Jerry P. Jasinski tribute\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis and DFT study of 2,2′′-({[(1E,1′E)-(diselanedi­yl)bis­­(2,1-phenyl­ene)]bis­­(methane­ylyl­­idene)}bis­­(aza­neylyl­­idene))bis­­[3′,6′-bis­­(di­ethyl­amino)-4a',9a'-di­hydro­spiro­[isoindoline-1,9′-xanthen]-3-one]

crossmark logo

aSchool of Studies in Chemistry, Jiwaji University, Gwalior 474011, India, and bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: skggwr@gmail.com

Edited by M. Zeller, Purdue University, USA (Received 17 July 2021; accepted 11 December 2021; online 1 January 2022)

The title compound, C70H70N8O4Se2, is a spiro bicyclic diselenide, made up of two [SeC6H4CH=N—N(CO)C6H4(C)C6H3NEt2(O)C6H3NEt2] units related by a twofold crystallographic symmetry element bis­ecting the diselenide bond. The compound crystallizes in a non-centrosymmetric polar space group (tetra­gonal, P[\overline{4}]b2) and the structure was refined as an inversion twin. The two diethyl amine groups and their attached phenyl groups of the xanthene ring are disordered over two orientations, with occupancies of 0.664 (19)/0.336 (19) and 0.665 (11)/0.335 (11), respectively. The dihedral angles between the mean planes of the central isoindoline and the phenyl rings are 26.8 (2) and 2.5 (4)°, respectively. The mean plane of the central xanthene ring forms dihedral angles of 2.0 (5), 8.8 (5), 1.7 (5) and 7.9 (6)° with the peripheral phenyl rings. The isoindoline and xanthene rings subtend a dihedral angle of 89.8 (2)°. The mol­ecular conformation is stabilized by an intra­molecular C—H⋯O hydrogen bond generating an S(6) ring motif. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds together with C—H⋯π (ring) inter­actions, forming a three-dimensional network. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H⋯H (68.1%), C⋯H/H⋯C (21.2%) and O⋯H/H⋯O (8.7%) contacts. The optimized structure calculated using density functional theory (DFT) at the B3LYP/6 – 31 G(d) level is compared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was used to determine the energy gap and the mol­ecular electrostatic potential (MEP) of the compound was investigated.

1. Chemical context

Diaryl diselenides and aryl seleno­lates have been previously used as ligand precursors for the synthesis of transition-metal complexes (Khandelwal & Gupta, 1989[Khandelwal, B. L. & Gupta, S. K. (1989). Inorg. Chim. Acta, 166, 199-204.]; Gupta & Parihar, 1995[Gupta, S. K. & Parihar, J. (1995). J. Coord. Chem. 35, 307-311.], 1998[Gupta, S. K. & Parihar, J. (1998). Transition Met. Chem. 23, 117-120.]; Gupta et al., 1998[Gupta, S. K., Parihar, J. & Tripathi, S. K. (1998). Transition Met. Chem. 23, 253-256.]). Seleno­spiro­cyclic compounds are a class of heterocyclic compounds with a wide variety of uses in organic synthesis (Aho et al., 2005[Aho, J. E., Pihko, P. M. & Rissa, T. K. (2005). Chem. Rev. 105, 4406-4440.]; Kotha et al., 2009[Kotha, S., Deb, A. C., Lahiri, K. & Manivannan, E. (2009). Synthesis, pp. 165-193.]; James et al., 1991[James, D. M., Kunze, H. B. & Faulkner, D. J. (1991). J. Nat. Prod. 54, 1137-1140.]), biological activities (Mugesh et al., 2001[Mugesh, G., du Mont, W. W. & Sies, H. (2001). Chem. Rev. 101, 2125-2179.]; Nogueira et al., 2004[Nogueira, C. W., Zeni, G. & Rocha, J. B. T. (2004). Chem. Rev. 104, 6255-6286.]; Press et al., 2008[Press, D. J., Mercier, E. A., Kuzma, D. & Back, T. G. (2008). J. Org. Chem. 73, 4252-4255.]; Alberto et al., 2009[Alberto, E. E., Soares, L. C., Sudati, J. H., Borges, A. C. A., Rocha, J. B. T. & Braga, A. L. (2009). Eur. J. Org. Chem. 2009, 4211-4214.]) and photoluminescence properties (Singh et al., 2011[Singh, V. P., Singh, H. B. & Butcher, R. J. (2011). Chem. Commun. 47, 7221-7223.]; Shi et al., 2010[Shi, W., Sun, S., Li, X. & Ma, H. (2010). Inorg. Chem. 49, 1206-1210.]). However, the formation of spiro­bicyclic diselenides is rare and to the best of our knowledge, not reported in the literature. There are very few reports of the formation of seleno­spiro­cyclic derivatives which have been structurally characterized (Singh et al., 2011[Singh, V. P., Singh, H. B. & Butcher, R. J. (2011). Chem. Commun. 47, 7221-7223.]; Shi et al., 2010[Shi, W., Sun, S., Li, X. & Ma, H. (2010). Inorg. Chem. 49, 1206-1210.]). Very recently, organoselenium compounds containing both N and Se have been reported with inter­esting intra- and inter­molecular inter­actions (Saravanan et al., 2021[Saravanan, R., Singh, H. B. & Butcher, R. J. (2021). Acta Cryst. C77, 271-280.]). Although the synthetic and structural studies of various diselenides (see section 4, Database survey) are known in the literature, to the best of our knowledge, a synthesis and structural data have not yet been published for the title compound. Herein we report the crystal structure, DFT and Hirshfeld surface analysis of 2,2′′-({[(1E,1′E)-(diselanedi­yl)bis­(2,1-phenyl­ene)]bis­(methane­ylyl­idene)}bis­(aza­neylyl­idene))bis­[3′,6′-bis­(di­ethyl­amino)-4a',9a'-di­hydro­spiro­[isoindoline-1,9′-xanthen]-3-one], isolated from the condensation of rhodamine B hydrazide with bis­(o-form­yl­phen­yl)diselenide.

[Scheme 1]

2. Structural commentary

The title compound (Fig. 1[link]), a rare example of spiro bicyclic diselenide, crystallizes in the non-centrosymmetric polar tetra­gonal space group, P[\overline{4}]b2, as a racemic mixture. There is a half-mol­ecule in the asymmetric unit (Z = 4), and the structure was refined as an inversion twin [Flack parameter 0.05 (2); Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]]. The Se–Se unit is coplanar with both phenyl rings but the Se–aryl planes are essentially perpen­dic­ular to each other [C—Se—Se—C torsion angle of −88.9 (3)°]. The diethyl amine groups and their attached phenyl groups (C16–C21, N3/C18–C20/C22–C25 and C26–C31, N4/C32–C35) of the xanthene rings are disordered over two conformations with occupancies of 0.664 (19)/0.336 (19) and 0.665 (11)/0.335 (11), respectively. In both major and minor components, the diethyl amine nitro­gens are planar with the sum of the bond angles at N3/N3A being 358.5 and 359.5° and at N4/N4A being 357.5 and 357.4°, respectively. In order to investigate the pyramidal nature of the amine N atoms, the dihedral angles between the respective N—C2 groups and the attached phenyl rings were calculated and found to be 14.3 (7) and 14.8 (5) for N3 and N4, respectively. The Se—Se bond length of 2.3517 (17) Å and Se—C bond length of 1.939 (7) Å fall within the literature ranges of 2.287 to 3.051 Å and 1.91–1.97 Å, respectively (see CSD survey). The C—Se—Se—C torsion angle typically falls in the range of ca 73–128° (Dickson et al., 1999[Dickson, P. M., McGowan, M. A. D., Yearwood, B., Heeg, M. J. & Oliver, J. P. (1999). J. Organomet. Chem. 588, 42-50.]). The observed C—Se—Se—C torsion angle, – 88.9 (3) °, results from the syn conformation around the Se–Se bridge. This conformation can be ration­al­ized in terms of repulsion of the 4p lone pairs at the Se centres. The dihedral angles between the mean planes of the central isoindoline (N2/C8/C9/C14/C15) and the phenyl rings (C1–C6 and C9–C14), are 26.8 (2) and 2.5 (4)°, respectively. The mean plane of the central xanthene ring (O2/C21/C16/C15/C31/C26) forms dihedral angles of 2.0 (5), 8.8 (9) and 1.7 (5), 7.9 (6)° with the peripheral phenyl rings (C16–C21, C16A–C21A and C26–C31, C26A–C31A, respectively). The isoindoline (N2/C8/C9/C14/C15) and xanthene (O2/C21/C16/C15/C31/C26) rings are essentially perpendicular to each other [dihedral angle of 89.8 (6)°].

[Figure 1]
Figure 1
Diagram showing: (a) a half mol­ecule showing the disorder, (b) the major component of the title compound [symmetry operation: [{1\over 2}] + y, −[{1\over 2}] + x, 1 − z]. Displacement ellipsoids are shown at the 30% probability level.

3. Supra­molecular features

The crystal packing of the title compound viewed along the c axis is presented in Fig. 2[link]. The title compound packs in a way that allows close contacts between the oxygen atoms and hydrogen atoms of adjacent mol­ecules, leading to a network of C—H⋯O inter­actions involving donor atoms C7 (azomethine carbon) and C12 (aromatic carbon) with carbonyl oxygen O1 as acceptor with DA distances of 3.391 (10) and 3.447 (10) Å, respectively (symmetry codes: y + [{1\over 2}], x − [{1\over 2}], −z + 2; 1 + y, 1 − x, 2 − z) between neighbouring mol­ecules (Table 1[link]). An intra­molecular C—H⋯O hydrogen bond involving carbonyl oxygen, O1 and methine hydrogen, H7 with DA distance of 2.940 (9) Å leading to an S(6) ring motif (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) is also present. Furthermore, there exists a C—H⋯π inter­action between the H25C atom of the methyl carbon C25 and the centroid of the C16–C21 phenyl ring; symmetry code 1 − y, −1 + x, 1 − z. These inter­actions play a vital role in stabilizing the crystal packing within the crystal structure.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯Se1i 0.95 2.82 3.436 (8) 124
C7—H7A⋯O1 0.95 2.43 2.940 (9) 114
C7—H7A⋯O1ii 0.95 2.63 3.391 (10) 137
C12—H12A⋯O1iii 0.95 2.56 3.447 (10) 156
C33A—H33E⋯Se1i 0.98 3.04 4.00 (3) 168
Symmetry codes: (i) [y+{\script{1\over 2}}, x-{\script{1\over 2}}, -z+1]; (ii) [y+{\script{1\over 2}}, x-{\script{1\over 2}}, -z+2]; (iii) [y+1, -x+1, -z+2].
[Figure 2]
Figure 2
Packing diagram of (a) the title compound viewed along c axis and (b) partial packing showing the formation of C—H⋯π inter­actions (symmetry code: 1 − y, −1 + x, 1 − z).

4. Hirshfeld surface analysis

Hirshfeld surface (HS) calculations (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) were performed on the title compound to further investigate the inter­molecular inter­actions. The Hirshfeld surface plotted over dnorm in the range −1.0432 to + 2.0960 a.u. generated using CrystalExplorer 21.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) is shown in Fig. 3[link]. The red spots that appear around O1 are caused by the inter­molecular C7—H7⋯O1 and C12—H12⋯O1 inter­actions, which are important in the packing of the title mol­ecule. An intra­molecular C—H⋯O hydrogen bond is also indicated by the red spots near the hydrogen and oxygen atoms (Fig. 3[link]b). Bright-red spots on top and bottom of the HS near N3 indicate an inter­molecular C—H⋯π (ring) inter­action involving H25B of the C25 methyl group and a benzene ring (Fig. 3[link]c).

[Figure 3]
Figure 3
(a) A view of the three-dimensional Hirshfeld surface mapped over dnorm in the range −1.0432 to +2.0960 a.u. and views showing (b) C—H⋯O and (c) C—H⋯π inter­actions.

The two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were generated using CrystalExplorer 21.5 encompassing all inter­molecular contacts, as well as the delineated specific contacts (Fig. 4[link]). More significant contacts and their percentage contributions to the Hirshfeld surface are given in Table 2[link]. The most important inter­action is H⋯H, contributing 68.1% to the overall crystal packing. The presence of C—H⋯π inter­actions is indicated by pairs of characteristic wings in the finger print plot representing C⋯H/H⋯C contacts with a 21.2% contribution to the HS. Pairs of scattered points of spikes are seen in the fingerprint plot delineated into O⋯H/H⋯O contacts (8.7% contribution to the HS). The lowest contributions are from N⋯H/H⋯N (1.6%) and Se⋯H/H⋯Se (0.4%) contacts. These inter­actions play a crucial role in the overall stabilization of the crystal packing.

Table 2
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the title compound

Contact Percentage contribution
H⋯H 68.1
C⋯H/H⋯C 21.2
O⋯H/H⋯O 8.7
N⋯H/H⋯N 1.6
Se⋯H/H⋯Se 0.4
[Figure 4]
Figure 4
A view of the two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and those delineated into (b) H⋯H (c) C⋯H/H⋯C (d) O⋯H/H⋯O (e) N⋯H/H⋯N and (f) Se⋯H/H⋯Se inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

5. DFT Calculations

A density functional theory (DFT) geometry-optimized mol­ecular orbital calculation (WebMOPro; Polik & Schmidt, 2021[Polik, W. F. & Schmidt, J. R. (2021). WIREs Comput. Mol. Sci. e1554. https://doi.org/10.1002/wcms.1554]) with the GAUSSIAN 16 programme package (Frisch et al., 2019[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J. (2019). GAUSSIAN16, Revision C.01, Gaussian, Inc., Wallingford CT, USA.]) employing the B3LYP functional and 6-31 G(d) basis set (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]) was performed on the title compound. Starting geometries were taken from the X-ray refinement data. Theoretical and experimental results related to bond lengths and angles are in good agreement (Table 3[link]).

Table 3
Comparison of selected (X-ray and DFT) bond lengths and angles (Å, °).

Bonds/Angles X-ray B3LYP/6–31G(d)
Se1—C1 1.939 (7) 1.941
Se1—Se1′ 2.3517 (17) 2.356
O1—C8 1.222 (9) 1.224
O2—C21 1.315 (12) 1.374
O2—C26 1.349 (13) 1.368
N1—C7 1.280 (9) 1.291
N1—N2 1.380 (8) 1.353
N2—C8 1.378 (10) 1.392
N2—C15 1.507 (9) 1.513
C1—C6 1.415 (11) 1.42
C19—N3 1.426 (7) 1.383
C22—N3 1.446 (13) 1.464
C24—N3 1.466 (12) 1.461
N4—C28 1.423 (10) 1.39
N4—C32 1.543 (14) 1.461
N4—C34 1.481 (13) 1.462
C1—Se1—Se1′ 103.5 (2) 102.711
C26—O2—C21 119.4 (9) 119.241
C7—N1—N2 121.3 (6) 122.983
N1—N2—C15 115.5 (5) 116.391
C2—C1—Se1 122.5 (6) 121.361
C6—C1—Se1 119.2 (5) 119.262
O1—C8—N2 125.8 (6) 126.543
C8—N2—C15 115.3 (5) 114.337
O1—C8—C9 129.0 (7) 128.268
N2—C8—C9 105.2 (6) 105.19
C19—N3—C22 120.9 (7) 120.635
C19—N3—C24 119.4 (7) 120.99
C22—N3—C24 118.2 (7) 118.187
C28—N4—C32 120.2 (7) 120.875
C28—N4—C34 120.1 (8) 120.772
C32—N4—C34 117.2 (9) 117.917
C1—Se1—Se1′—C1′ −88.9 (6) −73.195

Calculated mol­ecular orbital energies (eV) for the surfaces of the frontier mol­ecular orbitals of the title compound are shown in Fig. 5[link]. The HOMO (highest occupied mol­ecular orbital) acts as an electron donor and the LUMO (lowest unoccupied mol­ecular orbital) as an electron acceptor. Calculated numerical values for the title compound including, electronegativity (c), hardness (h), ionization enthalpy (IE), dipole moment (m), electron gain enthalpy (EE), electrophilicity (ω) and softness (s), are collated in Table 4[link]. The significance of h and s is to evaluate both the reactivity and stability.

Table 4
Calculated energies

Property  
Total energy TE (eV) −224397
EHOMO −5.0048
ELUMO −1.2512
Gap, ΔE (eV) 3.7536
Dipole moment, μ (Debye) 7.182
Ionization enthalpy, IE (eV) 5.0048
Electron gain enthalpy, EE (eV) 1.2512
Electronegativity, χ 3.128
Hardness, η 1.8768
Softness, σ 0.5328
Electrophilicity index, ω 2.6066
[Figure 5]
Figure 5
Calculated frontier mol­ecular orbitals of the title compound.

As shown in Fig. 5[link], the HOMO is mainly located on the xanthene phenyl ring and diethyl amine groups whereas the LUMO is distributed on the phenyl ring attached to selenium, azomethine and carbonyl group. In HOMO – 1, electron clouds are distributed on the azomethine group, the phenyl ring attached to selenium and the diethyl amine groups on the other side of the mol­ecule. In LUMO + 1, electron clouds are located on the isoindoline and azomethine groups of both sides of the mol­ecule whereas in LUMO + 2, it involves the selenium atom, phenyl ring, azomethine and isoindoline groups on one side of the mol­ecule. The energy band gap [ΔE = ELUMO − EHOMO] of the mol­ecule is 3.7536 eV, and the frontier mol­ecular orbital energies, EHOMO and ELUMO, are −5.0048 and −1.2512 eV, respectively.

The mol­ecular electrostatic potential (MEP) map (Fig. 6[link]) was calculated at the B3LYP/6–31G(d) level of theory. In the MEP diagram, the mol­ecular electrostatic potential is in the range −0.0833 to 0.0321 a.u. and the different electrostatic potentials at the surface of the mol­ecule are represented by different colours. Electrostatic potentials increase in the order red < yellow < green < blue, and red indicates the electron rich region and blue indicates the electron-deficient region. As shown in Fig. 6[link], the carbonyl groups are surrounded by negative charges, indicating some possible nucleophilic sites, whereas the positive charge regions are located on the H atoms indicating possible electrophilic sites.

[Figure 6]
Figure 6
A view of the MEP plot of the title compound made using the 6–31 G(d) basis set at the B3LYP level of theory in the range − 0.0833 to 0.0321.

6. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, update May 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the basic skeleton of this compound gave no hits. However, a CSD search on phen­yl–Se–Se–phenyl compounds gave 152 hits and 199 observations with the Se—Se distance ranging from 2.287 to 3.051 Å (with a mean value of 2.393 Å and a standard deviation 0.162). In the structures of CATWEB01, REDGAK, REDGEO and REDGUE (Panda et al., 2012[Panda, S., Dutta, P. K., Ramakrishna, G., Reddy, C. M. & Zade, S. S. (2012). J. Organomet. Chem. 717, 45-51.]), the typical torsional angles of the selenium-attached phenyl ring (C—Se—Se—C) are ca 81° and those of CIDXET and CIDXUJ (Kulcsar et al., 2007[Kulcsar, M., Beleaga, A., Silvestru, C., Nicolescu, A., Deleanu, C., Todasca, C. & Silvestru, A. (2007). Dalton Trans. pp. 2187-2196.]) are 80.9 and 114.0°, respectively.

7. Synthesis and crystallization

The title compound was obtained by the condensation of rhodamine B hydrazide (Leite et al., 2013[Leite, A., Silva, A. M. G., Cunha-Silva, L., de Castro, B., Gameiro, P. & Rangel, M. (2013). Dalton Trans. 42, 6110-6118.]) and bis­(o-formyl­phen­yl)diselenide (Panda et al., 2005[Panda, S., Zade, S. S., Singh, H. B. & Wolmershäuser, G. (2005). J. Organomet. Chem. 690, 3142-3148.]) (see Fig. 7[link]). In a typical experiment, a solution of rhodamine B hydrazide (0.228 g, 0.5 mmol) in ethanol (30 mL) was added dropwise to a solution of bis­(o-formyl­phen­yl)diselenide (0.184 g, 0.5 mmol) in ethanol (30 mL) over approximately 45 minutes in a dropping funnel. The solution mixture was stirred further for 4 h at room temperature. After cooling, the solid was filtered and washed three times with cold ethanol. Pale-yellow crystals of the title compound suitable for single-crystal X-ray diffraction study were obtained from chloro­form/pentane (1:1 mixture), yield 0.461 g, 81%, m.p. 519 K (Fig. 7[link]). FT–IR (ATR): (ν, cm−1) = 3387, 2967, 1613, 1514, 1218, 1117, 753. 1H NMR [300 MHz, CDCl3, δ (ppm)]: 1.15 (24H, t, J = 7.2 Hz, NCH2CH3), 3.33 (16H, q, J = 7.2 Hz, NCH2CH3), 6.29 (4H, s, H-Ar), 6.43 (4H, d, J = 2.7 Hz, H-Ar), 6.46 (4H, d, J = 2.7 Hz, H-Ar), 7.09 (2H, m, H-Ar), 7.19 (4H, m, H-Ar), 7.43 (4H, m, H-Ar), 7.92 (4H, m, H-Ar), 8.60 (2H, s, N=C—H). 13C NMR [75 MHz, CDCl3, δ (ppm)]: 12.7 (NCH2CH3), 44.5 (NCH2CH3), 66.1 (spiro carbon), 98.2, 104.7, 108.2, 123.1, 123.9, 130.9, 132.6, 149.1, 151.7, 154.0, 166.3 (C=O).

[Figure 7]
Figure 7
Scheme showing the reaction sequence for the synthesis of the title compound.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. All H atoms were positioned geometrically with C—H bond distances of 0.95 Å (aromatic H), 0.99 Å (methyl­ene H), 0.98 Å (methyl H) and were refined as riding with isotropic displacement parameters 1.2 and 1.5 times that of the adjacent carbon atoms. The title compound crystallized with disorder in the two diethyl amine groups attached to the xanthene ring. The disorder model included the phenyl rings to which these amine groups were attached. For these groups, the occupancy factors are 0.664 (19)/0.336 (19) and 0.665 (11)/0.335 (11). All atoms in the diethyl amine groups (N3/C18/C19/C20/C22/C23/C24/C25 and N4/C32/C33/C34/C35) were subject to displacement and positional restraints using SIMU and SAME instructions. For the SIMU command the esd's used were 0.005 while for the SAME command the esd's used were 0.003.

Table 5
Experimental details

Crystal data
Chemical formula C70H70N8O4Se2
Mr 1245.26
Crystal system, space group Tetragonal, P[\overline{4}]b2
Temperature (K) 100
a, c (Å) 21.507 (4), 13.434 (4)
V3) 6214 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.25
Crystal size (mm) 0.27 × 0.23 × 0.08
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.566, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 7696, 7696, 6090
Rint 0.119
(sin θ/λ)max−1) 0.666
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.142, 1.08
No. of reflections 7696
No. of parameters 540
No. of restraints 696
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.52, −0.97
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.05 (2)
Computer programs: APEX2 and SAINT (Bruker 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip (2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker 2005); cell refinement: SAINT (Bruker 2005); data reduction: SAINT (Bruker 2005); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), publCIF (Westrip (2010).

2,2''-({[(1E,1'E)-(Diselanediyl)bis(2,1-phenylene)]bis(methaneylylidene)}bis(azaneylylidene))bis[3',6'-bis(diethylamino)-4a',9a'-dihydrospiro[isoindoline-1,9'-xanthen]-3-one] top
Crystal data top
C70H70N8O4Se2Dx = 1.331 Mg m3
Mr = 1245.26Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P4b2Cell parameters from 7629 reflections
a = 21.507 (4) Åθ = 2.4–30.1°
c = 13.434 (4) ŵ = 1.25 mm1
V = 6214 (3) Å3T = 100 K
Z = 4Plate, pale yellow
F(000) = 25840.27 × 0.23 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
6090 reflections with I > 2σ(I)
φ and ω scansRint = 0.119
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 28.3°, θmin = 2.0°
Tmin = 0.566, Tmax = 0.746h = 2425
7696 measured reflectionsk = 2525
7696 independent reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.070H-atom parameters constrained
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.040P)2 + 13.6633P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
7696 reflectionsΔρmax = 0.52 e Å3
540 parametersΔρmin = 0.96 e Å3
696 restraintsAbsolute structure: Refined as an inversion twin
Primary atom site location: dualAbsolute structure parameter: 0.05 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Se10.70568 (3)0.18183 (3)0.58326 (6)0.01973 (16)
O10.7532 (2)0.1249 (2)0.9772 (4)0.0257 (12)
O20.8536 (3)0.2775 (2)0.6006 (4)0.0307 (13)
N10.7287 (3)0.1778 (3)0.7778 (5)0.0218 (13)
N20.7820 (3)0.1786 (3)0.8351 (5)0.0215 (13)
C10.6247 (3)0.1743 (3)0.6457 (6)0.0209 (15)
C20.5709 (3)0.1704 (3)0.5920 (7)0.0269 (17)
H2A0.5733640.1726170.5214400.032*
C30.5136 (4)0.1636 (4)0.6348 (6)0.0305 (19)
H3A0.4774570.1603600.5945900.037*
C40.5089 (3)0.1615 (4)0.7383 (7)0.0303 (19)
H4A0.4693860.1567370.7689540.036*
C50.5619 (3)0.1662 (4)0.7962 (6)0.0253 (17)
H5A0.5587250.1650490.8666770.030*
C60.6207 (3)0.1729 (3)0.7508 (6)0.0215 (16)
C70.6747 (3)0.1760 (3)0.8178 (6)0.0222 (16)
H7A0.6697010.1765420.8880110.027*
C80.7925 (3)0.1505 (3)0.9257 (6)0.0232 (15)
C90.8604 (3)0.1565 (3)0.9431 (5)0.0228 (17)
C100.8957 (4)0.1375 (4)1.0242 (6)0.0306 (19)
H10A0.8773620.1158111.0782960.037*
C110.9584 (4)0.1513 (4)1.0233 (7)0.037 (2)
H11A0.9836910.1378351.0771740.044*
C120.9853 (4)0.1842 (4)0.9463 (6)0.037 (2)
H12A1.0281500.1948270.9498100.045*
C130.9506 (4)0.2021 (4)0.8633 (7)0.0317 (19)
H13A0.9692810.2231370.8087730.038*
C140.8875 (3)0.1879 (3)0.8636 (6)0.0251 (17)
C150.8387 (3)0.2057 (3)0.7855 (6)0.0221 (16)
C160.8320 (7)0.2769 (4)0.7760 (12)0.0246 (13)0.664 (19)
C170.8171 (5)0.3120 (4)0.8595 (9)0.0261 (14)0.664 (19)
H17A0.8100230.2920930.9215680.031*0.664 (19)
C180.8125 (5)0.3763 (4)0.8522 (7)0.0276 (14)0.664 (19)
H18A0.8022960.4003470.9092330.033*0.664 (19)
C190.8228 (6)0.4055 (4)0.7613 (7)0.0267 (12)0.664 (19)
C200.8377 (8)0.3704 (5)0.6778 (8)0.0253 (12)0.664 (19)
H20A0.8448110.3903340.6157580.030*0.664 (19)
C210.8423 (9)0.3061 (5)0.6852 (10)0.0245 (12)0.664 (19)
N30.8171 (5)0.4714 (4)0.7532 (8)0.0295 (13)0.664 (19)
C220.8049 (7)0.5092 (5)0.8399 (10)0.0306 (16)0.664 (19)
H22A0.7724490.4886770.8805860.037*0.664 (19)
H22B0.7881650.5498410.8178490.037*0.664 (19)
C230.8617 (8)0.5205 (6)0.9047 (11)0.037 (3)0.664 (19)
H23A0.8524070.5530400.9535730.056*0.664 (19)
H23B0.8965860.5338220.8627900.056*0.664 (19)
H23C0.8728320.4820360.9394130.056*0.664 (19)
C240.8381 (7)0.5024 (6)0.6620 (9)0.0298 (15)0.664 (19)
H24A0.8227440.5458180.6625410.036*0.664 (19)
H24B0.8192860.4812150.6040230.036*0.664 (19)
C250.9087 (8)0.5033 (12)0.6489 (16)0.031 (3)0.664 (19)
H25A0.9191340.5241920.5862200.047*0.664 (19)
H25B0.9243920.4605600.6473920.047*0.664 (19)
H25C0.9277400.5257700.7045170.047*0.664 (19)
C16A0.8351 (14)0.2773 (7)0.780 (2)0.0248 (14)0.336 (19)
C17A0.8317 (11)0.3109 (8)0.8683 (19)0.0261 (15)0.336 (19)
H17B0.8306450.2897860.9303710.031*0.336 (19)
C18A0.8300 (11)0.3755 (8)0.8657 (14)0.0266 (15)0.336 (19)
H18B0.8276610.3985110.9259190.032*0.336 (19)
C19A0.8316 (11)0.4064 (7)0.7749 (13)0.0270 (12)0.336 (19)
C20A0.8350 (16)0.3728 (9)0.6867 (14)0.0254 (13)0.336 (19)
H20B0.8360780.3939300.6246200.030*0.336 (19)
C21A0.8367 (18)0.3082 (9)0.689 (2)0.0246 (13)0.336 (19)
N3A0.8297 (10)0.4726 (8)0.7720 (13)0.0291 (13)0.336 (19)
C22A0.8308 (12)0.5089 (9)0.8626 (17)0.0309 (17)0.336 (19)
H22C0.8003670.4910630.9100670.037*0.336 (19)
H22D0.8173670.5518500.8472160.037*0.336 (19)
C23A0.8943 (14)0.5112 (12)0.9123 (19)0.038 (3)0.336 (19)
H23D0.8893600.5231010.9823090.057*0.336 (19)
H23E0.9204560.5417920.8783060.057*0.336 (19)
H23F0.9138450.4701070.9084420.057*0.336 (19)
C24A0.8356 (12)0.5051 (11)0.6767 (15)0.0298 (16)0.336 (19)
H24C0.8190790.5478500.6844180.036*0.336 (19)
H24D0.8095030.4835850.6267210.036*0.336 (19)
C25A0.9021 (15)0.509 (3)0.637 (3)0.031 (3)0.336 (19)
H25D0.9012890.5208040.5668310.047*0.336 (19)
H25E0.9223350.4684880.6445520.047*0.336 (19)
H25F0.9252120.5403340.6752100.047*0.336 (19)
C260.8598 (9)0.2150 (6)0.5998 (10)0.0279 (16)0.665 (11)
C270.8741 (5)0.1898 (4)0.5073 (8)0.0299 (16)0.665 (11)
H27A0.8801230.2163280.4516070.036*0.665 (11)
C280.8797 (5)0.1258 (4)0.4964 (6)0.0323 (14)0.665 (11)
C290.8709 (5)0.0870 (5)0.5780 (7)0.0310 (16)0.665 (11)
H29A0.8747350.0432100.5704920.037*0.665 (11)
C300.8566 (9)0.1122 (8)0.6704 (7)0.0298 (15)0.665 (11)
H30A0.8506180.0856680.7261460.036*0.665 (11)
C310.8510 (12)0.1762 (8)0.6813 (8)0.0272 (14)0.665 (11)
N40.8992 (5)0.1018 (4)0.4027 (9)0.0376 (14)0.665 (11)
C320.9076 (6)0.1459 (6)0.3131 (10)0.0414 (18)0.665 (11)
H32A0.9310830.1835920.3325410.050*0.665 (11)
H32B0.9299690.1248160.2582150.050*0.665 (11)
C330.8448 (7)0.1617 (8)0.2835 (13)0.049 (3)0.665 (11)
H33A0.8461430.1916570.2285870.074*0.665 (11)
H33B0.8227390.1800670.3401310.074*0.665 (11)
H33C0.8230530.1240250.2617670.074*0.665 (11)
C340.8932 (6)0.0346 (5)0.3811 (11)0.0411 (18)0.665 (11)
H34A0.9152310.0098360.4321760.049*0.665 (11)
H34B0.9113270.0248950.3151530.049*0.665 (11)
C350.8198 (7)0.0183 (7)0.3820 (13)0.054 (3)0.665 (11)
H35A0.8142740.0268900.3822460.081*0.665 (11)
H35B0.8000740.0359210.3225580.081*0.665 (11)
H35C0.8006060.0361330.4416780.081*0.665 (11)
C26A0.8526 (18)0.2148 (12)0.5986 (19)0.0283 (16)0.335 (11)
C27A0.8569 (11)0.1885 (8)0.5044 (16)0.0305 (16)0.335 (11)
H27B0.8590450.2143960.4472480.037*0.335 (11)
C28A0.8579 (10)0.1242 (8)0.4938 (12)0.0332 (15)0.335 (11)
C29A0.8547 (11)0.0862 (11)0.5774 (13)0.0312 (16)0.335 (11)
H29B0.8554550.0423160.5701020.037*0.335 (11)
C30A0.8504 (19)0.1126 (15)0.6716 (13)0.0296 (16)0.335 (11)
H30B0.8482500.0866580.7287420.036*0.335 (11)
C31A0.849 (2)0.1769 (16)0.6822 (15)0.0278 (15)0.335 (11)
N4A0.8663 (9)0.0987 (8)0.3969 (14)0.0386 (15)0.335 (11)
C32A0.8874 (11)0.1405 (10)0.3100 (16)0.0406 (19)0.335 (11)
H32C0.9076310.1787960.3351100.049*0.335 (11)
H32D0.9169080.1182330.2661240.049*0.335 (11)
C33A0.8305 (13)0.1553 (15)0.257 (2)0.045 (3)0.335 (11)
H33D0.8375080.1914260.2141840.067*0.335 (11)
H33E0.7976180.1648060.3052680.067*0.335 (11)
H33F0.8180590.1196160.2164660.067*0.335 (11)
C34A0.8740 (11)0.0307 (8)0.3843 (19)0.0410 (19)0.335 (11)
H34C0.8404640.0139130.3415080.049*0.335 (11)
H34D0.8719550.0096590.4497580.049*0.335 (11)
C35A0.9409 (11)0.0191 (12)0.333 (2)0.051 (4)0.335 (11)
H35D0.9379790.0157950.2864650.076*0.335 (11)
H35E0.9716300.0093290.3848040.076*0.335 (11)
H35F0.9538080.0565940.2973350.076*0.335 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.0141 (3)0.0190 (3)0.0260 (3)0.0019 (3)0.0068 (3)0.0070 (3)
O10.023 (3)0.022 (3)0.031 (3)0.001 (2)0.005 (2)0.010 (2)
O20.046 (3)0.019 (3)0.027 (3)0.009 (2)0.002 (3)0.006 (2)
N10.017 (3)0.022 (3)0.027 (3)0.000 (2)0.008 (2)0.007 (3)
N20.018 (3)0.020 (3)0.027 (3)0.003 (2)0.007 (2)0.012 (3)
C10.017 (3)0.013 (3)0.033 (4)0.003 (3)0.006 (3)0.002 (3)
C20.017 (3)0.037 (4)0.027 (4)0.004 (3)0.003 (3)0.003 (4)
C30.019 (4)0.037 (5)0.036 (5)0.005 (3)0.008 (3)0.006 (4)
C40.012 (3)0.036 (5)0.043 (5)0.000 (3)0.001 (4)0.004 (4)
C50.016 (4)0.029 (4)0.031 (4)0.005 (3)0.002 (3)0.002 (3)
C60.019 (3)0.013 (3)0.032 (4)0.000 (3)0.002 (3)0.002 (3)
C70.022 (4)0.018 (3)0.026 (4)0.000 (3)0.003 (3)0.004 (3)
C80.026 (3)0.012 (3)0.032 (4)0.002 (2)0.009 (4)0.005 (3)
C90.027 (4)0.019 (3)0.022 (4)0.001 (3)0.011 (3)0.003 (3)
C100.037 (5)0.028 (4)0.027 (4)0.003 (3)0.016 (4)0.006 (4)
C110.033 (5)0.041 (5)0.036 (5)0.007 (4)0.018 (4)0.005 (4)
C120.028 (4)0.046 (5)0.038 (5)0.004 (4)0.014 (4)0.003 (4)
C130.025 (4)0.024 (4)0.046 (5)0.003 (3)0.012 (4)0.001 (4)
C140.021 (4)0.018 (4)0.036 (5)0.003 (3)0.009 (3)0.003 (3)
C150.015 (3)0.014 (3)0.037 (4)0.002 (3)0.010 (3)0.011 (3)
C160.022 (3)0.020 (2)0.032 (3)0.002 (2)0.004 (2)0.008 (2)
C170.025 (3)0.022 (2)0.032 (3)0.001 (2)0.003 (3)0.008 (2)
C180.028 (3)0.023 (2)0.033 (3)0.000 (2)0.002 (3)0.006 (2)
C190.027 (2)0.021 (2)0.032 (3)0.000 (2)0.001 (2)0.007 (2)
C200.025 (3)0.020 (2)0.031 (3)0.002 (2)0.003 (2)0.009 (2)
C210.022 (3)0.020 (2)0.031 (3)0.002 (2)0.004 (2)0.008 (2)
N30.033 (3)0.021 (2)0.034 (3)0.000 (2)0.001 (2)0.005 (2)
C220.034 (3)0.023 (3)0.035 (3)0.000 (3)0.000 (3)0.005 (3)
C230.043 (5)0.033 (4)0.036 (5)0.004 (4)0.006 (5)0.005 (4)
C240.035 (3)0.020 (3)0.035 (3)0.000 (2)0.001 (3)0.007 (3)
C250.038 (5)0.019 (5)0.037 (5)0.003 (4)0.005 (4)0.005 (4)
C16A0.022 (3)0.020 (2)0.032 (3)0.001 (2)0.004 (2)0.008 (2)
C17A0.024 (3)0.022 (2)0.032 (3)0.001 (3)0.003 (3)0.007 (2)
C18A0.026 (3)0.022 (2)0.032 (3)0.000 (3)0.003 (3)0.007 (2)
C19A0.028 (3)0.021 (2)0.032 (3)0.001 (2)0.001 (2)0.007 (2)
C20A0.025 (3)0.020 (2)0.031 (3)0.002 (2)0.003 (2)0.008 (2)
C21A0.023 (3)0.020 (2)0.031 (3)0.001 (2)0.004 (2)0.008 (2)
N3A0.033 (3)0.021 (2)0.034 (3)0.000 (2)0.001 (2)0.006 (2)
C22A0.035 (3)0.023 (3)0.034 (3)0.000 (3)0.001 (3)0.005 (3)
C23A0.043 (7)0.032 (6)0.039 (6)0.006 (6)0.004 (7)0.000 (6)
C24A0.035 (3)0.020 (3)0.035 (3)0.000 (3)0.001 (3)0.006 (3)
C25A0.039 (5)0.019 (5)0.036 (5)0.001 (5)0.005 (5)0.006 (5)
C260.026 (4)0.021 (2)0.037 (3)0.001 (3)0.009 (3)0.004 (2)
C270.027 (4)0.024 (2)0.039 (3)0.002 (3)0.010 (3)0.004 (2)
C280.029 (3)0.026 (2)0.042 (2)0.001 (3)0.009 (3)0.002 (2)
C290.028 (4)0.025 (2)0.040 (3)0.001 (3)0.008 (3)0.004 (2)
C300.027 (4)0.024 (2)0.039 (3)0.001 (3)0.008 (3)0.005 (2)
C310.024 (3)0.021 (2)0.037 (3)0.002 (2)0.009 (2)0.005 (2)
N40.033 (3)0.033 (2)0.047 (3)0.001 (3)0.007 (3)0.003 (2)
C320.036 (4)0.038 (3)0.050 (3)0.001 (3)0.008 (3)0.007 (3)
C330.041 (6)0.051 (5)0.056 (5)0.004 (5)0.005 (5)0.015 (5)
C340.038 (4)0.036 (3)0.050 (3)0.001 (3)0.008 (3)0.002 (3)
C350.050 (6)0.050 (5)0.063 (6)0.003 (5)0.009 (5)0.003 (5)
C26A0.026 (4)0.022 (3)0.038 (3)0.002 (3)0.009 (3)0.004 (2)
C27A0.028 (4)0.024 (3)0.039 (3)0.002 (3)0.009 (3)0.003 (2)
C28A0.030 (4)0.027 (2)0.042 (2)0.001 (3)0.009 (3)0.002 (2)
C29A0.028 (4)0.025 (2)0.040 (3)0.001 (3)0.008 (3)0.004 (2)
C30A0.026 (4)0.024 (2)0.039 (3)0.001 (3)0.008 (3)0.005 (2)
C31A0.025 (4)0.022 (2)0.037 (3)0.002 (3)0.009 (3)0.005 (2)
N4A0.035 (4)0.034 (2)0.047 (3)0.001 (3)0.008 (3)0.003 (2)
C32A0.036 (4)0.037 (3)0.049 (3)0.001 (3)0.008 (4)0.006 (3)
C33A0.038 (6)0.045 (5)0.051 (6)0.000 (5)0.007 (6)0.010 (5)
C34A0.037 (4)0.035 (3)0.050 (3)0.001 (3)0.008 (4)0.003 (3)
C35A0.049 (7)0.040 (6)0.063 (7)0.002 (6)0.006 (6)0.002 (6)
Geometric parameters (Å, º) top
Se1—C11.939 (7)C18A—H18B0.9500
Se1—Se1i2.3517 (17)C19A—C20A1.3900
O1—C81.222 (9)C19A—N3A1.425 (8)
O2—C211.315 (12)C20A—C21A1.3900
O2—C26A1.35 (3)C20A—H20B0.9500
O2—C261.349 (13)N3A—C22A1.446 (13)
O2—C21A1.41 (2)N3A—C24A1.465 (12)
N1—C71.280 (9)C22A—C23A1.521 (17)
N1—N21.380 (8)C22A—H22C0.9900
N2—C81.378 (10)C22A—H22D0.9900
N2—C151.507 (9)C23A—H23D0.9800
C1—C21.367 (10)C23A—H23E0.9800
C1—C61.415 (11)C23A—H23F0.9800
C2—C31.368 (11)C24A—C25A1.527 (12)
C2—H2A0.9500C24A—H24C0.9900
C3—C41.394 (12)C24A—H24D0.9900
C3—H3A0.9500C25A—H25D0.9800
C4—C51.384 (11)C25A—H25E0.9800
C4—H4A0.9500C25A—H25F0.9800
C5—C61.411 (10)C26—C271.3900
C5—H5A0.9500C26—C311.3900
C6—C71.471 (10)C27—C281.3900
C7—H7A0.9500C27—H27A0.9500
C8—C91.484 (10)C28—C291.3900
C9—C101.389 (10)C28—N41.423 (10)
C9—C141.392 (11)C29—C301.3900
C10—C111.381 (12)C29—H29A0.9500
C10—H10A0.9500C30—C311.3900
C11—C121.381 (12)C30—H30A0.9500
C11—H11A0.9500N4—C341.481 (13)
C12—C131.397 (11)N4—C321.543 (14)
C12—H12A0.9500C32—C331.448 (16)
C13—C141.391 (11)C32—H32A0.9900
C13—H13A0.9500C32—H32B0.9900
C14—C151.534 (10)C33—H33A0.9800
C15—C31A1.537 (18)C33—H33B0.9800
C15—C16A1.542 (17)C33—H33C0.9800
C15—C161.543 (10)C34—C351.616 (19)
C15—C311.559 (11)C34—H34A0.9900
C16—C171.3900C34—H34B0.9900
C16—C211.3900C35—H35A0.9800
C17—C181.3900C35—H35B0.9800
C17—H17A0.9500C35—H35C0.9800
C18—C191.3900C26A—C27A1.3900
C18—H18A0.9500C26A—C31A1.3900
C19—C201.3900C27A—C28A1.3900
C19—N31.426 (7)C27A—H27B0.9500
C20—C211.3900C28A—C29A1.3900
C20—H20A0.9500C28A—N4A1.424 (11)
N3—C221.446 (13)C29A—C30A1.3900
N3—C241.466 (12)C29A—H29B0.9500
C22—C231.520 (17)C30A—C31A1.3900
C22—H22A0.9900C30A—H30B0.9500
C22—H22B0.9900N4A—C34A1.481 (13)
C23—H23A0.9800N4A—C32A1.543 (15)
C23—H23B0.9800C32A—C33A1.448 (17)
C23—H23C0.9800C32A—H32C0.9900
C24—C251.528 (12)C32A—H32D0.9900
C24—H24A0.9900C33A—H33D0.9800
C24—H24B0.9900C33A—H33E0.9800
C25—H25A0.9800C33A—H33F0.9800
C25—H25B0.9800C34A—C35A1.615 (19)
C25—H25C0.9800C34A—H34C0.9900
C16A—C17A1.3900C34A—H34D0.9900
C16A—C21A1.3900C35A—H35D0.9800
C17A—C18A1.3900C35A—H35E0.9800
C17A—H17B0.9500C35A—H35F0.9800
C18A—C19A1.3900
C1—Se1—Se1i103.5 (2)C20A—C21A—C16A120.0
C21—O2—C26119.4 (9)C20A—C21A—O2117.0 (15)
C26A—O2—C21A118.8 (16)C16A—C21A—O2121.6 (15)
C7—N1—N2121.3 (6)C19A—N3A—C22A121.1 (8)
C8—N2—N1128.5 (6)C19A—N3A—C24A119.9 (8)
C8—N2—C15115.3 (5)C22A—N3A—C24A118.5 (8)
N1—N2—C15115.5 (5)N3A—C22A—C23A113.7 (11)
C2—C1—C6118.3 (7)N3A—C22A—H22C108.8
C2—C1—Se1122.5 (6)C23A—C22A—H22C108.8
C6—C1—Se1119.2 (5)N3A—C22A—H22D108.8
C1—C2—C3123.2 (8)C23A—C22A—H22D108.8
C1—C2—H2A118.4H22C—C22A—H22D107.7
C3—C2—H2A118.4C22A—C23A—H23D109.5
C2—C3—C4119.3 (7)C22A—C23A—H23E109.5
C2—C3—H3A120.4H23D—C23A—H23E109.5
C4—C3—H3A120.4C22A—C23A—H23F109.5
C5—C4—C3119.8 (7)H23D—C23A—H23F109.5
C5—C4—H4A120.1H23E—C23A—H23F109.5
C3—C4—H4A120.1N3A—C24A—C25A114.2 (9)
C4—C5—C6120.2 (8)N3A—C24A—H24C108.7
C4—C5—H5A119.9C25A—C24A—H24C108.7
C6—C5—H5A119.9N3A—C24A—H24D108.7
C5—C6—C1119.2 (7)C25A—C24A—H24D108.7
C5—C6—C7116.6 (7)H24C—C24A—H24D107.6
C1—C6—C7124.1 (7)C24A—C25A—H25D109.5
N1—C7—C6117.5 (7)C24A—C25A—H25E109.5
N1—C7—H7A121.3H25D—C25A—H25E109.5
C6—C7—H7A121.3C24A—C25A—H25F109.5
O1—C8—N2125.8 (6)H25D—C25A—H25F109.5
O1—C8—C9129.0 (7)H25E—C25A—H25F109.5
N2—C8—C9105.2 (6)O2—C26—C27114.7 (9)
C10—C9—C14121.0 (7)O2—C26—C31125.3 (9)
C10—C9—C8129.5 (7)C27—C26—C31120.0
C14—C9—C8109.5 (6)C26—C27—C28120.0
C11—C10—C9117.7 (8)C26—C27—H27A120.0
C11—C10—H10A121.1C28—C27—H27A120.0
C9—C10—H10A121.1C29—C28—C27120.0
C12—C11—C10121.7 (8)C29—C28—N4121.3 (5)
C12—C11—H11A119.2C27—C28—N4118.5 (5)
C10—C11—H11A119.2C28—C29—C30120.0
C11—C12—C13121.0 (8)C28—C29—H29A120.0
C11—C12—H12A119.5C30—C29—H29A120.0
C13—C12—H12A119.5C29—C30—C31120.0
C14—C13—C12117.3 (8)C29—C30—H30A120.0
C14—C13—H13A121.3C31—C30—H30A120.0
C12—C13—H13A121.3C30—C31—C26120.0
C13—C14—C9121.2 (7)C30—C31—C15120.8 (10)
C13—C14—C15127.6 (7)C26—C31—C15119.1 (10)
C9—C14—C15111.1 (6)C28—N4—C34120.1 (8)
N2—C15—C1498.9 (6)C28—N4—C32120.2 (7)
N2—C15—C31A111.4 (18)C34—N4—C32117.2 (9)
C14—C15—C31A114.5 (18)C33—C32—N4104.4 (10)
N2—C15—C16A111.5 (12)C33—C32—H32A110.9
C14—C15—C16A108.3 (13)N4—C32—H32A110.9
C31A—C15—C16A111.6 (18)C33—C32—H32B110.9
N2—C15—C16110.2 (7)N4—C32—H32B110.9
C14—C15—C16111.6 (8)H32A—C32—H32B108.9
N2—C15—C31112.2 (10)C32—C33—H33A109.5
C14—C15—C31113.3 (10)C32—C33—H33B109.5
C16—C15—C31110.2 (10)H33A—C33—H33B109.5
C17—C16—C21120.0C32—C33—H33C109.5
C17—C16—C15119.6 (9)H33A—C33—H33C109.5
C21—C16—C15120.4 (9)H33B—C33—H33C109.5
C16—C17—C18120.0N4—C34—C35107.2 (9)
C16—C17—H17A120.0N4—C34—H34A110.3
C18—C17—H17A120.0C35—C34—H34A110.3
C19—C18—C17120.0N4—C34—H34B110.3
C19—C18—H18A120.0C35—C34—H34B110.3
C17—C18—H18A120.0H34A—C34—H34B108.5
C18—C19—C20120.0C34—C35—H35A109.5
C18—C19—N3120.2 (5)C34—C35—H35B109.5
C20—C19—N3119.8 (5)H35A—C35—H35B109.5
C21—C20—C19120.0C34—C35—H35C109.5
C21—C20—H20A120.0H35A—C35—H35C109.5
C19—C20—H20A120.0H35B—C35—H35C109.5
O2—C21—C20114.7 (8)O2—C26A—C27A115.1 (16)
O2—C21—C16125.2 (8)O2—C26A—C31A124.9 (16)
C20—C21—C16120.0C27A—C26A—C31A120.0
C19—N3—C22120.9 (7)C26A—C27A—C28A120.0
C19—N3—C24119.4 (7)C26A—C27A—H27B120.0
C22—N3—C24118.2 (7)C28A—C27A—H27B120.0
N3—C22—C23113.9 (10)C29A—C28A—C27A120.0
N3—C22—H22A108.8C29A—C28A—N4A121.3 (6)
C23—C22—H22A108.8C27A—C28A—N4A118.6 (6)
N3—C22—H22B108.8C28A—C29A—C30A120.0
C23—C22—H22B108.8C28A—C29A—H29B120.0
H22A—C22—H22B107.7C30A—C29A—H29B120.0
C22—C23—H23A109.5C31A—C30A—C29A120.0
C22—C23—H23B109.5C31A—C30A—H30B120.0
H23A—C23—H23B109.5C29A—C30A—H30B120.0
C22—C23—H23C109.5C30A—C31A—C26A120.0
H23A—C23—H23C109.5C30A—C31A—C15119.8 (19)
H23B—C23—H23C109.5C26A—C31A—C15120.0 (19)
N3—C24—C25114.1 (8)C28A—N4A—C34A119.9 (9)
N3—C24—H24A108.7C28A—N4A—C32A120.3 (9)
C25—C24—H24A108.7C34A—N4A—C32A117.2 (9)
N3—C24—H24B108.7C33A—C32A—N4A104.5 (11)
C25—C24—H24B108.7C33A—C32A—H32C110.9
H24A—C24—H24B107.6N4A—C32A—H32C110.9
C24—C25—H25A109.5C33A—C32A—H32D110.9
C24—C25—H25B109.5N4A—C32A—H32D110.9
H25A—C25—H25B109.5H32C—C32A—H32D108.9
C24—C25—H25C109.5C32A—C33A—H33D109.5
H25A—C25—H25C109.5C32A—C33A—H33E109.5
H25B—C25—H25C109.5H33D—C33A—H33E109.5
C17A—C16A—C21A120.0C32A—C33A—H33F109.5
C17A—C16A—C15118.9 (16)H33D—C33A—H33F109.5
C21A—C16A—C15121.1 (16)H33E—C33A—H33F109.5
C16A—C17A—C18A120.0N4A—C34A—C35A107.5 (10)
C16A—C17A—H17B120.0N4A—C34A—H34C110.2
C18A—C17A—H17B120.0C35A—C34A—H34C110.2
C19A—C18A—C17A120.0N4A—C34A—H34D110.2
C19A—C18A—H18B120.0C35A—C34A—H34D110.2
C17A—C18A—H18B120.0H34C—C34A—H34D108.5
C18A—C19A—C20A120.0C34A—C35A—H35D109.5
C18A—C19A—N3A120.1 (6)C34A—C35A—H35E109.5
C20A—C19A—N3A119.9 (6)H35D—C35A—H35E109.5
C21A—C20A—C19A120.0C34A—C35A—H35F109.5
C21A—C20A—H20B120.0H35D—C35A—H35F109.5
C19A—C20A—H20B120.0H35E—C35A—H35F109.5
C7—N1—N2—C833.2 (11)C31A—C15—C16A—C17A174 (2)
C7—N1—N2—C15156.7 (7)N2—C15—C16A—C21A120.5 (13)
C6—C1—C2—C31.9 (11)C14—C15—C16A—C21A131.7 (12)
Se1—C1—C2—C3178.4 (6)C31A—C15—C16A—C21A5 (3)
C1—C2—C3—C41.2 (12)C21A—C16A—C17A—C18A0.0
C2—C3—C4—C50.0 (12)C15—C16A—C17A—C18A179 (2)
C3—C4—C5—C60.4 (12)C16A—C17A—C18A—C19A0.0
C4—C5—C6—C10.3 (11)C17A—C18A—C19A—C20A0.0
C4—C5—C6—C7178.4 (7)C17A—C18A—C19A—N3A180 (2)
C2—C1—C6—C51.4 (10)C18A—C19A—C20A—C21A0.0
Se1—C1—C6—C5178.8 (5)N3A—C19A—C20A—C21A180 (2)
C2—C1—C6—C7179.4 (6)C19A—C20A—C21A—C16A0.0
Se1—C1—C6—C70.9 (9)C19A—C20A—C21A—O2167 (3)
N2—N1—C7—C6177.8 (6)C17A—C16A—C21A—C20A0.0
C5—C6—C7—N1175.5 (7)C15—C16A—C21A—C20A178 (2)
C1—C6—C7—N12.5 (10)C17A—C16A—C21A—O2166 (3)
N1—N2—C8—O18.7 (12)C15—C16A—C21A—O213 (2)
C15—N2—C8—O1178.8 (7)C26A—O2—C21A—C20A176 (2)
N1—N2—C8—C9169.5 (7)C26A—O2—C21A—C16A17 (3)
C15—N2—C8—C90.6 (8)C18A—C19A—N3A—C22A5 (3)
O1—C8—C9—C103.6 (14)C20A—C19A—N3A—C22A175.4 (17)
N2—C8—C9—C10178.3 (8)C18A—C19A—N3A—C24A175.9 (17)
O1—C8—C9—C14178.3 (8)C20A—C19A—N3A—C24A4 (2)
N2—C8—C9—C140.3 (8)C19A—N3A—C22A—C23A74 (2)
C14—C9—C10—C110.5 (12)C24A—N3A—C22A—C23A97 (2)
C8—C9—C10—C11177.3 (8)C19A—N3A—C24A—C25A78 (3)
C9—C10—C11—C121.6 (13)C22A—N3A—C24A—C25A94 (3)
C10—C11—C12—C133.4 (15)C21—O2—C26—C27177.5 (12)
C11—C12—C13—C142.8 (13)C21—O2—C26—C314.7 (15)
C12—C13—C14—C90.7 (12)O2—C26—C27—C28177.9 (13)
C12—C13—C14—C15175.9 (8)C31—C26—C27—C280.0
C10—C9—C14—C131.0 (12)C26—C27—C28—C290.0
C8—C9—C14—C13177.2 (7)C26—C27—C28—N4175.1 (11)
C10—C9—C14—C15178.1 (7)C27—C28—C29—C300.0
C8—C9—C14—C150.1 (9)N4—C28—C29—C30175.0 (11)
C8—N2—C15—C140.7 (8)C28—C29—C30—C310.0
N1—N2—C15—C14170.8 (6)C29—C30—C31—C260.0
C8—N2—C15—C31A121.4 (18)C29—C30—C31—C15176.6 (18)
N1—N2—C15—C31A50.0 (18)O2—C26—C31—C30177.7 (14)
C8—N2—C15—C16A113.1 (14)C27—C26—C31—C300.0
N1—N2—C15—C16A75.4 (14)O2—C26—C31—C155.7 (10)
C8—N2—C15—C16116.3 (9)C27—C26—C31—C15176.6 (17)
N1—N2—C15—C1672.2 (9)N2—C15—C31—C3054.6 (13)
C8—N2—C15—C31120.4 (10)C14—C15—C31—C3056.3 (13)
N1—N2—C15—C3151.0 (11)C16—C15—C31—C30177.8 (9)
C13—C14—C15—N2177.3 (8)N2—C15—C31—C26128.8 (8)
C9—C14—C15—N20.5 (8)C14—C15—C31—C26120.3 (9)
C13—C14—C15—C31A64 (2)C16—C15—C31—C265.6 (15)
C9—C14—C15—C31A118.9 (18)C29—C28—N4—C3417.8 (13)
C13—C14—C15—C16A61.1 (15)C27—C28—N4—C34167.2 (9)
C9—C14—C15—C16A115.8 (13)C29—C28—N4—C32179.1 (9)
C13—C14—C15—C1661.4 (12)C27—C28—N4—C325.9 (12)
C9—C14—C15—C16115.5 (9)C28—N4—C32—C3373.2 (14)
C13—C14—C15—C3163.7 (13)C34—N4—C32—C3388.6 (12)
C9—C14—C15—C31119.4 (11)C28—N4—C34—C3563.9 (14)
N2—C15—C16—C1751.8 (11)C32—N4—C34—C3598.0 (12)
C14—C15—C16—C1757.0 (11)C21A—O2—C26A—C27A167 (2)
C31—C15—C16—C17176.2 (12)C21A—O2—C26A—C31A15 (3)
N2—C15—C16—C21129.8 (7)O2—C26A—C27A—C28A178 (3)
C14—C15—C16—C21121.4 (8)C31A—C26A—C27A—C28A0.0
C31—C15—C16—C215.4 (13)C26A—C27A—C28A—C29A0.0
C21—C16—C17—C180.0C26A—C27A—C28A—N4A176 (2)
C15—C16—C17—C18178.4 (11)C27A—C28A—C29A—C30A0.0
C16—C17—C18—C190.0N4A—C28A—C29A—C30A176 (2)
C17—C18—C19—C200.0C28A—C29A—C30A—C31A0.0
C17—C18—C19—N3178.9 (10)C29A—C30A—C31A—C26A0.0
C18—C19—C20—C210.0C29A—C30A—C31A—C15174 (4)
N3—C19—C20—C21178.9 (10)O2—C26A—C31A—C30A178 (3)
C26—O2—C21—C20179.1 (11)C27A—C26A—C31A—C30A0.0
C26—O2—C21—C164.4 (18)O2—C26A—C31A—C157 (2)
C19—C20—C21—O2176.8 (15)C27A—C26A—C31A—C15174 (4)
C19—C20—C21—C160.0N2—C15—C31A—C30A51 (2)
C17—C16—C21—O2176.4 (16)C14—C15—C31A—C30A60 (2)
C15—C16—C21—O25.2 (13)C16A—C15—C31A—C30A176.5 (17)
C17—C16—C21—C200.0N2—C15—C31A—C26A123.3 (17)
C15—C16—C21—C20178.4 (11)C14—C15—C31A—C26A125.6 (16)
C18—C19—N3—C224.3 (15)C16A—C15—C31A—C26A2 (3)
C20—C19—N3—C22176.7 (9)C29A—C28A—N4A—C34A2 (2)
C18—C19—N3—C24169.8 (9)C27A—C28A—N4A—C34A173.9 (16)
C20—C19—N3—C2411.2 (13)C29A—C28A—N4A—C32A163.3 (16)
C19—N3—C22—C2378.1 (13)C27A—C28A—N4A—C32A13 (2)
C24—N3—C22—C2387.6 (13)C28A—N4A—C32A—C33A99 (2)
C19—N3—C24—C2570.6 (18)C34A—N4A—C32A—C33A99 (2)
C22—N3—C24—C2595.3 (17)C28A—N4A—C34A—C35A120 (2)
N2—C15—C16A—C17A61 (2)C32A—N4A—C34A—C35A42 (3)
C14—C15—C16A—C17A47 (2)
Symmetry code: (i) y+1/2, x1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···Se1i0.952.823.436 (8)124
C7—H7A···O10.952.432.940 (9)114
C7—H7A···O1ii0.952.633.391 (10)137
C12—H12A···O1iii0.952.563.447 (10)156
C33A—H33E···Se1i0.983.044.00 (3)168
Symmetry codes: (i) y+1/2, x1/2, z+1; (ii) y+1/2, x1/2, z+2; (iii) y+1, x+1, z+2.
Percentage contributions of interatomic contacts to the Hirshfeld surface for the title compound top
ContactPercentage contribution
H···H68.1
C···H/H···C21.2
O···H/H···O8.7
N···H/H···N1.6
Se···H/H···Se0.4
Comparison of selected (X-ray and DFT) bond lengths and angles (Å, °). top
Bonds/AnglesX-rayB3LYP/6-31G(d)
Se1—C11.939 (7)1.941
Se1—Se1'2.3517 (17)2.356
O1—C81.222 (9)1.224
O2—C211.315 (12)1.374
O2—C261.349 (13)1.368
N1—C71.280 (9)1.291
N1—N21.380 (8)1.353
N2—C81.378 (10)1.392
N2—C151.507 (9)1.513
C1—C61.415 (11)1.42
C19—N31.426 (7)1.383
C22—N31.446 (13)1.464
C24—N31.466 (12)1.461
N4—C281.423 (10)1.39
N4—C321.543 (14)1.461
N4—C341.481 (13)1.462
C1—Se1—Se1'103.5 (2)102.711
C26—O2—C21119.4 (9)119.241
C7—N1—N2121.3 (6)122.983
N1—N2—C15115.5 (5)116.391
C2—C1—Se1122.5 (6)121.361
C6—C1—Se1119.2 (5)119.262
O1—C8—N2125.8 (6)126.543
C8—N2—C15115.3 (5)114.337
O1—C8—C9129.0 (7)128.268
N2—C8—C9105.2 (6)105.19
C19—N3—C22120.9 (7)120.635
C19—N3—C24119.4 (7)120.99
C22—N3—C24118.2 (7)118.187
C28—N4—C32120.2 (7)120.875
C28—N4—C34120.1 (8)120.772
C32—N4—C34117.2 (9)117.917
C1—Se1—Se1'—C1'-88.9 (6)-73.195
Calculated energies top
Property
Total energy TE (eV)-224397
EHOMO-5.0048
ELUMO-1.2512
Gap, ΔE (eV)3.7536
Dipole moment, µ (Debye)7.182
Ionization enthalpy, IE (eV)5.0048
Electron gain enthalpy, EE (eV)1.2512
Electronegativity, χ3.128
Hardness, η1.8768
Softness, σ0.5328
Electrophilicity index, ω2.6066
Percentage contributions of interatomic contacts to the Hirshfeld surface for the title compound top
ContactPercentage contribution
H···H68.1
C···H/H···C21.2
O···H/H···O8.7
N···H/H···N1.6
Se···H/H···Se0.4
Comparison of selected (X-ray and DFT) bond lengths and angles (Å, °) top
X-rayB3LYP/6-31G(d)
Se1—C11.939 (7)1.941
Se1—Se1'2.3517 (17)2.356
O1—C81.222 (9)1.224
O2—C211.315 (12)1.374
O2—C261.349 (13)1.368
N1—C71.280 (9)1.291
N1—N21.380 (8)1.353
N2—C81.378 (10)1.392
N2—C151.507 (9)1.513
C1—C61.415 (11)1.42
C19—N31.426 (7)1.383
C22—N31.446 (13)1.464
C24—N31.466 (12)1.461
N4—C281.423 (10)1.39
N4—C321.543 (14)1.461
N4—C341.481 (13)1.462
C1—Se1—Se1'103.5 (2)102.711
C26—O2—C21119.4 (9)119.241
C7—N1—N2121.3 (6)122.983
N1—N2—C15115.5 (5)116.391
C2—C1—Se1122.5 (6)121.361
C6—C1—Se1119.2 (5)119.262
O1—C8—N2125.8 (6)126.543
C8—N2—C15115.3 (5)114.337
O1—C8—C9129.0 (7)128.268
N2—C8—C9105.2 (6)105.19
C19—N3—C22120.9 (7)120.635
C19—N3—C24119.4 (7)120.99
C22—N3—C24118.2 (7)118.187
C28—N4—C32120.2 (7)120.875
C28—N4—C34120.1 (8)120.772
C32—N4—C34117.2 (9)117.917
C1—Se1—Se1'—C1'-88.9 (6)-73.195
Symmetry code: (i) 1/2 + y, x - 1/2, 1 - z.

Acknowledgements

SKG remembers the long-time association and research collaboration of the late Professor Jerry P. Jasinski, Keene State College, New Hampshire. RB and MAM thank JUG and DST for the award of a Post-doctoral Fellowship and an INSPIRE Fellowship, respectively.

Funding information

Funding for this research was provided by: Jiwaji University, Gwalior, India (grant No. F/Dev/2019/612).

References

First citationAho, J. E., Pihko, P. M. & Rissa, T. K. (2005). Chem. Rev. 105, 4406–4440.  CrossRef PubMed CAS Google Scholar
First citationAlberto, E. E., Soares, L. C., Sudati, J. H., Borges, A. C. A., Rocha, J. B. T. & Braga, A. L. (2009). Eur. J. Org. Chem. 2009, 4211–4214.  Web of Science CrossRef Google Scholar
First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDickson, P. M., McGowan, M. A. D., Yearwood, B., Heeg, M. J. & Oliver, J. P. (1999). J. Organomet. Chem. 588, 42–50.  CSD CrossRef CAS Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J. (2019). GAUSSIAN16, Revision C.01, Gaussian, Inc., Wallingford CT, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGupta, S. K. & Parihar, J. (1995). J. Coord. Chem. 35, 307–311.  CrossRef CAS Google Scholar
First citationGupta, S. K. & Parihar, J. (1998). Transition Met. Chem. 23, 117–120.  CrossRef CAS Google Scholar
First citationGupta, S. K., Parihar, J. & Tripathi, S. K. (1998). Transition Met. Chem. 23, 253–256.  CrossRef CAS Google Scholar
First citationJames, D. M., Kunze, H. B. & Faulkner, D. J. (1991). J. Nat. Prod. 54, 1137–1140.  CrossRef PubMed CAS Web of Science Google Scholar
First citationKhandelwal, B. L. & Gupta, S. K. (1989). Inorg. Chim. Acta, 166, 199–204.  CrossRef CAS Google Scholar
First citationKotha, S., Deb, A. C., Lahiri, K. & Manivannan, E. (2009). Synthesis, pp. 165–193.  CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKulcsar, M., Beleaga, A., Silvestru, C., Nicolescu, A., Deleanu, C., Todasca, C. & Silvestru, A. (2007). Dalton Trans. pp. 2187–2196.  Web of Science CSD CrossRef Google Scholar
First citationLeite, A., Silva, A. M. G., Cunha-Silva, L., de Castro, B., Gameiro, P. & Rangel, M. (2013). Dalton Trans. 42, 6110–6118.  CSD CrossRef CAS PubMed Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMugesh, G., du Mont, W. W. & Sies, H. (2001). Chem. Rev. 101, 2125–2179.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNogueira, C. W., Zeni, G. & Rocha, J. B. T. (2004). Chem. Rev. 104, 6255–6286.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPanda, S., Dutta, P. K., Ramakrishna, G., Reddy, C. M. & Zade, S. S. (2012). J. Organomet. Chem. 717, 45–51.  CSD CrossRef CAS Google Scholar
First citationPanda, S., Zade, S. S., Singh, H. B. & Wolmershäuser, G. (2005). J. Organomet. Chem. 690, 3142–3148.  CSD CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPolik, W. F. & Schmidt, J. R. (2021). WIREs Comput. Mol. Sci. e1554. https://doi.org/10.1002/wcms.1554  Google Scholar
First citationPress, D. J., Mercier, E. A., Kuzma, D. & Back, T. G. (2008). J. Org. Chem. 73, 4252–4255.  CrossRef PubMed CAS Google Scholar
First citationSaravanan, R., Singh, H. B. & Butcher, R. J. (2021). Acta Cryst. C77, 271–280.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, W., Sun, S., Li, X. & Ma, H. (2010). Inorg. Chem. 49, 1206–1210.  CSD CrossRef CAS PubMed Google Scholar
First citationSingh, V. P., Singh, H. B. & Butcher, R. J. (2011). Chem. Commun. 47, 7221–7223.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds