research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Mixed-metal phosphates K1.64Na0.36TiFe(PO4)3 and K0.97Na1.03Ti1.26Fe0.74(PO4)3 with a langbeinite framework

crossmark logo

aF.D. Ovcharenko Institute of Biocolloidal Chemistry, NAS Ukraine, 42 Acad. Vernadskoho blv., 03142 Kyiv, Ukraine, bDepartment of Inorganic Chemistry, Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Str., 01601 Kyiv, Ukraine, cShimUkraine LLC 18, Chigorina Str., office 429, 01042 Kyiv, Ukraine, dSTC "Institute for Single Crystals", NAS of Ukraine, 60 Lenin ave., 61001 Kharkiv, Ukraine, eShenzhen Key Laboratory of Solid State Batteries, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China, and fGuangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
*Correspondence e-mail: zvigo@ukr.net

Edited by M. Weil, Vienna University of Technology, Austria (Received 15 October 2021; accepted 9 November 2021; online 16 November 2021)

Single crystals of the langbeinite-type phosphates K1.65Na0.35TiFe(PO4)3 and K0.97Na1.03Ti1.26Fe0.74(PO4)3 were grown by crystallization from high-temperature self-fluxes in the system Na2O–K2O–P2O5–TiO2–Fe2O3 using fixed molar ratios of (Na+K):P = 1.0, Ti:P = 0.20 and Na:K = 1.0 or 2.0 over the temperature range 1273–953 K. The three-dimensional framework of the two isotypic phosphates are built up from [(Ti/Fe)2(PO4)3] structure units containing two mixed [(Ti/Fe)O6] octa­hedra (site symmetry 3) connected via three bridging PO4 tetra­hedra. The potassium and sodium cations share two different sites in the structure that are located in the cavities of the framework. One of these sites has nine and the other twelve surrounding O atoms.

1. Chemical context

Over the last decade, numerous research efforts have been directed towards the creation of new phosphate materials for Li- or Na-ion batteries (Nose et al., 2013[Nose, M., Nakayama, H., Nobuhara, K., Yamaguchi, H., Nakanishi, S. & Iba, H. (2013). J. Power Sources, 234, 175-179.]; Zhang et al., 2021[Zhang, B., Ma, K., Lv, X., Shi, K., Wang, Y., Nian, Z., Li, Y., Wang, L., Dai, L. & He, Z. (2021). J. Alloys Compd. 867, 159060.]). In particular, significant progress has been made for complex phosphates with general formula MI1+xZ2(PO4)3 (MI = Li, Na; Z = polyvalent metals; x values can range from 0 to 3; Zatovsky et al., 2016[Zatovsky, I. V., Strutynska, N. Yu., Ogorodnyk, I. V., Baumer, V. N., Slobodyanik, N. S., Yatskin, M. M. & Odynets, I. V. (2016). Struct. Chem. 27, 323-330.]) adopting NASICON-type structures. The composition of phosphates with a langbeinite-type structure is very similar to the composition of NASICON-type ones, and langbeinite-type phosphates are also considered to be potential hosts for new electrode materials (Luo et al., 2019[Luo, Y., Sun, T., Shui, M. & Shu, J. (2019). Mater. Chem. Phys. 233, 339-345.]). However, langbeinite-type phosphates with a composition MI1+xZ2(PO4)3 (x = 0–1) can only be prepared with large monovalent cations (e.g., K, Rb, Cs, NH4; Norberg, 2002[Norberg, S. T. (2002). Acta Cryst. B58, 743-749.]; Ogorodnyk et al., 2007a[Ogorodnyk, I. V., Baumer, V. N., Zatovsky, I. V., Slobodyanik, N. S., Shishkin, O. V. & Domasevitch, K. V. (2007a). Acta Cryst. B63, 819-827.]). The langbeinite-type structure has only been reported for Na2ZIIITi(PO4)3 (ZIII = Cr, Fe; Isasi & Daidouh, 2000[Isasi, J. & Daidouh, A. (2000). Solid State Ionics, 133, 303-313.]). More recently, a good prospect for using such kinds of materials as anodes for Na-ion batteries has been predicted because of the recently reported migration mechanisms in langbeinite-type Na2CrTi(PO4)3 determined by atomic simulation (Luo et al., 2019[Luo, Y., Sun, T., Shui, M. & Shu, J. (2019). Mater. Chem. Phys. 233, 339-345.]). However, according to Wang et al. (2019[Wang, D., Wei, Z., Lin, Y., Chen, N., Gao, Y., Chen, G., Song, L. & Du, F. (2019). J. Mater. Chem. A, 7, 20604-20613.]), the phosphate Na2CrTi(PO4)3 belongs to the family of compounds with a NASICON-type structure. Therefore, the issue of preparing Na-containing langbeinite-type phosphates requires further research and development. In recent years, the synthesis of K/Na-containing complex phosphates has been realized using the self-flux method and resulted in the compounds K1.75Na0.25Ti2(PO4)3 (Zatovsky et al., 2018[Zatovsky, I. V., Strutynska, N. Yu., Hizhnyi, Y. A., Nedilko, S. G., Slobodyanik, N. S. & Klyui, N. I. (2018). ChemistryOpen, 7, 504-512.]) and K0.877Na0.48Ti2(PO4)3 (Strutynska et al., 2016[Strutynska, N., Bondarenko, M., Slobodyanik, N., Baumer, V., Zatovsky, I., Bychkov, K. & Puzan, A. (2016). Cryst. Res. Technol. 51, 627-633.]).

Here, we report the preparation, structure analysis and characterization of two new mixed-metal phosphates K1.64Na0.36TiFe(PO4)3 (I) and K0.97Na1.03Ti1.26Fe0.74(PO4)3 (II), which are isotypic with the mineral langbeinite, K2Mg2(SO4)3 (Zemann & Zemann, 1957[Zemann, A. & Zemann, J. (1957). Acta Cryst. 10, 409-413.]; Mereiter, 1979[Mereiter, K. (1979). N. Jb. Mineral. Monatsh. pp. 182-188.]).

2. Structural commentary

As it is illustrated in Fig. 1[link], two pairs of mixed sites occupied by alkali metals (K/Na) and transition metals (Ti/Fe) are located on threefold rotation axes (Wyckoff position 4 a), whereas the P and all O atoms occupy general sites (12 b). In the structures, the main structural element for building of the three-dimensional framework is a [(Ti/Fe)2(PO4)3] fragment consisting of two mixed-metal [(Ti/Fe)O6] octa­hedra and three PO4 tetra­hedra (Fig. 2[link]a). Such building units run in three orthogonal directions along the cubic space diagonals (Fig. 2[link]b), which is typical for the langbeinite-related family of compounds (sulfates, phosphates, vanadates etc, Ogorodnyk et al., 2007a[Ogorodnyk, I. V., Baumer, V. N., Zatovsky, I. V., Slobodyanik, N. S., Shishkin, O. V. & Domasevitch, K. V. (2007a). Acta Cryst. B63, 819-827.]).

[Figure 1]
Figure 1
A view of the asymmetric units of (I) and (II), with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
(a) [(Ti/Fe)2(PO4)3] building unit and (b) three-dimensional framework for (I) and (II).

Two octa­hedrally coordinated sites (Ti1/Fe1) and (Ti2/Fe2) show mixed occupancy with an Fe:Ti ratio close to 1:1. For (I), the Ti occupancy is 0.48 (3) for the M1 site, while for the M2 site it is 0.52 (3); for (II), the Ti occupancy is 0.61 (2) for the M1 site and 0.65 (2) for the M2 site. In the case of (I), this corresponds to Fe3+ and Ti4+ cations, while for (II), the simultaneous presence of Fe3+, Ti3+ and Ti4+ is suggested. The prepared crystals of (II) are violet in color and the Ti3+:Ti4+ ratio is about 1:4 taking into account the total charge of the cationic part of the compound. Partial self-reduction of Ti4+ to Ti3+ often accompanies the synthesis of langbeinite-type complex phosphates in fluxes of multicomponent systems when various trivalent or divalent metals are present (Gustafsson et al., 2005[Gustafsson, J. C. M., Norberg, S. T., Svensson, G. & Albertsson, J. (2005). Acta Cryst. C61, i9-i13.]; Zatovskii et al., 2006[Zatovskii, I. V., Slobodyanik, N. S., Ushchapivskaya, T. I., Ogorodnik, I. V. & Babarik, A. A. (2006). Russ. J. Appl. Chem. 79, 10-15.]). For structures (I) and (II), the [Ti/FeO6] octa­hedra are slightly distorted (Tables 1[link] and 2[link]). The range of M—O bond lengths [1.938 (2) – 1.976 (3) Å] is close to those in other langbeinite-related phosphates containing Ti and transition metals, such as K2Fe0.5Ti1.5(PO4)3 [1.940 (2)–1.992 (2) Å]; K2Ni0.5Ti1.5(PO4)3 [1.938 (5)–1.962 (5) Å]; K2Co0.5Ti1.5(PO4)3 [1.945 (2)–1.974 (2) Å]; K2Mn0.5Ti1.5(PO4)3 [1.961 (2)–2.002 (2) Å] (Ogorodnyk et al., 2008[Ogorodnyk, I. V., Zatovsky, I. V., Baumer, V. N., Slobodyanik, N. S., Shishkin, O. V. & Vorona, I. P. (2008). Z. Naturforsch. Teil B, 63, 261-266.], 2007b[Ogorodnyk, I. V., Zatovsky, I. V. & Slobodyanik, N. S. (2007b). Russ. J. Inorg. Chem. 52, 121-125.], 2006[Ogorodnyk, I. V., Zatovsky, I. V., Slobodyanik, N. S., Baumer, V. N. & Shishkin, O. V. (2006). J. Solid State Chem. 179, 3461-3466.]). The P—O distances for both structures are in the narrow ranges of 1.516 (4)–1.523 (3) for (I) and 1.517 (3)–1.523 (2) Å for (II).

Table 1
Selected bond lengths (Å) for (I)

Fe1—O2i 1.954 (3) K2—O2vi 2.911 (4)
Fe1—O1 1.976 (3) K2—O4vii 3.007 (4)
Fe2—O3ii 1.938 (3) K2—O4viii 3.231 (4)
Fe2—O4iii 1.970 (3) P3—O4 1.516 (4)
K1—O1iv 2.830 (4) P3—O2 1.522 (3)
K1—O2v 3.019 (4) P3—O3 1.523 (3)
K1—O4v 3.129 (4) P3—O1 1.523 (3)
K2—O3v 2.854 (4)    
Symmetry codes: (i) [-z, x-{\script{1\over 2}}, -y+{\script{1\over 2}}]; (ii) [y+{\script{1\over 2}}, -z+{\script{1\over 2}}, -x+1]; (iii) z, x, y; (iv) [-z+{\script{1\over 2}}, -x+1, y+{\script{1\over 2}}]; (v) [z+{\script{1\over 2}}, -x+{\script{3\over 2}}, -y+1]; (vi) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (vii) [-y+1, z+{\script{1\over 2}}, -x+{\script{3\over 2}}]; (viii) [-z+1, x+{\script{1\over 2}}, -y+{\script{3\over 2}}].

Table 2
Selected bond lengths (Å) for (II)

Fe1—O2i 1.940 (2) K2—O2vi 2.910 (3)
Fe1—O1 1.974 (2) K2—O4v 2.982 (4)
Fe2—O3ii 1.938 (2) K2—O4vii 3.237 (3)
Fe2—O4 1.954 (2) P3—O4 1.517 (3)
K1—O1iii 2.820 (3) P3—O3 1.518 (2)
K1—O2iv 3.009 (3) P3—O2 1.520 (2)
K1—O4v 3.122 (3) P3—O1 1.523 (2)
K2—O3v 2.843 (3)    
Symmetry codes: (i) [-z, x-{\script{1\over 2}}, -y+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-z+{\script{1\over 2}}, -x+1, y+{\script{1\over 2}}]; (iv) [-y+1, z+{\script{1\over 2}}, -x+{\script{3\over 2}}]; (v) [z+{\script{1\over 2}}, -x+{\script{3\over 2}}, -y+1]; (vi) [-y+{\script{3\over 2}}, -z+1, x+{\script{1\over 2}}]; (vii) [-z+1, x+{\script{1\over 2}}, -y+{\script{3\over 2}}].

There are two sites where the alkali metal cations reside (Fig. 1[link]). The first one, (K/Na)1 is occupied by K+ and Na+ cations at ratios of 0.85 (2):0.15 (2) and 0.676 (18):0.324 (18) for (I) and (II), respectively. The [(K/Na)1O9] polyhedra show three sets of (K/Na)—O distances assuming a cut-off value for the contact lengths of 3.129 (4) Å; the bond lengths are similar for both structures (Tables 1[link] and 2[link]). The coordination environment of the alkali cations related to the (K/Na)2 site consists of twelve O-atom neighbours with (K/Na)2—O distances ranging from 2.843 (3) to 3.237 (3) Å, which includes four sets of distances (Tables 1[link] and 2[link]). For this site, the K:Na ratios are 0.80 (3):0.20 (3) for (I) and 0.294 (19):0.706 (19) for (II). An inter­esting fact is that the substitution of potassium by sodium in the position (K/Na)2 is greater for (II) than for (I), but the (K/Na)2—O distances change insignificantly.

3. Synthesis and crystallization

Phosphates (I) and (II) were obtained from the melts of the system Na2O–K2O–P2O5–TiO2–Fe2O3 at fixed molar ratios of (Na+K)/P = 1.0, Ti/P = 0.20 and different values of Na/K = 1.0 or 2.0 over the temperature range 1273–953 K. All initial components MIH2PO4 (MI = Na, K), Fe2O3 and TiO2 were of an analytical grade.

A mixture of KH2PO4 (10 g), NaH2PO4 (8.82 g), Fe2O3 (2.35 g) and TiO2 (2.35 g) was used for the preparation of (I), while a mixture of KH2PO4 (10 g), NaH2PO4 (17.64 g), Fe2O3 (3.53 g) and TiO2 (3.53 g) was used for the preparation of (II). In both cases, the mixtures of calculated amounts of starting components were ground in an agate mortar and melted in a platinum crucible at 1273 K. The obtained melts were kept under isothermal conditions for 2 h for dissolving of the corresponding TiO2 + Fe2O3 mixture in the phosphate melt. Then the temperature was decreased with a rate of 25 K h−1 to 953 K and kept at this temperature for 2 h before cooling down to room temperature by turning off the furnace power. The obtained crystalline phases were separated from soluble salts by leaching with hot water and dried at 373 K.

The molar ratio Na/K in the initial melts had an influence on the composition of the obtained crystals. Light-yellow crystals formed in the melt with a ratio of Na:K = 1.0 while violet crystals were obtained for a ratio Na:K = 2.0 (Fig. 3[link]). It should be noted that increasing the amount of sodium in the initial melts to a ratio Na/K = 2.0 caused the growth of crystals with sizes of 2–3 mm (Fig. 3[link]b) in length.

[Figure 3]
Figure 3
Photographs of single crystals of (a) (I) and (b) (II).

The chemical compositions of the prepared samples (qu­anti­tative determination of K, Na, Ti, Fe and P) were confirmed by ICP–AES with a Shimadzu ICPE-9820 spectrometer. The analyses showed that the molar ratios of K:Na:Ti:Fe:P were close to 1.65:0.35:1:1:3 for (I) and 1:1:1.25:0.75:3 for (II).

The phosphates (I) and (II) were further characterized using Fourier transform infrared (FTIR) spectroscopy. The spectra were obtained using a PerkinElmer Spectrum BX spectrometer in the range 4000–400 cm−1 (at 4 cm−1 resolution) with sample material pressed into KBr pellets. The FTIR spectra for both compounds are similar in band positions of vibration modes (Fig. 4[link]). The broad and intense bands in the frequency region 1150–900 cm−1 are characteristic for P—O stretching vibrations [νas(PO3) – region 1150–1090 cm−1 and νs(PO3) – region 1020–900 cm−1] of the PO4 tetra­hedron. The band group at 650–550 cm−1 is caused by bending δ(P—O) vibrations of P—O bonds. Some differences in the spectra were observed in the range 500–400 cm−1, which are due to X—O (X = Ti, Fe) vibrations and correlate with insignificant differences in the composition of the prepared compounds (I) and (II).

[Figure 4]
Figure 4
FTIR spectra of (I) (curve 1) and (II) (curve 2).

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. According to the results of the chemical analysis, large qu­anti­ties of Na and Ti are present in the structures. Taking into account possible coordination spheres of Na and Ti and previously reported langbeinite-type phosphates with a mixed-metal framework, we supposed that Ti occupies the same sites as Fe, and Na the same positions as K. Hence, the corresponding positions of Fe1 and Fe2, K1 and K2 were occupied with Ti and Na, respectively. As the Fe(Ti) positions are part of the rigid framework, we assumed that these sites show full occupancy, while the sites related with the alkali metal can be fully or partially occupied. At a first approach, the occupancies were refined using linear combinations of free variables (SUMP restraint). Two SUMP restraints were applied to occupancies of Fe1(Ti1) and Fe2(Ti2) sites. One more SUMP restraint was then applied to the sum of valence units of all metal-atom positions. This refinement resulted in satisfactory reliability factors. It was found that the occupancies of K1(Na1) and K2(Na2) are close to 1. Thus, to simplify the refinement we tried to refine the occupancies with free variable constraints instead of SUMP restraints while keeping the alkali metal site occupancies equal to 1. To each refined position, a unique free variable constraint was applied, plus constrained identical coordinates and ADPs for each site. The resulting reliability factors were found to be almost equal to those where the SUMP restraints were used. For the final refinement cycles, the second approach was applied to both structures.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula K1.65Na0.35TiFe(PO4)3 K0.97Na1.03Ti1.26Fe0.74(PO4)3
Mr 461.19 448.16
Crystal system, space group Cubic, P213 Cubic, P213
Temperature (K) 293 293
a (Å) 9.82010 (13) 9.7945 (1)
V3) 947.00 (4) 939.61 (3)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 3.69 3.27
Crystal size (mm) 0.13 × 0.10 × 0.07 0.15 × 0.11 × 0.08
 
Data collection
Diffractometer Oxford Diffraction Xcalibur-3 Oxford Diffraction Xcalibur-3
Absorption correction Multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.])
Tmin, Tmax 0.675, 0.782 0.622, 0.835
No. of measured, independent and observed [I > 2σ(I)] reflections 1897, 847, 829 10546, 837, 833
Rint 0.027 0.026
(sin θ/λ)max−1) 0.681 0.681
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.064, 1.14 0.016, 0.043, 1.12
No. of reflections 847 837
No. of parameters 63 63
Δρmax, Δρmin (e Å−3) 0.48, −0.37 0.29, −0.27
Absolute structure Flack x determined using 339 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Flack x determined using 349 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.02 (2) −0.042 (11)
Computer programs: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]), CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis CCD (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 2012), enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).

Potassium sodium titanium iron tris(phosphate) (I) top
Crystal data top
K1.65Na0.35TiFe(PO4)3Dx = 3.235 Mg m3
Mr = 461.19Mo Kα radiation, λ = 0.71073 Å
Cubic, P213Cell parameters from 1897 reflections
Hall symbol: P 2ac 2ab 3θ = 2.9–29.0°
a = 9.82010 (13) ŵ = 3.69 mm1
V = 947.00 (4) Å3T = 293 K
Z = 4Tetrahedron, light yellow
F(000) = 896.80.13 × 0.10 × 0.07 mm
Data collection top
Oxford Diffraction Xcalibur-3
diffractometer
829 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 29.0°, θmin = 2.9°
Absorption correction: multi-scan
(Blessing, 1995)
h = 133
Tmin = 0.675, Tmax = 0.782k = 513
1897 measured reflectionsl = 1212
847 independent reflections
Refinement top
Refinement on F2 'w = 1/[σ2(Fo2) + (0.0292P)2 + 0.5767P]
where P = (Fo2 + 2Fc2)/3'
Least-squares matrix: full(Δ/σ)max < 0.001
R[F2 > 2σ(F2)] = 0.025Δρmax = 0.48 e Å3
wR(F2) = 0.064Δρmin = 0.37 e Å3
S = 1.14Extinction correction: SHELXL-2018/3 (Sheldrick 2015)
847 reflectionsExtinction coefficient: 0.0042 (16)
63 parametersAbsolute structure: Flack x determined using 339 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.02
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.14303 (6)0.14303 (6)0.14303 (6)0.0085 (3)0.52 (3)
Ti10.14303 (6)0.14303 (6)0.14303 (6)0.0085 (3)0.48 (3)
Fe20.41389 (6)0.41389 (6)0.41389 (6)0.0087 (3)0.48 (3)
Ti20.41389 (6)0.41389 (6)0.41389 (6)0.0087 (3)0.52 (3)
K10.70712 (13)0.70712 (13)0.70712 (13)0.0254 (7)0.85 (2)
Na10.70712 (13)0.70712 (13)0.70712 (13)0.0254 (7)0.15 (2)
K20.93216 (12)0.93216 (12)0.93216 (12)0.0228 (8)0.80 (3)
Na20.93216 (12)0.93216 (12)0.93216 (12)0.0228 (8)0.20 (3)
P30.45810 (10)0.22783 (10)0.12639 (11)0.0089 (3)
O10.3106 (3)0.2345 (3)0.0792 (3)0.0181 (7)
O20.5477 (4)0.2988 (4)0.0217 (3)0.0214 (8)
O30.5021 (3)0.0809 (3)0.1494 (4)0.0207 (7)
O40.4787 (4)0.3041 (4)0.2590 (4)0.0254 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0085 (3)0.0085 (3)0.0085 (3)0.0002 (2)0.0002 (2)0.0002 (2)
Ti10.0085 (3)0.0085 (3)0.0085 (3)0.0002 (2)0.0002 (2)0.0002 (2)
Fe20.0087 (3)0.0087 (3)0.0087 (3)0.0005 (2)0.0005 (2)0.0005 (2)
Ti20.0087 (3)0.0087 (3)0.0087 (3)0.0005 (2)0.0005 (2)0.0005 (2)
K10.0254 (7)0.0254 (7)0.0254 (7)0.0004 (5)0.0004 (5)0.0004 (5)
Na10.0254 (7)0.0254 (7)0.0254 (7)0.0004 (5)0.0004 (5)0.0004 (5)
K20.0228 (8)0.0228 (8)0.0228 (8)0.0021 (4)0.0021 (4)0.0021 (4)
Na20.0228 (8)0.0228 (8)0.0228 (8)0.0021 (4)0.0021 (4)0.0021 (4)
P30.0078 (5)0.0098 (5)0.0090 (5)0.0003 (3)0.0014 (4)0.0001 (4)
O10.0103 (14)0.0218 (16)0.0222 (17)0.0032 (12)0.0019 (12)0.0080 (14)
O20.0190 (17)0.0273 (17)0.0178 (16)0.0001 (14)0.0060 (14)0.0096 (14)
O30.0225 (16)0.0123 (14)0.0273 (17)0.0070 (13)0.0027 (14)0.0027 (14)
O40.0278 (19)0.029 (2)0.0190 (17)0.0027 (15)0.0019 (15)0.0148 (15)
Geometric parameters (Å, º) top
Fe1—O2i1.954 (3)K1—O2xviii3.019 (4)
Fe1—O2ii1.954 (3)K1—O4xvi3.129 (4)
Fe1—O2iii1.954 (3)K1—O4xvii3.129 (4)
Fe1—O11.976 (3)K1—O4xviii3.129 (4)
Fe1—O1iv1.976 (3)K1—P3xvi3.4416 (16)
Fe1—O1v1.976 (3)K1—P3xviii3.4416 (16)
Fe1—K2vi3.587 (2)K1—P3xvii3.4416 (16)
Fe1—K1vii3.7927 (9)K2—O3xvi2.854 (4)
Fe1—K1viii3.7927 (9)K2—O3xvii2.854 (4)
Fe1—K1ix3.7927 (9)K2—O3xviii2.854 (4)
Fe2—O3x1.938 (3)K2—O2xix2.911 (4)
Fe2—O3xi1.938 (3)K2—O2xx2.911 (4)
Fe2—O3xii1.938 (3)K2—O2xxi2.911 (4)
Fe2—O4v1.970 (3)K2—O4xvii3.007 (4)
Fe2—O4iv1.970 (3)K2—O4xvi3.007 (4)
Fe2—O41.970 (3)K2—O4xviii3.007 (4)
Fe2—K2xiii3.7237 (7)K2—O4xx3.231 (4)
Fe2—K2xiv3.7237 (7)K2—O4xxi3.231 (4)
Fe2—K2xv3.7237 (7)K2—O4xix3.231 (4)
K1—O1xii2.830 (4)P3—O41.516 (4)
K1—O1x2.830 (4)P3—O21.522 (3)
K1—O1xi2.830 (4)P3—O31.523 (3)
K1—O2xvi3.019 (4)P3—O11.523 (3)
K1—O2xvii3.019 (4)
O2i—Fe1—O2ii89.19 (16)O4xvi—K1—P3xviii69.72 (7)
O2i—Fe1—O2iii89.19 (16)O4xvii—K1—P3xviii103.33 (10)
O2ii—Fe1—O2iii89.19 (16)O4xviii—K1—P3xviii26.12 (7)
O2i—Fe1—O1177.99 (16)P3xvi—K1—P3xviii94.91 (5)
O2ii—Fe1—O188.89 (15)O1xii—K1—P3xvii94.57 (7)
O2iii—Fe1—O190.18 (14)O1x—K1—P3xvii79.17 (7)
O2i—Fe1—O1iv88.88 (15)O1xi—K1—P3xvii169.22 (7)
O2ii—Fe1—O1iv90.18 (14)O2xvi—K1—P3xvii108.29 (8)
O2iii—Fe1—O1iv177.99 (16)O2xvii—K1—P3xvii26.23 (6)
O1—Fe1—O1iv91.72 (14)O2xviii—K1—P3xvii115.08 (8)
O2i—Fe1—O1v90.18 (14)O4xvi—K1—P3xvii103.33 (10)
O2ii—Fe1—O1v177.99 (16)O4xvii—K1—P3xvii26.12 (7)
O2iii—Fe1—O1v88.88 (15)O4xviii—K1—P3xvii69.72 (7)
O1—Fe1—O1v91.71 (14)P3xvi—K1—P3xvii94.91 (5)
O1iv—Fe1—O1v91.72 (14)P3xviii—K1—P3xvii94.91 (5)
O2i—Fe1—K2vi54.17 (11)O3xvi—K2—O3xvii100.76 (10)
O2ii—Fe1—K2vi54.17 (11)O3xvi—K2—O3xviii100.76 (10)
O2iii—Fe1—K2vi54.17 (11)O3xvii—K2—O3xviii100.76 (10)
O1—Fe1—K2vi124.04 (10)O3xvi—K2—O2xix100.42 (10)
O1iv—Fe1—K2vi124.04 (10)O3xvii—K2—O2xix149.92 (11)
O1v—Fe1—K2vi124.04 (10)O3xviii—K2—O2xix95.97 (10)
O2i—Fe1—K1vii52.19 (11)O3xvi—K2—O2xx95.97 (10)
O2ii—Fe1—K1vii131.75 (12)O3xvii—K2—O2xx100.42 (10)
O2iii—Fe1—K1vii65.77 (11)O3xviii—K2—O2xx149.92 (11)
O1—Fe1—K1vii129.13 (11)O2xix—K2—O2xx56.22 (11)
O1iv—Fe1—K1vii113.38 (10)O3xvi—K2—O2xxi149.92 (11)
O1v—Fe1—K1vii46.69 (10)O3xvii—K2—O2xxi95.97 (10)
K2vi—Fe1—K1vii78.252 (17)O3xviii—K2—O2xxi100.42 (10)
O2i—Fe1—K1viii65.77 (11)O2xix—K2—O2xxi56.22 (11)
O2ii—Fe1—K1viii52.19 (11)O2xx—K2—O2xxi56.22 (11)
O2iii—Fe1—K1viii131.75 (12)O3xvi—K2—O4xvii52.44 (10)
O1—Fe1—K1viii113.38 (10)O3xvii—K2—O4xvii49.39 (9)
O1iv—Fe1—K1viii46.69 (10)O3xviii—K2—O4xvii115.63 (12)
O1v—Fe1—K1viii129.13 (11)O2xix—K2—O4xvii140.25 (11)
K2vi—Fe1—K1viii78.252 (17)O2xx—K2—O4xvii94.39 (10)
K1vii—Fe1—K1viii115.965 (12)O2xxi—K2—O4xvii132.45 (10)
O2i—Fe1—K1ix131.75 (12)O3xvi—K2—O4xvi49.39 (9)
O2ii—Fe1—K1ix65.77 (11)O3xvii—K2—O4xvi115.63 (12)
O2iii—Fe1—K1ix52.19 (11)O3xviii—K2—O4xvi52.44 (10)
O1—Fe1—K1ix46.69 (10)O2xix—K2—O4xvi94.39 (10)
O1iv—Fe1—K1ix129.13 (11)O2xx—K2—O4xvi132.45 (10)
O1v—Fe1—K1ix113.38 (10)O2xxi—K2—O4xvi140.25 (11)
K2vi—Fe1—K1ix78.252 (17)O4xvii—K2—O4xvi87.30 (11)
K1vii—Fe1—K1ix115.965 (12)O3xvi—K2—O4xviii115.63 (12)
K1viii—Fe1—K1ix115.965 (12)O3xvii—K2—O4xviii52.44 (10)
O3x—Fe2—O3xi92.72 (15)O3xviii—K2—O4xviii49.39 (9)
O3x—Fe2—O3xii92.72 (15)O2xix—K2—O4xviii132.45 (10)
O3xi—Fe2—O3xii92.72 (15)O2xx—K2—O4xviii140.25 (11)
O3x—Fe2—O4v171.85 (17)O2xxi—K2—O4xviii94.39 (10)
O3xi—Fe2—O4v83.11 (16)O4xvii—K2—O4xviii87.30 (11)
O3xii—Fe2—O4v94.47 (15)O4xvi—K2—O4xviii87.30 (11)
O3x—Fe2—O4iv94.47 (15)O3xvi—K2—O4xx55.86 (9)
O3xi—Fe2—O4iv171.85 (17)O3xvii—K2—O4xx85.99 (9)
O3xii—Fe2—O4iv83.11 (16)O3xviii—K2—O4xx156.61 (10)
O4v—Fe2—O4iv90.22 (16)O2xix—K2—O4xx88.46 (10)
O3x—Fe2—O483.11 (16)O2xx—K2—O4xx46.20 (9)
O3xi—Fe2—O494.47 (15)O2xxi—K2—O4xx101.11 (10)
O3xii—Fe2—O4171.85 (17)O4xvii—K2—O4xx53.02 (13)
O4v—Fe2—O490.22 (16)O4xvi—K2—O4xx104.40 (2)
O4iv—Fe2—O490.22 (16)O4xviii—K2—O4xx137.03 (8)
O3x—Fe2—K2xiii127.93 (11)O3xvi—K2—O4xxi156.61 (10)
O3xi—Fe2—K2xiii118.56 (11)O3xvii—K2—O4xxi55.86 (9)
O3xii—Fe2—K2xiii48.96 (11)O3xviii—K2—O4xxi85.99 (9)
O4v—Fe2—K2xiii60.13 (13)O2xix—K2—O4xxi101.11 (10)
O4iv—Fe2—K2xiii53.60 (12)O2xx—K2—O4xxi88.46 (10)
O4—Fe2—K2xiii129.40 (12)O2xxi—K2—O4xxi46.20 (9)
O3x—Fe2—K2xiv118.56 (11)O4xvii—K2—O4xxi104.40 (2)
O3xi—Fe2—K2xiv48.96 (11)O4xvi—K2—O4xxi137.03 (8)
O3xii—Fe2—K2xiv127.93 (11)O4xviii—K2—O4xxi53.02 (13)
O4v—Fe2—K2xiv53.60 (12)O4xx—K2—O4xxi115.75 (5)
O4iv—Fe2—K2xiv129.40 (12)O3xvi—K2—O4xix85.99 (9)
O4—Fe2—K2xiv60.13 (12)O3xvii—K2—O4xix156.61 (10)
K2xiii—Fe2—K2xiv113.261 (15)O3xviii—K2—O4xix55.86 (9)
O3x—Fe2—K2xv48.96 (11)O2xix—K2—O4xix46.20 (9)
O3xi—Fe2—K2xv127.93 (11)O2xx—K2—O4xix101.11 (10)
O3xii—Fe2—K2xv118.56 (11)O2xxi—K2—O4xix88.46 (10)
O4v—Fe2—K2xv129.40 (12)O4xvii—K2—O4xix137.03 (8)
O4iv—Fe2—K2xv60.13 (12)O4xvi—K2—O4xix53.02 (13)
O4—Fe2—K2xv53.60 (12)O4xviii—K2—O4xix104.40 (2)
K2xiii—Fe2—K2xv113.261 (15)O4xx—K2—O4xix115.75 (5)
K2xiv—Fe2—K2xv113.261 (15)O4xxi—K2—O4xix115.75 (5)
O1xii—K1—O1x92.24 (11)O4—P3—O2106.1 (2)
O1xii—K1—O1xi92.24 (12)O4—P3—O3107.6 (2)
O1x—K1—O1xi92.24 (11)O2—P3—O3111.7 (2)
O1xii—K1—O2xvi56.73 (9)O4—P3—O1111.6 (2)
O1x—K1—O2xvi148.02 (12)O2—P3—O1109.0 (2)
O1xi—K1—O2xvi82.44 (10)O3—P3—O1110.81 (19)
O1xii—K1—O2xvii82.44 (10)O4—P3—K2xiv70.72 (16)
O1x—K1—O2xvii56.73 (9)O2—P3—K2xiv58.63 (14)
O1xi—K1—O2xvii148.02 (12)O3—P3—K2xiv167.81 (14)
O2xvi—K1—O2xvii118.99 (3)O1—P3—K2xiv80.51 (13)
O1xii—K1—O2xviii148.02 (12)O4—P3—K1xv65.34 (15)
O1x—K1—O2xviii82.44 (10)O2—P3—K1xv61.21 (14)
O1xi—K1—O2xviii56.73 (9)O3—P3—K1xv82.59 (14)
O2xvi—K1—O2xviii118.99 (3)O1—P3—K1xv166.21 (14)
O2xvii—K1—O2xviii118.99 (3)K2xiv—P3—K1xv85.88 (3)
O1xii—K1—O4xvi103.04 (9)O4—P3—K2xv56.80 (16)
O1x—K1—O4xvi164.18 (10)O2—P3—K2xv126.68 (15)
O1xi—K1—O4xvi83.19 (10)O3—P3—K2xv50.98 (15)
O2xvi—K1—O4xvi46.48 (9)O1—P3—K2xv124.35 (14)
O2xvii—K1—O4xvi128.76 (12)K2xiv—P3—K2xv126.85 (4)
O2xviii—K1—O4xvi82.41 (10)K1xv—P3—K2xv66.30 (5)
O1xii—K1—O4xvii83.19 (10)O4—P3—K1ix148.79 (17)
O1x—K1—O4xvii103.04 (9)O2—P3—K1ix71.17 (14)
O1xi—K1—O4xvii164.18 (10)O3—P3—K1ix101.86 (15)
O2xvi—K1—O4xvii82.41 (10)O1—P3—K1ix46.23 (13)
O2xvii—K1—O4xvii46.48 (9)K2xiv—P3—K1ix82.53 (3)
O2xviii—K1—O4xvii128.76 (12)K1xv—P3—K1ix129.78 (5)
O4xvi—K1—O4xvii83.10 (12)K2xv—P3—K1ix149.91 (4)
O1xii—K1—O4xviii164.18 (10)P3—O1—Fe1132.5 (2)
O1x—K1—O4xviii83.19 (10)P3—O1—K1ix110.90 (17)
O1xi—K1—O4xviii103.04 (9)Fe1—O1—K1ix102.77 (13)
O2xvi—K1—O4xviii128.76 (12)P3—O2—Fe1xxii165.9 (2)
O2xvii—K1—O4xviii82.41 (10)P3—O2—K2xiv94.85 (16)
O2xviii—K1—O4xviii46.48 (9)Fe1xxii—O2—K2xiv92.87 (13)
O4xvi—K1—O4xviii83.10 (12)P3—O2—K1xv92.56 (16)
O4xvii—K1—O4xviii83.10 (12)Fe1xxii—O2—K1xv97.07 (13)
O1xii—K1—P3xvi79.17 (7)K2xiv—O2—K1xv103.55 (11)
O1x—K1—P3xvi169.22 (7)P3—O3—Fe2ix151.0 (2)
O1xi—K1—P3xvi94.57 (7)P3—O3—K2xv104.53 (18)
O2xvi—K1—P3xvi26.23 (6)Fe2ix—O3—K2xv100.23 (13)
O2xvii—K1—P3xvi115.08 (8)P3—O4—Fe2152.9 (3)
O2xviii—K1—P3xvi108.29 (8)P3—O4—K2xv98.25 (18)
O4xvi—K1—P3xvi26.12 (7)Fe2—O4—K2xv94.57 (14)
O4xvii—K1—P3xvi69.72 (7)P3—O4—K1xv88.54 (16)
O4xviii—K1—P3xvi103.33 (10)Fe2—O4—K1xv117.62 (15)
O1xii—K1—P3xviii169.22 (7)K2xv—O4—K1xv77.17 (10)
O1x—K1—P3xviii94.57 (7)P3—O4—K2xiv83.00 (16)
O1xi—K1—P3xviii79.17 (7)Fe2—O4—K2xiv87.94 (14)
O2xvi—K1—P3xviii115.08 (8)K2xv—O4—K2xiv171.21 (14)
O2xvii—K1—P3xviii108.29 (8)K1xv—O4—K2xiv94.20 (11)
O2xviii—K1—P3xviii26.23 (6)
Symmetry codes: (i) z, x1/2, y+1/2; (ii) y+1/2, z, x1/2; (iii) x1/2, y+1/2, z; (iv) y, z, x; (v) z, x, y; (vi) x1, y1, z1; (vii) x+1/2, y+1, z1/2; (viii) x1/2, y+1/2, z+1; (ix) x+1, y1/2, z+1/2; (x) y+1/2, z+1/2, x+1; (xi) x+1, y+1/2, z+1/2; (xii) z+1/2, x+1, y+1/2; (xiii) x+1, y1/2, z+3/2; (xiv) x1/2, y+3/2, z+1; (xv) x+3/2, y+1, z1/2; (xvi) z+1/2, x+3/2, y+1; (xvii) y+1, z+1/2, x+3/2; (xviii) x+3/2, y+1, z+1/2; (xix) x+1/2, y+3/2, z+1; (xx) z+1, x+1/2, y+3/2; (xxi) y+3/2, z+1, x+1/2; (xxii) x+1/2, y+1/2, z.
Potassium sodium titanium iron tris(phosphate) (II) top
Crystal data top
K0.97Na1.03Ti1.26Fe0.74(PO4)3Dx = 3.168 Mg m3
Mr = 448.16Mo Kα radiation, λ = 0.71073 Å
Cubic, P213Cell parameters from 10546 reflections
Hall symbol: P 2ac 2ab 3θ = 2.9–29.0°
a = 9.7945 (1) ŵ = 3.27 mm1
V = 939.61 (3) Å3T = 293 K
Z = 4Tetrahedron, violet
F(000) = 870.90.15 × 0.11 × 0.08 mm
Data collection top
Oxford Diffraction Xcalibur-3
diffractometer
833 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 29.0°, θmin = 2.9°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1213
Tmin = 0.622, Tmax = 0.835k = 1313
10546 measured reflectionsl = 1313
837 independent reflections
Refinement top
Refinement on F2 'w = 1/[σ2(Fo2) + (0.0186P)2 + 1.1348P]
where P = (Fo2 + 2Fc2)/3'
Least-squares matrix: full(Δ/σ)max < 0.001
R[F2 > 2σ(F2)] = 0.016Δρmax = 0.28 e Å3
wR(F2) = 0.043Δρmin = 0.27 e Å3
S = 1.12Extinction correction: SHELXL-2018/3 (Sheldrick 2015)
837 reflectionsExtinction coefficient: 0.0015 (10)
63 parametersAbsolute structure: Flack x determined using 349 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.02
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.14198 (4)0.14198 (4)0.14198 (4)0.0079 (2)0.39 (2)
Ti10.14198 (4)0.14198 (4)0.14198 (4)0.0079 (2)0.61 (2)
Fe20.41334 (4)0.41334 (4)0.41334 (4)0.0079 (2)0.35 (2)
Ti20.41334 (4)0.41334 (4)0.41334 (4)0.0079 (2)0.65 (2)
K10.70732 (10)0.70732 (10)0.70732 (10)0.0266 (6)0.676 (18)
Na10.70732 (10)0.70732 (10)0.70732 (10)0.0266 (6)0.324 (18)
K20.93159 (11)0.93159 (11)0.93159 (11)0.0254 (8)0.294 (19)
Na20.93159 (11)0.93159 (11)0.93159 (11)0.0254 (8)0.706 (19)
P30.45787 (7)0.22778 (7)0.12657 (7)0.00815 (19)
O10.3100 (2)0.2337 (3)0.0789 (2)0.0210 (5)
O20.5478 (3)0.2989 (3)0.0220 (3)0.0266 (6)
O30.5024 (3)0.0810 (2)0.1492 (3)0.0269 (5)
O40.4786 (3)0.3034 (3)0.2602 (3)0.0313 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0079 (2)0.0079 (2)0.0079 (2)0.00028 (15)0.00028 (15)0.00028 (15)
Ti10.0079 (2)0.0079 (2)0.0079 (2)0.00028 (15)0.00028 (15)0.00028 (15)
Fe20.0079 (2)0.0079 (2)0.0079 (2)0.00052 (15)0.00052 (15)0.00052 (15)
Ti20.0079 (2)0.0079 (2)0.0079 (2)0.00052 (15)0.00052 (15)0.00052 (15)
K10.0266 (6)0.0266 (6)0.0266 (6)0.0015 (4)0.0015 (4)0.0015 (4)
Na10.0266 (6)0.0266 (6)0.0266 (6)0.0015 (4)0.0015 (4)0.0015 (4)
K20.0254 (8)0.0254 (8)0.0254 (8)0.0021 (4)0.0021 (4)0.0021 (4)
Na20.0254 (8)0.0254 (8)0.0254 (8)0.0021 (4)0.0021 (4)0.0021 (4)
P30.0075 (3)0.0087 (3)0.0083 (3)0.0003 (2)0.0015 (2)0.0007 (2)
O10.0088 (9)0.0299 (12)0.0242 (12)0.0033 (8)0.0020 (8)0.0089 (10)
O20.0197 (11)0.0361 (14)0.0241 (12)0.0014 (10)0.0088 (10)0.0136 (11)
O30.0263 (12)0.0128 (10)0.0415 (14)0.0088 (9)0.0053 (11)0.0032 (11)
O40.0333 (14)0.0373 (15)0.0232 (12)0.0027 (12)0.0014 (11)0.0206 (11)
Geometric parameters (Å, º) top
Fe1—O2i1.940 (2)K1—O2xviii3.009 (3)
Fe1—O2ii1.940 (2)K1—O4xvii3.122 (3)
Fe1—O2iii1.940 (2)K1—O4xviii3.122 (3)
Fe1—O11.974 (2)K1—O4xvi3.122 (3)
Fe1—O1iv1.974 (2)K1—P3xviii3.4327 (11)
Fe1—O1v1.974 (2)K1—P3xvii3.4327 (11)
Fe1—K2vi3.569 (2)K1—P3xvi3.4327 (11)
Fe1—K1vii3.7806 (7)K2—O3xvii2.843 (3)
Fe1—K1viii3.7806 (7)K2—O3xvi2.843 (3)
Fe1—K1ix3.7806 (7)K2—O3xviii2.843 (3)
Fe2—O3x1.938 (2)K2—O2xix2.910 (3)
Fe2—O3xi1.938 (2)K2—O2xx2.910 (3)
Fe2—O3xii1.938 (2)K2—O2xxi2.910 (3)
Fe2—O41.954 (2)K2—O4xvii2.982 (4)
Fe2—O4iv1.954 (2)K2—O4xvi2.982 (4)
Fe2—O4v1.954 (2)K2—O4xviii2.982 (4)
Fe2—K2xiii3.7084 (6)K2—O4xx3.237 (3)
Fe2—K2xiv3.7084 (6)K2—O4xix3.237 (3)
Fe2—K2xv3.7084 (6)K2—O4xxi3.237 (3)
K1—O1xi2.820 (3)P3—O41.517 (3)
K1—O1xii2.820 (3)P3—O31.518 (2)
K1—O1x2.820 (3)P3—O21.520 (2)
K1—O2xvi3.009 (3)P3—O11.523 (2)
K1—O2xvii3.009 (3)
O2i—Fe1—O2ii89.72 (12)O4xvii—K1—P3xvii26.22 (5)
O2i—Fe1—O2iii89.72 (12)O4xviii—K1—P3xvii103.21 (8)
O2ii—Fe1—O2iii89.72 (12)O4xvi—K1—P3xvii69.59 (5)
O2i—Fe1—O1178.52 (12)P3xviii—K1—P3xvii94.92 (4)
O2ii—Fe1—O188.81 (11)O1xi—K1—P3xvi94.74 (5)
O2iii—Fe1—O190.09 (10)O1xii—K1—P3xvi79.13 (5)
O2i—Fe1—O1iv90.09 (10)O1x—K1—P3xvi169.06 (5)
O2ii—Fe1—O1iv178.52 (12)O2xvi—K1—P3xvi26.25 (5)
O2iii—Fe1—O1iv88.81 (11)O2xvii—K1—P3xvi108.35 (6)
O1—Fe1—O1iv91.38 (10)O2xviii—K1—P3xvi115.09 (6)
O2i—Fe1—O1v88.81 (11)O4xvii—K1—P3xvi103.21 (8)
O2ii—Fe1—O1v90.09 (10)O4xviii—K1—P3xvi69.59 (5)
O2iii—Fe1—O1v178.52 (12)O4xvi—K1—P3xvi26.22 (5)
O1—Fe1—O1v91.38 (10)P3xviii—K1—P3xvi94.92 (4)
O1iv—Fe1—O1v91.38 (10)P3xvii—K1—P3xvi94.92 (4)
O2i—Fe1—K2vi54.54 (9)O3xvii—K2—O3xvi100.89 (8)
O2ii—Fe1—K2vi54.54 (9)O3xvii—K2—O3xviii100.89 (8)
O2iii—Fe1—K2vi54.54 (9)O3xvi—K2—O3xviii100.89 (8)
O1—Fe1—K2vi124.28 (7)O3xvii—K2—O2xix149.75 (9)
O1iv—Fe1—K2vi124.28 (7)O3xvi—K2—O2xix95.89 (7)
O1v—Fe1—K2vi124.28 (7)O3xviii—K2—O2xix100.42 (8)
O2i—Fe1—K1vii132.34 (9)O3xvii—K2—O2xx95.89 (7)
O2ii—Fe1—K1vii66.00 (8)O3xvi—K2—O2xx100.42 (8)
O2iii—Fe1—K1vii52.14 (8)O3xviii—K2—O2xx149.75 (9)
O1—Fe1—K1vii46.70 (7)O2xix—K2—O2xx56.11 (8)
O1iv—Fe1—K1vii113.14 (8)O3xvii—K2—O2xxi100.42 (8)
O1v—Fe1—K1vii129.02 (8)O3xvi—K2—O2xxi149.75 (9)
K2vi—Fe1—K1vii78.502 (13)O3xviii—K2—O2xxi95.89 (7)
O2i—Fe1—K1viii66.00 (8)O2xix—K2—O2xxi56.11 (8)
O2ii—Fe1—K1viii52.14 (8)O2xx—K2—O2xxi56.11 (8)
O2iii—Fe1—K1viii132.34 (9)O3xvii—K2—O4xvii49.57 (7)
O1—Fe1—K1viii113.14 (8)O3xvi—K2—O4xvii115.99 (10)
O1iv—Fe1—K1viii129.02 (8)O3xviii—K2—O4xvii52.41 (7)
O1v—Fe1—K1viii46.70 (7)O2xix—K2—O4xvii140.03 (8)
K2vi—Fe1—K1viii78.502 (13)O2xx—K2—O4xvii132.27 (7)
K1vii—Fe1—K1viii116.129 (8)O2xxi—K2—O4xvii94.19 (7)
O2i—Fe1—K1ix52.14 (8)O3xvii—K2—O4xvi52.41 (7)
O2ii—Fe1—K1ix132.34 (9)O3xvi—K2—O4xvi49.57 (7)
O2iii—Fe1—K1ix66.00 (8)O3xviii—K2—O4xvi115.99 (10)
O1—Fe1—K1ix129.02 (8)O2xix—K2—O4xvi132.27 (7)
O1iv—Fe1—K1ix46.70 (7)O2xx—K2—O4xvi94.19 (7)
O1v—Fe1—K1ix113.14 (8)O2xxi—K2—O4xvi140.03 (8)
K2vi—Fe1—K1ix78.502 (13)O4xvii—K2—O4xvi87.67 (9)
K1vii—Fe1—K1ix116.129 (8)O3xvii—K2—O4xviii115.99 (10)
K1viii—Fe1—K1ix116.129 (8)O3xvi—K2—O4xviii52.41 (7)
O3x—Fe2—O3xi92.37 (12)O3xviii—K2—O4xviii49.57 (7)
O3x—Fe2—O3xii92.37 (12)O2xix—K2—O4xviii94.19 (7)
O3xi—Fe2—O3xii92.37 (12)O2xx—K2—O4xviii140.03 (8)
O3x—Fe2—O494.89 (12)O2xxi—K2—O4xviii132.27 (8)
O3xi—Fe2—O4171.47 (13)O4xvii—K2—O4xviii87.67 (9)
O3xii—Fe2—O482.87 (13)O4xvi—K2—O4xviii87.67 (9)
O3x—Fe2—O4iv82.87 (13)O3xvii—K2—O4xx55.81 (6)
O3xi—Fe2—O4iv94.90 (12)O3xvi—K2—O4xx86.02 (7)
O3xii—Fe2—O4iv171.46 (13)O3xviii—K2—O4xx156.68 (8)
O4—Fe2—O4iv90.46 (12)O2xix—K2—O4xx100.98 (8)
O3x—Fe2—O4v171.46 (13)O2xx—K2—O4xx46.19 (7)
O3xi—Fe2—O4v82.87 (13)O2xxi—K2—O4xx88.43 (8)
O3xii—Fe2—O4v94.90 (12)O4xvii—K2—O4xx104.497 (19)
O4—Fe2—O4v90.46 (12)O4xvi—K2—O4xx52.80 (10)
O4iv—Fe2—O4v90.46 (12)O4xviii—K2—O4xx137.10 (6)
O3x—Fe2—K2xiii118.47 (8)O3xvii—K2—O4xix156.68 (8)
O3xi—Fe2—K2xiii49.04 (9)O3xvi—K2—O4xix55.81 (6)
O3xii—Fe2—K2xiii127.81 (8)O3xviii—K2—O4xix86.02 (7)
O4—Fe2—K2xiii129.70 (9)O2xix—K2—O4xix46.19 (7)
O4iv—Fe2—K2xiii60.69 (10)O2xx—K2—O4xix88.43 (8)
O4v—Fe2—K2xiii53.21 (10)O2xxi—K2—O4xix100.98 (8)
O3x—Fe2—K2xiv127.81 (8)O4xvii—K2—O4xix137.10 (6)
O3xi—Fe2—K2xiv118.47 (8)O4xvi—K2—O4xix104.497 (19)
O3xii—Fe2—K2xiv49.04 (9)O4xviii—K2—O4xix52.80 (10)
O4—Fe2—K2xiv53.21 (10)O4xx—K2—O4xix115.71 (4)
O4iv—Fe2—K2xiv129.70 (9)O3xvii—K2—O4xxi86.02 (7)
O4v—Fe2—K2xiv60.69 (10)O3xvi—K2—O4xxi156.68 (8)
K2xiii—Fe2—K2xiv113.409 (11)O3xviii—K2—O4xxi55.81 (6)
O3x—Fe2—K2xv49.04 (9)O2xix—K2—O4xxi88.43 (8)
O3xi—Fe2—K2xv127.81 (8)O2xx—K2—O4xxi100.98 (8)
O3xii—Fe2—K2xv118.47 (8)O2xxi—K2—O4xxi46.19 (7)
O4—Fe2—K2xv60.69 (10)O4xvii—K2—O4xxi52.80 (10)
O4iv—Fe2—K2xv53.21 (10)O4xvi—K2—O4xxi137.10 (6)
O4v—Fe2—K2xv129.70 (9)O4xviii—K2—O4xxi104.497 (19)
K2xiii—Fe2—K2xv113.409 (11)O4xx—K2—O4xxi115.71 (4)
K2xiv—Fe2—K2xv113.409 (11)O4xix—K2—O4xxi115.71 (4)
O1xi—K1—O1xii92.11 (9)O4—P3—O3107.34 (18)
O1xi—K1—O1x92.11 (9)O4—P3—O2106.27 (16)
O1xii—K1—O1x92.11 (9)O3—P3—O2111.46 (16)
O1xi—K1—O2xvi82.55 (7)O4—P3—O1111.89 (15)
O1xii—K1—O2xvi56.64 (6)O3—P3—O1110.74 (14)
O1x—K1—O2xvi147.84 (9)O2—P3—O1109.06 (14)
O1xi—K1—O2xvii56.64 (6)O4—P3—K2xv71.04 (13)
O1xii—K1—O2xvii147.84 (9)O3—P3—K2xv167.62 (11)
O1x—K1—O2xvii82.55 (7)O2—P3—K2xv58.68 (11)
O2xvi—K1—O2xvii119.008 (19)O1—P3—K2xv80.72 (10)
O1xi—K1—O2xviii147.84 (9)O4—P3—K1xiv65.37 (11)
O1xii—K1—O2xviii82.55 (7)O3—P3—K1xiv82.38 (11)
O1x—K1—O2xviii56.64 (6)O2—P3—K1xiv61.12 (11)
O2xvi—K1—O2xviii119.008 (19)O1—P3—K1xiv166.43 (11)
O2xvii—K1—O2xviii119.008 (19)K2xv—P3—K1xiv85.93 (3)
O1xi—K1—O4xvii103.13 (7)O4—P3—K2xiv56.40 (13)
O1xii—K1—O4xvii164.24 (7)O3—P3—K2xiv51.08 (12)
O1x—K1—O4xvii83.46 (8)O2—P3—K2xiv126.42 (11)
O2xvi—K1—O4xvii128.67 (9)O1—P3—K2xiv124.51 (10)
O2xvii—K1—O4xvii46.65 (7)K2xv—P3—K2xiv126.74 (3)
O2xviii—K1—O4xvii82.39 (7)K1xiv—P3—K2xiv66.11 (4)
O1xi—K1—O4xviii164.24 (7)O4—P3—K1vii149.07 (13)
O1xii—K1—O4xviii83.46 (8)O3—P3—K1vii101.87 (12)
O1x—K1—O4xviii103.13 (7)O2—P3—K1vii71.24 (11)
O2xvi—K1—O4xviii82.39 (7)O1—P3—K1vii46.09 (9)
O2xvii—K1—O4xviii128.67 (9)K2xv—P3—K1vii82.54 (3)
O2xviii—K1—O4xviii46.65 (7)K1xiv—P3—K1vii129.74 (3)
O4xvii—K1—O4xviii82.84 (10)K2xiv—P3—K1vii150.05 (3)
O1xi—K1—O4xvi83.46 (8)P3—O1—Fe1132.78 (15)
O1xii—K1—O4xvi103.13 (7)P3—O1—K1vii111.02 (12)
O1x—K1—O4xvi164.24 (7)Fe1—O1—K1vii102.66 (9)
O2xvi—K1—O4xvi46.65 (7)P3—O2—Fe1xxii165.93 (19)
O2xvii—K1—O4xvi82.39 (7)P3—O2—K2xv94.82 (12)
O2xviii—K1—O4xvi128.67 (9)Fe1xxii—O2—K2xv92.57 (10)
O4xvii—K1—O4xvi82.84 (10)P3—O2—K1xiv92.63 (12)
O4xviii—K1—O4xvi82.84 (10)Fe1xxii—O2—K1xiv97.25 (10)
O1xi—K1—P3xviii169.06 (5)K2xv—O2—K1xiv103.64 (9)
O1xii—K1—P3xviii94.74 (5)P3—O3—Fe2vii151.51 (19)
O1x—K1—P3xviii79.13 (5)P3—O3—K2xiv104.38 (14)
O2xvi—K1—P3xviii108.35 (6)Fe2vii—O3—K2xiv100.00 (10)
O2xvii—K1—P3xviii115.09 (6)P3—O4—Fe2152.6 (2)
O2xviii—K1—P3xviii26.25 (5)P3—O4—K2xiv98.53 (14)
O4xvii—K1—P3xviii69.59 (5)Fe2—O4—K2xiv95.14 (11)
O4xviii—K1—P3xviii26.22 (5)P3—O4—K1xiv88.41 (12)
O4xvi—K1—P3xviii103.21 (8)Fe2—O4—K1xiv117.90 (11)
O1xi—K1—P3xvii79.13 (5)K2xiv—O4—K1xiv77.09 (8)
O1xii—K1—P3xvii169.06 (5)P3—O4—K2xv82.65 (13)
O1x—K1—P3xvii94.74 (5)Fe2—O4—K2xv87.54 (11)
O2xvi—K1—P3xvii115.09 (6)K2xiv—O4—K2xv171.00 (11)
O2xvii—K1—P3xvii26.25 (5)K1xiv—O4—K2xv94.06 (9)
O2xviii—K1—P3xvii108.35 (6)
Symmetry codes: (i) z, x1/2, y+1/2; (ii) y+1/2, z, x1/2; (iii) x1/2, y+1/2, z; (iv) z, x, y; (v) y, z, x; (vi) x1, y1, z1; (vii) x+1, y1/2, z+1/2; (viii) x1/2, y+1/2, z+1; (ix) x+1/2, y+1, z1/2; (x) x+1, y+1/2, z+1/2; (xi) z+1/2, x+1, y+1/2; (xii) y+1/2, z+1/2, x+1; (xiii) x+1, y1/2, z+3/2; (xiv) x+3/2, y+1, z1/2; (xv) x1/2, y+3/2, z+1; (xvi) y+1, z+1/2, x+3/2; (xvii) z+1/2, x+3/2, y+1; (xviii) x+3/2, y+1, z+1/2; (xix) y+3/2, z+1, x+1/2; (xx) z+1, x+1/2, y+3/2; (xxi) x+1/2, y+3/2, z+1; (xxii) x+1/2, y+1/2, z.
 

Funding information

This work was been supported by the Ministry of Education and Science of Ukraine: Grant of the Ministry of Education and Science of Ukraine for perspective development of the scientific direction `Mathematical sciences and natural sciences' at Taras Shevchenko National University of Kyiv.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGustafsson, J. C. M., Norberg, S. T., Svensson, G. & Albertsson, J. (2005). Acta Cryst. C61, i9–i13.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationIsasi, J. & Daidouh, A. (2000). Solid State Ionics, 133, 303–313.  Web of Science CrossRef ICSD CAS Google Scholar
First citationLuo, Y., Sun, T., Shui, M. & Shu, J. (2019). Mater. Chem. Phys. 233, 339–345.  Web of Science CrossRef CAS Google Scholar
First citationMereiter, K. (1979). N. Jb. Mineral. Monatsh. pp. 182–188.  Google Scholar
First citationNorberg, S. T. (2002). Acta Cryst. B58, 743–749.  Web of Science CrossRef ICSD CAS IUCr Journals Google Scholar
First citationNose, M., Nakayama, H., Nobuhara, K., Yamaguchi, H., Nakanishi, S. & Iba, H. (2013). J. Power Sources, 234, 175–179.  Web of Science CrossRef CAS Google Scholar
First citationOgorodnyk, I. V., Baumer, V. N., Zatovsky, I. V., Slobodyanik, N. S., Shishkin, O. V. & Domasevitch, K. V. (2007a). Acta Cryst. B63, 819–827.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOgorodnyk, I. V., Zatovsky, I. V., Baumer, V. N., Slobodyanik, N. S., Shishkin, O. V. & Vorona, I. P. (2008). Z. Naturforsch. Teil B, 63, 261–266.  CrossRef CAS Google Scholar
First citationOgorodnyk, I. V., Zatovsky, I. V. & Slobodyanik, N. S. (2007b). Russ. J. Inorg. Chem. 52, 121–125.  Web of Science CrossRef Google Scholar
First citationOgorodnyk, I. V., Zatovsky, I. V., Slobodyanik, N. S., Baumer, V. N. & Shishkin, O. V. (2006). J. Solid State Chem. 179, 3461–3466.  Web of Science CrossRef ICSD CAS Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStrutynska, N., Bondarenko, M., Slobodyanik, N., Baumer, V., Zatovsky, I., Bychkov, K. & Puzan, A. (2016). Cryst. Res. Technol. 51, 627–633.  CrossRef CAS Google Scholar
First citationWang, D., Wei, Z., Lin, Y., Chen, N., Gao, Y., Chen, G., Song, L. & Du, F. (2019). J. Mater. Chem. A, 7, 20604–20613.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZatovskii, I. V., Slobodyanik, N. S., Ushchapivskaya, T. I., Ogorodnik, I. V. & Babarik, A. A. (2006). Russ. J. Appl. Chem. 79, 10–15.  CrossRef CAS Google Scholar
First citationZatovsky, I. V., Strutynska, N. Yu., Hizhnyi, Y. A., Nedilko, S. G., Slobodyanik, N. S. & Klyui, N. I. (2018). ChemistryOpen, 7, 504–512.  CrossRef CAS PubMed Google Scholar
First citationZatovsky, I. V., Strutynska, N. Yu., Ogorodnyk, I. V., Baumer, V. N., Slobodyanik, N. S., Yatskin, M. M. & Odynets, I. V. (2016). Struct. Chem. 27, 323–330.  CrossRef ICSD CAS Google Scholar
First citationZemann, A. & Zemann, J. (1957). Acta Cryst. 10, 409–413.  CrossRef ICSD CAS IUCr Journals Web of Science Google Scholar
First citationZhang, B., Ma, K., Lv, X., Shi, K., Wang, Y., Nian, Z., Li, Y., Wang, L., Dai, L. & He, Z. (2021). J. Alloys Compd. 867, 159060.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds