research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-tert-Butyl-2-{2-[2-(4-chloro­phen­yl)-4-hy­dr­oxy-1-(5-methyl­isoxazol-3-yl)-5-oxo-2,5-di­hydro-1H-pyrrol-3-yl]-N-(4-meth­­oxy­phen­yl)acetamido}-2-(4-meth­­oxy­phen­yl)acetamide methanol monosolvate: single-crystal X-ray diffraction study and Hirshfeld surface analysis

crossmark logo

aDivision of Chemistry of Functional Materials, State Scientific Institution "Institute for Single Crystals" of the National Academy of Sciences of Ukraine, 60 Nauky Ave., Kharkiv 61072, Ukraine, and bFaculty of Chemistry, V.N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv 61077, Ukraine
*Correspondence e-mail: masha.o.shishkina@gmail.com

Edited by O. Blacque, University of Zürich, Switzerland (Received 7 October 2021; accepted 27 October 2021; online 2 November 2021)

The title compound, C36H37ClN4O7·CH3OH, which crystallizes as a methanol solvate, may possess biological activity, which is inherent for a natural peptide or protein. In the crystal, mol­ecules of the title compound form hydrogen-bonded tetra­mers with the solvate mol­ecules acting as bridges as a result of the O—H⋯O and N—H⋯O inter­molecular hydrogen bonds. Hirshfeld surface analysis was used to study the different types of inter­molecular inter­actions whose contributions are: H⋯H = 53.8%, O⋯H/H⋯O = 19.0%, C⋯H/H⋯C = 14.8%, Cl⋯H/H⋯Cl = 5.3%, N⋯H/H⋯N = 3.2%.

1. Chemical context

The combined application of Doebner and Ugi-type multicomponent reactions, with the participation of the azoloazine type of carb­oxy­lic acid as an acid component in the Ugi reaction to increase the mol­ecular diversity of the target heterocyclic compounds, was reported in our previous publication (Murlykina et al., 2019[Murlykina, M. V., Kolomiets, O. V., Kornet, M. M., Sakhno, Y. I., Desenko, S. M., Dyakonenko, V. V., Shishkina, S. V., Brazhko, O. A., Musatov, V. I., Tsygankov, A. V., Van der Eycken, E. V. & Chebanov, V. A. (2019). Beilstein J. Org. Chem. 15, 1281-1288.]).

[Scheme 1]

In the current work, the final product was synthesized via the four-component Ugi reaction of 2-[2-(4-chloro­phen­yl)-4-hy­droxy-1-(5-methyl­isoxazol-3-yl)-5-oxo-2,5-di­hydro-1H-pyr­rol-3-yl]acetic acid, 4-meth­oxy­aniline, 4-meth­oxy­benz­alde­hyde and tert-butyl­isocyanide. The target product contains a heterocyclic core bound to peptidomimetics, compounds that mimic a natural peptide or protein and which may have high biological activity. The pyrrolone fragment is also a privileged motif because of its biological activities, namely anti­bacterial (Murlykina et al., 2013[Murlykina, M. V., Sakhno, Y. I., Desenko, S. M., Konovalova, I. S., Shishkin, O. V., Sysoiev, D. A., Kornet, M. N. & Chebanov, V. A. (2013). Tetrahedron, 69, 9261-9269.]), anti­viral (Murlykina et al., 2015[Murlykina, M. V., Sakhno, Y. I., Desenko, S. M., Shishkina, S. V., Shishkin, O. V., Sysoiev, D. O., Kornet, M. N., Schols, D., Goeman, J. L., Van der Eycken, L., Van der Eycken, E. V. & Chebanov, V. A. (2015). Eur. J. Org. Chem. 2015, 4481-4492.]; Rashid et al., 2012[Rashid, M., Husain, A. & Mishra, R. (2012). Eur. J. Med. Chem. 54, 855-866.]; Pace et al., 2008[Pace, P., Spieser, S. A. H. & Summa, V. (2008). Bioorg. Med. Chem. Lett. 18, 3865-3869.]), anti­tumor (Mori et al., 2013[Mori, M., Tintori, C., Christopher, R. S. A., Radi, M., Schenone, S., Musumeci, F., Brullo, C., Sanità, P., Delle Monache, S., Angelucci, A., Kissova, M., Crespan, E., Maga, G. & Botta, M. (2013). ChemMedChem, 8, 484-496.]; Koz'minykh et al., 2002[Koz'minykh, V. O., Igidov, N. M., Zykova, S. S., Kolla, V. É., Shuklina, N. S. & Odegova, T. F. (2002). Pharm. Chem. J. 36, 188-191.]) and anti­microbial (Khalaf et al., 2004[Khalaf, A. I., Waigh, R. D., Drummond, A. J., Pringle, B., McGroarty, I., Skellern, G. G. & Suckling, C. (2004). J. Med. Chem. 47, 2133-2156.]; Gein et al., 2006[Gein, V. L., Kasimova, N. N., Panina, M. A. & Voronina, V. (2006). Pharm. Chem. J. 40, 410-412.]).

2. Structural commentary

The title compound crystallizes as a methanol solvate (Fig. 1[link]). The methanol mol­ecule is disordered over two positions (A and B) with the populations of A:B in a 0.303 (10):0.697 (10) ratio. All atoms of the partially saturated five-membered heterocycle are in the same plane with an accuracy of 0.008 Å. The N2—C4 bond length of 1.380 (3) Å and the C8—N2—C4—N1 torsion angle of 2.2 (4)° indicate conjugation between the π-systems of the partially saturated and oxazole cycles. The para-chloro­phenyl substituent is located in the pseudo-equatorial position and is turned in relation to the C7—C8 endocyclic bond [C6—C7—C8—C9 = −120.9 (3)° and C7—C8—C9—C10 = 60.9 (3)°]. The C16(=O4)—N3 carb­amide group is located in the -ac position in relation to the C6—C7 endocyclic bond [C6—C7—C15—C16 = −107.2 (3)°], and the C16=O4 carbonyl group is slightly non-coplanar to the C7—C15 bond [C7—C15—C16—O4 = 22.5 (4)°]. The para-meth­oxy­phenyl substituent at the nitro­gen atom is turned almost orthogonally to the plane of the carbamide group [C16—N3—C17—C22 = −99.5 (3)°]. The para-meth­oxy­phenyl substituent at the carbon atom is located in a position inter­mediate between sp and −sc and is also rotated almost orthogonally to the plane of the carbamide group [the C17—N3—C24—C25 and N3—C24—C25—C26 torsion angles are −33.4 (3) and −83.4 (3)°, respectively]. In both para-meth­oxy­phenyl substituents, the meth­oxy group is coplanar with the plane of the aromatic ring [the C19—C20—O5—C23 and C29—C28—O7—C31 torsion angles are −3.3 (5) and 3.6 (4)°, respectively] despite the steric repulsion between the methyl group and the aromatic ring atoms (the shortened contacts are: C23⋯H19 = 2.52, H23B⋯C19 = 2.73, H23A⋯C19 = 2.76 and H29⋯C31 = 2.50, H31C⋯C29 = 2.77 and H31B⋯C29 = 2.70 Å as compared with the C⋯H van der Waals radii sum of 2.87 Å). The substituent at the C24 atom is located in the −sc position relative to the N3—C16 bond [C32—C24—N3—C16 = −78.1 (3)°] and the C32—O6 carbonyl group is slightly non-coplanar to the N3—C24 bond [O6—C32—C24—N3 = −27.8 (3)°]. The tert-butyl substituent is located in anti­perplanar position to the C32—C24 bond [C33—N4—C32—C24 = 172.9 (2)°].

[Figure 1]
Figure 1
Mol­ecular structure of the title compound (solvent molecule and hydrogen atoms are omitted for clarity). Displacement ellipsoids are shown at the 50% probability level.

3. Supra­molecular features

In the crystal, the mol­ecules of the title compound are linked by bridging methanol mol­ecules due to the formation of the O3—H8A⋯O8A, O3—H8B⋯O8B, O8A—H8A⋯O4 and O8B–H8B⋯O4 inter­molecular hydrogen bonds (Table 1[link]). Additionally, two main mol­ecules are bound by N4—H4⋯O2 hydrogen bonds (Table 1[link]) within this dimer. As a result, a hydrogen-bonded tetra­mer may be recognized as a structural motif of the crystal packing (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O8A 0.75 (4) 1.88 (5) 2.61 (3) 162 (4)
O3—H3⋯O8B 0.75 (4) 1.93 (4) 2.680 (10) 175 (4)
N4—H4⋯O2i 0.87 (3) 2.33 (3) 3.193 (3) 170 (3)
O8A—H8A⋯O4i 0.82 1.88 2.60 (3) 145
O8B—H8B⋯O4i 0.82 2.50 2.843 (8) 107
Symmetry code: (i) [-x+1, -y+2, -z+1].
[Figure 2]
Figure 2
Tetra­mer of hydrogen-bonded title mol­ecules linked through methanol solvent mol­ecules.

4. Hirshfeld surface analysis

Different types of intra- and inter­molecular inter­actions in a crystal structure can be identified and visualized with Hirshfeld surface analysis (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://Hirshfeldsurface.net]). The mol­ecular Hirshfeld surface of the major compound was generated using a high surface resolution with three-dimensional dnorm surfaces. The areas that are coloured red on the dnorm surfaces correspond to contacts that are shorter than the van der Waals radii sum of the closest atoms (Fig. 3[link]). These red spots indicate atoms participating in hydrogen bonding or short contacts. The brightest red spots are observed at the hydroxyl groups of both the main and the methanol mol­ecules, indicating a strong O—H⋯O inter­molecular hydrogen bond. In addition, bright-red spots are observed at the carboxyl group and at the hydrogen atom of the amino group, indicating short contacts. It should be mentioned that smaller red areas are found at the nitro­gen atom of the partially saturated five-membered heterocycle, at the C31H3 methyl group and at the C32=O6 carboxyl group, indicating short contacts.

[Figure 3]
Figure 3
Two views of the Hirshfeld surface of the title mol­ecule mapped over dnorm in the range −0.295 to 1.590 a.u.

In the two-dimensional fingerprint plots the pair of sharp spikes indicate strong hydrogen bonds and short contacts in the crystal structure (Fig. 4[link]a). The highest contribution is from H⋯H contacts (53.8%), while these made by the O⋯H/H⋯O (19.0%) and C⋯H/H⋯C (14.8%) inter­actions are similar (Fig. 4[link]c, 4d). The contributions of Cl⋯H/H⋯Cl (5.3%) and N⋯H/H⋯N (3.2%) inter­actions (Fig. 4[link]e, 4f) are very small.

[Figure 4]
Figure 4
Two-dimensional fingerprint plot for the title compound showing (a) all inter­actions, and delineated into (b) H⋯H, (c) O⋯H/H⋯O, (d) C⋯H/H⋯C, (e) Cl⋯H/H⋯Cl. (f) N⋯H/H⋯N contacts.

5. Database survey

A search of the Cambridge Structural Database (CSD Version 5.42, update of November 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 3-hy­droxy-1,5-di­hydro-pyrrol-2-one fragment revealed 79 hits. Only 27 of these hits contain a fragment with the same structure as that of the title compound [refcodes: BOQXEN (del Corte et al., 2019[Corte, X. del, de Marigirta, E. M., Palacios, F. & Vicario, J. (2019). Molecules, 24, 2951.]), CIKPAQ (Sarkar et al., 2018[Sarkar, R. & Mukhopadhyay, C. (2018). Tetrahedron Lett. 59, 3069-3076.]), EVIYUD (Aliev et al., 2003b[Aliev, Z. G., Maslivets, A. N., Simonchil, O. L., Bannikova, Yu. N. & Atovmyan, L. O. (2003b). Zh. Strukt. Khim. 44, 769-772.]), GEJZAY (Mashevskaya et al., 2011[Mashevskaya, I. V., Mokrushin, I. G., Kuslina, L. V., Aliev, Z. G. & Maslivets, A. N. (2011). Zh. Org. Khim. 47, 424-427.]), GIMGEQ (Sarkar et al., 2013[Sarkar, R. & Mukhopadhyay, C. (2013). Tetrahedron Lett. 54, 3706-3711.]), GITCAQ, GITDEV (Saha et al., 2017[Saha, M. & Das, A. R. (2017). ChemistrySelect 2, 10249-10260.]), IRUBUS (Aliev et al., 2003a[Aliev, Z. G., Atovmyan, L. O., Gein, V. L., Gein, L. F. & Kataeva, A. V. (2003a). Izv. Akad. Nauk SSSR, Ser. Khim. 52, 1343-1348.]), LIFBEJ, LIFBOT (Sun et al., 2011[Sun, J., Wu, Q., Xia, E.-Y. & Yan, C.-G. (2011). Eur. J. Org. Chem. pp. 2981-2986.]), NUXPIG (Wiedemann et al., 2009[Wiedemann, D. & Grohmann, A. (2009). Z. Naturforsch. Teil B, 64, 1276-1288.]), PADHUA (Zonouz et al., 2015[Zonouz, A. M., Eskandari, I. & Notash, B. (2015). Synth. Commun. 45, 2115-2121.]), PASTOT (Nicolaou et al., 2005[Nicolaou, K. C., Lee, S. H., Estrada, A. A. & Zak, M. (2005). Angew. Chem. Int. Ed. 44, 3736-3740.]), QIPNAH (Bhajammanavar et al., 2019[Bhajammanavar, V., Mallik, S. & Baidya, M. (2019). Org. Biomol. Chem. 17, 1740-1743.]), ROHNAG (Hosseinzadeh et al., 2019[Hosseinzadeh, Z., Ramazani, A., Ahankar, H., Ślepokura, K. & Lis, T. (2019). Silicon, 11, 2933-2943.]), TOMPER (Sakhno et al., 2008[Sakhno, Y. I., Desenko, S. M., Shishkina, S. V., Shishkin, O. V., Sysoyev, D. O., Groth, U., Kappe, C. O. & Chebanov, V. A. (2008). Tetrahedron, 64, 11041-11049.]), UJEXOY (Ahankar et al., 2016[Ahankar, H., Ramazani, A., Ślepokura, K., Lis, T. & Joo, S. W. (2016). Green Chem. 18, 3582-3593.]), VILQEP (Gein et al., 2018[Gein, V. L., Buldakova, E. A., Korol, A. N., Veikhman, G. A. & Dmitriev, M. V. (2018). Zh. Obshch. Khim. 88, 908-911.]), VIPNAJ (Mylari et al., 1991[Mylari, B. L., Beyer, T. A. & Siegel, T. W. (1991). J. Med. Chem. 34, 1011-1018.]), VIQDOP (Guseinov et al., 2006[Guseinov, F. I., Burangulova, R. N., Mukhamedzyanova, E. F., Strunin, B. P., Sinyashin, O. G., Litvinov, I. A. & Gubaidullin, A. T. (2006). Khim. Get. Soedin., SSSR, 42, 1089-1093.]), VOWGAP (Kaza­kov et al., 1990[Kazakov, P. V., Odinets, I. L., Antipin, M. Yu., Petrovskii, P. V., Kovalenko, L. V., Struchkov, Yu. T. & Mastryukova, T. A. (1990). Izv. Akad. Nauk SSSR, Ser. Khim. 39, 2120-2126.]), WAPMIM (Dubovtsev et al., 2016[Dubovtsev, A. Yu., Silaichev, P. S., Zheleznova, M. A., Aliev, Z. G. & Maslivets, A. N. (2016). Zh. Org. Khim. 52, 1779-1783.]), XINHIL (Aliev et al., 2001[Aliev, Z. G., Krasnykh, O. P., Konyukhova, N. A., Maslivets, A. N. & Atovmyan, L. O. (2001). Zh. Strukt. Khim. 42, 1008-1013.]), XOKRAT, XOKRAT01 (Ramazani et al., 2019[Ramazani, A., Ahankar, H., Slepokura, K., Lis, T. & Joo, S. W. (2019). Zh. Strukt. Khim. 60, 662-670.]), YAJMOM (Wei et al., 2004[Wei, H.-X., Zhou, C., Ham, S., White, J. M. & Birney, D. M. (2004). Org. Lett. 6, 4289-4292.]), YIYFAP (Denislamova et al., 2014[Denislamova, E. S., Slepukhin, P. A. & Maslivets, A. N. (2014). Zh. Org. Khim. 50, 232-235.])]. All these structures and the title compound have the same electron density distribution within the 3-hydroxy-1,5-dihydro-pyrrol-2-one fragment.

6. Synthesis and crystallization

4-Meth­oxy­aniline (3) (0.5 mmol) and 4-meth­oxy­benzaldehyde (2) (0.5 mmol) were dissolved in methanol (4 mL) and stirred for 0.5 h. Then, 2-[2-(4-chloro­phen­yl)-4-hy­droxy-1-(5-methyl­isoxazol-3-yl)-5-oxo-2,5-di­hydro-1H-pyrrol-3-yl]acetic acid (1) (0.5 mmol) and tert-butyl­isocyanide (4) (0.5 mmol) were added consistently and the reaction mixture was stirred for 24 h at 319 K. The mixture was allowed to stand overnight. The crystal precipitate was filtered off and dried. The reaction scheme is shown in Fig. 5[link].

[Figure 5]
Figure 5
Reaction scheme.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms were located in difference-Fourier maps. They were included in calculated positions and treated as riding with C—H = 0.96 Å and O—H = 0.82 Å, Uiso(H) = 1.5Ueq(C,O) for methyl and hydroxyl groups and with Car—H = 0.93 Å, Csp3—H = 0.97 Å, N—H = 0.89 Å Uiso(H) = 1.2Ueq(C,N) for all other hydrogen atoms. The solvent molecule is disordered over two positions (A and B) in a 0.303 (10):0.697 (10) occupancy ratio. Csp3—O bonds were refined with fixed length of 1.413 Å.

Table 2
Experimental details

Crystal data
Chemical formula C36H37ClN4O7·CH4O
Mr 705.19
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 10.3211 (7), 13.9316 (11), 15.0269 (10)
α, β, γ (°) 107.179 (6), 100.769 (6), 109.649 (7)
V3) 1843.2 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.16
Crystal size (mm) 0.12 × 0.08 × 0.04
 
Data collection
Diffractometer Rigaku Xcalibur, Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.718, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 12120, 6484, 3993
Rint 0.062
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.180, 0.98
No. of reflections 6484
No. of parameters 488
No. of restraints 14
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.37, −0.37
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

N-tert-Butyl-2-{2-[2-(4-chlorophenyl)-4-hydroxy-1-(5-methylisoxazol-3-yl)-5-oxo-2,5-dihydro-1H-pyrrol-3-yl]-N-(4-methoxyphenyl)acetamido}-2-(4-methoxyphenyl)acetamide methanol monosolvate top
Crystal data top
C36H37ClN4O7·CH4OZ = 2
Mr = 705.19F(000) = 744
Triclinic, P1Dx = 1.271 Mg m3
a = 10.3211 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.9316 (11) ÅCell parameters from 2243 reflections
c = 15.0269 (10) Åθ = 3.6–24.8°
α = 107.179 (6)°µ = 0.16 mm1
β = 100.769 (6)°T = 293 K
γ = 109.649 (7)°Plate, colourless
V = 1843.2 (2) Å30.12 × 0.08 × 0.04 mm
Data collection top
Rigaku Xcalibur, Sapphire3
diffractometer
6484 independent reflections
Radiation source: fine-focus sealed X-ray tube3993 reflections with I > 2σ(I)
Detector resolution: 16.1827 pixels mm-1Rint = 0.062
ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
h = 1212
Tmin = 0.718, Tmax = 1.000k = 1616
12120 measured reflectionsl = 1717
Refinement top
Refinement on F214 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.063H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.180 w = 1/[σ2(Fo2) + (0.0804P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
6484 reflectionsΔρmax = 0.37 e Å3
488 parametersΔρmin = 0.37 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.18482 (10)0.27201 (7)0.45318 (8)0.0879 (4)
O10.1363 (2)0.78835 (18)0.78187 (15)0.0656 (6)
O20.6392 (2)0.97400 (15)0.79614 (13)0.0527 (5)
O30.7446 (2)0.94517 (18)0.63187 (18)0.0595 (6)
H30.741 (4)0.957 (3)0.586 (3)0.083 (15)*
O40.3890 (3)0.87873 (18)0.40675 (14)0.0708 (7)
O50.3359 (3)0.30481 (19)0.15424 (18)0.0802 (8)
O60.0559 (2)0.67660 (18)0.23246 (16)0.0630 (6)
O70.3038 (2)0.61623 (18)0.17618 (14)0.0609 (6)
N10.1951 (3)0.7675 (2)0.70394 (18)0.0612 (7)
N20.4227 (2)0.83021 (18)0.68609 (15)0.0460 (6)
N30.3530 (2)0.72925 (16)0.27770 (14)0.0392 (5)
N40.0835 (3)0.8240 (2)0.19070 (17)0.0490 (6)
H40.152 (4)0.884 (3)0.195 (2)0.074 (11)*
C10.2010 (4)0.8940 (3)0.9544 (2)0.0736 (10)
H1A0.1288400.9220660.9436750.110*
H1B0.2844650.9496011.0085830.110*
H1C0.1619910.8295620.9688710.110*
C20.2440 (3)0.8644 (3)0.8645 (2)0.0546 (8)
C30.3694 (3)0.8946 (2)0.8449 (2)0.0531 (8)
H3A0.4605020.9459530.8884170.064*
C40.3337 (3)0.8316 (2)0.74402 (19)0.0434 (7)
C50.5651 (3)0.9051 (2)0.71337 (19)0.0436 (7)
C60.6065 (3)0.8850 (2)0.62320 (19)0.0438 (7)
C70.4959 (3)0.8067 (2)0.54664 (19)0.0432 (7)
C80.3665 (3)0.7620 (2)0.57990 (18)0.0442 (7)
H80.2866970.7761400.5483490.053*
C90.3169 (3)0.6397 (2)0.55535 (18)0.0416 (7)
C100.4071 (3)0.5977 (2)0.5935 (2)0.0537 (8)
H100.4967370.6463130.6404690.064*
C110.3678 (3)0.4858 (2)0.5639 (2)0.0560 (8)
H110.4298260.4589590.5905550.067*
C120.2347 (3)0.4139 (2)0.4940 (2)0.0496 (7)
C130.1416 (3)0.4526 (2)0.4563 (2)0.0562 (8)
H130.0511400.4036040.4104860.067*
C140.1827 (3)0.5653 (2)0.4868 (2)0.0513 (7)
H140.1193360.5916570.4609660.062*
C150.4877 (3)0.7567 (2)0.44215 (18)0.0467 (7)
H15A0.4414280.6767780.4196400.056*
H15B0.5853680.7770490.4380530.056*
C160.4042 (3)0.7932 (2)0.37513 (19)0.0450 (7)
C170.3430 (3)0.6180 (2)0.24142 (18)0.0396 (6)
C180.2315 (3)0.5338 (2)0.2456 (2)0.0530 (8)
H180.1594080.5481690.2682230.064*
C190.2238 (3)0.4270 (2)0.2165 (2)0.0587 (8)
H190.1472330.3703990.2196470.070*
C200.3309 (3)0.4061 (2)0.1831 (2)0.0555 (8)
C210.4416 (4)0.4902 (3)0.1765 (2)0.0644 (9)
H210.5126580.4757220.1525110.077*
C220.4478 (3)0.5952 (2)0.2053 (2)0.0545 (8)
H220.5228670.6513770.2003800.065*
C230.2286 (4)0.2176 (3)0.1641 (3)0.0916 (13)
H23A0.1350480.2017900.1224600.137*
H23B0.2297500.2386350.2311600.137*
H23C0.2479220.1529860.1452150.137*
C240.2850 (3)0.7726 (2)0.21251 (18)0.0404 (6)
H240.3426360.8526940.2382800.048*
C250.2869 (3)0.7253 (2)0.10845 (19)0.0421 (6)
C260.4104 (3)0.7724 (2)0.0842 (2)0.0512 (8)
H260.4918650.8312570.1326290.061*
C270.4136 (3)0.7330 (3)0.0107 (2)0.0564 (8)
H270.4971320.7649690.0255410.068*
C280.2927 (3)0.6460 (2)0.0838 (2)0.0475 (7)
C290.1706 (3)0.5974 (2)0.0612 (2)0.0533 (8)
H290.0894350.5382240.1097240.064*
C300.1692 (3)0.6372 (2)0.03492 (19)0.0494 (7)
H300.0864840.6035660.0499520.059*
C310.1776 (4)0.5334 (3)0.2546 (2)0.0748 (11)
H31A0.1965600.5248160.3159840.112*
H31B0.0985150.5549560.2545780.112*
H31C0.1526420.4645180.2460830.112*
C320.1300 (3)0.7536 (2)0.21472 (19)0.0434 (7)
C330.0649 (3)0.8177 (3)0.1762 (3)0.0637 (9)
C340.1035 (4)0.8284 (4)0.2694 (3)0.0987 (14)
H34A0.1040760.7671170.2864500.148*
H34B0.1978590.8288630.2596800.148*
H34C0.0330680.8961800.3215120.148*
C350.1715 (4)0.7095 (3)0.0922 (3)0.1000 (14)
H35A0.1402320.7021830.0351870.150*
H35B0.2661550.7093360.0773340.150*
H35C0.1752040.6487570.1110370.150*
C360.0624 (5)0.9159 (4)0.1482 (4)0.1060 (15)
H36A0.0078320.9836430.2004560.159*
H36B0.1566100.9166500.1377010.159*
H36C0.0367270.9086440.0891560.159*
O8A0.754 (3)1.031 (2)0.4990 (12)0.127 (8)0.303 (10)
H8A0.6828951.0419890.5060380.191*0.303 (10)
C37A0.744 (3)0.9975 (16)0.3987 (13)0.117 (6)0.303 (10)
H37A0.8023781.0598420.3871930.175*0.303 (10)
H37B0.6449240.9695450.3592140.175*0.303 (10)
H37C0.7786230.9407250.3816190.175*0.303 (10)
O8B0.7271 (8)0.9964 (6)0.4729 (6)0.084 (2)0.697 (10)
H8B0.6554701.0055550.4503220.127*0.697 (10)
C37B0.8511 (8)1.0727 (6)0.4653 (7)0.101 (3)0.697 (10)
H37D0.9263321.0467630.4693760.151*0.697 (10)
H37E0.8843291.1432820.5178110.151*0.697 (10)
H37F0.8268521.0798520.4033960.151*0.697 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0789 (6)0.0378 (5)0.1184 (8)0.0190 (4)0.0063 (6)0.0136 (5)
O10.0552 (13)0.0732 (16)0.0524 (13)0.0196 (12)0.0169 (11)0.0114 (11)
O20.0585 (12)0.0386 (11)0.0372 (11)0.0093 (10)0.0026 (10)0.0033 (9)
O30.0551 (14)0.0508 (14)0.0535 (14)0.0101 (11)0.0117 (12)0.0120 (11)
O40.1146 (19)0.0506 (14)0.0430 (12)0.0494 (14)0.0060 (12)0.0071 (10)
O50.0854 (17)0.0464 (15)0.0958 (18)0.0347 (13)0.0134 (14)0.0115 (13)
O60.0582 (13)0.0572 (14)0.0817 (16)0.0205 (11)0.0289 (12)0.0376 (12)
O70.0605 (13)0.0701 (15)0.0466 (12)0.0214 (11)0.0230 (11)0.0184 (10)
N10.0548 (16)0.0588 (17)0.0458 (14)0.0111 (13)0.0117 (13)0.0052 (12)
N20.0468 (13)0.0391 (14)0.0361 (12)0.0111 (11)0.0070 (11)0.0050 (10)
N30.0475 (13)0.0298 (12)0.0326 (11)0.0155 (10)0.0055 (10)0.0070 (9)
N40.0488 (15)0.0428 (15)0.0511 (15)0.0198 (13)0.0066 (12)0.0172 (12)
C10.073 (2)0.087 (3)0.054 (2)0.032 (2)0.0218 (18)0.0199 (18)
C20.0558 (19)0.053 (2)0.0407 (16)0.0199 (16)0.0050 (15)0.0088 (14)
C30.0506 (18)0.0526 (19)0.0384 (16)0.0162 (15)0.0043 (14)0.0063 (13)
C40.0489 (17)0.0353 (16)0.0370 (14)0.0144 (13)0.0064 (13)0.0099 (12)
C50.0529 (17)0.0263 (14)0.0381 (15)0.0125 (13)0.0017 (14)0.0070 (12)
C60.0486 (17)0.0333 (15)0.0397 (15)0.0123 (13)0.0084 (13)0.0102 (12)
C70.0485 (16)0.0356 (15)0.0371 (14)0.0159 (13)0.0032 (13)0.0113 (12)
C80.0476 (16)0.0343 (15)0.0335 (14)0.0125 (13)0.0001 (13)0.0036 (11)
C90.0414 (15)0.0370 (16)0.0358 (14)0.0112 (13)0.0064 (12)0.0093 (12)
C100.0450 (17)0.0417 (18)0.0537 (17)0.0112 (14)0.0023 (14)0.0102 (14)
C110.0502 (18)0.047 (2)0.065 (2)0.0211 (15)0.0082 (16)0.0205 (15)
C120.0516 (17)0.0326 (16)0.0550 (17)0.0135 (14)0.0154 (15)0.0097 (13)
C130.0469 (17)0.0413 (18)0.0533 (18)0.0102 (14)0.0001 (14)0.0015 (14)
C140.0445 (16)0.0437 (18)0.0499 (17)0.0165 (14)0.0004 (14)0.0089 (13)
C150.0612 (18)0.0397 (16)0.0347 (14)0.0241 (14)0.0075 (14)0.0094 (12)
C160.0551 (17)0.0311 (15)0.0381 (15)0.0162 (13)0.0063 (13)0.0065 (12)
C170.0427 (15)0.0375 (16)0.0327 (14)0.0177 (13)0.0058 (12)0.0084 (11)
C180.0536 (18)0.0432 (18)0.0590 (19)0.0194 (15)0.0188 (15)0.0159 (14)
C190.0585 (19)0.0346 (18)0.068 (2)0.0119 (15)0.0101 (17)0.0143 (15)
C200.062 (2)0.0386 (18)0.0523 (18)0.0274 (16)0.0026 (16)0.0020 (14)
C210.067 (2)0.056 (2)0.075 (2)0.0359 (18)0.0266 (19)0.0170 (17)
C220.0540 (18)0.0471 (19)0.0589 (19)0.0210 (15)0.0161 (16)0.0174 (14)
C230.097 (3)0.043 (2)0.113 (3)0.028 (2)0.004 (3)0.020 (2)
C240.0437 (15)0.0331 (15)0.0366 (14)0.0128 (12)0.0044 (12)0.0121 (11)
C250.0468 (16)0.0378 (16)0.0384 (14)0.0150 (13)0.0099 (13)0.0154 (12)
C260.0442 (17)0.0541 (19)0.0468 (17)0.0149 (14)0.0071 (14)0.0189 (14)
C270.0449 (17)0.068 (2)0.0549 (19)0.0178 (16)0.0179 (15)0.0269 (16)
C280.0540 (18)0.0513 (18)0.0412 (16)0.0246 (15)0.0173 (14)0.0188 (14)
C290.0538 (18)0.0444 (18)0.0424 (16)0.0069 (14)0.0121 (14)0.0089 (13)
C300.0496 (17)0.0475 (18)0.0383 (15)0.0087 (14)0.0160 (14)0.0116 (13)
C310.087 (3)0.071 (2)0.0449 (18)0.013 (2)0.0268 (19)0.0129 (17)
C320.0462 (16)0.0418 (17)0.0360 (14)0.0166 (14)0.0091 (13)0.0111 (12)
C330.0533 (19)0.059 (2)0.071 (2)0.0274 (17)0.0067 (17)0.0194 (17)
C340.074 (3)0.119 (4)0.106 (3)0.051 (3)0.038 (2)0.030 (3)
C350.066 (2)0.088 (3)0.099 (3)0.023 (2)0.017 (2)0.011 (2)
C360.092 (3)0.101 (3)0.153 (4)0.061 (3)0.020 (3)0.074 (3)
O8A0.140 (12)0.122 (14)0.101 (11)0.012 (11)0.040 (9)0.065 (10)
C37A0.178 (15)0.106 (12)0.098 (11)0.062 (11)0.086 (10)0.050 (9)
O8B0.088 (4)0.073 (4)0.096 (6)0.033 (3)0.032 (3)0.036 (3)
C37B0.107 (6)0.111 (6)0.137 (7)0.060 (5)0.068 (5)0.081 (5)
Geometric parameters (Å, º) top
Cl1—C121.741 (3)C18—H180.9300
O1—N11.417 (3)C18—C191.391 (4)
O1—C21.348 (3)C19—H190.9300
O2—C51.224 (3)C19—C201.377 (4)
O3—H30.75 (4)C20—C211.377 (5)
O3—C61.346 (3)C21—H210.9300
O4—C161.221 (3)C21—C221.373 (4)
O5—C201.371 (3)C22—H220.9300
O5—C231.409 (4)C23—H23A0.9600
O6—C321.225 (3)C23—H23B0.9600
O7—C281.365 (3)C23—H23C0.9600
O7—C311.425 (4)C24—H240.9800
N1—C41.307 (3)C24—C251.514 (4)
N2—C41.380 (3)C24—C321.540 (4)
N2—C51.381 (3)C25—C261.393 (4)
N2—C81.474 (3)C25—C301.377 (4)
N3—C161.357 (3)C26—H260.9300
N3—C171.443 (3)C26—C271.378 (4)
N3—C241.482 (3)C27—H270.9300
N4—H40.87 (3)C27—C281.384 (4)
N4—C321.335 (4)C28—C291.373 (4)
N4—C331.475 (4)C29—H290.9300
C1—H1A0.9600C29—C301.390 (4)
C1—H1B0.9600C30—H300.9300
C1—H1C0.9600C31—H31A0.9600
C1—C21.486 (4)C31—H31B0.9600
C2—C31.337 (4)C31—H31C0.9600
C3—H3A0.9300C33—C341.505 (5)
C3—C41.412 (4)C33—C351.522 (5)
C5—C61.473 (4)C33—C361.539 (5)
C6—C71.322 (4)C34—H34A0.9600
C7—C81.515 (4)C34—H34B0.9600
C7—C151.491 (4)C34—H34C0.9600
C8—H80.9800C35—H35A0.9600
C8—C91.507 (4)C35—H35B0.9600
C9—C101.379 (4)C35—H35C0.9600
C9—C141.388 (4)C36—H36A0.9600
C10—H100.9300C36—H36B0.9600
C10—C111.375 (4)C36—H36C0.9600
C11—H110.9300O8A—H8A0.8200
C11—C121.381 (4)O8A—C37A1.412 (5)
C12—C131.364 (4)C37A—H37A0.9600
C13—H130.9300C37A—H37B0.9600
C13—C141.381 (4)C37A—H37C0.9600
C14—H140.9300O8B—H8B0.8200
C15—H15A0.9700O8B—C37B1.412 (5)
C15—H15B0.9700C37B—H37D0.9600
C15—C161.513 (4)C37B—H37E0.9600
C17—C181.366 (4)C37B—H37F0.9600
C17—C221.383 (4)
C2—O1—N1108.9 (2)C20—C21—H21119.7
C6—O3—H3106 (3)C22—C21—C20120.5 (3)
C20—O5—C23117.9 (3)C22—C21—H21119.7
C28—O7—C31117.5 (2)C17—C22—H22119.8
C4—N1—O1104.6 (2)C21—C22—C17120.4 (3)
C4—N2—C5125.3 (2)C21—C22—H22119.8
C4—N2—C8122.4 (2)O5—C23—H23A109.5
C5—N2—C8111.2 (2)O5—C23—H23B109.5
C16—N3—C17121.8 (2)O5—C23—H23C109.5
C16—N3—C24115.9 (2)H23A—C23—H23B109.5
C17—N3—C24121.48 (19)H23A—C23—H23C109.5
C32—N4—H4114 (2)H23B—C23—H23C109.5
C32—N4—C33125.7 (3)N3—C24—H24107.3
C33—N4—H4119 (2)N3—C24—C25112.2 (2)
H1A—C1—H1B109.5N3—C24—C32111.1 (2)
H1A—C1—H1C109.5C25—C24—H24107.3
H1B—C1—H1C109.5C25—C24—C32111.3 (2)
C2—C1—H1A109.5C32—C24—H24107.3
C2—C1—H1B109.5C26—C25—C24119.8 (2)
C2—C1—H1C109.5C30—C25—C24122.5 (2)
O1—C2—C1115.8 (3)C30—C25—C26117.8 (3)
C3—C2—O1109.4 (3)C25—C26—H26119.5
C3—C2—C1134.7 (3)C27—C26—C25121.0 (3)
C2—C3—H3A127.4C27—C26—H26119.5
C2—C3—C4105.1 (3)C26—C27—H27119.9
C4—C3—H3A127.4C26—C27—C28120.2 (3)
N1—C4—N2118.8 (2)C28—C27—H27119.9
N1—C4—C3111.9 (3)O7—C28—C27115.9 (3)
N2—C4—C3129.3 (3)O7—C28—C29124.3 (3)
O2—C5—N2126.0 (3)C29—C28—C27119.8 (3)
O2—C5—C6128.1 (3)C28—C29—H29120.3
N2—C5—C6106.0 (2)C28—C29—C30119.5 (3)
O3—C6—C5117.3 (2)C30—C29—H29120.3
C7—C6—O3131.8 (3)C25—C30—C29121.8 (3)
C7—C6—C5110.9 (2)C25—C30—H30119.1
C6—C7—C8109.5 (2)C29—C30—H30119.1
C6—C7—C15130.0 (3)O7—C31—H31A109.5
C15—C7—C8120.3 (2)O7—C31—H31B109.5
N2—C8—C7102.3 (2)O7—C31—H31C109.5
N2—C8—H8109.6H31A—C31—H31B109.5
N2—C8—C9114.2 (2)H31A—C31—H31C109.5
C7—C8—H8109.6H31B—C31—H31C109.5
C9—C8—C7111.2 (2)O6—C32—N4124.3 (3)
C9—C8—H8109.6O6—C32—C24121.5 (3)
C10—C9—C8121.5 (2)N4—C32—C24114.0 (3)
C10—C9—C14117.9 (3)N4—C33—C34110.8 (3)
C14—C9—C8120.4 (2)N4—C33—C35109.5 (3)
C9—C10—H10119.2N4—C33—C36105.1 (3)
C11—C10—C9121.7 (3)C34—C33—C35111.2 (3)
C11—C10—H10119.2C34—C33—C36110.1 (3)
C10—C11—H11120.5C35—C33—C36109.9 (3)
C10—C11—C12119.0 (3)C33—C34—H34A109.5
C12—C11—H11120.5C33—C34—H34B109.5
C11—C12—Cl1119.7 (2)C33—C34—H34C109.5
C13—C12—Cl1119.4 (2)H34A—C34—H34B109.5
C13—C12—C11120.9 (3)H34A—C34—H34C109.5
C12—C13—H13120.3H34B—C34—H34C109.5
C12—C13—C14119.4 (3)C33—C35—H35A109.5
C14—C13—H13120.3C33—C35—H35B109.5
C9—C14—H14119.4C33—C35—H35C109.5
C13—C14—C9121.1 (3)H35A—C35—H35B109.5
C13—C14—H14119.4H35A—C35—H35C109.5
C7—C15—H15A109.0H35B—C35—H35C109.5
C7—C15—H15B109.0C33—C36—H36A109.5
C7—C15—C16112.7 (2)C33—C36—H36B109.5
H15A—C15—H15B107.8C33—C36—H36C109.5
C16—C15—H15A109.0H36A—C36—H36B109.5
C16—C15—H15B109.0H36A—C36—H36C109.5
O4—C16—N3121.5 (2)H36B—C36—H36C109.5
O4—C16—C15121.5 (2)C37A—O8A—H8A109.5
N3—C16—C15116.9 (2)O8A—C37A—H37A109.5
C18—C17—N3120.0 (2)O8A—C37A—H37B109.5
C18—C17—C22118.9 (3)O8A—C37A—H37C109.5
C22—C17—N3121.0 (3)H37A—C37A—H37B109.5
C17—C18—H18119.4H37A—C37A—H37C109.5
C17—C18—C19121.3 (3)H37B—C37A—H37C109.5
C19—C18—H18119.4C37B—O8B—H8B109.5
C18—C19—H19120.4O8B—C37B—H37D109.5
C20—C19—C18119.2 (3)O8B—C37B—H37E109.5
C20—C19—H19120.4O8B—C37B—H37F109.5
O5—C20—C19124.3 (3)H37D—C37B—H37E109.5
O5—C20—C21116.0 (3)H37D—C37B—H37F109.5
C19—C20—C21119.7 (3)H37E—C37B—H37F109.5
Cl1—C12—C13—C14178.3 (2)C9—C10—C11—C120.2 (5)
O1—N1—C4—N2179.9 (2)C10—C9—C14—C131.2 (4)
O1—N1—C4—C30.3 (3)C10—C11—C12—Cl1178.4 (2)
O1—C2—C3—C40.4 (3)C10—C11—C12—C131.6 (5)
O2—C5—C6—O33.6 (4)C11—C12—C13—C141.7 (5)
O2—C5—C6—C7177.3 (3)C12—C13—C14—C90.2 (5)
O3—C6—C7—C8176.7 (3)C14—C9—C10—C111.2 (4)
O3—C6—C7—C151.0 (5)C15—C7—C8—N2177.6 (2)
O5—C20—C21—C22178.9 (3)C15—C7—C8—C955.3 (3)
O7—C28—C29—C30177.4 (3)C16—N3—C17—C1878.2 (3)
N1—O1—C2—C1178.7 (3)C16—N3—C17—C2299.5 (3)
N1—O1—C2—C30.2 (3)C16—N3—C24—C25156.7 (2)
N2—C5—C6—O3176.9 (2)C16—N3—C24—C3278.1 (3)
N2—C5—C6—C72.2 (3)C17—N3—C16—O4166.9 (3)
N2—C8—C9—C1054.2 (4)C17—N3—C16—C1516.2 (4)
N2—C8—C9—C14131.3 (3)C17—N3—C24—C2533.4 (3)
N3—C17—C18—C19176.2 (2)C17—N3—C24—C3291.9 (3)
N3—C17—C22—C21176.0 (3)C17—C18—C19—C200.1 (5)
N3—C24—C25—C2683.4 (3)C18—C17—C22—C211.7 (4)
N3—C24—C25—C3097.7 (3)C18—C19—C20—O5178.8 (3)
N3—C24—C32—O627.8 (3)C18—C19—C20—C211.6 (5)
N3—C24—C32—N4155.6 (2)C19—C20—C21—C221.5 (5)
C1—C2—C3—C4178.2 (4)C20—C21—C22—C170.2 (5)
C2—O1—N1—C40.1 (3)C22—C17—C18—C191.6 (4)
C2—C3—C4—N10.5 (4)C23—O5—C20—C193.3 (5)
C2—C3—C4—N2179.8 (3)C23—O5—C20—C21177.1 (3)
C4—N2—C5—O210.4 (5)C24—N3—C16—O43.0 (4)
C4—N2—C5—C6169.1 (2)C24—N3—C16—C15173.9 (2)
C4—N2—C8—C7168.3 (2)C24—N3—C17—C1891.1 (3)
C4—N2—C8—C971.4 (3)C24—N3—C17—C2291.1 (3)
C5—N2—C4—N1168.8 (3)C24—C25—C26—C27178.1 (3)
C5—N2—C4—C310.9 (5)C24—C25—C30—C29177.5 (2)
C5—N2—C8—C70.1 (3)C25—C24—C32—O697.9 (3)
C5—N2—C8—C9120.2 (3)C25—C24—C32—N478.7 (3)
C5—C6—C7—C82.2 (3)C25—C26—C27—C280.5 (5)
C5—C6—C7—C15177.9 (3)C26—C25—C30—C291.5 (4)
C6—C7—C8—N21.4 (3)C26—C27—C28—O7177.0 (3)
C6—C7—C8—C9120.9 (3)C26—C27—C28—C291.4 (5)
C6—C7—C15—C16107.2 (3)C27—C28—C29—C300.9 (4)
C7—C8—C9—C1060.9 (3)C28—C29—C30—C250.6 (5)
C7—C8—C9—C14113.6 (3)C30—C25—C26—C270.9 (4)
C7—C15—C16—O422.5 (4)C31—O7—C28—C27174.8 (3)
C7—C15—C16—N3160.6 (2)C31—O7—C28—C293.6 (4)
C8—N2—C4—N12.2 (4)C32—N4—C33—C3461.9 (4)
C8—N2—C4—C3177.5 (3)C32—N4—C33—C3561.1 (4)
C8—N2—C5—O2178.3 (3)C32—N4—C33—C36179.1 (3)
C8—N2—C5—C61.2 (3)C32—C24—C25—C26151.4 (2)
C8—C7—C15—C1677.5 (3)C32—C24—C25—C3027.5 (4)
C8—C9—C10—C11173.5 (3)C33—N4—C32—O63.6 (4)
C8—C9—C14—C13173.5 (3)C33—N4—C32—C24172.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O8A0.75 (4)1.88 (5)2.61 (3)162 (4)
O3—H3···O8B0.75 (4)1.93 (4)2.680 (10)175 (4)
N4—H4···O2i0.87 (3)2.33 (3)3.193 (3)170 (3)
O8A—H8A···O4i0.821.882.60 (3)145
O8B—H8B···O4i0.822.502.843 (8)107
Symmetry code: (i) x+1, y+2, z+1.
 

Funding information

The work was supported by a grant from the National Research Foundation of Ukraine 2020.02/0023.

References

First citationAhankar, H., Ramazani, A., Ślepokura, K., Lis, T. & Joo, S. W. (2016). Green Chem. 18, 3582–3593.  Web of Science CSD CrossRef CAS Google Scholar
First citationAliev, Z. G., Atovmyan, L. O., Gein, V. L., Gein, L. F. & Kataeva, A. V. (2003a). Izv. Akad. Nauk SSSR, Ser. Khim. 52, 1343–1348.  Google Scholar
First citationAliev, Z. G., Krasnykh, O. P., Konyukhova, N. A., Maslivets, A. N. & Atovmyan, L. O. (2001). Zh. Strukt. Khim. 42, 1008–1013.  Google Scholar
First citationAliev, Z. G., Maslivets, A. N., Simonchil, O. L., Bannikova, Yu. N. & Atovmyan, L. O. (2003b). Zh. Strukt. Khim. 44, 769–772.  Google Scholar
First citationBhajammanavar, V., Mallik, S. & Baidya, M. (2019). Org. Biomol. Chem. 17, 1740–1743.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationCorte, X. del, de Marigirta, E. M., Palacios, F. & Vicario, J. (2019). Molecules, 24, 2951.  Web of Science CSD CrossRef Google Scholar
First citationDenislamova, E. S., Slepukhin, P. A. & Maslivets, A. N. (2014). Zh. Org. Khim. 50, 232–235.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDubovtsev, A. Yu., Silaichev, P. S., Zheleznova, M. A., Aliev, Z. G. & Maslivets, A. N. (2016). Zh. Org. Khim. 52, 1779–1783.  CAS Google Scholar
First citationGein, V. L., Buldakova, E. A., Korol, A. N., Veikhman, G. A. & Dmitriev, M. V. (2018). Zh. Obshch. Khim. 88, 908–911.  CAS Google Scholar
First citationGein, V. L., Kasimova, N. N., Panina, M. A. & Voronina, V. (2006). Pharm. Chem. J. 40, 410–412.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuseinov, F. I., Burangulova, R. N., Mukhamedzyanova, E. F., Strunin, B. P., Sinyashin, O. G., Litvinov, I. A. & Gubaidullin, A. T. (2006). Khim. Get. Soedin., SSSR, 42, 1089–1093.  Google Scholar
First citationHosseinzadeh, Z., Ramazani, A., Ahankar, H., Ślepokura, K. & Lis, T. (2019). Silicon, 11, 2933–2943.  Web of Science CSD CrossRef CAS Google Scholar
First citationKazakov, P. V., Odinets, I. L., Antipin, M. Yu., Petrovskii, P. V., Kovalenko, L. V., Struchkov, Yu. T. & Mastryukova, T. A. (1990). Izv. Akad. Nauk SSSR, Ser. Khim. 39, 2120–2126.  Google Scholar
First citationKhalaf, A. I., Waigh, R. D., Drummond, A. J., Pringle, B., McGroarty, I., Skellern, G. G. & Suckling, C. (2004). J. Med. Chem. 47, 2133–2156.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKoz'minykh, V. O., Igidov, N. M., Zykova, S. S., Kolla, V. É., Shuklina, N. S. & Odegova, T. F. (2002). Pharm. Chem. J. 36, 188–191.  CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMashevskaya, I. V., Mokrushin, I. G., Kuslina, L. V., Aliev, Z. G. & Maslivets, A. N. (2011). Zh. Org. Khim. 47, 424–427.  Google Scholar
First citationMori, M., Tintori, C., Christopher, R. S. A., Radi, M., Schenone, S., Musumeci, F., Brullo, C., Sanità, P., Delle Monache, S., Angelucci, A., Kissova, M., Crespan, E., Maga, G. & Botta, M. (2013). ChemMedChem, 8, 484–496.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMurlykina, M. V., Kolomiets, O. V., Kornet, M. M., Sakhno, Y. I., Desenko, S. M., Dyakonenko, V. V., Shishkina, S. V., Brazhko, O. A., Musatov, V. I., Tsygankov, A. V., Van der Eycken, E. V. & Chebanov, V. A. (2019). Beilstein J. Org. Chem. 15, 1281–1288.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMurlykina, M. V., Sakhno, Y. I., Desenko, S. M., Konovalova, I. S., Shishkin, O. V., Sysoiev, D. A., Kornet, M. N. & Chebanov, V. A. (2013). Tetrahedron, 69, 9261–9269.  Web of Science CSD CrossRef CAS Google Scholar
First citationMurlykina, M. V., Sakhno, Y. I., Desenko, S. M., Shishkina, S. V., Shishkin, O. V., Sysoiev, D. O., Kornet, M. N., Schols, D., Goeman, J. L., Van der Eycken, L., Van der Eycken, E. V. & Chebanov, V. A. (2015). Eur. J. Org. Chem. 2015, 4481–4492.  Web of Science CSD CrossRef CAS Google Scholar
First citationMylari, B. L., Beyer, T. A. & Siegel, T. W. (1991). J. Med. Chem. 34, 1011–1018.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationNicolaou, K. C., Lee, S. H., Estrada, A. A. & Zak, M. (2005). Angew. Chem. Int. Ed. 44, 3736–3740.  Web of Science CSD CrossRef CAS Google Scholar
First citationPace, P., Spieser, S. A. H. & Summa, V. (2008). Bioorg. Med. Chem. Lett. 18, 3865–3869.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRamazani, A., Ahankar, H., Slepokura, K., Lis, T. & Joo, S. W. (2019). Zh. Strukt. Khim. 60, 662–670.  CAS Google Scholar
First citationRashid, M., Husain, A. & Mishra, R. (2012). Eur. J. Med. Chem. 54, 855–866.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSaha, M. & Das, A. R. (2017). ChemistrySelect 2, 10249-10260.  Web of Science CSD CrossRef CAS Google Scholar
First citationSakhno, Y. I., Desenko, S. M., Shishkina, S. V., Shishkin, O. V., Sysoyev, D. O., Groth, U., Kappe, C. O. & Chebanov, V. A. (2008). Tetrahedron, 64, 11041–11049.  Web of Science CSD CrossRef CAS Google Scholar
First citationSarkar, R. & Mukhopadhyay, C. (2013). Tetrahedron Lett. 54, 3706–3711.  Web of Science CSD CrossRef CAS Google Scholar
First citationSarkar, R. & Mukhopadhyay, C. (2018). Tetrahedron Lett. 59, 3069–3076.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSun, J., Wu, Q., Xia, E.-Y. & Yan, C.-G. (2011). Eur. J. Org. Chem. pp. 2981–2986.  Web of Science CSD CrossRef Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://Hirshfeldsurface.net  Google Scholar
First citationWei, H.-X., Zhou, C., Ham, S., White, J. M. & Birney, D. M. (2004). Org. Lett. 6, 4289–4292.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWiedemann, D. & Grohmann, A. (2009). Z. Naturforsch. Teil B, 64, 1276–1288.  Web of Science CrossRef Google Scholar
First citationZonouz, A. M., Eskandari, I. & Notash, B. (2015). Synth. Commun. 45, 2115–2121.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds