research communications
Mixed-metal phosphates K1.64Na0.36TiFe(PO4)3 and K0.97Na1.03Ti1.26Fe0.74(PO4)3 with a langbeinite framework
aF.D. Ovcharenko Institute of Biocolloidal Chemistry, NAS Ukraine, 42 Acad. Vernadskoho blv., 03142 Kyiv, Ukraine, bDepartment of Inorganic Chemistry, Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Str., 01601 Kyiv, Ukraine, cShimUkraine LLC 18, Chigorina Str., office 429, 01042 Kyiv, Ukraine, dSTC "Institute for Single Crystals", NAS of Ukraine, 60 Lenin ave., 61001 Kharkiv, Ukraine, eShenzhen Key Laboratory of Solid State Batteries, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China, and fGuangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
*Correspondence e-mail: zvigo@ukr.net
Single crystals of the langbeinite-type phosphates K1.65Na0.35TiFe(PO4)3 and K0.97Na1.03Ti1.26Fe0.74(PO4)3 were grown by crystallization from high-temperature self-fluxes in the system Na2O–K2O–P2O5–TiO2–Fe2O3 using fixed molar ratios of (Na+K):P = 1.0, Ti:P = 0.20 and Na:K = 1.0 or 2.0 over the temperature range 1273–953 K. The three-dimensional framework of the two isotypic phosphates are built up from [(Ti/Fe)2(PO4)3] structure units containing two mixed [(Ti/Fe)O6] octahedra (site symmetry 3) connected via three bridging PO4 tetrahedra. The potassium and sodium cations share two different sites in the structure that are located in the cavities of the framework. One of these sites has nine and the other twelve surrounding O atoms.
Keywords: crystal structure; phosphate; mixed occupancy; framework structure.
1. Chemical context
Over the last decade, numerous research efforts have been directed towards the creation of new phosphate materials for Li- or Na-ion batteries (Nose et al., 2013; Zhang et al., 2021). In particular, significant progress has been made for complex phosphates with general formula MI1+xZ2(PO4)3 (MI = Li, Na; Z = polyvalent metals; x values can range from 0 to 3; Zatovsky et al., 2016) adopting NASICON-type structures. The composition of phosphates with a langbeinite-type structure is very similar to the composition of NASICON-type ones, and langbeinite-type phosphates are also considered to be potential hosts for new electrode materials (Luo et al., 2019). However, langbeinite-type phosphates with a composition MI1+xZ2(PO4)3 (x = 0–1) can only be prepared with large monovalent cations (e.g., K, Rb, Cs, NH4; Norberg, 2002; Ogorodnyk et al., 2007a). The langbeinite-type structure has only been reported for Na2ZIIITi(PO4)3 (ZIII = Cr, Fe; Isasi & Daidouh, 2000). More recently, a good prospect for using such kinds of materials as anodes for Na-ion batteries has been predicted because of the recently reported migration mechanisms in langbeinite-type Na2CrTi(PO4)3 determined by atomic simulation (Luo et al., 2019). However, according to Wang et al. (2019), the phosphate Na2CrTi(PO4)3 belongs to the family of compounds with a NASICON-type structure. Therefore, the issue of preparing Na-containing langbeinite-type phosphates requires further research and development. In recent years, the synthesis of K/Na-containing complex phosphates has been realized using the self-flux method and resulted in the compounds K1.75Na0.25Ti2(PO4)3 (Zatovsky et al., 2018) and K0.877Na0.48Ti2(PO4)3 (Strutynska et al., 2016).
Here, we report the preparation, structure analysis and characterization of two new mixed-metal phosphates K1.64Na0.36TiFe(PO4)3 (I) and K0.97Na1.03Ti1.26Fe0.74(PO4)3 (II), which are isotypic with the mineral langbeinite, K2Mg2(SO4)3 (Zemann & Zemann, 1957; Mereiter, 1979).
2. Structural commentary
As it is illustrated in Fig. 1, two pairs of mixed sites occupied by alkali metals (K/Na) and transition metals (Ti/Fe) are located on threefold rotation axes (Wyckoff position 4 a), whereas the P and all O atoms occupy general sites (12 b). In the structures, the main structural element for building of the three-dimensional framework is a [(Ti/Fe)2(PO4)3] fragment consisting of two mixed-metal [(Ti/Fe)O6] octahedra and three PO4 tetrahedra (Fig. 2a). Such building units run in three orthogonal directions along the cubic space diagonals (Fig. 2b), which is typical for the langbeinite-related family of compounds (sulfates, phosphates, vanadates etc, Ogorodnyk et al., 2007a).
Two octahedrally coordinated sites (Ti1/Fe1) and (Ti2/Fe2) show mixed occupancy with an Fe:Ti ratio close to 1:1. For (I), the Ti occupancy is 0.48 (3) for the M1 site, while for the M2 site it is 0.52 (3); for (II), the Ti occupancy is 0.61 (2) for the M1 site and 0.65 (2) for the M2 site. In the case of (I), this corresponds to Fe3+ and Ti4+ cations, while for (II), the simultaneous presence of Fe3+, Ti3+ and Ti4+ is suggested. The prepared crystals of (II) are violet in color and the Ti3+:Ti4+ ratio is about 1:4 taking into account the total charge of the cationic part of the compound. Partial self-reduction of Ti4+ to Ti3+ often accompanies the synthesis of langbeinite-type complex phosphates in fluxes of multicomponent systems when various trivalent or divalent metals are present (Gustafsson et al., 2005; Zatovskii et al., 2006). For structures (I) and (II), the [Ti/FeO6] octahedra are slightly distorted (Tables 1 and 2). The range of M—O bond lengths [1.938 (2) – 1.976 (3) Å] is close to those in other langbeinite-related phosphates containing Ti and transition metals, such as K2Fe0.5Ti1.5(PO4)3 [1.940 (2)–1.992 (2) Å]; K2Ni0.5Ti1.5(PO4)3 [1.938 (5)–1.962 (5) Å]; K2Co0.5Ti1.5(PO4)3 [1.945 (2)–1.974 (2) Å]; K2Mn0.5Ti1.5(PO4)3 [1.961 (2)–2.002 (2) Å] (Ogorodnyk et al., 2008, 2007b, 2006). The P—O distances for both structures are in the narrow ranges of 1.516 (4)–1.523 (3) for (I) and 1.517 (3)–1.523 (2) Å for (II).
|
There are two sites where the alkali metal cations reside (Fig. 1). The first one, (K/Na)1 is occupied by K+ and Na+ cations at ratios of 0.85 (2):0.15 (2) and 0.676 (18):0.324 (18) for (I) and (II), respectively. The [(K/Na)1O9] polyhedra show three sets of (K/Na)—O distances assuming a cut-off value for the contact lengths of 3.129 (4) Å; the bond lengths are similar for both structures (Tables 1 and 2). The coordination environment of the alkali cations related to the (K/Na)2 site consists of twelve O-atom neighbours with (K/Na)2—O distances ranging from 2.843 (3) to 3.237 (3) Å, which includes four sets of distances (Tables 1 and 2). For this site, the K:Na ratios are 0.80 (3):0.20 (3) for (I) and 0.294 (19):0.706 (19) for (II). An interesting fact is that the substitution of potassium by sodium in the position (K/Na)2 is greater for (II) than for (I), but the (K/Na)2—O distances change insignificantly.
3. Synthesis and crystallization
Phosphates (I) and (II) were obtained from the melts of the system Na2O–K2O–P2O5–TiO2–Fe2O3 at fixed molar ratios of (Na+K)/P = 1.0, Ti/P = 0.20 and different values of Na/K = 1.0 or 2.0 over the temperature range 1273–953 K. All initial components MIH2PO4 (MI = Na, K), Fe2O3 and TiO2 were of an analytical grade.
A mixture of KH2PO4 (10 g), NaH2PO4 (8.82 g), Fe2O3 (2.35 g) and TiO2 (2.35 g) was used for the preparation of (I), while a mixture of KH2PO4 (10 g), NaH2PO4 (17.64 g), Fe2O3 (3.53 g) and TiO2 (3.53 g) was used for the preparation of (II). In both cases, the mixtures of calculated amounts of starting components were ground in an agate mortar and melted in a platinum crucible at 1273 K. The obtained melts were kept under isothermal conditions for 2 h for dissolving of the corresponding TiO2 + Fe2O3 mixture in the phosphate melt. Then the temperature was decreased with a rate of 25 K h−1 to 953 K and kept at this temperature for 2 h before cooling down to room temperature by turning off the furnace power. The obtained crystalline phases were separated from soluble salts by leaching with hot water and dried at 373 K.
The molar ratio Na/K in the initial melts had an influence on the composition of the obtained crystals. Light-yellow crystals formed in the melt with a ratio of Na:K = 1.0 while violet crystals were obtained for a ratio Na:K = 2.0 (Fig. 3). It should be noted that increasing the amount of sodium in the initial melts to a ratio Na/K = 2.0 caused the growth of crystals with sizes of 2–3 mm (Fig. 3b) in length.
The chemical compositions of the prepared samples (quantitative determination of K, Na, Ti, Fe and P) were confirmed by ICP–AES with a Shimadzu ICPE-9820 spectrometer. The analyses showed that the molar ratios of K:Na:Ti:Fe:P were close to 1.65:0.35:1:1:3 for (I) and 1:1:1.25:0.75:3 for (II).
The phosphates (I) and (II) were further characterized using Fourier transform infrared (FTIR) spectroscopy. The spectra were obtained using a PerkinElmer Spectrum BX spectrometer in the range 4000–400 cm−1 (at 4 cm−1 resolution) with sample material pressed into KBr pellets. The FTIR spectra for both compounds are similar in band positions of vibration modes (Fig. 4). The broad and intense bands in the frequency region 1150–900 cm−1 are characteristic for P—O stretching vibrations [νas(PO3) – region 1150–1090 cm−1 and νs(PO3) – region 1020–900 cm−1] of the PO4 tetrahedron. The band group at 650–550 cm−1 is caused by bending δ(P—O) vibrations of P—O bonds. Some differences in the spectra were observed in the range 500–400 cm−1, which are due to X—O (X = Ti, Fe) vibrations and correlate with insignificant differences in the composition of the prepared compounds (I) and (II).
4. Refinement
Crystal data, data collection and structure . According to the results of the chemical analysis, large quantities of Na and Ti are present in the structures. Taking into account possible coordination spheres of Na and Ti and previously reported langbeinite-type phosphates with a mixed-metal framework, we supposed that Ti occupies the same sites as Fe, and Na the same positions as K. Hence, the corresponding positions of Fe1 and Fe2, K1 and K2 were occupied with Ti and Na, respectively. As the Fe(Ti) positions are part of the rigid framework, we assumed that these sites show full occupancy, while the sites related with the alkali metal can be fully or partially occupied. At a first approach, the occupancies were refined using linear combinations of free variables (SUMP restraint). Two SUMP restraints were applied to occupancies of Fe1(Ti1) and Fe2(Ti2) sites. One more SUMP restraint was then applied to the sum of valence units of all metal-atom positions. This resulted in satisfactory reliability factors. It was found that the occupancies of K1(Na1) and K2(Na2) are close to 1. Thus, to simplify the we tried to refine the occupancies with free variable constraints instead of SUMP restraints while keeping the alkali metal site occupancies equal to 1. To each refined position, a unique free variable constraint was applied, plus constrained identical coordinates and ADPs for each site. The resulting reliability factors were found to be almost equal to those where the SUMP restraints were used. For the final cycles, the second approach was applied to both structures.
details are summarized in Table 3
|
Supporting information
https://doi.org/10.1107/S2056989021011877/wm5625sup1.cif
contains datablocks global, I, II. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021011877/wm5625Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989021011877/wm5625IIsup3.hkl
For both structures, data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell
CrysAlis CCD (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 2012), enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).K1.65Na0.35TiFe(PO4)3 | Dx = 3.235 Mg m−3 |
Mr = 461.19 | Mo Kα radiation, λ = 0.71073 Å |
Cubic, P213 | Cell parameters from 1897 reflections |
Hall symbol: P 2ac 2ab 3 | θ = 2.9–29.0° |
a = 9.82010 (13) Å | µ = 3.69 mm−1 |
V = 947.00 (4) Å3 | T = 293 K |
Z = 4 | Tetrahedron, light yellow |
F(000) = 896.8 | 0.13 × 0.10 × 0.07 mm |
Oxford Diffraction Xcalibur-3 diffractometer | 829 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
φ and ω scans | θmax = 29.0°, θmin = 2.9° |
Absorption correction: multi-scan (Blessing, 1995) | h = −13→3 |
Tmin = 0.675, Tmax = 0.782 | k = −5→13 |
1897 measured reflections | l = −12→12 |
847 independent reflections |
Refinement on F2 | 'w = 1/[σ2(Fo2) + (0.0292P)2 + 0.5767P] where P = (Fo2 + 2Fc2)/3' |
Least-squares matrix: full | (Δ/σ)max < 0.001 |
R[F2 > 2σ(F2)] = 0.025 | Δρmax = 0.48 e Å−3 |
wR(F2) = 0.064 | Δρmin = −0.37 e Å−3 |
S = 1.14 | Extinction correction: SHELXL-2018/3 (Sheldrick 2015) |
847 reflections | Extinction coefficient: 0.0042 (16) |
63 parameters | Absolute structure: Flack x determined using 339 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
0 restraints | Absolute structure parameter: 0.02 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Fe1 | 0.14303 (6) | 0.14303 (6) | 0.14303 (6) | 0.0085 (3) | 0.52 (3) |
Ti1 | 0.14303 (6) | 0.14303 (6) | 0.14303 (6) | 0.0085 (3) | 0.48 (3) |
Fe2 | 0.41389 (6) | 0.41389 (6) | 0.41389 (6) | 0.0087 (3) | 0.48 (3) |
Ti2 | 0.41389 (6) | 0.41389 (6) | 0.41389 (6) | 0.0087 (3) | 0.52 (3) |
K1 | 0.70712 (13) | 0.70712 (13) | 0.70712 (13) | 0.0254 (7) | 0.85 (2) |
Na1 | 0.70712 (13) | 0.70712 (13) | 0.70712 (13) | 0.0254 (7) | 0.15 (2) |
K2 | 0.93216 (12) | 0.93216 (12) | 0.93216 (12) | 0.0228 (8) | 0.80 (3) |
Na2 | 0.93216 (12) | 0.93216 (12) | 0.93216 (12) | 0.0228 (8) | 0.20 (3) |
P3 | 0.45810 (10) | 0.22783 (10) | 0.12639 (11) | 0.0089 (3) | |
O1 | 0.3106 (3) | 0.2345 (3) | 0.0792 (3) | 0.0181 (7) | |
O2 | 0.5477 (4) | 0.2988 (4) | 0.0217 (3) | 0.0214 (8) | |
O3 | 0.5021 (3) | 0.0809 (3) | 0.1494 (4) | 0.0207 (7) | |
O4 | 0.4787 (4) | 0.3041 (4) | 0.2590 (4) | 0.0254 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.0085 (3) | 0.0085 (3) | 0.0085 (3) | −0.0002 (2) | −0.0002 (2) | −0.0002 (2) |
Ti1 | 0.0085 (3) | 0.0085 (3) | 0.0085 (3) | −0.0002 (2) | −0.0002 (2) | −0.0002 (2) |
Fe2 | 0.0087 (3) | 0.0087 (3) | 0.0087 (3) | −0.0005 (2) | −0.0005 (2) | −0.0005 (2) |
Ti2 | 0.0087 (3) | 0.0087 (3) | 0.0087 (3) | −0.0005 (2) | −0.0005 (2) | −0.0005 (2) |
K1 | 0.0254 (7) | 0.0254 (7) | 0.0254 (7) | 0.0004 (5) | 0.0004 (5) | 0.0004 (5) |
Na1 | 0.0254 (7) | 0.0254 (7) | 0.0254 (7) | 0.0004 (5) | 0.0004 (5) | 0.0004 (5) |
K2 | 0.0228 (8) | 0.0228 (8) | 0.0228 (8) | −0.0021 (4) | −0.0021 (4) | −0.0021 (4) |
Na2 | 0.0228 (8) | 0.0228 (8) | 0.0228 (8) | −0.0021 (4) | −0.0021 (4) | −0.0021 (4) |
P3 | 0.0078 (5) | 0.0098 (5) | 0.0090 (5) | −0.0003 (3) | 0.0014 (4) | 0.0001 (4) |
O1 | 0.0103 (14) | 0.0218 (16) | 0.0222 (17) | −0.0032 (12) | −0.0019 (12) | 0.0080 (14) |
O2 | 0.0190 (17) | 0.0273 (17) | 0.0178 (16) | 0.0001 (14) | 0.0060 (14) | 0.0096 (14) |
O3 | 0.0225 (16) | 0.0123 (14) | 0.0273 (17) | 0.0070 (13) | 0.0027 (14) | 0.0027 (14) |
O4 | 0.0278 (19) | 0.029 (2) | 0.0190 (17) | −0.0027 (15) | 0.0019 (15) | −0.0148 (15) |
Fe1—O2i | 1.954 (3) | K1—O2xviii | 3.019 (4) |
Fe1—O2ii | 1.954 (3) | K1—O4xvi | 3.129 (4) |
Fe1—O2iii | 1.954 (3) | K1—O4xvii | 3.129 (4) |
Fe1—O1 | 1.976 (3) | K1—O4xviii | 3.129 (4) |
Fe1—O1iv | 1.976 (3) | K1—P3xvi | 3.4416 (16) |
Fe1—O1v | 1.976 (3) | K1—P3xviii | 3.4416 (16) |
Fe1—K2vi | 3.587 (2) | K1—P3xvii | 3.4416 (16) |
Fe1—K1vii | 3.7927 (9) | K2—O3xvi | 2.854 (4) |
Fe1—K1viii | 3.7927 (9) | K2—O3xvii | 2.854 (4) |
Fe1—K1ix | 3.7927 (9) | K2—O3xviii | 2.854 (4) |
Fe2—O3x | 1.938 (3) | K2—O2xix | 2.911 (4) |
Fe2—O3xi | 1.938 (3) | K2—O2xx | 2.911 (4) |
Fe2—O3xii | 1.938 (3) | K2—O2xxi | 2.911 (4) |
Fe2—O4v | 1.970 (3) | K2—O4xvii | 3.007 (4) |
Fe2—O4iv | 1.970 (3) | K2—O4xvi | 3.007 (4) |
Fe2—O4 | 1.970 (3) | K2—O4xviii | 3.007 (4) |
Fe2—K2xiii | 3.7237 (7) | K2—O4xx | 3.231 (4) |
Fe2—K2xiv | 3.7237 (7) | K2—O4xxi | 3.231 (4) |
Fe2—K2xv | 3.7237 (7) | K2—O4xix | 3.231 (4) |
K1—O1xii | 2.830 (4) | P3—O4 | 1.516 (4) |
K1—O1x | 2.830 (4) | P3—O2 | 1.522 (3) |
K1—O1xi | 2.830 (4) | P3—O3 | 1.523 (3) |
K1—O2xvi | 3.019 (4) | P3—O1 | 1.523 (3) |
K1—O2xvii | 3.019 (4) | ||
O2i—Fe1—O2ii | 89.19 (16) | O4xvi—K1—P3xviii | 69.72 (7) |
O2i—Fe1—O2iii | 89.19 (16) | O4xvii—K1—P3xviii | 103.33 (10) |
O2ii—Fe1—O2iii | 89.19 (16) | O4xviii—K1—P3xviii | 26.12 (7) |
O2i—Fe1—O1 | 177.99 (16) | P3xvi—K1—P3xviii | 94.91 (5) |
O2ii—Fe1—O1 | 88.89 (15) | O1xii—K1—P3xvii | 94.57 (7) |
O2iii—Fe1—O1 | 90.18 (14) | O1x—K1—P3xvii | 79.17 (7) |
O2i—Fe1—O1iv | 88.88 (15) | O1xi—K1—P3xvii | 169.22 (7) |
O2ii—Fe1—O1iv | 90.18 (14) | O2xvi—K1—P3xvii | 108.29 (8) |
O2iii—Fe1—O1iv | 177.99 (16) | O2xvii—K1—P3xvii | 26.23 (6) |
O1—Fe1—O1iv | 91.72 (14) | O2xviii—K1—P3xvii | 115.08 (8) |
O2i—Fe1—O1v | 90.18 (14) | O4xvi—K1—P3xvii | 103.33 (10) |
O2ii—Fe1—O1v | 177.99 (16) | O4xvii—K1—P3xvii | 26.12 (7) |
O2iii—Fe1—O1v | 88.88 (15) | O4xviii—K1—P3xvii | 69.72 (7) |
O1—Fe1—O1v | 91.71 (14) | P3xvi—K1—P3xvii | 94.91 (5) |
O1iv—Fe1—O1v | 91.72 (14) | P3xviii—K1—P3xvii | 94.91 (5) |
O2i—Fe1—K2vi | 54.17 (11) | O3xvi—K2—O3xvii | 100.76 (10) |
O2ii—Fe1—K2vi | 54.17 (11) | O3xvi—K2—O3xviii | 100.76 (10) |
O2iii—Fe1—K2vi | 54.17 (11) | O3xvii—K2—O3xviii | 100.76 (10) |
O1—Fe1—K2vi | 124.04 (10) | O3xvi—K2—O2xix | 100.42 (10) |
O1iv—Fe1—K2vi | 124.04 (10) | O3xvii—K2—O2xix | 149.92 (11) |
O1v—Fe1—K2vi | 124.04 (10) | O3xviii—K2—O2xix | 95.97 (10) |
O2i—Fe1—K1vii | 52.19 (11) | O3xvi—K2—O2xx | 95.97 (10) |
O2ii—Fe1—K1vii | 131.75 (12) | O3xvii—K2—O2xx | 100.42 (10) |
O2iii—Fe1—K1vii | 65.77 (11) | O3xviii—K2—O2xx | 149.92 (11) |
O1—Fe1—K1vii | 129.13 (11) | O2xix—K2—O2xx | 56.22 (11) |
O1iv—Fe1—K1vii | 113.38 (10) | O3xvi—K2—O2xxi | 149.92 (11) |
O1v—Fe1—K1vii | 46.69 (10) | O3xvii—K2—O2xxi | 95.97 (10) |
K2vi—Fe1—K1vii | 78.252 (17) | O3xviii—K2—O2xxi | 100.42 (10) |
O2i—Fe1—K1viii | 65.77 (11) | O2xix—K2—O2xxi | 56.22 (11) |
O2ii—Fe1—K1viii | 52.19 (11) | O2xx—K2—O2xxi | 56.22 (11) |
O2iii—Fe1—K1viii | 131.75 (12) | O3xvi—K2—O4xvii | 52.44 (10) |
O1—Fe1—K1viii | 113.38 (10) | O3xvii—K2—O4xvii | 49.39 (9) |
O1iv—Fe1—K1viii | 46.69 (10) | O3xviii—K2—O4xvii | 115.63 (12) |
O1v—Fe1—K1viii | 129.13 (11) | O2xix—K2—O4xvii | 140.25 (11) |
K2vi—Fe1—K1viii | 78.252 (17) | O2xx—K2—O4xvii | 94.39 (10) |
K1vii—Fe1—K1viii | 115.965 (12) | O2xxi—K2—O4xvii | 132.45 (10) |
O2i—Fe1—K1ix | 131.75 (12) | O3xvi—K2—O4xvi | 49.39 (9) |
O2ii—Fe1—K1ix | 65.77 (11) | O3xvii—K2—O4xvi | 115.63 (12) |
O2iii—Fe1—K1ix | 52.19 (11) | O3xviii—K2—O4xvi | 52.44 (10) |
O1—Fe1—K1ix | 46.69 (10) | O2xix—K2—O4xvi | 94.39 (10) |
O1iv—Fe1—K1ix | 129.13 (11) | O2xx—K2—O4xvi | 132.45 (10) |
O1v—Fe1—K1ix | 113.38 (10) | O2xxi—K2—O4xvi | 140.25 (11) |
K2vi—Fe1—K1ix | 78.252 (17) | O4xvii—K2—O4xvi | 87.30 (11) |
K1vii—Fe1—K1ix | 115.965 (12) | O3xvi—K2—O4xviii | 115.63 (12) |
K1viii—Fe1—K1ix | 115.965 (12) | O3xvii—K2—O4xviii | 52.44 (10) |
O3x—Fe2—O3xi | 92.72 (15) | O3xviii—K2—O4xviii | 49.39 (9) |
O3x—Fe2—O3xii | 92.72 (15) | O2xix—K2—O4xviii | 132.45 (10) |
O3xi—Fe2—O3xii | 92.72 (15) | O2xx—K2—O4xviii | 140.25 (11) |
O3x—Fe2—O4v | 171.85 (17) | O2xxi—K2—O4xviii | 94.39 (10) |
O3xi—Fe2—O4v | 83.11 (16) | O4xvii—K2—O4xviii | 87.30 (11) |
O3xii—Fe2—O4v | 94.47 (15) | O4xvi—K2—O4xviii | 87.30 (11) |
O3x—Fe2—O4iv | 94.47 (15) | O3xvi—K2—O4xx | 55.86 (9) |
O3xi—Fe2—O4iv | 171.85 (17) | O3xvii—K2—O4xx | 85.99 (9) |
O3xii—Fe2—O4iv | 83.11 (16) | O3xviii—K2—O4xx | 156.61 (10) |
O4v—Fe2—O4iv | 90.22 (16) | O2xix—K2—O4xx | 88.46 (10) |
O3x—Fe2—O4 | 83.11 (16) | O2xx—K2—O4xx | 46.20 (9) |
O3xi—Fe2—O4 | 94.47 (15) | O2xxi—K2—O4xx | 101.11 (10) |
O3xii—Fe2—O4 | 171.85 (17) | O4xvii—K2—O4xx | 53.02 (13) |
O4v—Fe2—O4 | 90.22 (16) | O4xvi—K2—O4xx | 104.40 (2) |
O4iv—Fe2—O4 | 90.22 (16) | O4xviii—K2—O4xx | 137.03 (8) |
O3x—Fe2—K2xiii | 127.93 (11) | O3xvi—K2—O4xxi | 156.61 (10) |
O3xi—Fe2—K2xiii | 118.56 (11) | O3xvii—K2—O4xxi | 55.86 (9) |
O3xii—Fe2—K2xiii | 48.96 (11) | O3xviii—K2—O4xxi | 85.99 (9) |
O4v—Fe2—K2xiii | 60.13 (13) | O2xix—K2—O4xxi | 101.11 (10) |
O4iv—Fe2—K2xiii | 53.60 (12) | O2xx—K2—O4xxi | 88.46 (10) |
O4—Fe2—K2xiii | 129.40 (12) | O2xxi—K2—O4xxi | 46.20 (9) |
O3x—Fe2—K2xiv | 118.56 (11) | O4xvii—K2—O4xxi | 104.40 (2) |
O3xi—Fe2—K2xiv | 48.96 (11) | O4xvi—K2—O4xxi | 137.03 (8) |
O3xii—Fe2—K2xiv | 127.93 (11) | O4xviii—K2—O4xxi | 53.02 (13) |
O4v—Fe2—K2xiv | 53.60 (12) | O4xx—K2—O4xxi | 115.75 (5) |
O4iv—Fe2—K2xiv | 129.40 (12) | O3xvi—K2—O4xix | 85.99 (9) |
O4—Fe2—K2xiv | 60.13 (12) | O3xvii—K2—O4xix | 156.61 (10) |
K2xiii—Fe2—K2xiv | 113.261 (15) | O3xviii—K2—O4xix | 55.86 (9) |
O3x—Fe2—K2xv | 48.96 (11) | O2xix—K2—O4xix | 46.20 (9) |
O3xi—Fe2—K2xv | 127.93 (11) | O2xx—K2—O4xix | 101.11 (10) |
O3xii—Fe2—K2xv | 118.56 (11) | O2xxi—K2—O4xix | 88.46 (10) |
O4v—Fe2—K2xv | 129.40 (12) | O4xvii—K2—O4xix | 137.03 (8) |
O4iv—Fe2—K2xv | 60.13 (12) | O4xvi—K2—O4xix | 53.02 (13) |
O4—Fe2—K2xv | 53.60 (12) | O4xviii—K2—O4xix | 104.40 (2) |
K2xiii—Fe2—K2xv | 113.261 (15) | O4xx—K2—O4xix | 115.75 (5) |
K2xiv—Fe2—K2xv | 113.261 (15) | O4xxi—K2—O4xix | 115.75 (5) |
O1xii—K1—O1x | 92.24 (11) | O4—P3—O2 | 106.1 (2) |
O1xii—K1—O1xi | 92.24 (12) | O4—P3—O3 | 107.6 (2) |
O1x—K1—O1xi | 92.24 (11) | O2—P3—O3 | 111.7 (2) |
O1xii—K1—O2xvi | 56.73 (9) | O4—P3—O1 | 111.6 (2) |
O1x—K1—O2xvi | 148.02 (12) | O2—P3—O1 | 109.0 (2) |
O1xi—K1—O2xvi | 82.44 (10) | O3—P3—O1 | 110.81 (19) |
O1xii—K1—O2xvii | 82.44 (10) | O4—P3—K2xiv | 70.72 (16) |
O1x—K1—O2xvii | 56.73 (9) | O2—P3—K2xiv | 58.63 (14) |
O1xi—K1—O2xvii | 148.02 (12) | O3—P3—K2xiv | 167.81 (14) |
O2xvi—K1—O2xvii | 118.99 (3) | O1—P3—K2xiv | 80.51 (13) |
O1xii—K1—O2xviii | 148.02 (12) | O4—P3—K1xv | 65.34 (15) |
O1x—K1—O2xviii | 82.44 (10) | O2—P3—K1xv | 61.21 (14) |
O1xi—K1—O2xviii | 56.73 (9) | O3—P3—K1xv | 82.59 (14) |
O2xvi—K1—O2xviii | 118.99 (3) | O1—P3—K1xv | 166.21 (14) |
O2xvii—K1—O2xviii | 118.99 (3) | K2xiv—P3—K1xv | 85.88 (3) |
O1xii—K1—O4xvi | 103.04 (9) | O4—P3—K2xv | 56.80 (16) |
O1x—K1—O4xvi | 164.18 (10) | O2—P3—K2xv | 126.68 (15) |
O1xi—K1—O4xvi | 83.19 (10) | O3—P3—K2xv | 50.98 (15) |
O2xvi—K1—O4xvi | 46.48 (9) | O1—P3—K2xv | 124.35 (14) |
O2xvii—K1—O4xvi | 128.76 (12) | K2xiv—P3—K2xv | 126.85 (4) |
O2xviii—K1—O4xvi | 82.41 (10) | K1xv—P3—K2xv | 66.30 (5) |
O1xii—K1—O4xvii | 83.19 (10) | O4—P3—K1ix | 148.79 (17) |
O1x—K1—O4xvii | 103.04 (9) | O2—P3—K1ix | 71.17 (14) |
O1xi—K1—O4xvii | 164.18 (10) | O3—P3—K1ix | 101.86 (15) |
O2xvi—K1—O4xvii | 82.41 (10) | O1—P3—K1ix | 46.23 (13) |
O2xvii—K1—O4xvii | 46.48 (9) | K2xiv—P3—K1ix | 82.53 (3) |
O2xviii—K1—O4xvii | 128.76 (12) | K1xv—P3—K1ix | 129.78 (5) |
O4xvi—K1—O4xvii | 83.10 (12) | K2xv—P3—K1ix | 149.91 (4) |
O1xii—K1—O4xviii | 164.18 (10) | P3—O1—Fe1 | 132.5 (2) |
O1x—K1—O4xviii | 83.19 (10) | P3—O1—K1ix | 110.90 (17) |
O1xi—K1—O4xviii | 103.04 (9) | Fe1—O1—K1ix | 102.77 (13) |
O2xvi—K1—O4xviii | 128.76 (12) | P3—O2—Fe1xxii | 165.9 (2) |
O2xvii—K1—O4xviii | 82.41 (10) | P3—O2—K2xiv | 94.85 (16) |
O2xviii—K1—O4xviii | 46.48 (9) | Fe1xxii—O2—K2xiv | 92.87 (13) |
O4xvi—K1—O4xviii | 83.10 (12) | P3—O2—K1xv | 92.56 (16) |
O4xvii—K1—O4xviii | 83.10 (12) | Fe1xxii—O2—K1xv | 97.07 (13) |
O1xii—K1—P3xvi | 79.17 (7) | K2xiv—O2—K1xv | 103.55 (11) |
O1x—K1—P3xvi | 169.22 (7) | P3—O3—Fe2ix | 151.0 (2) |
O1xi—K1—P3xvi | 94.57 (7) | P3—O3—K2xv | 104.53 (18) |
O2xvi—K1—P3xvi | 26.23 (6) | Fe2ix—O3—K2xv | 100.23 (13) |
O2xvii—K1—P3xvi | 115.08 (8) | P3—O4—Fe2 | 152.9 (3) |
O2xviii—K1—P3xvi | 108.29 (8) | P3—O4—K2xv | 98.25 (18) |
O4xvi—K1—P3xvi | 26.12 (7) | Fe2—O4—K2xv | 94.57 (14) |
O4xvii—K1—P3xvi | 69.72 (7) | P3—O4—K1xv | 88.54 (16) |
O4xviii—K1—P3xvi | 103.33 (10) | Fe2—O4—K1xv | 117.62 (15) |
O1xii—K1—P3xviii | 169.22 (7) | K2xv—O4—K1xv | 77.17 (10) |
O1x—K1—P3xviii | 94.57 (7) | P3—O4—K2xiv | 83.00 (16) |
O1xi—K1—P3xviii | 79.17 (7) | Fe2—O4—K2xiv | 87.94 (14) |
O2xvi—K1—P3xviii | 115.08 (8) | K2xv—O4—K2xiv | 171.21 (14) |
O2xvii—K1—P3xviii | 108.29 (8) | K1xv—O4—K2xiv | 94.20 (11) |
O2xviii—K1—P3xviii | 26.23 (6) |
Symmetry codes: (i) −z, x−1/2, −y+1/2; (ii) −y+1/2, −z, x−1/2; (iii) x−1/2, −y+1/2, −z; (iv) y, z, x; (v) z, x, y; (vi) x−1, y−1, z−1; (vii) −x+1/2, −y+1, z−1/2; (viii) x−1/2, −y+1/2, −z+1; (ix) −x+1, y−1/2, −z+1/2; (x) y+1/2, −z+1/2, −x+1; (xi) −x+1, y+1/2, −z+1/2; (xii) −z+1/2, −x+1, y+1/2; (xiii) −x+1, y−1/2, −z+3/2; (xiv) x−1/2, −y+3/2, −z+1; (xv) −x+3/2, −y+1, z−1/2; (xvi) z+1/2, −x+3/2, −y+1; (xvii) −y+1, z+1/2, −x+3/2; (xviii) −x+3/2, −y+1, z+1/2; (xix) x+1/2, −y+3/2, −z+1; (xx) −z+1, x+1/2, −y+3/2; (xxi) −y+3/2, −z+1, x+1/2; (xxii) x+1/2, −y+1/2, −z. |
K0.97Na1.03Ti1.26Fe0.74(PO4)3 | Dx = 3.168 Mg m−3 |
Mr = 448.16 | Mo Kα radiation, λ = 0.71073 Å |
Cubic, P213 | Cell parameters from 10546 reflections |
Hall symbol: P 2ac 2ab 3 | θ = 2.9–29.0° |
a = 9.7945 (1) Å | µ = 3.27 mm−1 |
V = 939.61 (3) Å3 | T = 293 K |
Z = 4 | Tetrahedron, violet |
F(000) = 870.9 | 0.15 × 0.11 × 0.08 mm |
Oxford Diffraction Xcalibur-3 diffractometer | 833 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
φ and ω scans | θmax = 29.0°, θmin = 2.9° |
Absorption correction: multi-scan (Blessing, 1995) | h = −12→13 |
Tmin = 0.622, Tmax = 0.835 | k = −13→13 |
10546 measured reflections | l = −13→13 |
837 independent reflections |
Refinement on F2 | 'w = 1/[σ2(Fo2) + (0.0186P)2 + 1.1348P] where P = (Fo2 + 2Fc2)/3' |
Least-squares matrix: full | (Δ/σ)max < 0.001 |
R[F2 > 2σ(F2)] = 0.016 | Δρmax = 0.28 e Å−3 |
wR(F2) = 0.043 | Δρmin = −0.27 e Å−3 |
S = 1.12 | Extinction correction: SHELXL-2018/3 (Sheldrick 2015) |
837 reflections | Extinction coefficient: 0.0015 (10) |
63 parameters | Absolute structure: Flack x determined using 349 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
0 restraints | Absolute structure parameter: 0.02 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Fe1 | 0.14198 (4) | 0.14198 (4) | 0.14198 (4) | 0.0079 (2) | 0.39 (2) |
Ti1 | 0.14198 (4) | 0.14198 (4) | 0.14198 (4) | 0.0079 (2) | 0.61 (2) |
Fe2 | 0.41334 (4) | 0.41334 (4) | 0.41334 (4) | 0.0079 (2) | 0.35 (2) |
Ti2 | 0.41334 (4) | 0.41334 (4) | 0.41334 (4) | 0.0079 (2) | 0.65 (2) |
K1 | 0.70732 (10) | 0.70732 (10) | 0.70732 (10) | 0.0266 (6) | 0.676 (18) |
Na1 | 0.70732 (10) | 0.70732 (10) | 0.70732 (10) | 0.0266 (6) | 0.324 (18) |
K2 | 0.93159 (11) | 0.93159 (11) | 0.93159 (11) | 0.0254 (8) | 0.294 (19) |
Na2 | 0.93159 (11) | 0.93159 (11) | 0.93159 (11) | 0.0254 (8) | 0.706 (19) |
P3 | 0.45787 (7) | 0.22778 (7) | 0.12657 (7) | 0.00815 (19) | |
O1 | 0.3100 (2) | 0.2337 (3) | 0.0789 (2) | 0.0210 (5) | |
O2 | 0.5478 (3) | 0.2989 (3) | 0.0220 (3) | 0.0266 (6) | |
O3 | 0.5024 (3) | 0.0810 (2) | 0.1492 (3) | 0.0269 (5) | |
O4 | 0.4786 (3) | 0.3034 (3) | 0.2602 (3) | 0.0313 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.0079 (2) | 0.0079 (2) | 0.0079 (2) | 0.00028 (15) | 0.00028 (15) | 0.00028 (15) |
Ti1 | 0.0079 (2) | 0.0079 (2) | 0.0079 (2) | 0.00028 (15) | 0.00028 (15) | 0.00028 (15) |
Fe2 | 0.0079 (2) | 0.0079 (2) | 0.0079 (2) | −0.00052 (15) | −0.00052 (15) | −0.00052 (15) |
Ti2 | 0.0079 (2) | 0.0079 (2) | 0.0079 (2) | −0.00052 (15) | −0.00052 (15) | −0.00052 (15) |
K1 | 0.0266 (6) | 0.0266 (6) | 0.0266 (6) | 0.0015 (4) | 0.0015 (4) | 0.0015 (4) |
Na1 | 0.0266 (6) | 0.0266 (6) | 0.0266 (6) | 0.0015 (4) | 0.0015 (4) | 0.0015 (4) |
K2 | 0.0254 (8) | 0.0254 (8) | 0.0254 (8) | −0.0021 (4) | −0.0021 (4) | −0.0021 (4) |
Na2 | 0.0254 (8) | 0.0254 (8) | 0.0254 (8) | −0.0021 (4) | −0.0021 (4) | −0.0021 (4) |
P3 | 0.0075 (3) | 0.0087 (3) | 0.0083 (3) | −0.0003 (2) | 0.0015 (2) | −0.0007 (2) |
O1 | 0.0088 (9) | 0.0299 (12) | 0.0242 (12) | −0.0033 (8) | −0.0020 (8) | 0.0089 (10) |
O2 | 0.0197 (11) | 0.0361 (14) | 0.0241 (12) | −0.0014 (10) | 0.0088 (10) | 0.0136 (11) |
O3 | 0.0263 (12) | 0.0128 (10) | 0.0415 (14) | 0.0088 (9) | 0.0053 (11) | 0.0032 (11) |
O4 | 0.0333 (14) | 0.0373 (15) | 0.0232 (12) | −0.0027 (12) | 0.0014 (11) | −0.0206 (11) |
Fe1—O2i | 1.940 (2) | K1—O2xviii | 3.009 (3) |
Fe1—O2ii | 1.940 (2) | K1—O4xvii | 3.122 (3) |
Fe1—O2iii | 1.940 (2) | K1—O4xviii | 3.122 (3) |
Fe1—O1 | 1.974 (2) | K1—O4xvi | 3.122 (3) |
Fe1—O1iv | 1.974 (2) | K1—P3xviii | 3.4327 (11) |
Fe1—O1v | 1.974 (2) | K1—P3xvii | 3.4327 (11) |
Fe1—K2vi | 3.569 (2) | K1—P3xvi | 3.4327 (11) |
Fe1—K1vii | 3.7806 (7) | K2—O3xvii | 2.843 (3) |
Fe1—K1viii | 3.7806 (7) | K2—O3xvi | 2.843 (3) |
Fe1—K1ix | 3.7806 (7) | K2—O3xviii | 2.843 (3) |
Fe2—O3x | 1.938 (2) | K2—O2xix | 2.910 (3) |
Fe2—O3xi | 1.938 (2) | K2—O2xx | 2.910 (3) |
Fe2—O3xii | 1.938 (2) | K2—O2xxi | 2.910 (3) |
Fe2—O4 | 1.954 (2) | K2—O4xvii | 2.982 (4) |
Fe2—O4iv | 1.954 (2) | K2—O4xvi | 2.982 (4) |
Fe2—O4v | 1.954 (2) | K2—O4xviii | 2.982 (4) |
Fe2—K2xiii | 3.7084 (6) | K2—O4xx | 3.237 (3) |
Fe2—K2xiv | 3.7084 (6) | K2—O4xix | 3.237 (3) |
Fe2—K2xv | 3.7084 (6) | K2—O4xxi | 3.237 (3) |
K1—O1xi | 2.820 (3) | P3—O4 | 1.517 (3) |
K1—O1xii | 2.820 (3) | P3—O3 | 1.518 (2) |
K1—O1x | 2.820 (3) | P3—O2 | 1.520 (2) |
K1—O2xvi | 3.009 (3) | P3—O1 | 1.523 (2) |
K1—O2xvii | 3.009 (3) | ||
O2i—Fe1—O2ii | 89.72 (12) | O4xvii—K1—P3xvii | 26.22 (5) |
O2i—Fe1—O2iii | 89.72 (12) | O4xviii—K1—P3xvii | 103.21 (8) |
O2ii—Fe1—O2iii | 89.72 (12) | O4xvi—K1—P3xvii | 69.59 (5) |
O2i—Fe1—O1 | 178.52 (12) | P3xviii—K1—P3xvii | 94.92 (4) |
O2ii—Fe1—O1 | 88.81 (11) | O1xi—K1—P3xvi | 94.74 (5) |
O2iii—Fe1—O1 | 90.09 (10) | O1xii—K1—P3xvi | 79.13 (5) |
O2i—Fe1—O1iv | 90.09 (10) | O1x—K1—P3xvi | 169.06 (5) |
O2ii—Fe1—O1iv | 178.52 (12) | O2xvi—K1—P3xvi | 26.25 (5) |
O2iii—Fe1—O1iv | 88.81 (11) | O2xvii—K1—P3xvi | 108.35 (6) |
O1—Fe1—O1iv | 91.38 (10) | O2xviii—K1—P3xvi | 115.09 (6) |
O2i—Fe1—O1v | 88.81 (11) | O4xvii—K1—P3xvi | 103.21 (8) |
O2ii—Fe1—O1v | 90.09 (10) | O4xviii—K1—P3xvi | 69.59 (5) |
O2iii—Fe1—O1v | 178.52 (12) | O4xvi—K1—P3xvi | 26.22 (5) |
O1—Fe1—O1v | 91.38 (10) | P3xviii—K1—P3xvi | 94.92 (4) |
O1iv—Fe1—O1v | 91.38 (10) | P3xvii—K1—P3xvi | 94.92 (4) |
O2i—Fe1—K2vi | 54.54 (9) | O3xvii—K2—O3xvi | 100.89 (8) |
O2ii—Fe1—K2vi | 54.54 (9) | O3xvii—K2—O3xviii | 100.89 (8) |
O2iii—Fe1—K2vi | 54.54 (9) | O3xvi—K2—O3xviii | 100.89 (8) |
O1—Fe1—K2vi | 124.28 (7) | O3xvii—K2—O2xix | 149.75 (9) |
O1iv—Fe1—K2vi | 124.28 (7) | O3xvi—K2—O2xix | 95.89 (7) |
O1v—Fe1—K2vi | 124.28 (7) | O3xviii—K2—O2xix | 100.42 (8) |
O2i—Fe1—K1vii | 132.34 (9) | O3xvii—K2—O2xx | 95.89 (7) |
O2ii—Fe1—K1vii | 66.00 (8) | O3xvi—K2—O2xx | 100.42 (8) |
O2iii—Fe1—K1vii | 52.14 (8) | O3xviii—K2—O2xx | 149.75 (9) |
O1—Fe1—K1vii | 46.70 (7) | O2xix—K2—O2xx | 56.11 (8) |
O1iv—Fe1—K1vii | 113.14 (8) | O3xvii—K2—O2xxi | 100.42 (8) |
O1v—Fe1—K1vii | 129.02 (8) | O3xvi—K2—O2xxi | 149.75 (9) |
K2vi—Fe1—K1vii | 78.502 (13) | O3xviii—K2—O2xxi | 95.89 (7) |
O2i—Fe1—K1viii | 66.00 (8) | O2xix—K2—O2xxi | 56.11 (8) |
O2ii—Fe1—K1viii | 52.14 (8) | O2xx—K2—O2xxi | 56.11 (8) |
O2iii—Fe1—K1viii | 132.34 (9) | O3xvii—K2—O4xvii | 49.57 (7) |
O1—Fe1—K1viii | 113.14 (8) | O3xvi—K2—O4xvii | 115.99 (10) |
O1iv—Fe1—K1viii | 129.02 (8) | O3xviii—K2—O4xvii | 52.41 (7) |
O1v—Fe1—K1viii | 46.70 (7) | O2xix—K2—O4xvii | 140.03 (8) |
K2vi—Fe1—K1viii | 78.502 (13) | O2xx—K2—O4xvii | 132.27 (7) |
K1vii—Fe1—K1viii | 116.129 (8) | O2xxi—K2—O4xvii | 94.19 (7) |
O2i—Fe1—K1ix | 52.14 (8) | O3xvii—K2—O4xvi | 52.41 (7) |
O2ii—Fe1—K1ix | 132.34 (9) | O3xvi—K2—O4xvi | 49.57 (7) |
O2iii—Fe1—K1ix | 66.00 (8) | O3xviii—K2—O4xvi | 115.99 (10) |
O1—Fe1—K1ix | 129.02 (8) | O2xix—K2—O4xvi | 132.27 (7) |
O1iv—Fe1—K1ix | 46.70 (7) | O2xx—K2—O4xvi | 94.19 (7) |
O1v—Fe1—K1ix | 113.14 (8) | O2xxi—K2—O4xvi | 140.03 (8) |
K2vi—Fe1—K1ix | 78.502 (13) | O4xvii—K2—O4xvi | 87.67 (9) |
K1vii—Fe1—K1ix | 116.129 (8) | O3xvii—K2—O4xviii | 115.99 (10) |
K1viii—Fe1—K1ix | 116.129 (8) | O3xvi—K2—O4xviii | 52.41 (7) |
O3x—Fe2—O3xi | 92.37 (12) | O3xviii—K2—O4xviii | 49.57 (7) |
O3x—Fe2—O3xii | 92.37 (12) | O2xix—K2—O4xviii | 94.19 (7) |
O3xi—Fe2—O3xii | 92.37 (12) | O2xx—K2—O4xviii | 140.03 (8) |
O3x—Fe2—O4 | 94.89 (12) | O2xxi—K2—O4xviii | 132.27 (8) |
O3xi—Fe2—O4 | 171.47 (13) | O4xvii—K2—O4xviii | 87.67 (9) |
O3xii—Fe2—O4 | 82.87 (13) | O4xvi—K2—O4xviii | 87.67 (9) |
O3x—Fe2—O4iv | 82.87 (13) | O3xvii—K2—O4xx | 55.81 (6) |
O3xi—Fe2—O4iv | 94.90 (12) | O3xvi—K2—O4xx | 86.02 (7) |
O3xii—Fe2—O4iv | 171.46 (13) | O3xviii—K2—O4xx | 156.68 (8) |
O4—Fe2—O4iv | 90.46 (12) | O2xix—K2—O4xx | 100.98 (8) |
O3x—Fe2—O4v | 171.46 (13) | O2xx—K2—O4xx | 46.19 (7) |
O3xi—Fe2—O4v | 82.87 (13) | O2xxi—K2—O4xx | 88.43 (8) |
O3xii—Fe2—O4v | 94.90 (12) | O4xvii—K2—O4xx | 104.497 (19) |
O4—Fe2—O4v | 90.46 (12) | O4xvi—K2—O4xx | 52.80 (10) |
O4iv—Fe2—O4v | 90.46 (12) | O4xviii—K2—O4xx | 137.10 (6) |
O3x—Fe2—K2xiii | 118.47 (8) | O3xvii—K2—O4xix | 156.68 (8) |
O3xi—Fe2—K2xiii | 49.04 (9) | O3xvi—K2—O4xix | 55.81 (6) |
O3xii—Fe2—K2xiii | 127.81 (8) | O3xviii—K2—O4xix | 86.02 (7) |
O4—Fe2—K2xiii | 129.70 (9) | O2xix—K2—O4xix | 46.19 (7) |
O4iv—Fe2—K2xiii | 60.69 (10) | O2xx—K2—O4xix | 88.43 (8) |
O4v—Fe2—K2xiii | 53.21 (10) | O2xxi—K2—O4xix | 100.98 (8) |
O3x—Fe2—K2xiv | 127.81 (8) | O4xvii—K2—O4xix | 137.10 (6) |
O3xi—Fe2—K2xiv | 118.47 (8) | O4xvi—K2—O4xix | 104.497 (19) |
O3xii—Fe2—K2xiv | 49.04 (9) | O4xviii—K2—O4xix | 52.80 (10) |
O4—Fe2—K2xiv | 53.21 (10) | O4xx—K2—O4xix | 115.71 (4) |
O4iv—Fe2—K2xiv | 129.70 (9) | O3xvii—K2—O4xxi | 86.02 (7) |
O4v—Fe2—K2xiv | 60.69 (10) | O3xvi—K2—O4xxi | 156.68 (8) |
K2xiii—Fe2—K2xiv | 113.409 (11) | O3xviii—K2—O4xxi | 55.81 (6) |
O3x—Fe2—K2xv | 49.04 (9) | O2xix—K2—O4xxi | 88.43 (8) |
O3xi—Fe2—K2xv | 127.81 (8) | O2xx—K2—O4xxi | 100.98 (8) |
O3xii—Fe2—K2xv | 118.47 (8) | O2xxi—K2—O4xxi | 46.19 (7) |
O4—Fe2—K2xv | 60.69 (10) | O4xvii—K2—O4xxi | 52.80 (10) |
O4iv—Fe2—K2xv | 53.21 (10) | O4xvi—K2—O4xxi | 137.10 (6) |
O4v—Fe2—K2xv | 129.70 (9) | O4xviii—K2—O4xxi | 104.497 (19) |
K2xiii—Fe2—K2xv | 113.409 (11) | O4xx—K2—O4xxi | 115.71 (4) |
K2xiv—Fe2—K2xv | 113.409 (11) | O4xix—K2—O4xxi | 115.71 (4) |
O1xi—K1—O1xii | 92.11 (9) | O4—P3—O3 | 107.34 (18) |
O1xi—K1—O1x | 92.11 (9) | O4—P3—O2 | 106.27 (16) |
O1xii—K1—O1x | 92.11 (9) | O3—P3—O2 | 111.46 (16) |
O1xi—K1—O2xvi | 82.55 (7) | O4—P3—O1 | 111.89 (15) |
O1xii—K1—O2xvi | 56.64 (6) | O3—P3—O1 | 110.74 (14) |
O1x—K1—O2xvi | 147.84 (9) | O2—P3—O1 | 109.06 (14) |
O1xi—K1—O2xvii | 56.64 (6) | O4—P3—K2xv | 71.04 (13) |
O1xii—K1—O2xvii | 147.84 (9) | O3—P3—K2xv | 167.62 (11) |
O1x—K1—O2xvii | 82.55 (7) | O2—P3—K2xv | 58.68 (11) |
O2xvi—K1—O2xvii | 119.008 (19) | O1—P3—K2xv | 80.72 (10) |
O1xi—K1—O2xviii | 147.84 (9) | O4—P3—K1xiv | 65.37 (11) |
O1xii—K1—O2xviii | 82.55 (7) | O3—P3—K1xiv | 82.38 (11) |
O1x—K1—O2xviii | 56.64 (6) | O2—P3—K1xiv | 61.12 (11) |
O2xvi—K1—O2xviii | 119.008 (19) | O1—P3—K1xiv | 166.43 (11) |
O2xvii—K1—O2xviii | 119.008 (19) | K2xv—P3—K1xiv | 85.93 (3) |
O1xi—K1—O4xvii | 103.13 (7) | O4—P3—K2xiv | 56.40 (13) |
O1xii—K1—O4xvii | 164.24 (7) | O3—P3—K2xiv | 51.08 (12) |
O1x—K1—O4xvii | 83.46 (8) | O2—P3—K2xiv | 126.42 (11) |
O2xvi—K1—O4xvii | 128.67 (9) | O1—P3—K2xiv | 124.51 (10) |
O2xvii—K1—O4xvii | 46.65 (7) | K2xv—P3—K2xiv | 126.74 (3) |
O2xviii—K1—O4xvii | 82.39 (7) | K1xiv—P3—K2xiv | 66.11 (4) |
O1xi—K1—O4xviii | 164.24 (7) | O4—P3—K1vii | 149.07 (13) |
O1xii—K1—O4xviii | 83.46 (8) | O3—P3—K1vii | 101.87 (12) |
O1x—K1—O4xviii | 103.13 (7) | O2—P3—K1vii | 71.24 (11) |
O2xvi—K1—O4xviii | 82.39 (7) | O1—P3—K1vii | 46.09 (9) |
O2xvii—K1—O4xviii | 128.67 (9) | K2xv—P3—K1vii | 82.54 (3) |
O2xviii—K1—O4xviii | 46.65 (7) | K1xiv—P3—K1vii | 129.74 (3) |
O4xvii—K1—O4xviii | 82.84 (10) | K2xiv—P3—K1vii | 150.05 (3) |
O1xi—K1—O4xvi | 83.46 (8) | P3—O1—Fe1 | 132.78 (15) |
O1xii—K1—O4xvi | 103.13 (7) | P3—O1—K1vii | 111.02 (12) |
O1x—K1—O4xvi | 164.24 (7) | Fe1—O1—K1vii | 102.66 (9) |
O2xvi—K1—O4xvi | 46.65 (7) | P3—O2—Fe1xxii | 165.93 (19) |
O2xvii—K1—O4xvi | 82.39 (7) | P3—O2—K2xv | 94.82 (12) |
O2xviii—K1—O4xvi | 128.67 (9) | Fe1xxii—O2—K2xv | 92.57 (10) |
O4xvii—K1—O4xvi | 82.84 (10) | P3—O2—K1xiv | 92.63 (12) |
O4xviii—K1—O4xvi | 82.84 (10) | Fe1xxii—O2—K1xiv | 97.25 (10) |
O1xi—K1—P3xviii | 169.06 (5) | K2xv—O2—K1xiv | 103.64 (9) |
O1xii—K1—P3xviii | 94.74 (5) | P3—O3—Fe2vii | 151.51 (19) |
O1x—K1—P3xviii | 79.13 (5) | P3—O3—K2xiv | 104.38 (14) |
O2xvi—K1—P3xviii | 108.35 (6) | Fe2vii—O3—K2xiv | 100.00 (10) |
O2xvii—K1—P3xviii | 115.09 (6) | P3—O4—Fe2 | 152.6 (2) |
O2xviii—K1—P3xviii | 26.25 (5) | P3—O4—K2xiv | 98.53 (14) |
O4xvii—K1—P3xviii | 69.59 (5) | Fe2—O4—K2xiv | 95.14 (11) |
O4xviii—K1—P3xviii | 26.22 (5) | P3—O4—K1xiv | 88.41 (12) |
O4xvi—K1—P3xviii | 103.21 (8) | Fe2—O4—K1xiv | 117.90 (11) |
O1xi—K1—P3xvii | 79.13 (5) | K2xiv—O4—K1xiv | 77.09 (8) |
O1xii—K1—P3xvii | 169.06 (5) | P3—O4—K2xv | 82.65 (13) |
O1x—K1—P3xvii | 94.74 (5) | Fe2—O4—K2xv | 87.54 (11) |
O2xvi—K1—P3xvii | 115.09 (6) | K2xiv—O4—K2xv | 171.00 (11) |
O2xvii—K1—P3xvii | 26.25 (5) | K1xiv—O4—K2xv | 94.06 (9) |
O2xviii—K1—P3xvii | 108.35 (6) |
Symmetry codes: (i) −z, x−1/2, −y+1/2; (ii) −y+1/2, −z, x−1/2; (iii) x−1/2, −y+1/2, −z; (iv) z, x, y; (v) y, z, x; (vi) x−1, y−1, z−1; (vii) −x+1, y−1/2, −z+1/2; (viii) x−1/2, −y+1/2, −z+1; (ix) −x+1/2, −y+1, z−1/2; (x) −x+1, y+1/2, −z+1/2; (xi) −z+1/2, −x+1, y+1/2; (xii) y+1/2, −z+1/2, −x+1; (xiii) −x+1, y−1/2, −z+3/2; (xiv) −x+3/2, −y+1, z−1/2; (xv) x−1/2, −y+3/2, −z+1; (xvi) −y+1, z+1/2, −x+3/2; (xvii) z+1/2, −x+3/2, −y+1; (xviii) −x+3/2, −y+1, z+1/2; (xix) −y+3/2, −z+1, x+1/2; (xx) −z+1, x+1/2, −y+3/2; (xxi) x+1/2, −y+3/2, −z+1; (xxii) x+1/2, −y+1/2, −z. |
Funding information
This work was been supported by the Ministry of Education and Science of Ukraine: Grant of the Ministry of Education and Science of Ukraine for perspective development of the scientific direction `Mathematical sciences and natural sciences' at Taras Shevchenko National University of Kyiv.
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gustafsson, J. C. M., Norberg, S. T., Svensson, G. & Albertsson, J. (2005). Acta Cryst. C61, i9–i13. Web of Science CrossRef ICSD IUCr Journals Google Scholar
Isasi, J. & Daidouh, A. (2000). Solid State Ionics, 133, 303–313. Web of Science CrossRef ICSD CAS Google Scholar
Luo, Y., Sun, T., Shui, M. & Shu, J. (2019). Mater. Chem. Phys. 233, 339–345. Web of Science CrossRef CAS Google Scholar
Mereiter, K. (1979). N. Jb. Mineral. Monatsh. pp. 182–188. Google Scholar
Norberg, S. T. (2002). Acta Cryst. B58, 743–749. Web of Science CrossRef ICSD CAS IUCr Journals Google Scholar
Nose, M., Nakayama, H., Nobuhara, K., Yamaguchi, H., Nakanishi, S. & Iba, H. (2013). J. Power Sources, 234, 175–179. Web of Science CrossRef CAS Google Scholar
Ogorodnyk, I. V., Baumer, V. N., Zatovsky, I. V., Slobodyanik, N. S., Shishkin, O. V. & Domasevitch, K. V. (2007a). Acta Cryst. B63, 819–827. Web of Science CrossRef IUCr Journals Google Scholar
Ogorodnyk, I. V., Zatovsky, I. V., Baumer, V. N., Slobodyanik, N. S., Shishkin, O. V. & Vorona, I. P. (2008). Z. Naturforsch. Teil B, 63, 261–266. CrossRef CAS Google Scholar
Ogorodnyk, I. V., Zatovsky, I. V. & Slobodyanik, N. S. (2007b). Russ. J. Inorg. Chem. 52, 121–125. Web of Science CrossRef Google Scholar
Ogorodnyk, I. V., Zatovsky, I. V., Slobodyanik, N. S., Baumer, V. N. & Shishkin, O. V. (2006). J. Solid State Chem. 179, 3461–3466. Web of Science CrossRef ICSD CAS Google Scholar
Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Strutynska, N., Bondarenko, M., Slobodyanik, N., Baumer, V., Zatovsky, I., Bychkov, K. & Puzan, A. (2016). Cryst. Res. Technol. 51, 627–633. CrossRef CAS Google Scholar
Wang, D., Wei, Z., Lin, Y., Chen, N., Gao, Y., Chen, G., Song, L. & Du, F. (2019). J. Mater. Chem. A, 7, 20604–20613. CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zatovskii, I. V., Slobodyanik, N. S., Ushchapivskaya, T. I., Ogorodnik, I. V. & Babarik, A. A. (2006). Russ. J. Appl. Chem. 79, 10–15. CrossRef CAS Google Scholar
Zatovsky, I. V., Strutynska, N. Yu., Hizhnyi, Y. A., Nedilko, S. G., Slobodyanik, N. S. & Klyui, N. I. (2018). ChemistryOpen, 7, 504–512. CrossRef CAS PubMed Google Scholar
Zatovsky, I. V., Strutynska, N. Yu., Ogorodnyk, I. V., Baumer, V. N., Slobodyanik, N. S., Yatskin, M. M. & Odynets, I. V. (2016). Struct. Chem. 27, 323–330. CrossRef ICSD CAS Google Scholar
Zemann, A. & Zemann, J. (1957). Acta Cryst. 10, 409–413. CrossRef ICSD CAS IUCr Journals Web of Science Google Scholar
Zhang, B., Ma, K., Lv, X., Shi, K., Wang, Y., Nian, Z., Li, Y., Wang, L., Dai, L. & He, Z. (2021). J. Alloys Compd. 867, 159060. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.