research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and thermal properties of bis­­(1,3-di­cyclo­hexyl­thio­urea-κS)bis­(iso­thio­cyanato-κN)cobalt(II)

crossmark logo

aInstitute of Inorganic Chemistry, University of Kiel, Max-Eyth.-Str. 2, 24118 Kiel, Germany
*Correspondence e-mail: ckrebs@ac.uni-kiel.de

Edited by O. Blacque, University of Zürich, Switzerland (Received 5 November 2021; accepted 14 December 2021; online 1 January 2022)

Crystals of the title compound, [Co(NCS)2(C13H24N2S)2], were obtained by the reaction of Co(NCS)2 with 1,3-di­cyclo­hexyl­thio­urea in ethanol. Its crystal structure consists of discrete complexes that are located on twofold rotation axes, in which the CoII cations are tetra­hedrally coordinated by two terminal N-bonded thio­cyanate anions and two 1,3-di­cyclo­hexyl­thio­urea ligands. These complexes are linked via inter­molecular N—H⋯S and C—H⋯S hydrogen bonding into chains, which elongate in the b-axis direction. These chains are closely packed in a pseudo-hexa­gonal manner. The CN stretching vibration of the thio­cyanate anions located at 2038 cm−1 is in agreement with only terminal bonded anionic ligands linked to metal cations in a tetra­hedral coordination. TG–DTA measurements prove the decomposition of the compound at about 227°C. DSC measurements reveal a small endothermic signal before decomposition at about 174°C, which might correspond to melting.

1. Chemical context

Coordination polymers based on Co(NCS)2 have been investigated for several years because they can show inter­esting magnetic properties due to the large magnetic anisotropy of CoII. This is the reason why we and others are especially inter­ested in this class of compounds. In most cases, the CoII cations are octa­hedrally coordinated and linked by pairs of thio­cyanate anions into chains, even if a few compounds with single thio­cyanate bridges have been reported (Palion-Gazda et al., 2015[Palion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380-2388.]). If the Co cations are all-trans or ciscistrans coordinated with the thio­cyanate anions in the trans-position, the chains are linear and frequently show anti­ferromagnetic or ferromagnetic behavior or a slow relaxation of the magnetization indicative of single-chain magnetism (Wang et al., 2005[Wang, X. Y., Li, B. L., Zhu, X. & Gao, S. (2005). Eur. J. Inorg. Chem. pp. 3277-3286.]; Shurda et al., 2013[Shurdha, E., Moore, C. E., Rheingold, A. L., Lapidus, S. H., Stephens, P. W., Arif, A. M. & Miller, J. S. (2013). Inorg. Chem. 52, 10583-10594.]; Wöhlert et al., 2014[Wöhlert, S., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Fink, L., Schmidt, M. U. & Näther, C. (2014). Inorg. Chem. 53, 8298-8310.]; Jin et al., 2007[Jin, Y., Che, Y. X. & Zheng, J. M. (2007). J. Coord. Chem. 60, 2067-2074.]; Prananto et al., 2017[Prananto, Y. P., Urbatsch, A., Moubaraki, B., Murray, K. S., Turner, D. R., Deacon, G. B. & Batten, S. R. (2017). Aust. J. Chem. 70, 516-528.]; Mautner et al., 2018[Mautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436-442.]; Rams et al., 2020[Rams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). Chem. Eur. J. 26, 2837-2851.]; Jochim et al., 2020a[Jochim, A., Lohmiller, T., Rams, M., Böhme, M., Ceglarska, M., Schnegg, A., Plass, W. & Näther, C. (2020a). Inorg. Chem. 59, 8971-8982.]). In the case where the Co centers are ciscistrans coordinated with the thio­cyanate anions in the cis-position, the chains are corrugated and the magnetic exchange is suppressed (Shi et al., 2007[Shi, J. M., Chen, J. N., Wu, C. J. & Ma, J. P. (2007). J. Coord. Chem. 60, 2009-2013.]; Böhme et al., 2020[Böhme, M., Jochim, A., Rams, M., Lohmiller, T., Suckert, S., Schnegg, A., Plass, W. & Näther, C. (2020). Inorg. Chem. 59, 5325-5338.]). In some cases Co(NCS)2 layers are observed, in which the Co cations are linked by single and double thio­cyanate bridges or by single anionic ligands exclusively (Suckert et al., 2016[Suckert, S., Rams, M., Böhme, M., Germann, L., Dinnebier, R. E., Plass, W., Werner, J. & Näther, C. (2016). Dalton Trans. 45, 18190-18201.]; Werner et al., 2015a[Werner, J., Tomkowicz, Z., Reinert, T. & Näther, C. (2015a). Eur. J. Inorg. Chem. pp. 3066-3075.]). These compounds usually show ferromagnetic behavior with low critical temperatures, which can be tuned by mixed crystal formation with NiII cations (Wellm et al., 2018[Wellm, C., Rams, M., Neumann, C., Ceglarska, M. & Näther, C. (2018). Cryst. Growth Des. 18, 3117-3123.], 2020[Wellm, C., Majcher-Fitas, A., Rams, M. & Näther, C. (2020). Dalton Trans. 49, 16707-16714.]; Neumann et al., 2018a[Neumann, T., Rams, M., Wellm, C. & Näther, C. (2018a). Cryst. Growth Des. 18, 6020-6027.]).

In the case where monocoordinating co-ligands are used and the chains are linear, these compounds have the general composition Co(NCS)2(L)2 (L = co-ligand) but for this composition a second structure exists, in which the Co cations are tetra­hedrally coordinated and in this case, no cooperative magnetic exchange inter­actions can be observed. The reason why, dependent on the nature of the co-ligand, chains or complexes are formed is not clear. First of all, one can assume that the cobalt cations would prefer a tetra­hedral coordination with bulky co-ligands because of steric crowding. On the other hand, we observed that strong N-donor co-ligands such as, for example, 4-(di­methyl­amino)­pyridine would lead to the formation of tetra­hedral complexes (Neumann et al., 2018b[Neumann, T., Jess, I., Pielnhofer, F. & Näther, C. (2018b). Eur. J. Inorg. Chem. pp. 4972-4981.]), whereas weaker donors such as 4-(4-chloro­benz­yl)pyridine (Werner et al., 2015b[Werner, J., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Neumann, T. & Näther, C. (2015b). Dalton Trans. 44, 14149-14158.]) or 4-(3-phenyl­prop­yl)pyridine (Werner et al., 2014[Werner, J., Rams, M., Tomkowicz, Z. & Näther, C. (2014). Dalton Trans. 43, 17333-17342.]; Ceglarska et al., 2021[Ceglarska, M., Böhme, M., Neumann, T., Plass, W., Näther, C. & Rams, M. (2021). Phys. Chem. Chem. Phys. 23, 10281-10289.]) lead to the formation of chains. In the case of inter­mediate donor ligands like 4-meth­oxy­pyridine, both isomers can be obtained, chains and discrete complexes (Mautner et al., 2018[Mautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436-442.]; Rams et al., 2020[Rams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). Chem. Eur. J. 26, 2837-2851.]).

[Scheme 1]

In the course of our systematic work, we became inter­ested in S-donor co-ligands and with thio­urea we obtained a compound with the desired chain structure showing anti­ferromagnetic ordering but no slow relaxation of the magnetization (Jochim et al., 2020a[Jochim, A., Lohmiller, T., Rams, M., Böhme, M., Ceglarska, M., Schnegg, A., Plass, W. & Näther, C. (2020a). Inorg. Chem. 59, 8971-8982.]). In further work, we obtained two compounds with 1,3-di­methyl­thio­urea (and 1,1,3,3-tetra­methyl­thio­urea) but in this case, tetra­hedral discrete complexes were obtained (Jochim et al., 2020b[Jochim, A., Radulovic, R., Jess, I. & Näther, C. (2020b). Acta Cryst. E76, 1476-1481.],c[Jochim, A., Radulovic, R., Jess, I. & Näther, C. (2020c). Acta Cryst. E76, 1373-1377.]). To investigate the influence of the co-ligand in more detail we used 1,3-di­cyclo­hexyl­thio­urea as the co-ligand and we obtained crystals of the title compound, which were characterized by single crystal X-ray diffraction, which proves the formation of a discrete complex even with this ligand. Investigations using X-ray powder diffraction show that the title compound was obtained as a pure phase (Fig. 1[link]). The CN stretching vibration is observed at 2038 cm−1, which is typical for thio­cyanates that are only terminal bonded to metal cations in a tetra­hedral coordination (Fig. S1). Measurements using simultaneously differential thermoanalysis (DTA) and thermogravimetry reveal the decomposition of the title compound starting at about 227°C, which is accompanied with an endothermic event in the DTA curve (Fig. S2). The experimental mass loss of 37.7% is in a reasonable agreement with that calculated for the removal of one 1,3-di­cyclo­hexyl­thio­urea ligand of 36.6%. The mass loss in the second step is higher than expected for the removal of the second 1,3-di­cyclo­hexyl­thio­urea ligand, but in this temperature region the thio­cyanate anions also decompose. Additional measurements using differential scanning calorimetry show a small endothermic event before the compound decomposes (Fig. S3). To check if this event corresponds to some transition, the residue formed after the endothermic signal (see point `x′ in Fig. S3) was isolated and investigated by XRPD measurements, which shows that the powder pattern is identical to that of the pristine material but of lower crystallinity (Fig. S4).

[Figure 1]
Figure 1
Experimental (top) and calculated powder pattern (bottom) of the title compound measured with Cu Kα radiation.

2. Structural commentary

The asymmetric unit of the title compound consists of one CoII cation that is located on a twofold rotation axis, one thio­cyanate anion and one 1,3-di­cyclo­hexyl­thio­urea ligand that occupies general positions. The CoII cations are fourfold coordinated by two terminal N-bonded thio­cyanate anions and two sulfur atoms of 1,3-di­cyclo­hexyl­thio­urea ligands each (Fig. 2[link]). The Co—N and Co—S distances are comparable to that observed in other Co(NCS)2 compounds with thio­urea derivatives (Table 1[link], Jochim et al., 2020a[Jochim, A., Lohmiller, T., Rams, M., Böhme, M., Ceglarska, M., Schnegg, A., Plass, W. & Näther, C. (2020a). Inorg. Chem. 59, 8971-8982.],b[Jochim, A., Radulovic, R., Jess, I. & Näther, C. (2020b). Acta Cryst. E76, 1476-1481.]). The bond angles deviate from the ideal values, revealing that the tetra­hedra are slightly distorted (see supporting information). Both hexane rings of the 1,3-di­methyl­thio­urea ligand are in a chair conformation (Figs. 2[link] and 3[link]). There are two symmetry-equivalent intra­molecular N—H⋯N hydrogen bonds between the amino H atom of the 1,3-di­cyclo­hexyl­thio­urea ligand and the N atoms of the thio­cyanate anions (Table 2[link] and Fig. 3[link]). The N—H⋯N angle is close to linearity, indicating that this is a relatively strong inter­action (Table 2[link]).

Table 1
Selected geometric parameters (Å, °)

Co1—N1 1.9516 (16) Co1—S11 2.3130 (5)
       
N1—Co1—N1i 113.00 (10) N1—Co1—S11 106.00 (5)
N1—Co1—S11i 109.67 (5)    
Symmetry code: (i) [-x+1, y, -z+{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11⋯N1 0.88 2.33 3.169 (2) 160
C12—H12⋯S1ii 1.00 2.93 3.774 (2) 143
N12—H12A⋯S1ii 0.88 2.84 3.6770 (16) 159
C19—H19B⋯S11 0.99 3.00 3.529 (2) 114
Symmetry code: (ii) [x, y-1, z].
[Figure 2]
Figure 2
Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (i) −x + 1, y, −z + [{3\over 2}].]
[Figure 3]
Figure 3
View of the discrete complex with intra­molecular N—H⋯N hydrogen bonding shown as dashed lines.

3. Supra­molecular features

In the crystal structure of the title compound the discrete complexes are linked into chains by two inter­molecular N—H⋯S hydrogen bonds related by the twofold rotation axis between the N—H H atoms and the thio­cyanate S atom of a neighboring complex (Fig. 4[link], Table 2[link]). The discrete complexes are additionally linked by two symmetry-equivalent C—H⋯S hydrogen bonds, which might correspond to a weak inter­action (Fig. 4[link], Table 2[link]). These chains elongate along the b-axis direction and each chain is surrounded by six neighboring chains in a pseudo-hexa­gonal manner (Fig. 5[link]).

[Figure 4]
Figure 4
Crystal structure of the title compound with a view of a chain formed by inter­molecular N—H⋯S and C—H⋯S hydrogen bonding (dashed lines).
[Figure 5]
Figure 5
Crystal structure of the title compound with a view in the direction of the crystallographic b-axis, showing the arrangement of the chains. Inter­molecular N—H⋯S and C—H⋯S hydrogen bonding is shown as dashed lines.

4. Database survey

There are only ten crystal structures with this ligand reported in the Cambridge Structural Database (CSD version 5.42, last update November 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). The most important for us is bis­(1,3-di­cyclo­hexyl­thio­urea)bis­(iso­thio­cyanato)­zinc(II), which is isotypic to the title compound (refcode: TINBIC; Jia et al., 2007[Jia, D. X., Zhu, A. M., Deng, J. & Zhang, Y. (2007). Z. Anorg. Allg. Chem. 633, 2059-2063.]). These authors also reported the structure of hexa­kis­(1,3-di­cyclo­hexyl­thio­urea)lead(II)bis­(iso­thio­cyanate) ethanol solvate, which consists of discrete complexes, in which the PbII cations are octa­hedrally coordinated by six 1,3-di­cyclo­hexyl­thio­urea ligands (refcode: TINBUO; Jia et al., 2007[Jia, D. X., Zhu, A. M., Deng, J. & Zhang, Y. (2007). Z. Anorg. Allg. Chem. 633, 2059-2063.]). In that paper, the crystal structure of bis­(1,3-di­cyclo­hexyl­thio­urea)di­chloro­cobalt(II) is also reported (refcode: TINBEY). The crystal structures of chloro­bis­(1,3-di­cyclo­hexyl­thio­urea)copper(I), of bromo­bis­(1,3-di­cyclo­hexyl­thio­urea)copper(I) (refcodes: WODVER and WODVIV; Jia et al., 2008[Jia, D. X., Zhu, A. M., Ji, M. & Zhang, Y. (2008). J. Coord. Chem. 61, 2307-2314.]) and of chloro-tris­(1,3-di­cyclo­hexyl­thio­urea)tellurium(II) chloride (refcode: OCAWUK; Husebye et al., 2001[Husebye, S., Törnroos, K. W. & Zhu, H.-Z. (2001). Acta Cryst. C57, 854-856.]) also consist of discrete complexes. The crystal structure of 1,3-di­cyclo­hexyl­thio­urea was reported by Ramnathan et al. (1996[Ramnathan, A., Sivakumar, K., Subramanian, K., Meerarani, D., Ramadas, K. & Fun, H.-K. (1996). Acta Cryst. C52, 139-142.]) (refcode: ZIVGUG).

There are also several crystal structures with Co(NCS)2 reported, in which the CoII cations are tetra­hedrally coordinated by two terminal N-bonded thio­cyanate anions and two N-donor co-ligands, for example two polymorphic modifications of bis­(4-di­methyl­amino­pyridine)­bis­(iso­thio­cyanato)­cobalt(II) (refcode: GIQPEE; Neumann et al., 2018a[Neumann, T., Rams, M., Wellm, C. & Näther, C. (2018a). Cryst. Growth Des. 18, 6020-6027.]; Krebs et al., 2021[Krebs, C., Jess, I. & Näther, C. (2021). Acta Cryst. E77, 1120-1125.]), bis­(4-vinyl­pyridine)­di(iso­thio­cyanato)­cobalt(II) (refcode: BOZJUW; Foxman & Mazurek, 1982[Foxman, B. M. & Mazurek, H. (1982). Inorg. Chim. Acta, 59, 231-235.]), bis­(2-chloro­pyridine)­bis­(iso­thio­cyanato)­cobalt(II), bis­(2-bromo­pyridine)­bis­(iso­thio­cyanato)­cobalt(II), bis­(2-methyl­pyridine)bis­(iso­thio­cyanato)­cobalt(II) (refcodes: DEYDUI, DEYFIY and DEYGAR; Wöhlert et al., 2013[Wöhlert, S., Jess, I., Englert, U. & Näther, C. (2013). CrystEngComm, 15, 5326-5336.]) and bis­(4-meth­oxy­pyridine)­bis­(iso­thio­cyanato)­cobalt(II) (refcode: KIJQAY; Mautner et al., 2018[Mautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436-442.]).

Two structures have already been reported with thio­urea derivatives and Co(NCS)2, viz. bis­(1,3-di­methyl­thio­urea)bis­(iso­thio­cyanato)­cobalt(II) (refcode: QUSZAI; Jochim et al., 2020b[Jochim, A., Radulovic, R., Jess, I. & Näther, C. (2020b). Acta Cryst. E76, 1476-1481.]) and bis­(1,1,3,3-tetra­methyl­thio­urea)bis­(iso­thio­cyanato)­cobalt(II) (refcode: WUQTIO; Jochim et al., 2020c[Jochim, A., Radulovic, R., Jess, I. & Näther, C. (2020c). Acta Cryst. E76, 1373-1377.]).

5. Synthesis and crystallization

Synthesis

Co(NCS)2 was purchased from Merck. 1,3-Di­cyclo­hexyl­thio­urea was purchased from Alfa Aesar. All chemicals were used without further purification. Blue-colored single crystals suitable for single-crystal X-ray analysis were obtained after storage of 0.25 mmol Co(NCS)2 (43.8 mg) and 0.50 mmol 1,3-di­cyclo­hexyl­thio­urea (120.2 mg) in 2.0 ml ethanol at 333 K over night.

Experimental details

The data collection for single crystal structure analysis was performed using an XtaLAB Synergy, Dualflex, HyPix diffractometer from Rigaku with Cu-Kα radiation.

The IR spectrum was measured using an ATI Mattson Genesis Series FTIR Spectrometer, control software: WINFIRST, from ATI Mattson.

The PXRD measurement was performed with Cu Kα1 radiation (λ = 1.540598 Å) using a Stoe Transmission Powder Diffraction System (STADI P) equipped with a MYTHEN 1K detector and a Johansson-type Ge(111) monochromator.

Thermogravimetry and differential thermoanalysis (TG–DTA) measurements were performed in a dynamic nitro­gen atmosphere in Al2O3 crucibles using a STA-PT 1000 thermobalance from Linseis. The instrument was calibrated using standard reference materials.

The DSC experiments were performed using a DSC 1 star system with STARe Excellence software from Mettler-Toledo AG under dynamic nitro­gen flow in Al pans.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All non-hydrogen atoms were refined anisotropically. The C-bound H atoms were positioned with idealized geometry and were refined isotropically with Uiso(H) = 1.2 Ueq(C) using a riding model.

Table 3
Experimental details

Crystal data
Chemical formula [Co(NCS)2(C13H24N2S)2]
Mr 655.89
Crystal system, space group Monoclinic, C2/c
Temperature (K) 100
a, b, c (Å) 24.0667 (4), 8.8282 (1), 18.8910 (3)
β (°) 125.619 (2)
V3) 3262.76 (11)
Z 4
Radiation type Cu Kα
μ (mm−1) 6.73
Crystal size (mm) 0.15 × 0.08 × 0.03
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction.])
Tmin, Tmax 0.704, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 20399, 3503, 3462
Rint 0.025
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.096, 1.05
No. of reflections 3503
No. of parameters 177
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.65, −0.36
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2021); cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(1,3-dicyclohexylthiourea-κS)bis(isothiocyanato-κN)cobalt(II) top
Crystal data top
[Co(NCS)2(C13H24N2S)2]F(000) = 1396
Mr = 655.89Dx = 1.335 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
a = 24.0667 (4) ÅCell parameters from 13904 reflections
b = 8.8282 (1) Åθ = 2.9–78.5°
c = 18.8910 (3) ŵ = 6.73 mm1
β = 125.619 (2)°T = 100 K
V = 3262.76 (11) Å3Block, intense blue
Z = 40.15 × 0.08 × 0.03 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
3503 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source3462 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.025
Detector resolution: 10.0000 pixels mm-1θmax = 80.0°, θmin = 4.5°
ω scansh = 3030
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
k = 1110
Tmin = 0.704, Tmax = 1.000l = 2024
20399 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.054P)2 + 5.0479P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3503 reflectionsΔρmax = 0.65 e Å3
177 parametersΔρmin = 0.36 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.5000000.91248 (4)0.7500000.02073 (12)
N10.57874 (8)1.03449 (18)0.78063 (11)0.0283 (3)
C10.62890 (10)1.1041 (2)0.82549 (13)0.0241 (4)
S10.69885 (2)1.19936 (6)0.88857 (3)0.02946 (13)
S110.53579 (2)0.76716 (5)0.87146 (3)0.02478 (12)
C110.59547 (9)0.6489 (2)0.87525 (12)0.0221 (3)
N110.63300 (8)0.70206 (18)0.84996 (11)0.0257 (3)
H110.6288300.7994580.8379340.031*
C120.68063 (9)0.6182 (2)0.83960 (13)0.0250 (4)
H120.6642600.5112090.8234640.030*
C130.67862 (11)0.6900 (3)0.76500 (14)0.0377 (5)
H13A0.6910740.7983670.7779360.045*
H13B0.6316100.6835680.7109540.045*
C140.72780 (12)0.6107 (3)0.75124 (15)0.0433 (6)
H14A0.7125240.5049870.7324040.052*
H14B0.7273190.6628850.7045070.052*
C150.80009 (11)0.6105 (3)0.83419 (15)0.0342 (5)
H15A0.8172130.7158320.8495780.041*
H15B0.8303550.5531560.8242890.041*
C160.80239 (10)0.5391 (2)0.90921 (14)0.0297 (4)
H16A0.8493930.5466800.9631650.036*
H16B0.7905820.4303040.8967540.036*
C170.75272 (10)0.6167 (2)0.92332 (13)0.0276 (4)
H17A0.7527480.5623520.9691930.033*
H17B0.7679650.7219740.9433080.033*
N120.60327 (7)0.50735 (18)0.90351 (10)0.0224 (3)
H12A0.6358370.4523010.9084150.027*
C180.56066 (9)0.4371 (2)0.92713 (12)0.0212 (3)
H180.5500700.5158120.9557480.025*
C190.49330 (9)0.3789 (2)0.84687 (12)0.0244 (4)
H19A0.5025840.3011130.8172780.029*
H19B0.4682640.4634030.8055760.029*
C200.44955 (10)0.3106 (2)0.87343 (13)0.0262 (4)
H20A0.4374600.3905520.8989990.031*
H20B0.4066220.2703250.8211910.031*
C210.48772 (10)0.1834 (2)0.93957 (13)0.0281 (4)
H21A0.4952210.0983530.9118650.034*
H21B0.4596930.1456140.9586720.034*
C220.55656 (10)0.2392 (2)1.01863 (12)0.0256 (4)
H22A0.5816090.1530991.0585550.031*
H22B0.5486840.3154901.0503040.031*
C230.60031 (10)0.3096 (2)0.99230 (13)0.0264 (4)
H23A0.6432420.3498941.0445130.032*
H23B0.6123060.2311840.9658320.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0151 (2)0.0140 (2)0.0277 (2)0.0000.00945 (17)0.000
N10.0226 (8)0.0191 (8)0.0361 (9)0.0028 (6)0.0130 (7)0.0022 (7)
C10.0240 (9)0.0176 (8)0.0317 (9)0.0029 (7)0.0167 (8)0.0038 (7)
S10.0212 (2)0.0271 (2)0.0354 (2)0.00593 (17)0.0138 (2)0.00315 (18)
S110.0221 (2)0.0209 (2)0.0337 (2)0.00480 (16)0.01759 (19)0.00516 (17)
C110.0167 (8)0.0214 (9)0.0251 (8)0.0010 (7)0.0105 (7)0.0026 (7)
N110.0209 (7)0.0206 (8)0.0381 (9)0.0044 (6)0.0186 (7)0.0086 (6)
C120.0182 (8)0.0251 (9)0.0329 (9)0.0022 (7)0.0156 (8)0.0053 (8)
C130.0241 (10)0.0537 (14)0.0336 (10)0.0071 (9)0.0157 (9)0.0142 (10)
C140.0342 (12)0.0667 (17)0.0342 (11)0.0050 (11)0.0229 (10)0.0070 (11)
C150.0251 (10)0.0360 (11)0.0479 (12)0.0000 (8)0.0250 (10)0.0022 (9)
C160.0199 (9)0.0290 (10)0.0376 (10)0.0010 (8)0.0154 (8)0.0003 (8)
C170.0234 (9)0.0285 (9)0.0292 (9)0.0023 (7)0.0144 (8)0.0011 (8)
N120.0177 (7)0.0215 (7)0.0298 (7)0.0023 (6)0.0148 (6)0.0042 (6)
C180.0186 (8)0.0197 (8)0.0261 (9)0.0001 (7)0.0134 (7)0.0027 (7)
C190.0221 (9)0.0261 (9)0.0242 (8)0.0031 (7)0.0129 (7)0.0002 (7)
C200.0227 (9)0.0275 (10)0.0290 (9)0.0066 (7)0.0155 (8)0.0030 (7)
C210.0324 (10)0.0239 (9)0.0344 (10)0.0052 (8)0.0232 (9)0.0014 (8)
C220.0280 (9)0.0238 (9)0.0288 (9)0.0040 (7)0.0188 (8)0.0066 (7)
C230.0220 (9)0.0255 (9)0.0310 (9)0.0044 (7)0.0151 (8)0.0086 (7)
Geometric parameters (Å, º) top
Co1—N11.9516 (16)C16—H16B0.9900
Co1—N1i1.9517 (16)C16—C171.530 (3)
Co1—S112.3130 (5)C17—H17A0.9900
Co1—S11i2.3131 (5)C17—H17B0.9900
N1—C11.167 (3)N12—H12A0.8800
C1—S11.620 (2)N12—C181.472 (2)
S11—C111.7431 (18)C18—H181.0000
C11—N111.330 (2)C18—C191.526 (2)
C11—N121.328 (2)C18—C231.525 (2)
N11—H110.8800C19—H19A0.9900
N11—C121.470 (2)C19—H19B0.9900
C12—H121.0000C19—C201.529 (2)
C12—C131.520 (3)C20—H20A0.9900
C12—C171.522 (3)C20—H20B0.9900
C13—H13A0.9900C20—C211.526 (3)
C13—H13B0.9900C21—H21A0.9900
C13—C141.522 (3)C21—H21B0.9900
C14—H14A0.9900C21—C221.528 (3)
C14—H14B0.9900C22—H22A0.9900
C14—C151.519 (3)C22—H22B0.9900
C15—H15A0.9900C22—C231.534 (3)
C15—H15B0.9900C23—H23A0.9900
C15—C161.522 (3)C23—H23B0.9900
C16—H16A0.9900
N1—Co1—N1i113.00 (10)C12—C17—C16110.88 (16)
N1—Co1—S11i109.67 (5)C12—C17—H17A109.5
N1—Co1—S11106.00 (5)C12—C17—H17B109.5
N1i—Co1—S11i106.00 (5)C16—C17—H17A109.5
N1i—Co1—S11109.67 (5)C16—C17—H17B109.5
S11—Co1—S11i112.63 (3)H17A—C17—H17B108.1
C1—N1—Co1157.11 (17)C11—N12—H12A118.1
N1—C1—S1179.39 (19)C11—N12—C18123.87 (15)
C11—S11—Co1101.24 (6)C18—N12—H12A118.1
N11—C11—S11119.32 (14)N12—C18—H18108.3
N12—C11—S11120.02 (13)N12—C18—C19111.41 (15)
N12—C11—N11120.67 (16)N12—C18—C23109.67 (14)
C11—N11—H11116.0C19—C18—H18108.3
C11—N11—C12127.98 (16)C23—C18—H18108.3
C12—N11—H11116.0C23—C18—C19110.89 (16)
N11—C12—H12108.5C18—C19—H19A109.7
N11—C12—C13107.87 (16)C18—C19—H19B109.7
N11—C12—C17111.80 (16)C18—C19—C20110.05 (15)
C13—C12—H12108.5H19A—C19—H19B108.2
C13—C12—C17111.64 (16)C20—C19—H19A109.7
C17—C12—H12108.5C20—C19—H19B109.7
C12—C13—H13A109.4C19—C20—H20A109.4
C12—C13—H13B109.4C19—C20—H20B109.4
C12—C13—C14111.01 (18)H20A—C20—H20B108.0
H13A—C13—H13B108.0C21—C20—C19110.96 (16)
C14—C13—H13A109.4C21—C20—H20A109.4
C14—C13—H13B109.4C21—C20—H20B109.4
C13—C14—H14A109.4C20—C21—H21A109.5
C13—C14—H14B109.4C20—C21—H21B109.5
H14A—C14—H14B108.0C20—C21—C22110.86 (16)
C15—C14—C13111.2 (2)H21A—C21—H21B108.1
C15—C14—H14A109.4C22—C21—H21A109.5
C15—C14—H14B109.4C22—C21—H21B109.5
C14—C15—H15A109.4C21—C22—H22A109.2
C14—C15—H15B109.4C21—C22—H22B109.2
C14—C15—C16111.08 (17)C21—C22—C23111.83 (16)
H15A—C15—H15B108.0H22A—C22—H22B107.9
C16—C15—H15A109.4C23—C22—H22A109.2
C16—C15—H15B109.4C23—C22—H22B109.2
C15—C16—H16A109.3C18—C23—C22109.63 (15)
C15—C16—H16B109.3C18—C23—H23A109.7
C15—C16—C17111.61 (17)C18—C23—H23B109.7
H16A—C16—H16B108.0C22—C23—H23A109.7
C17—C16—H16A109.3C22—C23—H23B109.7
C17—C16—H16B109.3H23A—C23—H23B108.2
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···N10.882.333.169 (2)160
C12—H12···S1ii1.002.933.774 (2)143
N12—H12A···S1ii0.882.843.6770 (16)159
C19—H19B···S110.993.003.529 (2)114
Symmetry code: (ii) x, y1, z.
 

Acknowledgements

Financial support by the State of Schleswig-Holstein and the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

Funding information

Funding for this research was provided by: Deutsche Forschungsgemeinschaft (grant No. NA720/5-2).

References

First citationBöhme, M., Jochim, A., Rams, M., Lohmiller, T., Suckert, S., Schnegg, A., Plass, W. & Näther, C. (2020). Inorg. Chem. 59, 5325–5338.  Web of Science PubMed Google Scholar
First citationBrandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCeglarska, M., Böhme, M., Neumann, T., Plass, W., Näther, C. & Rams, M. (2021). Phys. Chem. Chem. Phys. 23, 10281–10289.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFoxman, B. M. & Mazurek, H. (1982). Inorg. Chim. Acta, 59, 231–235.  CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHusebye, S., Törnroos, K. W. & Zhu, H.-Z. (2001). Acta Cryst. C57, 854–856.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationJia, D. X., Zhu, A. M., Deng, J. & Zhang, Y. (2007). Z. Anorg. Allg. Chem. 633, 2059–2063.  CSD CrossRef CAS Google Scholar
First citationJia, D. X., Zhu, A. M., Ji, M. & Zhang, Y. (2008). J. Coord. Chem. 61, 2307–2314.  CSD CrossRef CAS Google Scholar
First citationJin, Y., Che, Y. X. & Zheng, J. M. (2007). J. Coord. Chem. 60, 2067–2074.  Web of Science CSD CrossRef CAS Google Scholar
First citationJochim, A., Lohmiller, T., Rams, M., Böhme, M., Ceglarska, M., Schnegg, A., Plass, W. & Näther, C. (2020a). Inorg. Chem. 59, 8971–8982.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationJochim, A., Radulovic, R., Jess, I. & Näther, C. (2020b). Acta Cryst. E76, 1476–1481.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJochim, A., Radulovic, R., Jess, I. & Näther, C. (2020c). Acta Cryst. E76, 1373–1377.  CSD CrossRef IUCr Journals Google Scholar
First citationKrebs, C., Jess, I. & Näther, C. (2021). Acta Cryst. E77, 1120–1125.  CSD CrossRef IUCr Journals Google Scholar
First citationMautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436–442.  Web of Science CSD CrossRef CAS Google Scholar
First citationNeumann, T., Jess, I., Pielnhofer, F. & Näther, C. (2018b). Eur. J. Inorg. Chem. pp. 4972–4981.  Web of Science CSD CrossRef Google Scholar
First citationNeumann, T., Rams, M., Wellm, C. & Näther, C. (2018a). Cryst. Growth Des. 18, 6020–6027.  Web of Science CrossRef CAS Google Scholar
First citationPalion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380–2388.  CAS Google Scholar
First citationPrananto, Y. P., Urbatsch, A., Moubaraki, B., Murray, K. S., Turner, D. R., Deacon, G. B. & Batten, S. R. (2017). Aust. J. Chem. 70, 516–528.  Web of Science CSD CrossRef CAS Google Scholar
First citationRamnathan, A., Sivakumar, K., Subramanian, K., Meerarani, D., Ramadas, K. & Fun, H.-K. (1996). Acta Cryst. C52, 139–142.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). Chem. Eur. J. 26, 2837–2851.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, J. M., Chen, J. N., Wu, C. J. & Ma, J. P. (2007). J. Coord. Chem. 60, 2009–2013.  CSD CrossRef CAS Google Scholar
First citationShurdha, E., Moore, C. E., Rheingold, A. L., Lapidus, S. H., Stephens, P. W., Arif, A. M. & Miller, J. S. (2013). Inorg. Chem. 52, 10583–10594.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSuckert, S., Rams, M., Böhme, M., Germann, L., Dinnebier, R. E., Plass, W., Werner, J. & Näther, C. (2016). Dalton Trans. 45, 18190–18201.  CSD CrossRef CAS PubMed Google Scholar
First citationWang, X. Y., Li, B. L., Zhu, X. & Gao, S. (2005). Eur. J. Inorg. Chem. pp. 3277–3286.  Web of Science CSD CrossRef Google Scholar
First citationWellm, C., Majcher-Fitas, A., Rams, M. & Näther, C. (2020). Dalton Trans. 49, 16707–16714.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWellm, C., Rams, M., Neumann, C., Ceglarska, M. & Näther, C. (2018). Cryst. Growth Des. 18, 3117–3123.  CrossRef CAS Google Scholar
First citationWerner, J., Rams, M., Tomkowicz, Z. & Näther, C. (2014). Dalton Trans. 43, 17333–17342.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWerner, J., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Neumann, T. & Näther, C. (2015b). Dalton Trans. 44, 14149–14158.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWerner, J., Tomkowicz, Z., Reinert, T. & Näther, C. (2015a). Eur. J. Inorg. Chem. pp. 3066–3075.  CSD CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWöhlert, S., Jess, I., Englert, U. & Näther, C. (2013). CrystEngComm, 15, 5326–5336.  Google Scholar
First citationWöhlert, S., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Fink, L., Schmidt, M. U. & Näther, C. (2014). Inorg. Chem. 53, 8298–8310.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds