research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(η5-cyclo­penta­dien­yl)(2-{[(2-meth­­oxy­phen­yl)imino]­meth­yl}phenolato-κ3O,N,O′)terbium

crossmark logo

aN.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow, 119991, Russian Federation, bA.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky prospect, Moscow, 119991, Russian Federation, and cChemistry Department, M.V. Lomonosov Moscow State University, 1 Leninskie Gory, Str., Building 3, Moscow, 119991, Russian Federation
*Correspondence e-mail: mminyaev@ioc.ac.ru

Edited by A. V. Yatsenko, Moscow State University, Russia (Received 29 November 2021; accepted 7 December 2021; online 1 January 2022)

The air- and moisture-sensitive title compound, [Tb(C5H5)2(C14H12NO2)], was synthesized from tris­(cyclo­penta­dien­yl)(tetra­hydro­furan)­terbium and 2-{[(2-meth­oxy­phen­yl)imino]­meth­yl}phenol. Each Tb atom is coordinated by two cyclo­penta­dienyl ligands in an η5-coordination mode and by one N and two O atoms of the organic ligand in a tridentate κ3O,N,O′-mode.

1. Chemical context

Bis(cyclo­penta­dien­yl) complexes of rare-earth metals attract significant attention because of their important role in the development of organometallic chemistry of 4f elements (Schumann et al., 1995[Schumann, H., Meese-Marktscheffel, J. A. & Esser, L. (1995). Chem. Rev. 95, 865-986.]; Wedal & Evans, 2021[Wedal, J. C. & Evans, W. J. (2021). J. Am. Chem. Soc. 143, 18354-18367.]; Evans, 2016[Evans, W. J. (2016). Organometallics, 35, 3088-3100.]). This type of complex is one of the first discovered organolanthanide classes (Maginn et al., 1963[Maginn, R. E., Manastyrskyj, S. & Dubeck, M. (1963). J. Am. Chem. Soc. 85, 672-676.]).

[Scheme 1]

The vigorous inter­est in cyclo­penta­dienyl complexes for the chemistry of rare-earth elements is mainly due to the simplicity of cyclo­penta­dienyl ligand modification by replacing the hydrogen atoms of the five-membered ring with various organic fragments (Harder et al., 2013[Harder, S., Naglav, D., Ruspic, C., Wickleder, C., Adlung, M., Hermes, W., Eul, M., Pöttgen, R., Rego, D. B., Poineau, F., Czerwinski, K. R., Herber, R. H. & Nowik, I. (2013). Chem. Eur. J. 19, 12272-12280.]; Roitershtein, Puntus et al., 2018[Roitershtein, D. M., Puntus, L. N., Vinogradov, A. A., Lyssenko, K. A., Minyaev, M. E., Dobrokhodov, M. D., Taidakov, I. V., Varaksina, E. A., Churakov, A. V. & Nifant'ev, I. E. (2018). Inorg. Chem. 57, 10199-10213.]; Hou & Wakatsuki, 2002[Hou, Z. & Wakatsuki, Y. (2002). Coord. Chem. Rev. 231, 1-22.]). Moreover, in the case of bis­(cyclo­penta­dien­yl) derivatives such as (C5H5)2LnX, the additional anionic ligand X can be coordinated in a mono-, bi- or, as in the present case, a tridentate mode. Such a combination of ligands provides an extremely broad structural diversity for cyclo­penta­dienyl derivatives (Edelmann & Poremba, 1997[Edelmann, F. T. & Poremba, P. (1997). Synthetic Methods of Organometallic and Inorganic Chemistry (Herrman/Brauer), vol. 6, Lanthanides and Actinides, edited by F. T. Edelmann & W. A. Herrmann, pp. 34-35. Stuttgart, Germany: Georg Thieme Verlag.]; Goodwin et al., 2018[Goodwin, C. A. P., Reta, D., Ortu, F., Liu, J., Chilton, N. F. & Mills, D. P. (2018). Chem. Commun. 54, 9182-9185.]). This report describes the synthesis and crystal structure of bis­(η5-cyclo­penta­dien­yl)(2-{[(2-meth­oxy­phen­yl)imino]­meth­yl}phenolato)terbium, which is a product of the partial protonation of the tris(cyclo­penta­dien­yl)terbium complex with 2-{[(2-meth­oxy­phen­yl)imino]­meth­yl}phenol (Fig. 1[link]).

[Figure 1]
Figure 1
Synthesis of the title compound.

2. Structural commentary

The title compound (Fig. 2[link]) crystallizes in the ortho­rhom­bic Pbcn space group (Z′ = 1). Assuming that each cyclo­penta­dienyl ligand donates three electron pairs, the terbium atom may be considered to be ennea-coordinated. Both cyclo­penta­dienyl ligands are nearly symmetrically η5-coordinated to the Tb3+ cation. Thus, the Cp(centroid)—Tb distances [2.4207 (11) Å for the C1–C5 Cp ring and 2.4062 (10) Å for the C6–C10 Cp ring] are almost equal to the Cp(plane)—Tb distances [2.4196 (11) Å for C1–C5 Cp ring and 2.4054 (10) for C6–C10 Cp ring], and the CCp—Tb bond lengths are similar within each ring (Table 1[link]). At the same time, the average CCp—Tb distance to the C1–C5 ring is longer by 0.011 Å than to the second Cp ligand. Such a slight asymmetry is caused by the presence of the tridentate asymmetric 2-{[(2-meth­oxy­phen­yl)imino]­meth­yl}phenolate (L) ligand. Atoms of the ligand are situated in two planes formed by the following sets of atoms: O1, C11–C16, N1, C24 (r.m.s. deviation = 0.0167 Å) and O2, C17–C23, N1 (r.m.s. deviation = 0.0333 Å). The dihedral angle between these planes of 44.58 (5)° indicates a perceptible loss of conjugation between two parts of the ligand due to the tridentate κ3N,O,O′-coordination mode. The bond redistribution within the ligand (see table in the supporting information) and the Tb—O and Tb—N bond distances (Table 1[link]) are in good agreement with the expected predominant resonance form (see scheme) and with a significant localization of the negative charge on the O2 atom.

Table 1
Selected bond lengths (Å)

Tb1—C1 2.721 (3) Tb1—C8 2.662 (2)
Tb1—C2 2.678 (3) Tb1—C9 2.691 (2)
Tb1—C3 2.670 (2) Tb1—C10 2.717 (2)
Tb1—C4 2.704 (2) Tb1—O1 2.5468 (15)
Tb1—C5 2.726 (3) Tb1—O2 2.2034 (16)
Tb1—C6 2.700 (2) Tb1—N1 2.4748 (18)
Tb1—C7 2.675 (2)    
[Figure 2]
Figure 2
The title compound with displacement ellipsoids drawn at the 50% probability level.

It should be noted that analogous compounds with the same L ligand [(C5H5)2Ln(O2NC14H12)] (Ln = Sm, Er, Dy, Y) were previously synthesized in low yields (Yousaf et al., 2000[Yousaf, M., Liu, Q., Huang, J., Qian, Y. & Chan, A. S. (2000). Inorg. Chem. Commun. 3, 105-106.]), and the determined crystal structure of the Sm complex is isostructural with that of the title compound.

Non-covalent interactions are negligible in the title compund.

3. Database survey

At first glance, it looks quite puzzling that according to the Cambridge Structural Database (CSD Version 5.42, update of September 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), structures of rare-earth metal complexes with the monoanionic phenolate L ligand and its substituted (L) or protonated (LH) derivatives have been poorly studied, whereas the structures of complexes bearing their closest analogs – doubly charged 2-{[(2-oxidophen­yl)imino]­meth­yl}phenolate and its various derivatives – have been studied moderately. This is, likely, due to the higher stability of the latter complexes, which is presumably caused, in short, by a higher degree of the optimization of electrostatic inter­actions (Evans, 1987[Evans, W. J. (1987). Polyhedron, 6, 803-835.]). Thus, only 15 complexes bearing L-, L, LH and L′H ligands have been studied structurally; the corresponding CSD codes are KESHOH (Li & Yuan, 2012[Li, L. & Yuan, F. (2012). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 42, 994-998.]), KINHUN, KINJAV, KINJEZ, KINJID, KINJOJ (Roitershtein, Minashina et al., 2018[Roitershtein, D. M., Minashina, K. I., Minyaev, M. E., Ananyev, I. V., Lyssenko, K. A., Tavtorkin, A. N. & Nifant'ev, I. E. (2018). Acta Cryst. C74, 1105-1115.]), MIQTAH01 (Yousaf et al., 2000[Yousaf, M., Liu, Q., Huang, J., Qian, Y. & Chan, A. S. (2000). Inorg. Chem. Commun. 3, 105-106.]), RAPTUA (Li & Cui, 2017[Li, S. & Cui, D. (2017). CSD Communication (refcode RAPTUA ). CCDC, Cambridge, England.]), RUQQEC (Pikoli et al., 2020[Pikoli, S., Hosten, E. & Abrahams, A. (2020). J. Coord. Chem. 73, 1055-1076.]), VUVMUX, VUVNAE (Long et al., 2020[Long, J., Basalov, I. V., Lyssenko, K. A., Cherkasov, A. V., Mamontova, E., Guari, Y., Larionova, J. & Trifonov, A. A. (2020). Chem. Asian J. 15, 2706-2715.]) and the heterometallic Zn/Dy complexes TUQWAG, TUQWEK, TUQWIO, TUQWOU (Shukla et al., 2020[Shukla, P., Ansari, K. U., Gao, C., Vaidya, S., Tripathi, S., Kumar, P., Butcher, R. J., Overgaard, J. & Shanmugam, M. (2020). Dalton Trans. 49, 10580-10593.]). Careful analysis reveals the structural diversity of the coordination modes for L, L, LH and L′H ligands in the above-mentioned complexes. Even the sole ligand L itself can demonstrate different coordination modes in mononuclear rare-earth complexes (Roitershtein, Minashina et al., 2018[Roitershtein, D. M., Minashina, K. I., Minyaev, M. E., Ananyev, I. V., Lyssenko, K. A., Tavtorkin, A. N. & Nifant'ev, I. E. (2018). Acta Cryst. C74, 1105-1115.]). Amazingly, only one structure (MIQTAH01) among the 15 corresponds to the organolanthanide bis­(cyclo­penta­dien­yl) type.

4. Synthesis and crystallization

Synthetic operations were carried out in a glovebox under a purified argon atmosphere. THF was distilled from sodium/benzo­phenone ketyl, hexane was distilled from Na/K alloy. Tb(C5H5)3(thf) was obtained according to a literature procedure (Wilkinson & Birmingham, 1954[Wilkinson, G. & Birmingham, J. M. (1954). J. Am. Chem. Soc. 76, 6210-6210.]).

A solution of 2-{[(2-meth­oxy­phen­yl)imino]­meth­yl}phenol (0.230 g, 1.01mmol) in 5 ml of THF was added slowly to a solution of Tb(C5H5)3(thf) (0.426g, 1.0 mmol) in 15 ml of THF. The reaction mixture was stirred for 24 h. The solution was concentrated under vacuum to a volume of ca 8–10 ml, and hexane (10 ml) was carefully layered on top of the resulting solution to initiate crystallization. Crystals obtained after several days were dried under dynamic vacuum for 1 h, yielding 0.315 g (0.61 mmol, 61%). The terbium content was determined by direct complexometric titration with the disodium salt of EDTA, using xylenol orange indicator (Vogel, 1966[Vogel, A. I. (1966). A text-book of quantitative inorganic analysis including elementary instrumental analysis. London: Longmans.]). Calculated for C24H22NO2Tb: Tb, 30.84%. Found Tb, 30.45%.

Single crystals suitable for X-ray diffraction study were taken from a vial with a crude product before drying under vacuum.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The structure was in general solved by dual methods (SHELXT; Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]). Positions of remaining non-H atoms were found from the difference electron density maps. All non-H atoms were refined anisotropically. The positions of hydrogen atoms were refined with Uiso(H) = 1.5Ueq(C) for methyl group and Uiso(H) = 1.2Ueq(C) for others.

Table 2
Experimental details

Crystal data
Chemical formula [Tb(C5H5)2(C14H12NO2)]
Mr 515.34
Crystal system, space group Orthorhombic, Pbcn
Temperature (K) 120
a, b, c (Å) 21.6309 (12), 14.4923 (8), 12.6471 (7)
V3) 3964.6 (4)
Z 8
Radiation type Mo Kα
μ (mm−1) 3.59
Crystal size (mm) 0.32 × 0.21 × 0.19
 
Data collection
Diffractometer Bruker APEXII CCD area detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.333, 0.569
No. of measured, independent and observed [I > 2σ(I)] reflections 60268, 7485, 5865
Rint 0.062
(sin θ/λ)max−1) 0.766
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.060, 1.03
No. of reflections 7485
No. of parameters 319
H-atom treatment Only H-atom coordinates refined
Δρmax, Δρmin (e Å−3) 1.14, −0.71
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2 and SAINT. Bruker Analytical X-Ray Systems, Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(η5-cyclopentadienyl)(2-{[(2-methoxyphenyl)imino]methyl}phenolato-κ3O,N,O')terbium top
Crystal data top
[Tb(C5H5)2(C14H12NO2)]Dx = 1.727 Mg m3
Mr = 515.34Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcnCell parameters from 5648 reflections
a = 21.6309 (12) Åθ = 2.2–30.2°
b = 14.4923 (8) ŵ = 3.59 mm1
c = 12.6471 (7) ÅT = 120 K
V = 3964.6 (4) Å3Block, yellow
Z = 80.32 × 0.21 × 0.19 mm
F(000) = 2032
Data collection top
Bruker APEXII CCD area detector
diffractometer
7485 independent reflections
Radiation source: sealed X-ray tube5865 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
Detector resolution: 7.31 pixels mm-1θmax = 33.0°, θmin = 1.7°
ω scansh = 3333
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 2221
Tmin = 0.333, Tmax = 0.569l = 1919
60268 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: difference Fourier map
wR(F2) = 0.060Only H-atom coordinates refined
S = 1.03 w = 1/[σ2(Fo2) + (0.0212P)2 + 3.2936P]
where P = (Fo2 + 2Fc2)/3
7485 reflections(Δ/σ)max = 0.004
319 parametersΔρmax = 1.14 e Å3
0 restraintsΔρmin = 0.71 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Tb10.65689 (2)0.77625 (2)0.32099 (2)0.01273 (3)
O10.61771 (7)0.82735 (11)0.50164 (12)0.0193 (3)
O20.63302 (8)0.67000 (11)0.20325 (12)0.0190 (3)
N10.56840 (8)0.68915 (12)0.39465 (14)0.0144 (3)
C10.74352 (13)0.7329 (2)0.4689 (2)0.0378 (7)
H10.7343 (16)0.741 (2)0.539 (3)0.045*
C20.77065 (12)0.7984 (2)0.4006 (2)0.0328 (6)
H20.7832 (15)0.859 (2)0.415 (3)0.039*
C30.77899 (11)0.75538 (19)0.3010 (2)0.0259 (5)
H30.7968 (14)0.786 (2)0.242 (3)0.031*
C40.75698 (12)0.66501 (19)0.3091 (2)0.0263 (5)
H40.7546 (14)0.620 (2)0.256 (2)0.032*
C50.73448 (13)0.6512 (2)0.4122 (2)0.0337 (6)
H50.7166 (15)0.594 (2)0.432 (3)0.040*
C60.65210 (11)0.96160 (15)0.3007 (2)0.0225 (5)
H60.6687 (13)0.996 (2)0.354 (2)0.027*
C70.68593 (11)0.92900 (15)0.2132 (2)0.0223 (5)
H70.7266 (14)0.941 (2)0.203 (2)0.027*
C80.64535 (11)0.87859 (16)0.1473 (2)0.0209 (4)
H80.6550 (12)0.851 (2)0.083 (2)0.025*
C90.58601 (11)0.88127 (15)0.19414 (19)0.0201 (4)
H90.5500 (14)0.850 (2)0.168 (2)0.024*
C100.59022 (11)0.93258 (15)0.2884 (2)0.0208 (4)
H100.5580 (14)0.943 (2)0.334 (2)0.025*
C110.55636 (10)0.80986 (14)0.52484 (17)0.0157 (4)
C120.53032 (10)0.73486 (13)0.47039 (16)0.0141 (4)
C130.46845 (10)0.71343 (15)0.48786 (17)0.0180 (4)
H130.4491 (12)0.6662 (19)0.448 (2)0.022*
C140.43354 (11)0.76366 (17)0.55984 (19)0.0224 (5)
H140.3905 (14)0.750 (2)0.569 (2)0.027*
C150.46002 (11)0.83688 (17)0.61333 (19)0.0227 (5)
H150.4355 (14)0.875 (2)0.657 (2)0.027*
C160.52167 (11)0.86056 (16)0.59584 (18)0.0209 (4)
H160.5394 (13)0.907 (2)0.632 (2)0.025*
C170.55750 (10)0.60229 (15)0.37651 (17)0.0165 (4)
H170.5284 (12)0.5710 (19)0.420 (2)0.020*
C180.58451 (10)0.54572 (14)0.29562 (16)0.0158 (4)
C190.61933 (10)0.58261 (14)0.20989 (17)0.0157 (4)
C200.63711 (12)0.52071 (16)0.12895 (18)0.0204 (4)
H200.6584 (12)0.547 (2)0.071 (2)0.025*
C210.62280 (12)0.42804 (16)0.1339 (2)0.0221 (5)
H210.6372 (14)0.391 (2)0.081 (2)0.027*
C220.58962 (12)0.39198 (16)0.2186 (2)0.0235 (5)
H220.5803 (13)0.332 (2)0.222 (2)0.028*
C230.57048 (12)0.45061 (15)0.29754 (19)0.0213 (4)
H230.5481 (13)0.431 (2)0.356 (2)0.026*
C240.64613 (13)0.9021 (2)0.5605 (2)0.0310 (6)
H24A0.6895 (17)0.903 (2)0.538 (3)0.046*
H24B0.6416 (16)0.886 (3)0.632 (3)0.046*
H24C0.6246 (16)0.961 (3)0.547 (3)0.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tb10.01162 (5)0.01062 (4)0.01596 (5)0.00074 (3)0.00014 (3)0.00054 (3)
O10.0168 (7)0.0194 (7)0.0216 (8)0.0033 (6)0.0009 (6)0.0079 (6)
O20.0274 (8)0.0121 (6)0.0176 (7)0.0002 (6)0.0015 (6)0.0001 (6)
N10.0164 (8)0.0135 (8)0.0135 (8)0.0009 (6)0.0009 (6)0.0010 (6)
C10.0269 (13)0.065 (2)0.0213 (12)0.0232 (14)0.0049 (10)0.0018 (13)
C20.0179 (11)0.0381 (15)0.0423 (16)0.0055 (10)0.0116 (11)0.0095 (12)
C30.0139 (10)0.0319 (12)0.0319 (14)0.0049 (9)0.0009 (9)0.0066 (10)
C40.0198 (11)0.0269 (12)0.0320 (13)0.0116 (9)0.0036 (10)0.0012 (10)
C50.0260 (13)0.0354 (15)0.0397 (15)0.0159 (11)0.0072 (11)0.0163 (12)
C60.0237 (11)0.0112 (9)0.0325 (13)0.0014 (8)0.0047 (9)0.0005 (8)
C70.0174 (10)0.0147 (9)0.0346 (13)0.0013 (8)0.0004 (9)0.0095 (9)
C80.0255 (12)0.0155 (10)0.0216 (10)0.0045 (8)0.0013 (9)0.0045 (8)
C90.0192 (10)0.0136 (9)0.0273 (12)0.0011 (8)0.0046 (9)0.0015 (8)
C100.0203 (11)0.0142 (9)0.0280 (11)0.0036 (8)0.0018 (9)0.0000 (8)
C110.0167 (9)0.0151 (9)0.0153 (9)0.0001 (7)0.0011 (7)0.0015 (7)
C120.0162 (9)0.0141 (9)0.0119 (8)0.0002 (7)0.0006 (7)0.0016 (7)
C130.0161 (9)0.0200 (10)0.0179 (10)0.0028 (8)0.0008 (8)0.0028 (8)
C140.0176 (10)0.0267 (12)0.0229 (11)0.0015 (9)0.0031 (8)0.0054 (9)
C150.0248 (12)0.0221 (11)0.0213 (11)0.0041 (9)0.0067 (9)0.0007 (9)
C160.0258 (12)0.0193 (10)0.0175 (10)0.0017 (9)0.0010 (9)0.0039 (8)
C170.0182 (10)0.0154 (9)0.0160 (9)0.0015 (8)0.0002 (8)0.0006 (7)
C180.0189 (10)0.0131 (9)0.0155 (9)0.0000 (7)0.0015 (7)0.0006 (7)
C190.0191 (10)0.0127 (9)0.0153 (9)0.0014 (7)0.0027 (8)0.0003 (7)
C200.0265 (11)0.0183 (10)0.0165 (10)0.0033 (9)0.0004 (9)0.0024 (8)
C210.0260 (12)0.0173 (10)0.0230 (11)0.0048 (9)0.0029 (9)0.0071 (9)
C220.0285 (12)0.0136 (10)0.0286 (12)0.0002 (9)0.0041 (10)0.0042 (9)
C230.0265 (12)0.0136 (9)0.0237 (11)0.0020 (8)0.0012 (9)0.0005 (8)
C240.0270 (13)0.0335 (14)0.0324 (14)0.0105 (11)0.0005 (11)0.0180 (11)
Geometric parameters (Å, º) top
Tb1—C12.721 (3)C7—H70.91 (3)
Tb1—C22.678 (3)C8—C91.414 (3)
Tb1—C32.670 (2)C8—H80.93 (3)
Tb1—C42.704 (2)C9—C101.408 (3)
Tb1—C52.726 (3)C9—H90.96 (3)
Tb1—C62.700 (2)C10—H100.91 (3)
Tb1—C72.675 (2)C11—C161.382 (3)
Tb1—C82.662 (2)C11—C121.405 (3)
Tb1—C92.691 (2)C12—C131.392 (3)
Tb1—C102.717 (2)C13—C141.389 (3)
Tb1—O12.5468 (15)C13—H130.95 (3)
Tb1—O22.2034 (16)C14—C151.383 (4)
Tb1—N12.4748 (18)C14—H140.96 (3)
O1—C111.383 (3)C15—C161.395 (3)
O1—C241.451 (3)C15—H150.95 (3)
O2—C191.303 (3)C16—H160.90 (3)
N1—C171.301 (3)C17—C181.435 (3)
N1—C121.427 (3)C17—H170.95 (3)
C1—C51.398 (5)C18—C231.412 (3)
C1—C21.411 (5)C18—C191.424 (3)
C1—H10.91 (4)C19—C201.414 (3)
C2—C31.417 (4)C20—C211.380 (3)
C2—H20.94 (3)C20—H200.95 (3)
C3—C41.397 (4)C21—C221.392 (4)
C3—H30.94 (3)C21—H210.91 (3)
C4—C51.406 (4)C22—C231.375 (3)
C4—H40.93 (3)C22—H220.90 (3)
C5—H50.95 (3)C23—H230.92 (3)
C6—C71.408 (4)C24—H24A0.98 (4)
C6—C101.412 (3)C24—H24B0.94 (4)
C6—H60.92 (3)C24—H24C0.98 (4)
C7—C81.413 (4)
O2—Tb1—N173.54 (6)C3—C2—H2123 (2)
O2—Tb1—O1137.01 (6)Tb1—C2—H2117 (2)
N1—Tb1—O163.47 (5)C4—C3—C2107.7 (2)
O2—Tb1—C879.04 (7)C4—C3—Tb176.25 (14)
N1—Tb1—C8121.49 (7)C2—C3—Tb174.94 (14)
O1—Tb1—C8123.16 (6)C4—C3—H3129.4 (19)
O2—Tb1—C395.09 (8)C2—C3—H3122.9 (19)
N1—Tb1—C3137.96 (7)Tb1—C3—H3115.1 (19)
O1—Tb1—C3116.54 (7)C3—C4—C5108.6 (3)
C8—Tb1—C394.46 (8)C3—C4—Tb173.62 (14)
O2—Tb1—C7106.80 (7)C5—C4—Tb175.87 (14)
N1—Tb1—C7142.72 (7)C3—C4—H4128.1 (19)
O1—Tb1—C7107.14 (7)C5—C4—H4123.2 (19)
C8—Tb1—C730.72 (8)Tb1—C4—H4114.2 (19)
C3—Tb1—C779.24 (8)C1—C5—C4107.9 (3)
O2—Tb1—C2123.58 (8)C1—C5—Tb174.94 (15)
N1—Tb1—C2129.07 (8)C4—C5—Tb174.11 (14)
O1—Tb1—C286.20 (8)C1—C5—H5131 (2)
C8—Tb1—C2109.23 (9)C4—C5—H5121 (2)
C3—Tb1—C230.71 (9)Tb1—C5—H5116 (2)
C7—Tb1—C282.91 (9)C7—C6—C10107.9 (2)
O2—Tb1—C981.89 (6)C7—C6—Tb173.80 (13)
N1—Tb1—C994.15 (6)C10—C6—Tb175.54 (13)
O1—Tb1—C9100.42 (6)C7—C6—H6124.0 (18)
C8—Tb1—C930.63 (7)C10—C6—H6128.1 (18)
C3—Tb1—C9124.84 (8)Tb1—C6—H6117.5 (19)
C7—Tb1—C950.34 (7)C6—C7—C8108.3 (2)
C2—Tb1—C9132.83 (9)C6—C7—Tb175.84 (13)
O2—Tb1—C6128.45 (7)C8—C7—Tb174.15 (13)
N1—Tb1—C6120.91 (7)C6—C7—H7123.9 (18)
O1—Tb1—C677.49 (7)C8—C7—H7127.8 (18)
C8—Tb1—C650.48 (8)Tb1—C7—H7117.4 (19)
C3—Tb1—C698.14 (8)C7—C8—C9107.6 (2)
C7—Tb1—C630.36 (8)C7—C8—Tb175.14 (13)
C2—Tb1—C687.23 (8)C9—C8—Tb175.82 (13)
C9—Tb1—C650.12 (7)C7—C8—H8126.8 (17)
O2—Tb1—C474.52 (7)C9—C8—H8125.6 (17)
N1—Tb1—C4109.64 (7)Tb1—C8—H8117.0 (18)
O1—Tb1—C4119.34 (7)C10—C9—C8108.1 (2)
C8—Tb1—C4111.18 (8)C10—C9—Tb175.93 (13)
C3—Tb1—C430.13 (8)C8—C9—Tb173.55 (13)
C7—Tb1—C4106.08 (8)C10—C9—H9126.6 (17)
C2—Tb1—C449.96 (9)C8—C9—H9125.3 (17)
C9—Tb1—C4139.49 (8)Tb1—C9—H9113.8 (17)
C6—Tb1—C4128.21 (8)C9—C10—C6108.1 (2)
O2—Tb1—C10110.85 (7)C9—C10—Tb173.89 (13)
N1—Tb1—C1094.13 (7)C6—C10—Tb174.25 (13)
O1—Tb1—C1073.55 (6)C9—C10—H10124.7 (18)
C8—Tb1—C1050.25 (7)C6—C10—H10127.2 (18)
C3—Tb1—C10127.23 (8)Tb1—C10—H10116.7 (18)
C7—Tb1—C1050.00 (7)C16—C11—O1124.17 (19)
C2—Tb1—C10116.40 (8)C16—C11—C12120.8 (2)
C9—Tb1—C1030.19 (7)O1—C11—C12115.01 (18)
C6—Tb1—C1030.20 (7)C13—C12—C11118.72 (19)
C4—Tb1—C10156.04 (8)C13—C12—N1123.94 (19)
O2—Tb1—C1117.67 (8)C11—C12—N1117.20 (19)
N1—Tb1—C198.98 (8)C14—C13—C12120.7 (2)
O1—Tb1—C171.32 (7)C14—C13—H13119.3 (16)
C8—Tb1—C1139.49 (9)C12—C13—H13120.0 (16)
C3—Tb1—C150.03 (9)C15—C14—C13119.8 (2)
C7—Tb1—C1112.31 (9)C15—C14—H14120.3 (18)
C2—Tb1—C130.29 (10)C13—C14—H14119.8 (18)
C9—Tb1—C1158.87 (9)C14—C15—C16120.5 (2)
C6—Tb1—C1108.76 (9)C14—C15—H15120.2 (19)
C4—Tb1—C149.39 (9)C16—C15—H15119.0 (19)
C10—Tb1—C1131.47 (9)C11—C16—C15119.4 (2)
O2—Tb1—C588.02 (8)C11—C16—H16119.8 (19)
N1—Tb1—C588.73 (7)C15—C16—H16120.8 (18)
O1—Tb1—C591.07 (7)N1—C17—C18127.2 (2)
C8—Tb1—C5141.00 (8)N1—C17—H17118.6 (16)
C3—Tb1—C549.89 (8)C18—C17—H17114.2 (16)
C7—Tb1—C5128.41 (8)C23—C18—C19119.6 (2)
C2—Tb1—C549.83 (10)C23—C18—C17117.3 (2)
C9—Tb1—C5168.24 (8)C19—C18—C17122.92 (19)
C6—Tb1—C5136.49 (9)O2—C19—C20120.5 (2)
C4—Tb1—C530.02 (8)O2—C19—C18122.27 (19)
C10—Tb1—C5160.96 (9)C20—C19—C18117.18 (19)
C1—Tb1—C529.74 (10)C21—C20—C19121.6 (2)
C11—O1—C24115.77 (18)C21—C20—H20122.1 (19)
C11—O1—Tb1117.16 (12)C19—C20—H20116.3 (19)
C24—O1—Tb1122.42 (15)C20—C21—C22121.1 (2)
C19—O2—Tb1133.53 (14)C20—C21—H21117.7 (19)
C17—N1—C12117.59 (18)C22—C21—H21121.1 (19)
C17—N1—Tb1124.56 (15)C23—C22—C21118.8 (2)
C12—N1—Tb1117.54 (12)C23—C22—H22120.3 (19)
C5—C1—C2108.3 (3)C21—C22—H22120.9 (19)
C5—C1—Tb175.32 (16)C22—C23—C18121.8 (2)
C2—C1—Tb173.17 (15)C22—C23—H23123.1 (18)
C5—C1—H1125 (2)C18—C23—H23115.1 (18)
C2—C1—H1127 (2)O1—C24—H24A105 (2)
Tb1—C1—H1119 (2)O1—C24—H24B105 (2)
C1—C2—C3107.5 (3)H24A—C24—H24B113 (3)
C1—C2—Tb176.54 (16)O1—C24—H24C111 (2)
C3—C2—Tb174.34 (14)H24A—C24—H24C113 (3)
C1—C2—H2129 (2)H24B—C24—H24C110 (3)
C5—C1—C2—C30.8 (3)Tb1—O1—C11—C1226.1 (2)
Tb1—C1—C2—C368.51 (18)C16—C11—C12—C131.1 (3)
C5—C1—C2—Tb167.73 (19)O1—C11—C12—C13178.98 (18)
C1—C2—C3—C40.2 (3)C16—C11—C12—N1176.94 (19)
Tb1—C2—C3—C469.85 (18)O1—C11—C12—N13.2 (3)
C1—C2—C3—Tb170.01 (18)C17—N1—C12—C1332.4 (3)
C2—C3—C4—C50.5 (3)Tb1—N1—C12—C13153.66 (16)
Tb1—C3—C4—C568.45 (18)C17—N1—C12—C11152.0 (2)
C2—C3—C4—Tb168.95 (17)Tb1—N1—C12—C1121.9 (2)
C2—C1—C5—C41.1 (3)C11—C12—C13—C141.7 (3)
Tb1—C1—C5—C467.38 (18)N1—C12—C13—C14177.2 (2)
C2—C1—C5—Tb166.30 (19)C12—C13—C14—C151.3 (3)
C3—C4—C5—C11.0 (3)C13—C14—C15—C160.2 (4)
Tb1—C4—C5—C167.94 (19)O1—C11—C16—C15180.0 (2)
C3—C4—C5—Tb166.96 (18)C12—C11—C16—C150.1 (3)
C10—C6—C7—C80.8 (3)C14—C15—C16—C110.3 (4)
Tb1—C6—C7—C867.66 (16)C12—N1—C17—C18171.9 (2)
C10—C6—C7—Tb168.48 (16)Tb1—N1—C17—C1814.6 (3)
C6—C7—C8—C90.7 (3)N1—C17—C18—C23173.7 (2)
Tb1—C7—C8—C969.50 (16)N1—C17—C18—C1912.3 (4)
C6—C7—C8—Tb168.79 (16)Tb1—O2—C19—C20146.18 (18)
C7—C8—C9—C100.3 (3)Tb1—O2—C19—C1836.0 (3)
Tb1—C8—C9—C1068.71 (16)C23—C18—C19—O2179.2 (2)
C7—C8—C9—Tb169.03 (16)C17—C18—C19—O25.2 (3)
C8—C9—C10—C60.2 (3)C23—C18—C19—C201.3 (3)
Tb1—C9—C10—C666.92 (16)C17—C18—C19—C20172.6 (2)
C8—C9—C10—Tb167.12 (16)O2—C19—C20—C21179.6 (2)
C7—C6—C10—C90.6 (3)C18—C19—C20—C211.6 (3)
Tb1—C6—C10—C966.68 (16)C19—C20—C21—C220.7 (4)
C7—C6—C10—Tb167.31 (16)C20—C21—C22—C230.7 (4)
C24—O1—C11—C162.4 (3)C21—C22—C23—C181.1 (4)
Tb1—O1—C11—C16154.05 (18)C19—C18—C23—C220.1 (4)
C24—O1—C11—C12177.5 (2)C17—C18—C23—C22174.3 (2)
 

Funding information

Funding for this research was provided by: Russian Science Foundation (grant No. 17-13-01357).

References

First citationBruker (2016). APEX2 and SAINT. Bruker Analytical X-Ray Systems, Madison, Wisconsin, USA.  Google Scholar
First citationEdelmann, F. T. & Poremba, P. (1997). Synthetic Methods of Organometallic and Inorganic Chemistry (Herrman/Brauer), vol. 6, Lanthanides and Actinides, edited by F. T. Edelmann & W. A. Herrmann, pp. 34–35. Stuttgart, Germany: Georg Thieme Verlag.  Google Scholar
First citationEvans, W. J. (1987). Polyhedron, 6, 803–835.  CrossRef CAS Google Scholar
First citationEvans, W. J. (2016). Organometallics, 35, 3088–3100.  Web of Science CrossRef CAS Google Scholar
First citationGoodwin, C. A. P., Reta, D., Ortu, F., Liu, J., Chilton, N. F. & Mills, D. P. (2018). Chem. Commun. 54, 9182–9185.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHarder, S., Naglav, D., Ruspic, C., Wickleder, C., Adlung, M., Hermes, W., Eul, M., Pöttgen, R., Rego, D. B., Poineau, F., Czerwinski, K. R., Herber, R. H. & Nowik, I. (2013). Chem. Eur. J. 19, 12272–12280.  CrossRef CAS PubMed Google Scholar
First citationHou, Z. & Wakatsuki, Y. (2002). Coord. Chem. Rev. 231, 1–22.  CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLi, L. & Yuan, F. (2012). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 42, 994–998.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, S. & Cui, D. (2017). CSD Communication (refcode RAPTUA ). CCDC, Cambridge, England.  Google Scholar
First citationLong, J., Basalov, I. V., Lyssenko, K. A., Cherkasov, A. V., Mamontova, E., Guari, Y., Larionova, J. & Trifonov, A. A. (2020). Chem. Asian J. 15, 2706–2715.  CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMaginn, R. E., Manastyrskyj, S. & Dubeck, M. (1963). J. Am. Chem. Soc. 85, 672–676.  CrossRef CAS Web of Science Google Scholar
First citationPikoli, S., Hosten, E. & Abrahams, A. (2020). J. Coord. Chem. 73, 1055–1076.  CrossRef CAS Google Scholar
First citationRoitershtein, D. M., Minashina, K. I., Minyaev, M. E., Ananyev, I. V., Lyssenko, K. A., Tavtorkin, A. N. & Nifant'ev, I. E. (2018). Acta Cryst. C74, 1105–1115.  CrossRef IUCr Journals Google Scholar
First citationRoitershtein, D. M., Puntus, L. N., Vinogradov, A. A., Lyssenko, K. A., Minyaev, M. E., Dobrokhodov, M. D., Taidakov, I. V., Varaksina, E. A., Churakov, A. V. & Nifant'ev, I. E. (2018). Inorg. Chem. 57, 10199–10213.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSchumann, H., Meese-Marktscheffel, J. A. & Esser, L. (1995). Chem. Rev. 95, 865–986.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShukla, P., Ansari, K. U., Gao, C., Vaidya, S., Tripathi, S., Kumar, P., Butcher, R. J., Overgaard, J. & Shanmugam, M. (2020). Dalton Trans. 49, 10580–10593.  CrossRef CAS PubMed Google Scholar
First citationVogel, A. I. (1966). A text-book of quantitative inorganic analysis including elementary instrumental analysis. London: Longmans.  Google Scholar
First citationWedal, J. C. & Evans, W. J. (2021). J. Am. Chem. Soc. 143, 18354–18367.  CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilkinson, G. & Birmingham, J. M. (1954). J. Am. Chem. Soc. 76, 6210–6210.  CrossRef CAS Google Scholar
First citationYousaf, M., Liu, Q., Huang, J., Qian, Y. & Chan, A. S. (2000). Inorg. Chem. Commun. 3, 105–106.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds