | C45—C46—C47 | 121.3 (5) |
C11—C10—H10 | 120.6 | C45—C46—H46 | 119.3 |
C12—C11—C10 | 120.8 (6) | C47—C46—H46 | 119.3 |
C12—C11—H11 | 119.6 | C46—C47—C48 | 119.0 (5) |
C10—C11—H11 | 119.6 | C46—C47—H47 | 120.5 |
C11—C12—C7 | 120.2 (5) | C48—C47—H47 | 120.5 |
C11—C12—H12 | 119.9 | C43—C48—C47 | 120.3 (5) |
C7—C12—H12 | 119.9 | C43—C48—H48 | 119.8 |
C18—C13—C14 | 119.7 (4) | C47—C48—H48 | 119.8 |
C18—C13—Sb1 | 122.0 (3) | C54—C49—C50 | 119.6 (5) |
C14—C13—Sb1 | 118.3 (3) | C54—C49—Sb3 | 119.5 (4) |
C13—C14—C15 | 120.6 (4) | C50—C49—Sb3 | 120.9 (4) |
C13—C14—H14 | 119.7 | C51—C50—C49 | 120.0 (6) |
C15—C14—H14 | 119.7 | C51—C50—H50 | 120.0 |
C16—C15—C14 | 118.9 (5) | C49—C50—H50 | 120.0 |
C16—C15—H15 | 120.5 | C52—C51—C50 | 119.9 (6) |
C14—C15—H15 | 120.5 | C52—C51—H51 | 120.1 |
C17—C16—C15 | 120.7 (4) | C50—C51—H51 | 120.1 |
C17—C16—H16 | 119.7 | C53—C52—C51 | 120.1 (6) |
C15—C16—H16 | 119.7 | C53—C52—H52 | 120.0 |
C16—C17—C18 | 120.1 (5) | C51—C52—H52 | 120.0 |
C16—C17—H17 | 120.0 | C52—C53—C54 | 120.3 (6) |
C18—C17—H17 | 120.0 | C52—C53—H53 | 119.9 |
C13—C18—C17 | 120.0 (5) | C54—C53—H53 | 119.9 |
C13—C18—H18 | 120.0 | C53—C54—C49 | 120.0 (6) |
C17—C18—H18 | 120.0 | C53—C54—H54 | 120.0 |
C24—C19—C20 | 119.4 (5) | C49—C54—H54 | 120.0 |
C24—C19—Sb2 | 121.6 (4) | ||
C6—C1—C2—C3 | −1.9 (9) | C27—C28—C29—C30 | 2.7 (12) |
Sb1—C1—C2—C3 | 179.8 (5) | C26—C25—C30—C29 | −2.1 (10) |
C1—C2—C3—C4 | 2.1 (10) | Sb2—C25—C30—C29 | 179.6 (6) |
C2—C3—C4—C5 | −1.4 (10) | C28—C29—C30—C25 | −0.8 (12) |
C3—C4—C5—C6 | 0.5 (9) | C36—C31—C32—C33 | −1.0 (9) |
C2—C1—C6—C5 | 1.1 (8) | Sb2—C31—C32—C33 | −174.9 (5) |
Sb1—C1—C6—C5 | 179.4 (4) | C31—C32—C33—C34 | 0.6 (10) |
C4—C5—C6—C1 | −0.3 (9) | C32—C33—C34—C35 | −0.9 (12) |
C12—C7—C8—C9 | 1.5 (10) | C33—C34—C35—C36 | 1.5 (11) |
Sb1—C7—C8—C9 | 177.5 (6) | C34—C35—C36—C31 | −1.9 (10) |
C7—C8—C9—C10 | −0.4 (12) | C32—C31—C36—C35 | 1.6 (9) |
C8—C9—C10—C11 | −0.8 (13) | Sb2—C31—C36—C35 | 175.5 (5) |
C9—C10—C11—C12 | 0.9 (11) | C42—C37—C38—C39 | 4.5 (10) |
C10—C11—C12—C7 | 0.3 (10) | Sb3—C37—C38—C39 | −179.4 (6) |
C8—C7—C12—C11 | −1.5 (9) | C37—C38—C39—C40 | −3.4 (13) |
Sb1—C7—C12—C11 | −177.5 (5) | C38—C39—C40—C41 | 0.4 (13) |
C18—C13—C14—C15 | 0.9 (8) | C39—C40—C41—C42 | 1.5 (11) |
Sb1—C13—C14—C15 | −176.5 (4) | C40—C41—C42—C37 | −0.4 (10) |
C13—C14—C15—C16 | −0.9 (8) | C38—C37—C42—C41 | −2.7 (9) |
C14—C15—C16—C17 | −0.1 (9) | Sb3—C37—C42—C41 | −178.9 (5) |
C15—C16—C17—C18 | 1.2 (9) | C48—C43—C44—C45 | −3.4 (8) |
C14—C13—C18—C17 | 0.2 (8) | Sb3—C43—C44—C45 | 177.3 (5) |
Sb1—C13—C18—C17 | 177.5 (4) | C43—C44—C45—C46 | 2.5 (10) |
C16—C17—C18—C13 | −1.2 (9) | C44—C45—C46—C47 | 1.7 (10) |
C24—C19—C20—C21 | −1.1 (8) | C45—C46—C47—C48 | −5.0 (10) |
Sb2—C19—C20—C21 | −179.5 (5) | C44—C43—C48—C47 | 0.2 (8) |
C19—C20—C21—C22 | 0.4 (10) | Sb3—C43—C48—C47 | 179.5 (4) |
C20—C21—C22—C23 | −0.2 (12) | C46—C47—C48—C43 | 4.0 (9) |
C21—C22—C23—C24 | 0.7 (12) | C54—C49—C50—C51 | 1.3 (9) |
C20—C19—C24—C23 | 1.5 (9) | Sb3—C49—C50—C51 | −178.4 (5) |
Sb2—C19—C24—C23 | 180.0 (4) | C49—C50—C51—C52 | −0.7 (10) |
C22—C23—C24—C19 | −1.4 (10) | C50—C51—C52—C53 | −2.1 (10) |
C30—C25—C26—C27 | 3.1 (10) | C51—C52—C53—C54 | 4.3 (9) |
Sb2—C25—C26—C27 | −178.6 (6) | C52—C53—C54—C49 | −3.7 (9) |
C25—C26—C27—C28 | −1.2 (12) | C50—C49—C54—C53 | 0.9 (8) |
C26—C27—C28—C29 | −1.7 (12) | Sb3—C49—C54—C53 | −179.3 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C16—H16···O1i | 0.95 | 2.58 | 3.342 (6) | 137 |
C17—H17···O5i | 0.95 | 2.58 | 3.437 (6) | 150 |
C21—H21···O4i | 0.95 | 2.75 | 3.651 (8) | 158 |
C46—H46···O6ii | 0.95 | 2.67 | 3.276 (6) | 122 |
C47—H47···O6ii | 0.95 | 2.73 | 3.307 (6) | 120 |
C47—H47···O2ii | 0.95 | 2.70 | 3.645 (6) | 177 |
Symmetry codes: (i) x, y−1, z; (ii) x, y+1, z. |
Funding information
This work was supported by the Ministry of Education and Science of Ukraine (project No. 19BF037–05).
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Beckmann, J., Dakternieks, D., O'Connell, J., Jurkschat, K. & Schürmann, M. (2002). Eur. J. Inorg. Chem. pp. 1484–1487. CrossRef Google Scholar
Boldog, I., Lysenko, A. B., Rusanov, E. B., Chernega, A. N. & Domasevitch, K. V. (2009). Acta Cryst. C65, o248–o252. Web of Science CSD CrossRef IUCr Journals Google Scholar
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Carmalt, C. J., Crossley, J. G., Norman, N. C. & Orpen, A. G. (1996). Chem. Commun. pp. 1675–1676. CrossRef Web of Science Google Scholar
Domasevitch, K. V., Gerasimchuk, N. N. & Mokhir, A. (2000). Inorg. Chem. 39, 1227–1237. Web of Science CSD CrossRef PubMed CAS Google Scholar
Driess, M., von Hänisch, C. & Merz, K. (1999). Z. Anorg. Allg. Chem. 625, 493–496. CrossRef CAS Google Scholar
Dunitz, J. D. (1995). X-ray Analysis and the Structure of Organic Solids, 2nd corrected reprint, pp. 106–111. Basel: Verlag Helvetica Chimica Acta. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Goel, R. G. (1969). Can. J. Chem. 47, 4607–4612. CrossRef CAS Web of Science Google Scholar
Goel, R. G., Joshi, P. N., Ridley, D. R. & Beaumont, R. E. (1969). Can. J. Chem. 47, 1423–1427. CrossRef CAS Web of Science Google Scholar
Gospodinov, G. G. (1992). Thermochim. Acta, 208, 269–274. CrossRef CAS Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hall, M. & Sowerby, D. B. (1980). J. Am. Chem. Soc. 102, 628–632. CSD CrossRef CAS Web of Science Google Scholar
Herntrich, T. & Merzweiler, K. (2010). Z. Anorg. Allg. Chem. 636, 803–807. Web of Science CSD CrossRef CAS Google Scholar
Hirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Konaka, S., Ozawa, Y. & Yagasaki, A. (2008). Inorg. Chem. 47, 1244–1245. Web of Science CSD CrossRef PubMed CAS Google Scholar
McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nicholson, B. K., Clark, C. J., Wright, C. E., Telfer, S. G. & Groutso, T. (2011). Organometallics, 30, 6612–6616. Web of Science CSD CrossRef CAS Google Scholar
Rüther, R., Huber, F. & Preut, H. (1986). Z. Anorg. Allg. Chem. 539, 110–126. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Byrom, P. G. A. (1997). Chem. Phys. Lett. 267, 215–220. CrossRef CAS Web of Science Google Scholar
Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392. Web of Science CrossRef CAS Google Scholar
Srungavruksham, N. K. & Baskar, V. (2013). Eur. J. Inorg. Chem. 2013, 4345–4352. Web of Science CSD CrossRef CAS Google Scholar
Stoe & Cie (1999). X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Stoe & Cie (2000). IPDS Software. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Stoe & Cie (2001). X-RED. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://crystalexplorer.scb.uwa.edu.au/. Google Scholar
Wirringa, U., Roesky, H. W., Schmidt, H.-G. & Noltemeyer, M. (1992). Chem. Ber. 125, 2359–2361. CSD CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.