research communications
Bis(η5-cyclopentadienyl)(2-{[(2-methoxyphenyl)imino]methyl}phenolato-κ3O,N,O′)terbium
aN.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow, 119991, Russian Federation, bA.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky prospect, Moscow, 119991, Russian Federation, and cChemistry Department, M.V. Lomonosov Moscow State University, 1 Leninskie Gory, Str., Building 3, Moscow, 119991, Russian Federation
*Correspondence e-mail: mminyaev@ioc.ac.ru
The air- and moisture-sensitive title compound, [Tb(C5H5)2(C14H12NO2)], was synthesized from tris(cyclopentadienyl)(tetrahydrofuran)terbium and 2-{[(2-methoxyphenyl)imino]methyl}phenol. Each Tb atom is coordinated by two cyclopentadienyl ligands in an η5-coordination mode and by one N and two O atoms of the organic ligand in a tridentate κ3O,N,O′-mode.
Keywords: lanthanide; terbium; bis(cyclopentadienyl); (methoxyphenyliminomethyl)phenolate; salicylimino; crystal structure.
CCDC reference: 2127087
1. Chemical context
Bis(cyclopentadienyl) complexes of rare-earth metals attract significant attention because of their important role in the development of organometallic chemistry of 4f elements (Schumann et al., 1995; Wedal & Evans, 2021; Evans, 2016). This type of complex is one of the first discovered organolanthanide classes (Maginn et al., 1963).
The vigorous interest in cyclopentadienyl complexes for the chemistry of rare-earth elements is mainly due to the simplicity of cyclopentadienyl ligand modification by replacing the hydrogen atoms of the five-membered ring with various organic fragments (Harder et al., 2013; Roitershtein, Puntus et al., 2018; Hou & Wakatsuki, 2002). Moreover, in the case of bis(cyclopentadienyl) derivatives such as (C5H5)2LnX, the additional anionic ligand X− can be coordinated in a mono-, bi- or, as in the present case, a tridentate mode. Such a combination of ligands provides an extremely broad structural diversity for cyclopentadienyl derivatives (Edelmann & Poremba, 1997; Goodwin et al., 2018). This report describes the synthesis and of bis(η5-cyclopentadienyl)(2-{[(2-methoxyphenyl)imino]methyl}phenolato)terbium, which is a product of the partial protonation of the tris(cyclopentadienyl)terbium complex with 2-{[(2-methoxyphenyl)imino]methyl}phenol (Fig. 1).
2. Structural commentary
The title compound (Fig. 2) crystallizes in the orthorhombic Pbcn (Z′ = 1). Assuming that each cyclopentadienyl ligand donates three electron pairs, the terbium atom may be considered to be ennea-coordinated. Both cyclopentadienyl ligands are nearly symmetrically η5-coordinated to the Tb3+ cation. Thus, the Cp(centroid)—Tb distances [2.4207 (11) Å for the C1–C5 Cp ring and 2.4062 (10) Å for the C6–C10 Cp ring] are almost equal to the Cp(plane)—Tb distances [2.4196 (11) Å for C1–C5 Cp ring and 2.4054 (10) for C6–C10 Cp ring], and the CCp—Tb bond lengths are similar within each ring (Table 1). At the same time, the average CCp—Tb distance to the C1–C5 ring is longer by 0.011 Å than to the second Cp ligand. Such a slight asymmetry is caused by the presence of the tridentate asymmetric 2-{[(2-methoxyphenyl)imino]methyl}phenolate (L−) ligand. Atoms of the ligand are situated in two planes formed by the following sets of atoms: O1, C11–C16, N1, C24 (r.m.s. deviation = 0.0167 Å) and O2, C17–C23, N1 (r.m.s. deviation = 0.0333 Å). The dihedral angle between these planes of 44.58 (5)° indicates a perceptible loss of conjugation between two parts of the ligand due to the tridentate κ3N,O,O′-coordination mode. The bond redistribution within the ligand (see table in the supporting information) and the Tb—O and Tb—N bond distances (Table 1) are in good agreement with the expected predominant resonance form (see scheme) and with a significant localization of the negative charge on the O2 atom.
|
It should be noted that analogous compounds with the same L− ligand [(C5H5)2Ln(O2NC14H12)] (Ln = Sm, Er, Dy, Y) were previously synthesized in low yields (Yousaf et al., 2000), and the determined of the Sm complex is isostructural with that of the title compound.
Non-covalent interactions are negligible in the title compund.
3. Database survey
At first glance, it looks quite puzzling that according to the Cambridge Structural Database (CSD Version 5.42, update of September 2021; Groom et al., 2016), structures of rare-earth metal complexes with the monoanionic phenolate L− ligand and its substituted (L′−) or protonated (LH) derivatives have been poorly studied, whereas the structures of complexes bearing their closest analogs – doubly charged 2-{[(2-oxidophenyl)imino]methyl}phenolate and its various derivatives – have been studied moderately. This is, likely, due to the higher stability of the latter complexes, which is presumably caused, in short, by a higher degree of the optimization of electrostatic interactions (Evans, 1987). Thus, only 15 complexes bearing L-, L′−, LH and L′H ligands have been studied structurally; the corresponding CSD codes are KESHOH (Li & Yuan, 2012), KINHUN, KINJAV, KINJEZ, KINJID, KINJOJ (Roitershtein, Minashina et al., 2018), MIQTAH01 (Yousaf et al., 2000), RAPTUA (Li & Cui, 2017), RUQQEC (Pikoli et al., 2020), VUVMUX, VUVNAE (Long et al., 2020) and the heterometallic Zn/Dy complexes TUQWAG, TUQWEK, TUQWIO, TUQWOU (Shukla et al., 2020). Careful analysis reveals the structural diversity of the coordination modes for L−, L′−, LH and L′H ligands in the above-mentioned complexes. Even the sole ligand L− itself can demonstrate different coordination modes in mononuclear rare-earth complexes (Roitershtein, Minashina et al., 2018). Amazingly, only one structure (MIQTAH01) among the 15 corresponds to the organolanthanide bis(cyclopentadienyl) type.
4. Synthesis and crystallization
Synthetic operations were carried out in a glovebox under a purified argon atmosphere. THF was distilled from sodium/benzophenone ketyl, hexane was distilled from Na/K alloy. Tb(C5H5)3(thf) was obtained according to a literature procedure (Wilkinson & Birmingham, 1954).
A solution of 2-{[(2-methoxyphenyl)imino]methyl}phenol (0.230 g, 1.01mmol) in 5 ml of THF was added slowly to a solution of Tb(C5H5)3(thf) (0.426g, 1.0 mmol) in 15 ml of THF. The reaction mixture was stirred for 24 h. The solution was concentrated under vacuum to a volume of ca 8–10 ml, and hexane (10 ml) was carefully layered on top of the resulting solution to initiate crystallization. Crystals obtained after several days were dried under dynamic vacuum for 1 h, yielding 0.315 g (0.61 mmol, 61%). The terbium content was determined by direct with the disodium salt of EDTA, using xylenol orange indicator (Vogel, 1966). Calculated for C24H22NO2Tb: Tb, 30.84%. Found Tb, 30.45%.
Single crystals suitable for X-ray diffraction study were taken from a vial with a crude product before drying under vacuum.
5. Refinement
Crystal data, data collection and structure . The structure was in general solved by dual methods (SHELXT; Sheldrick, 2015a). Positions of remaining non-H atoms were found from the difference electron density maps. All non-H atoms were refined anisotropically. The positions of hydrogen atoms were refined with Uiso(H) = 1.5Ueq(C) for methyl group and Uiso(H) = 1.2Ueq(C) for others.
details are summarized in Table 2Supporting information
CCDC reference: 2127087
https://doi.org/10.1107/S2056989021013025/yk2162sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021013025/yk2162Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021013025/yk2162Isup3.cdx
Data collection: APEX2 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).[Tb(C5H5)2(C14H12NO2)] | Dx = 1.727 Mg m−3 |
Mr = 515.34 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbcn | Cell parameters from 5648 reflections |
a = 21.6309 (12) Å | θ = 2.2–30.2° |
b = 14.4923 (8) Å | µ = 3.59 mm−1 |
c = 12.6471 (7) Å | T = 120 K |
V = 3964.6 (4) Å3 | Block, yellow |
Z = 8 | 0.32 × 0.21 × 0.19 mm |
F(000) = 2032 |
Bruker APEXII CCD area detector diffractometer | 7485 independent reflections |
Radiation source: sealed X-ray tube | 5865 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.062 |
Detector resolution: 7.31 pixels mm-1 | θmax = 33.0°, θmin = 1.7° |
ω scans | h = −33→33 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −22→21 |
Tmin = 0.333, Tmax = 0.569 | l = −19→19 |
60268 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.025 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.060 | Only H-atom coordinates refined |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0212P)2 + 3.2936P] where P = (Fo2 + 2Fc2)/3 |
7485 reflections | (Δ/σ)max = 0.004 |
319 parameters | Δρmax = 1.14 e Å−3 |
0 restraints | Δρmin = −0.71 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Tb1 | 0.65689 (2) | 0.77625 (2) | 0.32099 (2) | 0.01273 (3) | |
O1 | 0.61771 (7) | 0.82735 (11) | 0.50164 (12) | 0.0193 (3) | |
O2 | 0.63302 (8) | 0.67000 (11) | 0.20325 (12) | 0.0190 (3) | |
N1 | 0.56840 (8) | 0.68915 (12) | 0.39465 (14) | 0.0144 (3) | |
C1 | 0.74352 (13) | 0.7329 (2) | 0.4689 (2) | 0.0378 (7) | |
H1 | 0.7343 (16) | 0.741 (2) | 0.539 (3) | 0.045* | |
C2 | 0.77065 (12) | 0.7984 (2) | 0.4006 (2) | 0.0328 (6) | |
H2 | 0.7832 (15) | 0.859 (2) | 0.415 (3) | 0.039* | |
C3 | 0.77899 (11) | 0.75538 (19) | 0.3010 (2) | 0.0259 (5) | |
H3 | 0.7968 (14) | 0.786 (2) | 0.242 (3) | 0.031* | |
C4 | 0.75698 (12) | 0.66501 (19) | 0.3091 (2) | 0.0263 (5) | |
H4 | 0.7546 (14) | 0.620 (2) | 0.256 (2) | 0.032* | |
C5 | 0.73448 (13) | 0.6512 (2) | 0.4122 (2) | 0.0337 (6) | |
H5 | 0.7166 (15) | 0.594 (2) | 0.432 (3) | 0.040* | |
C6 | 0.65210 (11) | 0.96160 (15) | 0.3007 (2) | 0.0225 (5) | |
H6 | 0.6687 (13) | 0.996 (2) | 0.354 (2) | 0.027* | |
C7 | 0.68593 (11) | 0.92900 (15) | 0.2132 (2) | 0.0223 (5) | |
H7 | 0.7266 (14) | 0.941 (2) | 0.203 (2) | 0.027* | |
C8 | 0.64535 (11) | 0.87859 (16) | 0.1473 (2) | 0.0209 (4) | |
H8 | 0.6550 (12) | 0.851 (2) | 0.083 (2) | 0.025* | |
C9 | 0.58601 (11) | 0.88127 (15) | 0.19414 (19) | 0.0201 (4) | |
H9 | 0.5500 (14) | 0.850 (2) | 0.168 (2) | 0.024* | |
C10 | 0.59022 (11) | 0.93258 (15) | 0.2884 (2) | 0.0208 (4) | |
H10 | 0.5580 (14) | 0.943 (2) | 0.334 (2) | 0.025* | |
C11 | 0.55636 (10) | 0.80986 (14) | 0.52484 (17) | 0.0157 (4) | |
C12 | 0.53032 (10) | 0.73486 (13) | 0.47039 (16) | 0.0141 (4) | |
C13 | 0.46845 (10) | 0.71343 (15) | 0.48786 (17) | 0.0180 (4) | |
H13 | 0.4491 (12) | 0.6662 (19) | 0.448 (2) | 0.022* | |
C14 | 0.43354 (11) | 0.76366 (17) | 0.55984 (19) | 0.0224 (5) | |
H14 | 0.3905 (14) | 0.750 (2) | 0.569 (2) | 0.027* | |
C15 | 0.46002 (11) | 0.83688 (17) | 0.61333 (19) | 0.0227 (5) | |
H15 | 0.4355 (14) | 0.875 (2) | 0.657 (2) | 0.027* | |
C16 | 0.52167 (11) | 0.86056 (16) | 0.59584 (18) | 0.0209 (4) | |
H16 | 0.5394 (13) | 0.907 (2) | 0.632 (2) | 0.025* | |
C17 | 0.55750 (10) | 0.60229 (15) | 0.37651 (17) | 0.0165 (4) | |
H17 | 0.5284 (12) | 0.5710 (19) | 0.420 (2) | 0.020* | |
C18 | 0.58451 (10) | 0.54572 (14) | 0.29562 (16) | 0.0158 (4) | |
C19 | 0.61933 (10) | 0.58261 (14) | 0.20989 (17) | 0.0157 (4) | |
C20 | 0.63711 (12) | 0.52071 (16) | 0.12895 (18) | 0.0204 (4) | |
H20 | 0.6584 (12) | 0.547 (2) | 0.071 (2) | 0.025* | |
C21 | 0.62280 (12) | 0.42804 (16) | 0.1339 (2) | 0.0221 (5) | |
H21 | 0.6372 (14) | 0.391 (2) | 0.081 (2) | 0.027* | |
C22 | 0.58962 (12) | 0.39198 (16) | 0.2186 (2) | 0.0235 (5) | |
H22 | 0.5803 (13) | 0.332 (2) | 0.222 (2) | 0.028* | |
C23 | 0.57048 (12) | 0.45061 (15) | 0.29754 (19) | 0.0213 (4) | |
H23 | 0.5481 (13) | 0.431 (2) | 0.356 (2) | 0.026* | |
C24 | 0.64613 (13) | 0.9021 (2) | 0.5605 (2) | 0.0310 (6) | |
H24A | 0.6895 (17) | 0.903 (2) | 0.538 (3) | 0.046* | |
H24B | 0.6416 (16) | 0.886 (3) | 0.632 (3) | 0.046* | |
H24C | 0.6246 (16) | 0.961 (3) | 0.547 (3) | 0.046* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Tb1 | 0.01162 (5) | 0.01062 (4) | 0.01596 (5) | 0.00074 (3) | −0.00014 (3) | 0.00054 (3) |
O1 | 0.0168 (7) | 0.0194 (7) | 0.0216 (8) | −0.0033 (6) | 0.0009 (6) | −0.0079 (6) |
O2 | 0.0274 (8) | 0.0121 (6) | 0.0176 (7) | −0.0002 (6) | 0.0015 (6) | 0.0001 (6) |
N1 | 0.0164 (8) | 0.0135 (8) | 0.0135 (8) | 0.0009 (6) | −0.0009 (6) | −0.0010 (6) |
C1 | 0.0269 (13) | 0.065 (2) | 0.0213 (12) | 0.0232 (14) | −0.0049 (10) | 0.0018 (13) |
C2 | 0.0179 (11) | 0.0381 (15) | 0.0423 (16) | 0.0055 (10) | −0.0116 (11) | −0.0095 (12) |
C3 | 0.0139 (10) | 0.0319 (12) | 0.0319 (14) | 0.0049 (9) | 0.0009 (9) | 0.0066 (10) |
C4 | 0.0198 (11) | 0.0269 (12) | 0.0320 (13) | 0.0116 (9) | 0.0036 (10) | 0.0012 (10) |
C5 | 0.0260 (13) | 0.0354 (15) | 0.0397 (15) | 0.0159 (11) | 0.0072 (11) | 0.0163 (12) |
C6 | 0.0237 (11) | 0.0112 (9) | 0.0325 (13) | −0.0014 (8) | −0.0047 (9) | −0.0005 (8) |
C7 | 0.0174 (10) | 0.0147 (9) | 0.0346 (13) | −0.0013 (8) | 0.0004 (9) | 0.0095 (9) |
C8 | 0.0255 (12) | 0.0155 (10) | 0.0216 (10) | 0.0045 (8) | 0.0013 (9) | 0.0045 (8) |
C9 | 0.0192 (10) | 0.0136 (9) | 0.0273 (12) | 0.0011 (8) | −0.0046 (9) | 0.0015 (8) |
C10 | 0.0203 (11) | 0.0142 (9) | 0.0280 (11) | 0.0036 (8) | 0.0018 (9) | 0.0000 (8) |
C11 | 0.0167 (9) | 0.0151 (9) | 0.0153 (9) | 0.0001 (7) | −0.0011 (7) | −0.0015 (7) |
C12 | 0.0162 (9) | 0.0141 (9) | 0.0119 (8) | 0.0002 (7) | 0.0006 (7) | 0.0016 (7) |
C13 | 0.0161 (9) | 0.0200 (10) | 0.0179 (10) | −0.0028 (8) | −0.0008 (8) | 0.0028 (8) |
C14 | 0.0176 (10) | 0.0267 (12) | 0.0229 (11) | 0.0015 (9) | 0.0031 (8) | 0.0054 (9) |
C15 | 0.0248 (12) | 0.0221 (11) | 0.0213 (11) | 0.0041 (9) | 0.0067 (9) | −0.0007 (9) |
C16 | 0.0258 (12) | 0.0193 (10) | 0.0175 (10) | 0.0017 (9) | 0.0010 (9) | −0.0039 (8) |
C17 | 0.0182 (10) | 0.0154 (9) | 0.0160 (9) | −0.0015 (8) | 0.0002 (8) | −0.0006 (7) |
C18 | 0.0189 (10) | 0.0131 (9) | 0.0155 (9) | 0.0000 (7) | −0.0015 (7) | −0.0006 (7) |
C19 | 0.0191 (10) | 0.0127 (9) | 0.0153 (9) | 0.0014 (7) | −0.0027 (8) | −0.0003 (7) |
C20 | 0.0265 (11) | 0.0183 (10) | 0.0165 (10) | 0.0033 (9) | 0.0004 (9) | −0.0024 (8) |
C21 | 0.0260 (12) | 0.0173 (10) | 0.0230 (11) | 0.0048 (9) | −0.0029 (9) | −0.0071 (9) |
C22 | 0.0285 (12) | 0.0136 (10) | 0.0286 (12) | −0.0002 (9) | −0.0041 (10) | −0.0042 (9) |
C23 | 0.0265 (12) | 0.0136 (9) | 0.0237 (11) | −0.0020 (8) | 0.0012 (9) | −0.0005 (8) |
C24 | 0.0270 (13) | 0.0335 (14) | 0.0324 (14) | −0.0105 (11) | 0.0005 (11) | −0.0180 (11) |
Tb1—C1 | 2.721 (3) | C7—H7 | 0.91 (3) |
Tb1—C2 | 2.678 (3) | C8—C9 | 1.414 (3) |
Tb1—C3 | 2.670 (2) | C8—H8 | 0.93 (3) |
Tb1—C4 | 2.704 (2) | C9—C10 | 1.408 (3) |
Tb1—C5 | 2.726 (3) | C9—H9 | 0.96 (3) |
Tb1—C6 | 2.700 (2) | C10—H10 | 0.91 (3) |
Tb1—C7 | 2.675 (2) | C11—C16 | 1.382 (3) |
Tb1—C8 | 2.662 (2) | C11—C12 | 1.405 (3) |
Tb1—C9 | 2.691 (2) | C12—C13 | 1.392 (3) |
Tb1—C10 | 2.717 (2) | C13—C14 | 1.389 (3) |
Tb1—O1 | 2.5468 (15) | C13—H13 | 0.95 (3) |
Tb1—O2 | 2.2034 (16) | C14—C15 | 1.383 (4) |
Tb1—N1 | 2.4748 (18) | C14—H14 | 0.96 (3) |
O1—C11 | 1.383 (3) | C15—C16 | 1.395 (3) |
O1—C24 | 1.451 (3) | C15—H15 | 0.95 (3) |
O2—C19 | 1.303 (3) | C16—H16 | 0.90 (3) |
N1—C17 | 1.301 (3) | C17—C18 | 1.435 (3) |
N1—C12 | 1.427 (3) | C17—H17 | 0.95 (3) |
C1—C5 | 1.398 (5) | C18—C23 | 1.412 (3) |
C1—C2 | 1.411 (5) | C18—C19 | 1.424 (3) |
C1—H1 | 0.91 (4) | C19—C20 | 1.414 (3) |
C2—C3 | 1.417 (4) | C20—C21 | 1.380 (3) |
C2—H2 | 0.94 (3) | C20—H20 | 0.95 (3) |
C3—C4 | 1.397 (4) | C21—C22 | 1.392 (4) |
C3—H3 | 0.94 (3) | C21—H21 | 0.91 (3) |
C4—C5 | 1.406 (4) | C22—C23 | 1.375 (3) |
C4—H4 | 0.93 (3) | C22—H22 | 0.90 (3) |
C5—H5 | 0.95 (3) | C23—H23 | 0.92 (3) |
C6—C7 | 1.408 (4) | C24—H24A | 0.98 (4) |
C6—C10 | 1.412 (3) | C24—H24B | 0.94 (4) |
C6—H6 | 0.92 (3) | C24—H24C | 0.98 (4) |
C7—C8 | 1.413 (4) | ||
O2—Tb1—N1 | 73.54 (6) | C3—C2—H2 | 123 (2) |
O2—Tb1—O1 | 137.01 (6) | Tb1—C2—H2 | 117 (2) |
N1—Tb1—O1 | 63.47 (5) | C4—C3—C2 | 107.7 (2) |
O2—Tb1—C8 | 79.04 (7) | C4—C3—Tb1 | 76.25 (14) |
N1—Tb1—C8 | 121.49 (7) | C2—C3—Tb1 | 74.94 (14) |
O1—Tb1—C8 | 123.16 (6) | C4—C3—H3 | 129.4 (19) |
O2—Tb1—C3 | 95.09 (8) | C2—C3—H3 | 122.9 (19) |
N1—Tb1—C3 | 137.96 (7) | Tb1—C3—H3 | 115.1 (19) |
O1—Tb1—C3 | 116.54 (7) | C3—C4—C5 | 108.6 (3) |
C8—Tb1—C3 | 94.46 (8) | C3—C4—Tb1 | 73.62 (14) |
O2—Tb1—C7 | 106.80 (7) | C5—C4—Tb1 | 75.87 (14) |
N1—Tb1—C7 | 142.72 (7) | C3—C4—H4 | 128.1 (19) |
O1—Tb1—C7 | 107.14 (7) | C5—C4—H4 | 123.2 (19) |
C8—Tb1—C7 | 30.72 (8) | Tb1—C4—H4 | 114.2 (19) |
C3—Tb1—C7 | 79.24 (8) | C1—C5—C4 | 107.9 (3) |
O2—Tb1—C2 | 123.58 (8) | C1—C5—Tb1 | 74.94 (15) |
N1—Tb1—C2 | 129.07 (8) | C4—C5—Tb1 | 74.11 (14) |
O1—Tb1—C2 | 86.20 (8) | C1—C5—H5 | 131 (2) |
C8—Tb1—C2 | 109.23 (9) | C4—C5—H5 | 121 (2) |
C3—Tb1—C2 | 30.71 (9) | Tb1—C5—H5 | 116 (2) |
C7—Tb1—C2 | 82.91 (9) | C7—C6—C10 | 107.9 (2) |
O2—Tb1—C9 | 81.89 (6) | C7—C6—Tb1 | 73.80 (13) |
N1—Tb1—C9 | 94.15 (6) | C10—C6—Tb1 | 75.54 (13) |
O1—Tb1—C9 | 100.42 (6) | C7—C6—H6 | 124.0 (18) |
C8—Tb1—C9 | 30.63 (7) | C10—C6—H6 | 128.1 (18) |
C3—Tb1—C9 | 124.84 (8) | Tb1—C6—H6 | 117.5 (19) |
C7—Tb1—C9 | 50.34 (7) | C6—C7—C8 | 108.3 (2) |
C2—Tb1—C9 | 132.83 (9) | C6—C7—Tb1 | 75.84 (13) |
O2—Tb1—C6 | 128.45 (7) | C8—C7—Tb1 | 74.15 (13) |
N1—Tb1—C6 | 120.91 (7) | C6—C7—H7 | 123.9 (18) |
O1—Tb1—C6 | 77.49 (7) | C8—C7—H7 | 127.8 (18) |
C8—Tb1—C6 | 50.48 (8) | Tb1—C7—H7 | 117.4 (19) |
C3—Tb1—C6 | 98.14 (8) | C7—C8—C9 | 107.6 (2) |
C7—Tb1—C6 | 30.36 (8) | C7—C8—Tb1 | 75.14 (13) |
C2—Tb1—C6 | 87.23 (8) | C9—C8—Tb1 | 75.82 (13) |
C9—Tb1—C6 | 50.12 (7) | C7—C8—H8 | 126.8 (17) |
O2—Tb1—C4 | 74.52 (7) | C9—C8—H8 | 125.6 (17) |
N1—Tb1—C4 | 109.64 (7) | Tb1—C8—H8 | 117.0 (18) |
O1—Tb1—C4 | 119.34 (7) | C10—C9—C8 | 108.1 (2) |
C8—Tb1—C4 | 111.18 (8) | C10—C9—Tb1 | 75.93 (13) |
C3—Tb1—C4 | 30.13 (8) | C8—C9—Tb1 | 73.55 (13) |
C7—Tb1—C4 | 106.08 (8) | C10—C9—H9 | 126.6 (17) |
C2—Tb1—C4 | 49.96 (9) | C8—C9—H9 | 125.3 (17) |
C9—Tb1—C4 | 139.49 (8) | Tb1—C9—H9 | 113.8 (17) |
C6—Tb1—C4 | 128.21 (8) | C9—C10—C6 | 108.1 (2) |
O2—Tb1—C10 | 110.85 (7) | C9—C10—Tb1 | 73.89 (13) |
N1—Tb1—C10 | 94.13 (7) | C6—C10—Tb1 | 74.25 (13) |
O1—Tb1—C10 | 73.55 (6) | C9—C10—H10 | 124.7 (18) |
C8—Tb1—C10 | 50.25 (7) | C6—C10—H10 | 127.2 (18) |
C3—Tb1—C10 | 127.23 (8) | Tb1—C10—H10 | 116.7 (18) |
C7—Tb1—C10 | 50.00 (7) | C16—C11—O1 | 124.17 (19) |
C2—Tb1—C10 | 116.40 (8) | C16—C11—C12 | 120.8 (2) |
C9—Tb1—C10 | 30.19 (7) | O1—C11—C12 | 115.01 (18) |
C6—Tb1—C10 | 30.20 (7) | C13—C12—C11 | 118.72 (19) |
C4—Tb1—C10 | 156.04 (8) | C13—C12—N1 | 123.94 (19) |
O2—Tb1—C1 | 117.67 (8) | C11—C12—N1 | 117.20 (19) |
N1—Tb1—C1 | 98.98 (8) | C14—C13—C12 | 120.7 (2) |
O1—Tb1—C1 | 71.32 (7) | C14—C13—H13 | 119.3 (16) |
C8—Tb1—C1 | 139.49 (9) | C12—C13—H13 | 120.0 (16) |
C3—Tb1—C1 | 50.03 (9) | C15—C14—C13 | 119.8 (2) |
C7—Tb1—C1 | 112.31 (9) | C15—C14—H14 | 120.3 (18) |
C2—Tb1—C1 | 30.29 (10) | C13—C14—H14 | 119.8 (18) |
C9—Tb1—C1 | 158.87 (9) | C14—C15—C16 | 120.5 (2) |
C6—Tb1—C1 | 108.76 (9) | C14—C15—H15 | 120.2 (19) |
C4—Tb1—C1 | 49.39 (9) | C16—C15—H15 | 119.0 (19) |
C10—Tb1—C1 | 131.47 (9) | C11—C16—C15 | 119.4 (2) |
O2—Tb1—C5 | 88.02 (8) | C11—C16—H16 | 119.8 (19) |
N1—Tb1—C5 | 88.73 (7) | C15—C16—H16 | 120.8 (18) |
O1—Tb1—C5 | 91.07 (7) | N1—C17—C18 | 127.2 (2) |
C8—Tb1—C5 | 141.00 (8) | N1—C17—H17 | 118.6 (16) |
C3—Tb1—C5 | 49.89 (8) | C18—C17—H17 | 114.2 (16) |
C7—Tb1—C5 | 128.41 (8) | C23—C18—C19 | 119.6 (2) |
C2—Tb1—C5 | 49.83 (10) | C23—C18—C17 | 117.3 (2) |
C9—Tb1—C5 | 168.24 (8) | C19—C18—C17 | 122.92 (19) |
C6—Tb1—C5 | 136.49 (9) | O2—C19—C20 | 120.5 (2) |
C4—Tb1—C5 | 30.02 (8) | O2—C19—C18 | 122.27 (19) |
C10—Tb1—C5 | 160.96 (9) | C20—C19—C18 | 117.18 (19) |
C1—Tb1—C5 | 29.74 (10) | C21—C20—C19 | 121.6 (2) |
C11—O1—C24 | 115.77 (18) | C21—C20—H20 | 122.1 (19) |
C11—O1—Tb1 | 117.16 (12) | C19—C20—H20 | 116.3 (19) |
C24—O1—Tb1 | 122.42 (15) | C20—C21—C22 | 121.1 (2) |
C19—O2—Tb1 | 133.53 (14) | C20—C21—H21 | 117.7 (19) |
C17—N1—C12 | 117.59 (18) | C22—C21—H21 | 121.1 (19) |
C17—N1—Tb1 | 124.56 (15) | C23—C22—C21 | 118.8 (2) |
C12—N1—Tb1 | 117.54 (12) | C23—C22—H22 | 120.3 (19) |
C5—C1—C2 | 108.3 (3) | C21—C22—H22 | 120.9 (19) |
C5—C1—Tb1 | 75.32 (16) | C22—C23—C18 | 121.8 (2) |
C2—C1—Tb1 | 73.17 (15) | C22—C23—H23 | 123.1 (18) |
C5—C1—H1 | 125 (2) | C18—C23—H23 | 115.1 (18) |
C2—C1—H1 | 127 (2) | O1—C24—H24A | 105 (2) |
Tb1—C1—H1 | 119 (2) | O1—C24—H24B | 105 (2) |
C1—C2—C3 | 107.5 (3) | H24A—C24—H24B | 113 (3) |
C1—C2—Tb1 | 76.54 (16) | O1—C24—H24C | 111 (2) |
C3—C2—Tb1 | 74.34 (14) | H24A—C24—H24C | 113 (3) |
C1—C2—H2 | 129 (2) | H24B—C24—H24C | 110 (3) |
C5—C1—C2—C3 | −0.8 (3) | Tb1—O1—C11—C12 | 26.1 (2) |
Tb1—C1—C2—C3 | −68.51 (18) | C16—C11—C12—C13 | 1.1 (3) |
C5—C1—C2—Tb1 | 67.73 (19) | O1—C11—C12—C13 | −178.98 (18) |
C1—C2—C3—C4 | 0.2 (3) | C16—C11—C12—N1 | 176.94 (19) |
Tb1—C2—C3—C4 | −69.85 (18) | O1—C11—C12—N1 | −3.2 (3) |
C1—C2—C3—Tb1 | 70.01 (18) | C17—N1—C12—C13 | −32.4 (3) |
C2—C3—C4—C5 | 0.5 (3) | Tb1—N1—C12—C13 | 153.66 (16) |
Tb1—C3—C4—C5 | −68.45 (18) | C17—N1—C12—C11 | 152.0 (2) |
C2—C3—C4—Tb1 | 68.95 (17) | Tb1—N1—C12—C11 | −21.9 (2) |
C2—C1—C5—C4 | 1.1 (3) | C11—C12—C13—C14 | −1.7 (3) |
Tb1—C1—C5—C4 | 67.38 (18) | N1—C12—C13—C14 | −177.2 (2) |
C2—C1—C5—Tb1 | −66.30 (19) | C12—C13—C14—C15 | 1.3 (3) |
C3—C4—C5—C1 | −1.0 (3) | C13—C14—C15—C16 | −0.2 (4) |
Tb1—C4—C5—C1 | −67.94 (19) | O1—C11—C16—C15 | 180.0 (2) |
C3—C4—C5—Tb1 | 66.96 (18) | C12—C11—C16—C15 | −0.1 (3) |
C10—C6—C7—C8 | −0.8 (3) | C14—C15—C16—C11 | −0.3 (4) |
Tb1—C6—C7—C8 | 67.66 (16) | C12—N1—C17—C18 | 171.9 (2) |
C10—C6—C7—Tb1 | −68.48 (16) | Tb1—N1—C17—C18 | −14.6 (3) |
C6—C7—C8—C9 | 0.7 (3) | N1—C17—C18—C23 | 173.7 (2) |
Tb1—C7—C8—C9 | 69.50 (16) | N1—C17—C18—C19 | −12.3 (4) |
C6—C7—C8—Tb1 | −68.79 (16) | Tb1—O2—C19—C20 | −146.18 (18) |
C7—C8—C9—C10 | −0.3 (3) | Tb1—O2—C19—C18 | 36.0 (3) |
Tb1—C8—C9—C10 | 68.71 (16) | C23—C18—C19—O2 | 179.2 (2) |
C7—C8—C9—Tb1 | −69.03 (16) | C17—C18—C19—O2 | 5.2 (3) |
C8—C9—C10—C6 | −0.2 (3) | C23—C18—C19—C20 | 1.3 (3) |
Tb1—C9—C10—C6 | 66.92 (16) | C17—C18—C19—C20 | −172.6 (2) |
C8—C9—C10—Tb1 | −67.12 (16) | O2—C19—C20—C21 | −179.6 (2) |
C7—C6—C10—C9 | 0.6 (3) | C18—C19—C20—C21 | −1.6 (3) |
Tb1—C6—C10—C9 | −66.68 (16) | C19—C20—C21—C22 | 0.7 (4) |
C7—C6—C10—Tb1 | 67.31 (16) | C20—C21—C22—C23 | 0.7 (4) |
C24—O1—C11—C16 | 2.4 (3) | C21—C22—C23—C18 | −1.1 (4) |
Tb1—O1—C11—C16 | −154.05 (18) | C19—C18—C23—C22 | 0.1 (4) |
C24—O1—C11—C12 | −177.5 (2) | C17—C18—C23—C22 | 174.3 (2) |
Funding information
Funding for this research was provided by: Russian Science Foundation (grant No. 17-13-01357).
References
Bruker (2016). APEX2 and SAINT. Bruker Analytical X-Ray Systems, Madison, Wisconsin, USA. Google Scholar
Edelmann, F. T. & Poremba, P. (1997). Synthetic Methods of Organometallic and Inorganic Chemistry (Herrman/Brauer), vol. 6, Lanthanides and Actinides, edited by F. T. Edelmann & W. A. Herrmann, pp. 34–35. Stuttgart, Germany: Georg Thieme Verlag. Google Scholar
Evans, W. J. (1987). Polyhedron, 6, 803–835. CrossRef CAS Google Scholar
Evans, W. J. (2016). Organometallics, 35, 3088–3100. Web of Science CrossRef CAS Google Scholar
Goodwin, C. A. P., Reta, D., Ortu, F., Liu, J., Chilton, N. F. & Mills, D. P. (2018). Chem. Commun. 54, 9182–9185. CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Harder, S., Naglav, D., Ruspic, C., Wickleder, C., Adlung, M., Hermes, W., Eul, M., Pöttgen, R., Rego, D. B., Poineau, F., Czerwinski, K. R., Herber, R. H. & Nowik, I. (2013). Chem. Eur. J. 19, 12272–12280. CrossRef CAS PubMed Google Scholar
Hou, Z. & Wakatsuki, Y. (2002). Coord. Chem. Rev. 231, 1–22. CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Li, L. & Yuan, F. (2012). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 42, 994–998. Web of Science CSD CrossRef CAS Google Scholar
Li, S. & Cui, D. (2017). CSD Communication (refcode RAPTUA ). CCDC, Cambridge, England. Google Scholar
Long, J., Basalov, I. V., Lyssenko, K. A., Cherkasov, A. V., Mamontova, E., Guari, Y., Larionova, J. & Trifonov, A. A. (2020). Chem. Asian J. 15, 2706–2715. CrossRef CAS PubMed Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Maginn, R. E., Manastyrskyj, S. & Dubeck, M. (1963). J. Am. Chem. Soc. 85, 672–676. CrossRef CAS Web of Science Google Scholar
Pikoli, S., Hosten, E. & Abrahams, A. (2020). J. Coord. Chem. 73, 1055–1076. CrossRef CAS Google Scholar
Roitershtein, D. M., Minashina, K. I., Minyaev, M. E., Ananyev, I. V., Lyssenko, K. A., Tavtorkin, A. N. & Nifant'ev, I. E. (2018). Acta Cryst. C74, 1105–1115. CrossRef IUCr Journals Google Scholar
Roitershtein, D. M., Puntus, L. N., Vinogradov, A. A., Lyssenko, K. A., Minyaev, M. E., Dobrokhodov, M. D., Taidakov, I. V., Varaksina, E. A., Churakov, A. V. & Nifant'ev, I. E. (2018). Inorg. Chem. 57, 10199–10213. Web of Science CSD CrossRef CAS PubMed Google Scholar
Schumann, H., Meese-Marktscheffel, J. A. & Esser, L. (1995). Chem. Rev. 95, 865–986. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shukla, P., Ansari, K. U., Gao, C., Vaidya, S., Tripathi, S., Kumar, P., Butcher, R. J., Overgaard, J. & Shanmugam, M. (2020). Dalton Trans. 49, 10580–10593. CrossRef CAS PubMed Google Scholar
Vogel, A. I. (1966). A text-book of quantitative inorganic analysis including elementary instrumental analysis. London: Longmans. Google Scholar
Wedal, J. C. & Evans, W. J. (2021). J. Am. Chem. Soc. 143, 18354–18367. CrossRef CAS PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wilkinson, G. & Birmingham, J. M. (1954). J. Am. Chem. Soc. 76, 6210–6210. CrossRef CAS Google Scholar
Yousaf, M., Liu, Q., Huang, J., Qian, Y. & Chan, A. S. (2000). Inorg. Chem. Commun. 3, 105–106. CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.