Jerry P. Jasinski tribute\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The structures of 1:1 and 1:2 adducts of phosphane­tricarbo­nitrile with 1,4-di­aza­bi­cyclo[2.2.2]octa­ne

crossmark logo

aChemistry Division, Code 6100, Naval Research Laboratory, 4555 Overlook Av, SW, Washington DC 20375-5342, USA, and bDepartment of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA
*Correspondence e-mail: andrew.purdy@nrl.navy.mil

Edited by D. R. Manke, University of Massachusetts Dartmouth, USA (Received 8 September 2021; accepted 29 October 2021; online 16 November 2021)

In the structures of 1:1 and 1:2 adducts of phosphanetricarbo­nitrile (C3N3P) with 1,4-di­aza­bicyclo­[2.2.2]octane (C6H12N2), the 1:1 adduct crystallizes in the ortho­rhom­bic space group, Pbcm, with four formula units in the unit cell (Z′ = 0.5). The P(CN)3 unit lies on a crystallographic mirror plane while the C6H12N2 unit lies on a crystallographic twofold axis passing through one of the C—C bonds. The P(CN)3 moiety has close to C3v symmetry and is stabilized by forming adducts with two symmetry-related C6H12N2 units. The phospho­rus atom is in a five-coordinate environment. As a result of the symmetry, the two trans angles are equal so τ5 = 0.00 and thus the geometrical description could be considered to be square pyramidal. However, the electronic geometry is distorted octa­hedral with the lone pair on the phospho­rous occupying the sixth position. As would be expected from VSEPR considerations, the repulsion of the lone-pair electrons with the equatorial bonding electrons means that the trans angles for the latter are considerably reduced from 180° to 162.01 (4)°, so the best description of the overall geometry for phospho­rus is distorted square pyramidal. The 1:2 adduct crystallizes in the monoclinic space group, P21/m with two formula units in the asymmetric unit (i.e. Z' = 1/2). The P(CN)3 moiety lies on a mirror plane and one of the two C6H12N2 (dabco) mol­ecules also lies on a mirror plane. The symmetry of the P(CN)3 unit is close to C3v. There are three P⋯N inter­actions and consequently the mol­ecular geometry of the phospho­rus atom is distorted octa­hedral. This must mean that the lone pair of electrons on the phospho­rus atom is not sterically active. For the 1:1 adduct, there are weak associations between the phospho­rus atom and one of the terminal nitro­gen atoms from the C≡ N moiety, forming chains in the a-axis direction. In addition there are weak C—H⋯N inter­actions between a terminal nitro­gen atoms from the C≡N moiety and the C6H12N2 mol­ecules, which form sheets perpendicular to the a axis.

1. Chemical context

Phospho­rus tricyanide reacts in solution with nitro­gen bases to produce a large mixture of products. This occurs with dicyan­amides (Epshteyn et al., 2019[Epshteyn, A., Purdy, A. P. & Chaloux, B. (2019). US Patent 10510458-B2.]), amines, and others. A reaction with CN was reported to produce an unusual dianion, P2C10N10, which was structurally characterized (Schmidpeter et al., 1985[Schmidpeter, A., Zwaschka, F. & Sheldrick, W. S. (1985). Chem. Ber. 118, 1078-1085.]). However, most of the products from these reactions are unknown. We have followed reactions between tertiary amines and P(CN)3 by NMR, which shows many different chemical species as the reaction proceeds, but no crystalline compounds were isolated until P(CN)3 was combined with the bidentate amine 4-di­aza­bicyclo­[2.2.2]octane (dabco). From this system we isolated both 1:1 and 1:2 adducts of P(CN)3 with dabco.

[Scheme 1]

2. Structural commentary

The structures of 1:1 (1) and 1:2 (2) adducts of phosphane­tricarbo­nitrile [P(CN)3] with 1,4-di­aza­bicyclo­[2.2.2]octane [C6H12N2] are reported. The 1:1 adduct, P(CN)3·(C6H12N2), 1 (Fig. 1[link]), crystallizes in the ortho­rhom­bic space group, Pbcm, with four formula units in the unit cell (Z′ = 0.5). The P(CN)3 unit lies on a crystallographic mirror plane passing through atoms P1, C1, and N1 while the C6H12N2 unit lies on a crystallographic twofold axis passing through the C3—C3A bond. The P(CN)3 moiety has close to C3v symmetry with P—C bond lengths of 1.8057 (15) Å (P1—C1) and 1.8309 (10) Å (P1—C2) and C—P—C bond angles of 87.52 (6)° (C2—P1—C2(x, y, [{1\over 2}] − z) and 94.32 (4)° (C1—P1—C2). The P—C≡N bond angles are 174.94 (9)° (P1—C2≡N2) and 176.03 (13)° (P1—C1≡N1). The P(CN)3 group is stabilized by forming adducts (Fig. 2[link]) with two symmetry-related C6H12N2 units of length 2.6562 (8) Å, which is considerably shorter than the sum of their van der Waals radii [P (1.80 Å) + N (1.55 Å) = 3.35 Å; Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.], 1966[Bondi, A. (1966). J. Phys. Chem. 70, 3006-3007.]]. Including the symmetry-related C6H12N2 and the two P⋯N inter­actions, P1 is in a five-coordinate environment. As a result of the symmetry, the two trans angles are equal so τ5 = 0.00 (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]) so the geometrical description could be considered to be square pyramidal. However, the electronic geometry is distorted octa­hedral with the lone pair on the phospho­rous occupying the sixth position. As would be expected from VSEPR considerations (Gillespie & Nyholm, 1957[Gillespie, R. J. & Nyholm, R. S. (1957). Q. Rev. Chem. Soc. 11, 339-380.]; Gillespie, 1970[Gillespie, R. J. (1970). J. Chem. Educ. 47, 18-23.]), the repulsion of the lone-pair electrons with the equatorial bonding electrons means that the trans angles for the latter are considerably reduced from 180° to 162.01 (4)°, so the best description of the overall geometry at P1 is distorted square pyramidal. The metrical parameters of the [C6H12N2] units are similar to each other and also show no significant deviations of the metrical parameters of the dabco mol­ecules from values observed in other structures (Szafrański, 2018[Szafrański, M. (2018). Cryst. Growth Des. 18, 7106-7113.]; Maderlehner & Pfitzner, 2012[Maderlehner, S. & Pfitzner, A. (2012). Z. Kristallogr. 227, 569-574.]; Goreshnik, 2017[Goreshnik, E. (2017). J. Coord. Chem. 70, 859-870.]; Akhmad Aznan et al., 2014[Akhmad Aznan, A. M., Abdullah, Z. & Tiekink, E. R. T. (2014). Acta Cryst. E70, 31-35.]).

[Figure 1]
Figure 1
Diagram showing the square-pyramidal coordination sphere of the P atom in 1. Inter­actions with the C6H12N2 units are shown as dashed bonds. Atomic displacement parameters are at the 30% probability level. The symmetry operation to generate the complete P(CN)3 unit is x, y, [{1\over 2}] − z, and for the complete dabco mol­ecule is x, [{3\over 2}] − y, 1 − z.
[Figure 2]
Figure 2
Diagram for 1 showing the inter­action of P1 with N1 (shown as dashed lines), forming chains along the a-axis direction. Atomic displacement parameters are at the 30% probability level. The symmetry code for the N1⋯P1A inter­action is x − 1, y, z.

The second adduct, P(CN)3·(C6H12N2), 2 (Fig. 3[link]), crystallizes in the monoclinic space group, P21/m, with two formula units in the asymmetric unit (i.e. Z' = 0.5). The P(CN)3 moiety lies on a mirror plane passing through atoms P1, C2, and N2 and one of the two C6H12N2 (dabco) mol­ecules also lies on a mirror plane. The symmetry of the P(CN)3 unit is close to C3v with P—C distances of 1.8197 (11) and 1.8315 (15) Å with C—P—C angles of 90.54 (5) and 94.44 (8)°. The PCN groups are almost linear with bond angles of 176.33 (13) and 179.54 (13)°. The P(CN)3 group is stabilized by forming asymmetric links to the C6H12N2 units [P1—N3 and P1—N5 distances of 2.6731 (12) and 2.766 (9) Å, respectively]. Both distances are considerably shorter than the sum of their van der Waals radii (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.], 1966[Bondi, A. (1966). J. Phys. Chem. 70, 3006-3007.]). Since one of these C6H12N2 units does not lie on a crystallographic symmetry element but P1 does, there are three P⋯N inter­actions and consequently the mol­ecular geometry of P1 is distorted octa­hedral. This must mean that the lone pair of electrons on the P is not sterically active. There is precedence for this in other PIII compounds (Capel et al., 2011[Capel, V. L., Dillon, K. B., Goeta, A. E., Howard, J. A. K., Monks, P. K., Probert, M. R., Shepherd, H. J. & Zorina, N. V. (2011). Dalton Trans. 40, 1808-1816.]).

[Figure 3]
Figure 3
Diagram for 2 showing the distorted octa­hedral coordination geometry of the P atom. Inter­actions with the C6H12N2 units are shown as dashed bonds. Atomic displacement parameters are at the 30% probability level. The symmetry code to generate the P1⋯N5A inter­action is 1 − x, 1 − y, 2 − z, and for the P1⋯N5AA inter­action is 1 − x, y − [{1\over 2}], 2 − z.

A comparison of the metrical parameters for the P(CN)3 unit of 1 and 2 shows inter­esting differences, in spite of the fact that both lie on mirror planes and thus have the same overall symmetry. In the case of 1, P1, C1 and N1 lie in the mirror plane while in 2 it is P1, C2 and N2 that are in the mirror plane. In each case, the P—C distances are significantly different between those that are in and out of the mirror plane. For 1, the P—C(mirror) distance is 1.8057 (15) Å with the other distance at 1.8309 (10) Å, while in the case of 2, the P—C(mirror) distance is 1.8315 (15) Å with the other distance at 1.8197 (11) Å. This dissimilarity is also shown by the bond angles about the P atoms. In the case of 1, the smaller angle [87.52 (6)] involves the symmetry-related C≡N groups while in 2 this angle is the larger angle [94.44 (8)°]. This difference between 1 and 2 might be related to the different geometries about the P atoms in the two structures when the inter­actions with the C6H12N2 groups are included. Some important bond parameters (bond lengths and bond angles) for 1 and 2, respectively, are given in Tables 1[link] and 2[link].

Table 1
Selected geometric parameters (Å, °) for 1[link]

P1—C1 1.8057 (15) P1—N3 2.6562 (8)
P1—C2 1.8309 (10)    
       
C1—P1—C2 94.32 (4) C2—P1—N3 162.01 (4)
C2—P1—C2i 87.52 (6) C2i—P1—N3 75.68 (3)
C1—P1—N3 80.83 (3) N3—P1—N3i 120.10 (3)
Symmetry code: (i) [x, y, -z+{\script{1\over 2}}].

Table 2
Selected geometric parameters (Å, °) for 2[link]

P1—C1 1.8197 (11) P1—N3 2.6731 (12)
P1—C2 1.8315 (15) P1—N5A 2.766 (9)
       
C1i—P1—C1 94.44 (8) C1—P1—N5A 166.15 (18)
C1—P1—C2 90.54 (5) C2—P1—N5A 78.62 (14)
C1—P1—N3 76.69 (4) N3—P1—N5A 111.45 (11)
C2—P1—N3 160.98 (5) C1i—P1—N5Ai 166.15 (18)
C1i—P1—N5A 77.25 (16) N5A—P1—N5Ai 108.5 (3)
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z].

There are no significant deviations of the metrical parameters of the C6H12N2 mol­ecules in 1 and 2 from values observed in other structures (Szafrański, 2018[Szafrański, M. (2018). Cryst. Growth Des. 18, 7106-7113.]; Maderlehner & Pfitzner, 2012[Maderlehner, S. & Pfitzner, A. (2012). Z. Kristallogr. 227, 569-574.]; Goreshnik, 2017[Goreshnik, E. (2017). J. Coord. Chem. 70, 859-870.]; Akhmad Aznan et al., 2014[Akhmad Aznan, A. M., Abdullah, Z. & Tiekink, E. R. T. (2014). Acta Cryst. E70, 31-35.]). There are very few reports in the literature of structures involving the P(CN)3 unit (Dillon et al., 1982[Dillon, K. B., Platt, A. W. G., Schmidpeter, A., Zwaschka, F. & Sheldrick, W. S. (1982). Z. Anorg. Allg. Chem. 488, 7-26.]; Sheldrick et al., 1981[Sheldrick, W. S., Schmidpeter, A., Zwaschka, F., Dillon, K. B., Platt, A. W. G. & Waddington, T. C. (1981). J. Chem. Soc. Dalton Trans. pp. 413-418.]; Emerson & Britton, 1964[Emerson, K. & Britton, D. (1964). Acta Cryst. 17, 1134-1139.]). In the structure of P(CN)3 (Emerson & Britton, 1964[Emerson, K. & Britton, D. (1964). Acta Cryst. 17, 1134-1139.]) the P-C– bond lengths are 1.77 (3), 1.79 (3), and 1.80 (3) Å and the P—C—N angles are 93.2 (2), 93.6 (2), and 93.7 (2)°. In this structure, the central P atom makes three non-bonded inter­molecular associations with neighboring terminal N atoms with lengths of 2.85, 2.98, and 2.97 Å and C—N⋯P angles of 116, 122, and 116°. It can be seen that these metrical parameters for both 1 and 2 agree well with those for the parent P(CN)3 mol­ecule. The major difference is in the length of the stronger inter­molecular associations with the C6H12N2 units for 1 and 2 at 2.6562 (8) Å for 1, and 2.6731 (12) and 2.766 (9) Å for 2, which is much shorter than that observed for P(CN)3. In the other structures containing the P(CN)3 unit, one contains this unit as a dimer with long P—Br bond lengths forming two μ-Br bridges [[P(CN)3Br]2 (3); Sheldrick et al., 1981[Sheldrick, W. S., Schmidpeter, A., Zwaschka, F., Dillon, K. B., Platt, A. W. G. & Waddington, T. C. (1981). J. Chem. Soc. Dalton Trans. pp. 413-418.]], while the other contains an isolated unit forging an association with a chloride anion [P(CN)3Cl (4); Dillon et al., 1982[Dillon, K. B., Platt, A. W. G., Schmidpeter, A., Zwaschka, F. & Sheldrick, W. S. (1982). Z. Anorg. Allg. Chem. 488, 7-26.]]. In 3, the phospho­rus atom and one C≡N moiety lie on a mirror plane and the geometry about the P atom is also square pyramidal (τ5 = 0.00). The metrical parameters of the P(CN)3 unit for 3 are similar to those in 1 and 2. On the other hand, for 4 there are some significant differences in the metrical parameters of the P(CN)3 unit. In this case, the inter­action of the P atom with the Cl atom is much stronger than that with Br in 3 (2.624 vs 3.059 Å) and the geometry about P is four-coordinate of the see-saw type. As a consequence, there is more asymmetry in the P—C bond lengths with that trans to Cl being 1.916 Å while the other two are 1.781 and 1.785 Å.

3. Supra­molecular features

For 1 there are weak associations between P1 and N1 [3.0806 (14) Å, which, while weak, is shorter than the sum of the van der Waals radii of P and N] from an adjoining P(CN)3 unit, forming chains along the a-axis direction. In addition there are weak C—H⋯N inter­actions (Table 3[link]) between N2 and the C6H12N2 mol­ecules, which form sheets perpendicular to the a axis (Fig. 4[link]). For 2, since the lone pair on P1 is not stereochemically active, there are only weak bifurcated C-H⋯N inter­actions (Table 4[link]) between N2 and the C6H12N2 mol­ecules, as shown in Fig. 5[link].

Table 3
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯N2ii 0.99 2.68 3.4269 (13) 133
C3—H3B⋯N2iii 0.99 2.61 3.3691 (13) 134
C4—H4B⋯N2iv 0.99 2.64 3.3385 (13) 127
Symmetry codes: (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+2, -y+1, z+{\script{1\over 2}}]; (iv) [-x+1, -y+1, z+{\script{1\over 2}}].

Table 4
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8B⋯N2ii 0.97 (2) 2.53 (2) 3.260 (2) 132 (2)
Symmetry code: (ii) [x-1, y, z].
[Figure 4]
Figure 4
Packing diagram for 1 viewed along the a axis. Inter­actions with the C6H12N2 units are shown as dashed bonds.
[Figure 5]
Figure 5
Diagram for 2 showing the bifurcated inter­action of N2 with two C6H12N2 units (shown as dashed bonds). Atomic displacement parameters are at the 30% probability level. The symmetry codes to generate the N2⋯H inter­actions are −x, 1 − y, 2 − z, and −x, y − [{1\over 2}], 2 − z.

4. Database survey

A search of the Cambridge Structural Database revealed that there are very few reports in the literature of structures involving a P(CN)3 unit. The structure of the P(CN)3 mol­ecule was published in 1964 (Emerson & Britton, 1964[Emerson, K. & Britton, D. (1964). Acta Cryst. 17, 1134-1139.]). There are two other reports of this moiety: one contains this unit as a dimer with long P—Br bond lengths forming two μ-Br bridges (Sheldrick, et al., 1981[Sheldrick, W. S., Schmidpeter, A., Zwaschka, F., Dillon, K. B., Platt, A. W. G. & Waddington, T. C. (1981). J. Chem. Soc. Dalton Trans. pp. 413-418.]), while the other contains an isolated unit forging an association with a chloride anion (Dillon, et al., 1982[Dillon, K. B., Platt, A. W. G., Schmidpeter, A., Zwaschka, F. & Sheldrick, W. S. (1982). Z. Anorg. Allg. Chem. 488, 7-26.]). While a majority of reported 1,4-di­aza­bicyclo­[2.2.2]octane (dabco) structures involve these species as protonated cations, dabco is one of the simplest linear bridging ligands that can be used for coordination polymers. There have been several reported examples of dabco-containing coordination polymers, the majority of these also involve another type of bridging ligand or anion (Burrows et al., 2012[Burrows, A. D., Mahon, M. F., Raithby, P. R., Warren, A. J., Teat, S. J. & Warren, J. E. (2012). CrystEngComm, 14, 3658-3666.]; Dau et al., 2012[Dau, P. V., Kim, M., Garibay, S. J., Münch, F. M. L., Moore, C. E. & Cohen, S. M. (2012). Inorg. Chem. 51, 5671-5676.]; Henke et al., 2012[Henke, S., Schneemann, A., Wütscher, A. & Fischer, R. A. (2012). J. Am. Chem. Soc. 134, 9464-9474.]). Unusual examples have been reported where dabco is the sole linking ligand and include one-dimensional (1D) coordination chains (Wang et al., 2011[Wang, X.-F., Qi, X.-L., Shi, F.-N. & Rocha, J. (2011). J. Mol. Struct. 1004, 26-30.]; Qu & Wu, 2007[Qu, Y. & Wu, J. (2007). Acta Cryst. E63, m1063-m1065.]; Braga et al., 2004[Braga, D., Giaffreda, S. L., Grepioni, F. & Polito, M. (2004). CrystEngComm, 6, 459-462.]; Cunha-Silva et al., 2013[Cunha-Silva, L., Carr, M. J., Kennedy, J. D. & Hardie, M. J. (2013). Cryst. Growth Des. 13, 3162-3170.]), a 2D hexa­gonal network of 63 topology of [Ag(dabco)3(H2O)]·(3-fluoro­benzene­carboxyl­ate) (Qu & Sun, 2006[Qu, Y. & Sun, X.-M. (2006). Anal. Sci. X, 22, X7-X8.]) and a series of networks where dabco ligands bridge between M2I2 dimers or between Cu4X4 or higher order metal clusters where X = I or Cl (Shan et al., 2011[Shan, Z.-M., Wang, Y.-L., Guo, H.-X., Liu, Q.-Y., Zhang, N., Yang, E.-L. & Li, L.-Q. (2011). Inorg. Chim. Acta, 366, 141-146.]; Braga et al., 2010[Braga, D., Maini, L., Mazzeo, P. P. & Ventura, B. (2010). Chem. Eur. J. 16, 1553-1559.]; Liu et al., 2010[Liu, Y.-Y., Grzywa, M., Weil, M. & Volkmer, D. J. (2010). J. Solid State Chem. 183, 208-217.]; Zhang et al., 2010[Zhang, Y., Wu, T., Liu, R., Dou, T., Bu, X. & Feng, P. (2010). Cryst. Growth Des. 10, 2047-2049.]; Bi et al., 2007[Bi, M., Li, G., Hua, J., Liu, Y., Liu, X., Hu, Y., Shi, Z. & Feng, S. (2007). Cryst. Growth Des. 7, 2066-2070.]; Wiles & Pike, 2006[Wiles, A. B. & Pike, R. D. (2006). Organometallics, 25, 3282-3285.]; O'Keefe et al., 2008[O'Keeffe, M., Peskov, M. A., Ramsden, S. J. & Yaghi, O. M. (2008). Acc. Chem. Res. 41, 1782-1789.]). The latter feature 3D coordination polymer structures with an extraordinary range of topologies. There have also been several cases of metal complexes containing dabco as a ligand, a recent example being {[PMo8V6O42][Cu(dabco)]2[Cu(phen)2]}·3H2O, which exhibits a novel 2D layered framework structure constructed from [PMo8V6O42]4– and two different types of copper complexes (Xiao et al., 2018[Xiao, L.-N., Zhao, C.-X., Shi, X.-M., Zhang, H., Wu, W. & Cui, X.-B. (2018). CrystEngComm, 20, 969-977.]).

5. Synthesis and crystallization

General Comments Phospho­rus cyanide was synthesized from PCl3 and 3 eq. of AgCN in CHCl3, followed by vacuum sublimation, according to the method of Staats et al. (1960[Staats, P. A., Morgan, H. W. & Cohen, H. M. (1960). Inorg. Synth. 6, 84-87.]). Aceto­nitrile and chloro­form were dried by distillation from P2O5 and all reactions were performed in an argon-filled drybox.

Complexes with dabco. In an argon-filled dry box, 0.155 g of P(CN)3 and 0.35 g of dabco were mixed in a scintillation vial and combined with 15 mL of dry MeCN. The vial was heated with agitation until all solids had dissolved and allowed to cool. The white crystalline product was washed with MeCN and allowed to dry, affording 0.41 g (86%) of the 1:2 adduct (2). A reaction performed in a similar manner with 0.24 g of dabco and 0.25 g of P(CN)3 produced the 1:1 adduct (1), 0.409 g (83%).

Solid-state NMR. All solid-state NMR measurements were performed using a Varian 500 spectrometer and a 4 mm HXY triple resonance MAS NMR probe. The 13C and 31P chemical shifts were referenced using hexa­methyl­benzene and 85% phospho­ric acid, respectively. Rotor-synchronized Hahn-echo pulse sequences with p/2 and p pulse lengths of 5 ms and 10 ms, respectively, were used to acquire the spectra. Estimates of the spin-lattice relaxation times were obtained by varying the delay between scans. For the extraction of CSA parameters from solid-state spectra, the experimental sideband pattern was compared to an array of sideband patterns and the best match was determined. Final confirmation and an estimate of the error bars was obtained by direct calculation of NMR spectra with the simulation program SIMPSON (Bak et al., 2000[Bak, M., Rasmussen, J. T. & Nielsen, N. C. (2000). J. Magn. Reson. 147, 296-330.]).

6. Chemical and NMR Discussion

Complexes 1 and 2 have low solubility and only dissociated P(CN)3 and dabco were observed by NMR in CD3CN or d5-pyridine solution on a Bruker 400 MHz spectrometer. Other peaks, including P(CN)2 (31P −194 ppm) and other unidentified species from slow reactions do grow in slowly in a manner similar to solutions of P(CN)3 with other amines. Additionally, when a mixture of P(CN)3 and 4 eq. of dabco in CD3CN was measured, no sharp 31P signal for P(CN)3 was observed, showing that virtually all the P(CN)3 is in the form of insoluble complexes when dabco is present in large excess. However, broad peaks are present in the 31P spectrum in all cases where the solids are within the observing region of the NMR spectrometer coil. In order to more fully characterize the complexes by NMR, solid-state magic-angle spinning (MAS) 31P and 13C NMR spectra were measured on a Varian 500 MHz spectrometer for both 1 and 2.

In the native compounds there is only one 13C NMR peak for dabco, N(C2H4)3N, located at 47.5 ppm. Phospho­rus cyanide has one peak in both the 13C and 31P NMR, located at 111.67 ppm and −138.71 ppm, respectively (Chaloux et al., 2015[Chaloux, B. L., Yonke, B. L., Purdy, A. P., Yesinowski, J. P., Glaser, E. R. & Epshteyn, A. (2015). Chem. Mater. 27, 4507-4510.]). The 31P and 13C NMR spectra for 1 are shown in Fig. 6[link]. The 31P MAS NMR spectrum contains a set of spinning sidebands, which reflect the large chemical shift anisotropy (csa) for this nucleus in 1. One large peak at 45.1 ppm corresponding to coordinated dabco along with two smaller asymmetric peaks at 112 and 118 ppm in an approximate 1:2 ratio corresponding to nitrile carbons appear in the 13C MAS NMR spectrum. This 13C NMR spectrum makes sense as there is only one chemically equivalent dabco unit in this structure, but one cyano group has an inter­action with atom P1 of another mol­ecule along a (Fig. 2[link]) and the other two cyano groups do not, making them chemically inequivalent.

[Figure 6]
Figure 6
(a) 31P MAS NMR spectrum for 1 obtained using a spinning speed of 5 kHz. The sideband pattern is corresponds to a chemical shift anisotropy (csa) with isotropic shift of −161 ppm, daniso = −67.7 ppm, and h = 0.34; (b) 13C MAS NMR spectrum for 1 obtained using a spinning speed of 12.5 kHz. Note that in both spectra, spinning sidebands are marked with asterisks (*).

The 31P and 13C NMR spectra for 2 are shown in Fig. 7[link]. The 31P MAS NMR spectrum contains a set of spinning sidebands, which reflect the slightly smaller chemical shift anisotropy (csa) for 31P in this compound. Of particular inter­est is that the asymmetry is now close to 0.0, compared to the larger asymmetry of 0.34 for the 1:1 sample, Fig. 6[link]a. The 13C MAS NMR spectrum contains two high field peaks at 47.4 and 45.6 ppm, with the former being roughly three times larger. The peak at 47.4 ppm may correspond to carbon atoms bonded to a dabco nitro­gen that is coordinated to phospho­rus (N5, N3), and the smaller peak to the carbons bonded to N4 that is not coordinated to P1, as these carbons are in a 3:1 ratio. A third asymmetric peak at 116 ppm corresponds to nitrile carbons, which are closer to being chemically equivalent to each other than the nitriles in 1. Inter­estingly, the spin-lattice relaxation time, T1, for 31P is roughly 10 times shorter for 2 at 45±5 s compared to 1 where a single-exponential fit gives 450±50 s. Similarly, the 13C T1 for the nitrile peak at 116 ppm is 90±10 s for 2, compared an estimate of 200±50 s for 1. In both cases the 13C T1 for the low-field peaks near 45 ppm associated with the dabco was much less than 16 s, the shortest delay time used, which makes sense because the dabco units can rotate and are relaxed by their protons. These long 31P and cyano spin-lattice relaxation times for 1 are suggestive of a more rigid structure than 2. The solid-state NMR spectra for both complexes show that they are relatively pure compounds, with little contamination by the other complex.

[Figure 7]
Figure 7
(a) 31P MAS NMR spectrum for 2 obtained using a spinning speed of 5 kHz. The sideband pattern is corresponds to a chemical shift anisotropy (csa) with isotropic shift of −158 p.p.m., daniso = −59.3 ppm, and h = 0.00; (b) 13C MAS NMR spectrum for 2 obtained using a spinning speed of 12.5 kHz. Note that in both spectra, spinning sidebands are marked with asterisks (*).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. For both 1 and 2, all non-hydrogen atoms located from the solution using SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]). Finally, the refinement was completed with anisotropic displacement parameters for all non-hydrogen atoms. The H atoms were located from difference-Fourier maps and constrained to ride on their parent atoms with with C—H bond distances of 0.99 Å and were refined as riding with isotropic displacement parameters 1.2 times that of their C atoms. For 2, one C6H12N2 unit was located on a symmetry element and its hydrogen atoms were refined isotropically with isotropic displacement parameters 1.2 times that of their C atoms.

Table 5
Experimental details

  1 2
Crystal data
Chemical formula C6H12N2·C3N3P 2C6H12N2·C3N3P
Mr 221.21 333.38
Crystal system, space group Orthorhombic, Pbcm Monoclinic, P21/m
Temperature (K) 105 103
a, b, c (Å) 6.0092 (2), 13.6227 (5), 13.4716 (5) 6.5807 (2), 12.3447 (4), 10.7719 (4)
α, β, γ (°) 90, 90, 90 90, 104.555 (2), 90
V3) 1102.81 (7) 846.99 (5)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.23 0.17
Crystal size (mm) 0.30 × 0.20 × 0.04 0.30 × 0.30 × 0.02
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.684, 0.746 0.669, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 16377, 1764, 1578 19743, 4235, 3117
Rint 0.035 0.068
(sin θ/λ)max−1) 0.716 0.833
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.068, 1.08 0.049, 0.109, 1.03
No. of reflections 1764 4235
No. of parameters 73 187
No. of restraints 0 18
H-atom treatment H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.40, −0.27 0.39, −0.37
Computer programs: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2002[Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXT (Sheldrick 2015a); program(s) used to refine structure: SHELXL018/3 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Phosphanetricarbonitrile–1,4-diazabicyclo[2.2.2]octane (1/1) (1) top
Crystal data top
C6H12N2·C3N3PDx = 1.332 Mg m3
Mr = 221.21Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcmCell parameters from 7580 reflections
a = 6.0092 (2) Åθ = 3.0–30.5°
b = 13.6227 (5) ŵ = 0.23 mm1
c = 13.4716 (5) ÅT = 105 K
V = 1102.81 (7) Å3Plate, colorless
Z = 40.30 × 0.20 × 0.04 mm
F(000) = 464
Data collection top
Bruker APEXII CCD
diffractometer
1578 reflections with I > 2σ(I)
φ and ω scansRint = 0.035
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 30.6°, θmin = 3.0°
Tmin = 0.684, Tmax = 0.746h = 88
16377 measured reflectionsk = 1919
1764 independent reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0261P)2 + 0.5245P]
where P = (Fo2 + 2Fc2)/3
1764 reflections(Δ/σ)max < 0.001
73 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.27 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.78467 (6)0.60830 (2)0.2500000.00987 (8)
N10.2954 (2)0.58880 (10)0.2500000.0222 (3)
N20.87850 (16)0.45325 (6)0.10017 (7)0.01964 (18)
N30.69029 (13)0.69630 (6)0.42084 (6)0.01125 (15)
C10.4862 (2)0.59283 (10)0.2500000.0141 (2)
C20.83300 (15)0.51360 (7)0.15601 (7)0.01305 (17)
C30.92037 (15)0.72302 (7)0.44943 (6)0.01195 (17)
H3A0.9860770.7660220.3979470.014*
H3B1.0124850.6629530.4541730.014*
C40.58489 (16)0.64329 (7)0.50448 (7)0.01500 (18)
H4A0.6754420.5850560.5218570.018*
H4B0.4351210.6203630.4844840.018*
C50.56488 (17)0.78818 (7)0.40371 (7)0.01575 (19)
H5A0.4063110.7726720.3914070.019*
H5B0.6243460.8219910.3443100.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.01010 (15)0.00919 (14)0.01032 (14)0.00029 (11)0.0000.000
N10.0154 (6)0.0270 (7)0.0244 (6)0.0005 (5)0.0000.000
N20.0236 (4)0.0178 (4)0.0175 (4)0.0026 (3)0.0012 (3)0.0025 (3)
N30.0108 (3)0.0119 (3)0.0110 (3)0.0003 (3)0.0001 (3)0.0002 (3)
C10.0152 (6)0.0135 (6)0.0137 (5)0.0001 (5)0.0000.000
C20.0144 (4)0.0124 (4)0.0123 (4)0.0003 (3)0.0014 (3)0.0013 (3)
C30.0102 (4)0.0140 (4)0.0117 (4)0.0007 (3)0.0009 (3)0.0010 (3)
C40.0168 (4)0.0145 (4)0.0137 (4)0.0047 (3)0.0041 (3)0.0015 (3)
C50.0170 (4)0.0160 (4)0.0142 (4)0.0045 (3)0.0052 (3)0.0022 (3)
Geometric parameters (Å, º) top
P1—C11.8057 (15)C3—C3ii1.5481 (17)
P1—C21.8309 (10)C3—H3A0.9900
P1—C2i1.8309 (10)C3—H3B0.9900
P1—N32.6562 (8)C4—C5ii1.5543 (13)
N1—C11.148 (2)C4—H4A0.9900
N2—C21.1474 (13)C4—H4B0.9900
N3—C51.4792 (12)C5—H5A0.9900
N3—C41.4807 (12)C5—H5B0.9900
N3—C31.4807 (12)
C1—P1—C294.32 (4)C3ii—C3—H3A109.6
C1—P1—C2i94.32 (4)N3—C3—H3B109.6
C2—P1—C2i87.52 (6)C3ii—C3—H3B109.6
C1—P1—N380.83 (3)H3A—C3—H3B108.1
C2—P1—N3162.01 (4)N3—C4—C5ii110.23 (7)
C2i—P1—N375.68 (3)N3—C4—H4A109.6
N3—P1—N3i120.10 (3)C5ii—C4—H4A109.6
C5—N3—C4108.27 (7)N3—C4—H4B109.6
C5—N3—C3107.95 (7)C5ii—C4—H4B109.6
C4—N3—C3108.74 (7)H4A—C4—H4B108.1
C5—N3—P1110.83 (5)N3—C5—C4ii110.16 (7)
C4—N3—P1122.05 (5)N3—C5—H5A109.6
C3—N3—P197.87 (5)C4ii—C5—H5A109.6
N1—C1—P1176.03 (13)N3—C5—H5B109.6
N2—C2—P1174.94 (9)C4ii—C5—H5B109.6
N3—C3—C3ii110.23 (5)H5A—C5—H5B108.1
N3—C3—H3A109.6
C5—N3—C3—C3ii65.44 (11)P1—N3—C4—C5ii176.24 (6)
C4—N3—C3—C3ii51.82 (11)C4—N3—C5—C4ii64.22 (9)
P1—N3—C3—C3ii179.59 (8)C3—N3—C5—C4ii53.34 (10)
C5—N3—C4—C5ii53.34 (9)P1—N3—C5—C4ii159.44 (6)
C3—N3—C4—C5ii63.71 (10)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···N2iii0.992.683.4269 (13)133
C3—H3B···N2iv0.992.613.3691 (13)134
C4—H4B···N2v0.992.643.3385 (13)127
Symmetry codes: (iii) x+2, y+1/2, z+1/2; (iv) x+2, y+1, z+1/2; (v) x+1, y+1, z+1/2.
Phosphanetricarbonitrile–1,4-diazabicyclo[2.2.2]octane (1/2) (2) top
Crystal data top
2C6H12N2·C3N3PF(000) = 356
Mr = 333.38Dx = 1.307 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
a = 6.5807 (2) ÅCell parameters from 4473 reflections
b = 12.3447 (4) Åθ = 2.6–35.6°
c = 10.7719 (4) ŵ = 0.17 mm1
β = 104.555 (2)°T = 103 K
V = 846.99 (5) Å3Plate, colorless
Z = 20.30 × 0.30 × 0.02 mm
Data collection top
Bruker APEXII CCD
diffractometer
3117 reflections with I > 2σ(I)
φ and ω scansRint = 0.068
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 36.3°, θmin = 2.6°
Tmin = 0.669, Tmax = 0.747h = 1010
19743 measured reflectionsk = 2020
4235 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: mixed
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0428P)2 + 0.3013P]
where P = (Fo2 + 2Fc2)/3
4235 reflections(Δ/σ)max < 0.001
187 parametersΔρmax = 0.39 e Å3
18 restraintsΔρmin = 0.37 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P10.80141 (5)0.7500000.71522 (4)0.01039 (8)
N11.0735 (2)0.93032 (11)0.84218 (11)0.0353 (3)
N21.0131 (2)0.7500000.50118 (14)0.0236 (3)
N30.74507 (18)0.7500000.95248 (11)0.0113 (2)
N40.6178 (2)0.7500001.16108 (12)0.0163 (2)
C10.97347 (17)0.85819 (10)0.79468 (10)0.0197 (2)
C20.9308 (2)0.7500000.58324 (14)0.0144 (2)
C30.9244 (2)0.7500001.06612 (15)0.0274 (4)
H3A1.0119900.8149061.0644040.033*0.5
H3B1.0119900.6850941.0644040.033*0.5
C40.8482 (3)0.7500001.19066 (15)0.0228 (3)
H4A0.9032400.6850901.2421770.027*0.5
H4B0.9032400.8149101.2421770.027*0.5
C50.6170 (2)0.65328 (10)0.95859 (12)0.0249 (3)
H5A0.7009010.5872870.9552300.030*
H5B0.4936770.6522990.8837050.030*
C60.54197 (19)0.65328 (10)1.08391 (11)0.0208 (2)
H6A0.3866350.6515681.0624980.025*
H6B0.5948040.5875261.1343500.025*
N50.3804 (14)0.4230 (7)0.4470 (5)0.0112 (8)0.5
C70.2606 (3)0.50627 (17)0.4901 (2)0.0145 (3)0.5
H7A0.167 (4)0.471 (2)0.533 (3)0.017*0.5
H7B0.174 (4)0.543 (3)0.417 (2)0.017*0.5
C80.4094 (3)0.58402 (16)0.5834 (2)0.0133 (3)0.5
H8A0.400 (7)0.574 (3)0.670 (2)0.016*0.5
H8B0.369 (4)0.6579 (15)0.560 (2)0.016*0.5
C90.5267 (3)0.37247 (16)0.5606 (2)0.0146 (3)0.5
H9A0.441 (5)0.344 (3)0.612 (3)0.017*0.5
H9B0.603 (4)0.3139 (19)0.535 (3)0.017*0.5
C100.6913 (3)0.45691 (16)0.6299 (2)0.0134 (3)0.5
H10A0.827 (3)0.441 (3)0.618 (3)0.016*0.5
H10B0.698 (4)0.457 (2)0.7198 (17)0.016*0.5
C110.5118 (3)0.47282 (18)0.3681 (2)0.0158 (4)0.5
H11A0.419 (4)0.496 (2)0.288 (2)0.019*0.5
H11B0.604 (7)0.419 (3)0.351 (3)0.019*0.5
C120.6392 (3)0.56829 (16)0.44242 (19)0.0136 (3)0.5
H12A0.585 (5)0.634 (2)0.400 (4)0.016*0.5
H12B0.784 (3)0.562 (2)0.439 (3)0.016*0.5
N5A0.6268 (14)0.5681 (7)0.5797 (5)0.0104 (7)0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.00873 (14)0.01193 (15)0.01113 (15)0.0000.00363 (11)0.000
N10.0391 (6)0.0460 (7)0.0229 (5)0.0268 (6)0.0117 (5)0.0107 (5)
N20.0148 (6)0.0415 (9)0.0151 (6)0.0000.0048 (5)0.000
N30.0105 (5)0.0124 (5)0.0111 (5)0.0000.0028 (4)0.000
N40.0182 (6)0.0200 (6)0.0123 (5)0.0000.0068 (4)0.000
C10.0182 (5)0.0289 (6)0.0134 (4)0.0086 (4)0.0062 (4)0.0034 (4)
C20.0101 (5)0.0192 (6)0.0133 (6)0.0000.0019 (4)0.000
C30.0113 (6)0.0586 (13)0.0122 (6)0.0000.0025 (5)0.000
C40.0183 (7)0.0388 (10)0.0107 (6)0.0000.0023 (5)0.000
C50.0378 (7)0.0219 (5)0.0203 (5)0.0148 (5)0.0172 (5)0.0074 (4)
C60.0256 (5)0.0212 (5)0.0191 (5)0.0079 (4)0.0122 (4)0.0017 (4)
N50.0117 (11)0.0142 (16)0.010 (2)0.0046 (10)0.0063 (16)0.0035 (16)
C70.0102 (7)0.0128 (8)0.0206 (9)0.0012 (6)0.0038 (7)0.0027 (7)
C80.0124 (8)0.0118 (8)0.0175 (9)0.0001 (6)0.0072 (7)0.0040 (7)
C90.0182 (9)0.0082 (7)0.0170 (9)0.0005 (6)0.0039 (7)0.0002 (6)
C100.0133 (8)0.0107 (8)0.0152 (8)0.0019 (6)0.0018 (6)0.0011 (6)
C110.0179 (9)0.0173 (9)0.0138 (8)0.0059 (7)0.0066 (7)0.0033 (7)
C120.0148 (8)0.0125 (8)0.0146 (8)0.0038 (6)0.0060 (7)0.0013 (7)
N5A0.0134 (11)0.0121 (14)0.0084 (19)0.0008 (9)0.0077 (16)0.0021 (15)
Geometric parameters (Å, º) top
P1—C1i1.8197 (11)C6—H6B0.9900
P1—C11.8197 (11)N5—C71.441 (9)
P1—C21.8315 (15)N5—C111.489 (7)
P1—N32.6731 (12)N5—C91.490 (7)
P1—N5A2.766 (9)C7—C81.548 (3)
P1—N5Ai2.766 (9)C7—H7A0.967 (16)
N1—C11.1484 (16)C7—H7B0.962 (16)
N2—C21.147 (2)C8—N5A1.455 (9)
N3—C31.4713 (19)C8—H8A0.957 (17)
N3—C5i1.4725 (13)C8—H8B0.966 (16)
N3—C51.4726 (13)C9—C101.553 (3)
N4—C6i1.4687 (14)C9—H9A0.949 (17)
N4—C61.4687 (14)C9—H9B0.958 (16)
N4—C41.469 (2)C10—N5A1.497 (8)
C3—C41.546 (2)C10—H10A0.952 (17)
C3—H3A0.9900C10—H10B0.958 (16)
C3—H3B0.9900C11—C121.548 (3)
C4—H4A0.9900C11—H11A0.964 (16)
C4—H4B0.9900C11—H11B0.955 (18)
C5—C61.5494 (15)C12—N5A1.501 (5)
C5—H5A0.9900C12—H12A0.958 (16)
C5—H5B0.9900C12—H12B0.965 (16)
C6—H6A0.9900
C1i—P1—C194.44 (8)C5—C6—H6B109.5
C1i—P1—C290.54 (5)H6A—C6—H6B108.1
C1—P1—C290.54 (5)C7—N5—C11109.4 (5)
C1i—P1—N376.69 (4)C7—N5—C9109.1 (4)
C1—P1—N376.69 (4)C11—N5—C9107.1 (5)
C2—P1—N3160.98 (5)N5—C7—C8110.1 (4)
C1i—P1—N5A77.25 (16)N5—C7—H7A107.3 (19)
C1—P1—N5A166.15 (18)C8—C7—H7A110.3 (19)
C2—P1—N5A78.62 (14)N5—C7—H7B110 (2)
N3—P1—N5A111.45 (11)C8—C7—H7B113 (2)
C1i—P1—N5Ai166.15 (18)H7A—C7—H7B106.6 (19)
C1—P1—N5Ai77.25 (16)N5A—C8—C7111.4 (4)
C2—P1—N5Ai78.62 (14)N5A—C8—H8A108 (3)
N3—P1—N5Ai111.45 (11)C7—C8—H8A112 (3)
N5A—P1—N5Ai108.5 (3)N5A—C8—H8B109.4 (17)
C3—N3—C5i108.14 (8)C7—C8—H8B109.1 (17)
C3—N3—C5108.14 (8)H8A—C8—H8B107 (2)
C5i—N3—C5108.35 (13)N5—C9—C10110.0 (4)
C3—N3—P1121.36 (9)N5—C9—H9A106 (2)
C5i—N3—P1105.14 (7)C10—C9—H9A114 (3)
C5—N3—P1105.14 (7)N5—C9—H9B110.8 (17)
C6i—N4—C6108.77 (13)C10—C9—H9B107.1 (17)
C6i—N4—C4107.95 (8)H9A—C9—H9B109 (2)
C6—N4—C4107.95 (8)N5A—C10—C9110.0 (4)
N1—C1—P1176.33 (13)N5A—C10—H10A109 (2)
N2—C2—P1179.54 (13)C9—C10—H10A111 (2)
N3—C3—C4110.79 (12)N5A—C10—H10B107.9 (18)
N3—C3—H3A109.5C9—C10—H10B109.5 (17)
C4—C3—H3A109.5H10A—C10—H10B109 (2)
N3—C3—H3B109.5N5—C11—C12109.6 (3)
C4—C3—H3B109.5N5—C11—H11A107.7 (18)
H3A—C3—H3B108.1C12—C11—H11A112.0 (17)
N4—C4—C3110.72 (12)N5—C11—H11B108 (3)
N4—C4—H4A109.5C12—C11—H11B110 (3)
C3—C4—H4A109.5H11A—C11—H11B109 (2)
N4—C4—H4B109.5N5A—C12—C11110.6 (4)
C3—C4—H4B109.5N5A—C12—H12A111 (2)
H4A—C4—H4B108.1C11—C12—H12A108 (3)
N3—C5—C6110.50 (9)N5A—C12—H12B109.8 (19)
N3—C5—H5A109.6C11—C12—H12B109.4 (19)
C6—C5—H5A109.6H12A—C12—H12B107 (2)
N3—C5—H5B109.6C8—N5A—C10107.7 (5)
C6—C5—H5B109.6C8—N5A—C12108.9 (5)
H5A—C5—H5B108.1C10—N5A—C12106.1 (5)
N4—C6—C5110.84 (9)C8—N5A—P199.0 (4)
N4—C6—H6A109.5C10—N5A—P1120.7 (4)
C5—C6—H6A109.5C12—N5A—P1113.6 (4)
N4—C6—H6B109.5
C5i—N3—C3—C458.56 (8)C7—N5—C9—C1065.1 (5)
C5—N3—C3—C458.56 (7)C11—N5—C9—C1053.2 (6)
P1—N3—C3—C4180.000 (1)N5—C9—C10—N5A12.1 (2)
C6i—N4—C4—C358.71 (8)C7—N5—C11—C1251.6 (5)
C6—N4—C4—C358.71 (8)C9—N5—C11—C1266.5 (6)
N3—C3—C4—N40.000 (1)N5—C11—C12—N5A11.5 (2)
C3—N3—C5—C658.18 (13)C7—C8—N5A—C1065.4 (4)
C5i—N3—C5—C658.81 (16)C7—C8—N5A—C1249.2 (6)
P1—N3—C5—C6170.83 (9)C7—C8—N5A—P1168.13 (15)
C6i—N4—C6—C557.90 (15)C9—C10—N5A—C850.3 (4)
C4—N4—C6—C558.99 (13)C9—C10—N5A—C1266.2 (5)
N3—C5—C6—N40.48 (15)C9—C10—N5A—P1162.7 (3)
C11—N5—C7—C865.9 (4)C11—C12—N5A—C862.7 (6)
C9—N5—C7—C851.0 (5)C11—C12—N5A—C1053.0 (6)
N5—C7—C8—N5A13.2 (3)C11—C12—N5A—P1172.0 (2)
Symmetry code: (i) x, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···N2ii0.97 (2)2.53 (2)3.260 (2)132 (2)
Symmetry code: (ii) x1, y, z.
 

Funding information

Funding for this research was provided by: The Office of Naval Research.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAkhmad Aznan, A. M., Abdullah, Z. & Tiekink, E. R. T. (2014). Acta Cryst. E70, 31–35.  CSD CrossRef IUCr Journals Google Scholar
First citationBak, M., Rasmussen, J. T. & Nielsen, N. C. (2000). J. Magn. Reson. 147, 296–330.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBi, M., Li, G., Hua, J., Liu, Y., Liu, X., Hu, Y., Shi, Z. & Feng, S. (2007). Cryst. Growth Des. 7, 2066–2070.  CSD CrossRef CAS Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBondi, A. (1966). J. Phys. Chem. 70, 3006–3007.  CrossRef CAS Web of Science Google Scholar
First citationBraga, D., Giaffreda, S. L., Grepioni, F. & Polito, M. (2004). CrystEngComm, 6, 459–462.  Google Scholar
First citationBraga, D., Maini, L., Mazzeo, P. P. & Ventura, B. (2010). Chem. Eur. J. 16, 1553–1559.  CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurrows, A. D., Mahon, M. F., Raithby, P. R., Warren, A. J., Teat, S. J. & Warren, J. E. (2012). CrystEngComm, 14, 3658–3666.  CSD CrossRef CAS Google Scholar
First citationCapel, V. L., Dillon, K. B., Goeta, A. E., Howard, J. A. K., Monks, P. K., Probert, M. R., Shepherd, H. J. & Zorina, N. V. (2011). Dalton Trans. 40, 1808–1816.  CSD CrossRef CAS PubMed Google Scholar
First citationChaloux, B. L., Yonke, B. L., Purdy, A. P., Yesinowski, J. P., Glaser, E. R. & Epshteyn, A. (2015). Chem. Mater. 27, 4507–4510.  CrossRef CAS Google Scholar
First citationCunha-Silva, L., Carr, M. J., Kennedy, J. D. & Hardie, M. J. (2013). Cryst. Growth Des. 13, 3162–3170.  CAS Google Scholar
First citationDau, P. V., Kim, M., Garibay, S. J., Münch, F. M. L., Moore, C. E. & Cohen, S. M. (2012). Inorg. Chem. 51, 5671–5676.  CSD CrossRef CAS PubMed Google Scholar
First citationDillon, K. B., Platt, A. W. G., Schmidpeter, A., Zwaschka, F. & Sheldrick, W. S. (1982). Z. Anorg. Allg. Chem. 488, 7–26.  CSD CrossRef CAS Google Scholar
First citationEmerson, K. & Britton, D. (1964). Acta Cryst. 17, 1134–1139.  CrossRef ICSD IUCr Journals Google Scholar
First citationEpshteyn, A., Purdy, A. P. & Chaloux, B. (2019). US Patent 10510458-B2.  Google Scholar
First citationGillespie, R. J. (1970). J. Chem. Educ. 47, 18–23.  CrossRef CAS Web of Science Google Scholar
First citationGillespie, R. J. & Nyholm, R. S. (1957). Q. Rev. Chem. Soc. 11, 339–380.  CrossRef CAS Web of Science Google Scholar
First citationGoreshnik, E. (2017). J. Coord. Chem. 70, 859–870.  CSD CrossRef CAS Google Scholar
First citationHenke, S., Schneemann, A., Wütscher, A. & Fischer, R. A. (2012). J. Am. Chem. Soc. 134, 9464–9474.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLiu, Y.-Y., Grzywa, M., Weil, M. & Volkmer, D. J. (2010). J. Solid State Chem. 183, 208–217.  CSD CrossRef CAS Google Scholar
First citationMaderlehner, S. & Pfitzner, A. (2012). Z. Kristallogr. 227, 569–574.  CSD CrossRef CAS Google Scholar
First citationO'Keeffe, M., Peskov, M. A., Ramsden, S. J. & Yaghi, O. M. (2008). Acc. Chem. Res. 41, 1782–1789.  Web of Science CrossRef PubMed CAS Google Scholar
First citationQu, Y. & Sun, X.-M. (2006). Anal. Sci. X, 22, X7–X8.  CAS Google Scholar
First citationQu, Y. & Wu, J. (2007). Acta Cryst. E63, m1063–m1065.  CSD CrossRef IUCr Journals Google Scholar
First citationSchmidpeter, A., Zwaschka, F. & Sheldrick, W. S. (1985). Chem. Ber. 118, 1078–1085.  CSD CrossRef CAS Google Scholar
First citationShan, Z.-M., Wang, Y.-L., Guo, H.-X., Liu, Q.-Y., Zhang, N., Yang, E.-L. & Li, L.-Q. (2011). Inorg. Chim. Acta, 366, 141–146.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, W. S., Schmidpeter, A., Zwaschka, F., Dillon, K. B., Platt, A. W. G. & Waddington, T. C. (1981). J. Chem. Soc. Dalton Trans. pp. 413–418.  CSD CrossRef Google Scholar
First citationStaats, P. A., Morgan, H. W. & Cohen, H. M. (1960). Inorg. Synth. 6, 84–87.  CAS Google Scholar
First citationSzafrański, M. (2018). Cryst. Growth Des. 18, 7106–7113.  Google Scholar
First citationWang, X.-F., Qi, X.-L., Shi, F.-N. & Rocha, J. (2011). J. Mol. Struct. 1004, 26–30.  CSD CrossRef CAS Google Scholar
First citationWiles, A. B. & Pike, R. D. (2006). Organometallics, 25, 3282–3285.  Web of Science CSD CrossRef CAS Google Scholar
First citationXiao, L.-N., Zhao, C.-X., Shi, X.-M., Zhang, H., Wu, W. & Cui, X.-B. (2018). CrystEngComm, 20, 969–977.  CSD CrossRef CAS Google Scholar
First citationZhang, Y., Wu, T., Liu, R., Dou, T., Bu, X. & Feng, P. (2010). Cryst. Growth Des. 10, 2047–2049.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds