research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a three-dimensional neodymium(III) coordination polymer, [Nd2(H2O)6(glutarato)(SO4)2]n

crossmark logo

aDepartment of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand, and bDepartment of Industrial Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
*Correspondence e-mail: Saranphong.Yimklan@cmu.ac.th

Edited by V. Jancik, Universidad Nacional Autónoma de México, México (Received 14 September 2021; accepted 5 January 2022; online 11 January 2022)

A three-dimensional coordination polymer, poly[hexa­aqua­(μ4-glutarato)bis(μ3-sulfato)­dineodymium(III)], [Nd2(glutarato)(SO4)2(H2O)6]n (glutarato2– = C5H6O42–), 1, consisting of cationic {Nd2(H2O)6(SO4)2}n2n+ layers linked by bridging glutarate ligands, was synthesized by the microwave-heating technique within few minutes. The crystal structure of 1 consists of two crystallographically independent TPRS-{NdIIIO9} (TPRS is tricapped trigonal–prismatic geometry) units that form an edge-sharing dinuclear cluster inter­connected to neighbouring dimers by the μ3-SO42– anions, yielding a cationic two-dimensional {Nd2(H2O)6(SO4)2}n2n+ sheet. Adjacent cationic layers are then linked via the μ4-glutarato2– ligands into a three-dimensional coordination network. Strong O—H⋯O hydrogen bonds are the predominant inter­action in the crystal structure.

1. Chemical context

Coordination polymers (CPs) and metal–organic frameworks (MOFs) have attracted much attention because of the fascin­ating tuneability of their mol­ecular architectures and functionalities that helps to adjust their properties for applications in different areas such as in sensing and magnetism, as well as catalysis. These properties are cooperatively provided by both the inorganic building units and the organic counterparts (Furukawa et al., 2013[Furukawa, H., Cordova, K. E., O'Keeffe, M. & Yaghi, O. M. (2013). Science, 341, 1230444-1230444.]). Across the periodic table, the not-so-rare earth lanthanides (Ln) have become one of the promising choices for such materials because of their robust Ln—O bonds, versatile coordination geometries and high thermal stability with exotic properties, including photoluminescence and adaptive active sites for catalysis (Pagis et al., 2016[Pagis, C., Ferbinteanu, M., Rothenberg, G. & Tanase, S. (2016). ACS Catal. 6, 6063-6072.]). On the other hand, the flexibility of the organic linkers, such as aliphatic polycarboxyl­ates, can also diversify the structural architecture that sometimes defines the macroscopic properties of the materials (Kim et al., 2017[Kim, H.-C., Huh, S., Kim, J. Y., Moon, H. R., Lee, D. N. & Kim, Y. (2017). CrystEngComm, 19, 99-109.]).

Herein, we report a microwave synthesis of a new three-dimensional coordination polymer, [Nd2(H2O)6(glutarato)(SO4)2]n (1). The crystal structure reveals that the glutarates act as bridging ligands binding the cationic {Nd2(H2O)6(SO4)2}n2n+ sheets into a three-dimensional network.

2. Structural commentary

The coordination network 1, [Nd2(H2O)6(glutarato)(SO4)2]n crystallizes in the monoclinic P21/c space group. There are two crystallographically independent NdIII cations (Nd1 and Nd2), two sulfate anions, and six coordinated water mol­ecules in the asymmetric unit, as illustrated in Fig. 1[link].

[Scheme 1]
[Figure 1]
Figure 1
Graphical representations of (a) an extended asymmetric unit of 1 drawn with 50% probability ellipsoids, (b) coordination geometries of Nd1 (top) and Nd2 (bottom) and (c) coordination environment of Nd1 (left) and Nd2 (right). [Symmetry codes: (i) −x + 2, −y, −z; (ii) −x + 2, y - 1/2, −z − [{1\over 2}]; (iii) x, −y + [{1\over 2}], z + [{1\over 2}]; (iv) −x + 1, −y + 1, −z; (v) x, −y + [{1\over 2}], z − [{1\over 2}]; (vi) −x + 2, y + [{1\over 2}], −z − [{1\over 2}].]

Both NdIII cations are nine-coordinated to O atoms from one bridging glutarate2−, two chelating glutarate2−, two chelating sulfate anions and three coordinated H2O, adopting a distorted tricapped trigonal–prismatic geometry, TPRS-{NdIIIO9} (see Fig. 1[link]b), forming an edge-sharing dinuclear unit with its symmetry-related NdIIIO9 polyhedron. The NdIII—O bond distances are in the range of 2.383 (2)–2.785 (2) Å, which are reasonable and comparable to those reported for other NdIII coordination polymers such as [Nd(H2O)4(glutarato)]Cl (Hussain et al., 2015[Hussain, S., Khan, I. U., Harrison, W. T. A. & Tahir, M. N. (2015). J. Struct. Chem. 56, 934-941.]), [Nd(H2O)4(glutarato)]Cl·2H2O (Leg­end­ziewicz et al., 1999[Legendziewicz, J., Keller, B., Turowska-Tyrk, I. & Wojciechowski, W. (1999). New J. Chem. 23, 1097-1103.]) and [Nd2(H2O)2(glutarato)]·2H2O (Głowiak et al., 1986[Głowiak, T., Dao-Cong Ngoan & Legendziewicz, J. (1986). Acta Cryst. C42, 1494-1496.]). In contrast to the above-mentioned coordination polymers, [Nd(glutarato)(H2O)4]Cl (Hussain et al., 2015[Hussain, S., Khan, I. U., Harrison, W. T. A. & Tahir, M. N. (2015). J. Struct. Chem. 56, 934-941.]) and [Nd(glutarato)(H2O)4]Cl·2H2O (Legendziewicz et al., 1999[Legendziewicz, J., Keller, B., Turowska-Tyrk, I. & Wojciechowski, W. (1999). New J. Chem. 23, 1097-1103.]) consisting of cationic {Nd(H2O)x(glutarato)}nn+ (x = 2, 4) subunits compensated by uncoordinated chloride anions, each of the tetra­hedral SO42– ligands in 1 links three adjacent NdIII atoms, forming a neutral two-dimensional network of [Nd2(H2O)6(glutarato)(SO4)2]n. The S—O bond distances are in the range 1.449 (3)–1.485 (2) Å, with O—S—O angles ranging from 107.78 (16) to 111.67 (15)°. The flexible glutarate linker exhibits a (μ4-κ2O:κO′:κ2O′′:κO′′′ coordination mode with an antianti conformation as depicted in Fig. 2[link]a. There are six crystallographically independent water mol­ecules completing the coordination sites of the two NdIII atoms (three H2O mol­ecules for each NdIII atom, Fig. 2[link]b).

[Figure 2]
Figure 2
Depictions of (a) the coordination modes of the glutarate and the sulfate ligands in 1 and (b) seven of the eleven crystallographically independent hydrogen bonds (dashed green lines) with bond distances. [Symmetry codes: (i) −x + 2, −y, −z; (ii) −x + 2, y − [{1\over 2}], −z − [{1\over 2}]; (iii) x, −y + [{1\over 2}], z + [{1\over 2}]; (iv) −x + 1, −y + 1, −z; (v) x, −y + [{1\over 2}], z − [{1\over 2}]; (vi) −x + 2, y + [{1\over 2}], −z − [{1\over 2}]; (vii) x + 1, −y + [{1\over 2}] , z − [{1\over 2}]; (viii) x − 1, y, z; (ix) −x + 1, y + [{1\over 2}], −z − [{1\over 2}]; (x) x, y, z − 1.]

3. Supra­molecular features

The polymeric structure of 1 can be described as a three-dimensional non-porous framework, which is constructed from edge-sharing TPRS-{NdIIIO9} polyhedra linked through sulfate anions, acting as tritopic inorganic linkers, into a cationic [Nd2(H2O)6(SO4)2]n2n+ sheets parallel to the (011) layers, as illustrated in Fig. 3[link]a. It is noteworthy that these sheets also contain large inorganic [Nd(SO4)]4 rings further stabilized by O—H⋯O hydrogen bonds between the water mol­ecules and sulfate anions (Table 1[link]). Eventually, the final three-dimensional network is formed by connecting these adjacent cationic sheets by the glutarate ligands (Fig. 3[link]b). This three-dimensional arrangement also features O—H⋯O hydrogen bonds between two water mol­ecules or between a water mol­ecule and oxygen atoms of the glutarate ligands (Fig. 2[link]b). In total, all but one hydrogen atom from the six crystallographically independent water mol­ecules are involved in hydrogen bonding (Table 1[link]). Analysis of these hydrogen bonds revealed thirteen different first-order graph sets (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) consisting of five rings and eight different chains.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O16W—H16A⋯O3i 0.85 1.91 2.709 (4) 155
O16W—H16B⋯O6ii 0.85 1.94 2.774 (3) 165
O17W—H17A⋯O12Wiii 0.81 (2) 2.38 (4) 2.966 (4) 130 (4)
O17W—H17B⋯O3i 0.84 (2) 2.09 (2) 2.903 (4) 165 (4)
O12W—H12A⋯O6iv 0.85 2.10 2.825 (4) 143
O12W—H12B⋯O17Wv 0.85 2.07 2.904 (4) 166
O13W—H13A⋯O12vi 0.85 1.95 2.733 (3) 153
O13W—H13B⋯O3vii 0.85 1.99 2.745 (4) 148
O14W—H14A⋯O13Wviii 0.85 (2) 2.13 (2) 2.966 (4) 165 (4)
O18—H18A⋯O6ix 0.83 (2) 2.03 (2) 2.826 (3) 160 (3)
O18—H18B⋯O5ii 0.81 (2) 2.00 (2) 2.805 (3) 170 (4)
Symmetry codes: (i) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) x+1, y, z; (iv) [x-1, y, z]; (v) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) [-x+1, y+{\script{1\over 2}}, -z-{\script{1\over 2}}]; (vii) [x, y, z-1]; (viii) [-x+1, -y+1, -z-1]; (ix) [-x+2, y-{\script{1\over 2}}, -z-{\script{1\over 2}}].
[Figure 3]
Figure 3
Views of (a) the [Nd2(H2O)6(SO4)2]n2n+ sheet and (b) the three-dimensional framework of 1.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) confirms that no NdIII coordination polymer containing both glutarate2– and SO42– has been reported. However, several related polymeric structures, viz. catena-[(μ-penta­nedio­ato)tetra­aqua­neo­dym­ium chloride] (NEMXIP; Hussain et al., 2015[Hussain, S., Khan, I. U., Harrison, W. T. A. & Tahir, M. N. (2015). J. Struct. Chem. 56, 934-941.]), catena-[(μ4-glutarato)tetra­aqua­dineodymium chloride dihydrate] (DIQZAE01; Marsh, 2005[Marsh, R. E. (2005). Acta Cryst. B61, 359.]), catena-[bis­(μ4-pen­tane-1,5-dionato)(μ2-pentane-1,5-dionato)di­aqua­di­neo­dym­ium(III) tetra­hydrate] (FAQYUR; Legendziewicz et al., 1999[Legendziewicz, J., Keller, B., Turowska-Tyrk, I. & Wojciechowski, W. (1999). New J. Chem. 23, 1097-1103.]) and catena-[tris­(μ3-glutarato-O,O,O′,O′′,O′′′)diaqua­di­neodymium(III) dihydrate] (FAFGAU; Głowiak et al., 1986[Głowiak, T., Dao-Cong Ngoan & Legendziewicz, J. (1986). Acta Cryst. C42, 1494-1496.]), have been reported.

5. Synthesis and crystallization

Complex 1 was synthesized by dissolving Nd2(SO4)3·8H2O (1 mmol, 0.721 g), glutaric acid (1 mmol, 0.132 g), and 4,4′-bi­pyridine (1 mmol, 0.156 g) in 40.0 mL of deionized water under ambient conditions. The solution was transferred into an open glass reactor and then irradiated by microwaves (800 W) for 10 minutes. The solution was let to cool to ambient temperature. Pale-purple block-shaped crystals crystallized from the solution within a few minutes. FT–IR (ATR Mode, cm−1) of 1: νstretch(O—H) 3364, νstretch(C—H) 2990, νas(COO) 1531, νs(COO) 1430, δ(O—H) 1355, νs(S—O) 1101, νs(S—O) 1077, νs(SO42–) 596.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Carbon-bound H atoms were positioned geometrically (C—H = 0.97 Å) and constrained using the riding-model approximation with Uiso(H) = 1.2Ueq(C). The H atoms from the water mol­ecules were located in the residual electron-density map, and where necessary, refined with distance and angle restraints or riding on the parent oxygen atom.

Table 2
Experimental details

Crystal data
Chemical formula [Nd2(C5H6O4)(SO4)2(H2O)6]
Mr 718.79
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 15.5461 (1), 12.6621 (1), 8.8883 (1)
β (°) 95.287 (1)
V3) 1742.19 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 6.23
Crystal size (mm) 0.2 × 0.2 × 0.2
 
Data collection
Diffractometer SuperNova, Single source at offset/far, HyPix3000
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.448, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 38711, 3830, 3482
Rint 0.067
(sin θ/λ)max−1) 0.648
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.045, 1.08
No. of reflections 3830
No. of parameters 268
No. of restraints 9
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.62, −0.88
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Poly[hexaaqua(µ4-glutarato)bis(µ3-sulfato)dineodymium(III)] top
Crystal data top
[Nd2(C5H6O4)(SO4)2(H2O)6]F(000) = 1376
Mr = 718.79Dx = 2.740 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.5461 (1) ÅCell parameters from 25026 reflections
b = 12.6621 (1) Åθ = 2.1–27.3°
c = 8.8883 (1) ŵ = 6.23 mm1
β = 95.287 (1)°T = 293 K
V = 1742.19 (3) Å3Block, clear light violet
Z = 40.2 × 0.2 × 0.2 mm
Data collection top
SuperNova, Single source at offset/far, HyPix3000
diffractometer
3830 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source3482 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.067
ω scansθmax = 27.4°, θmin = 2.1°
Absorption correction: multi-scan
(CrysAlisPro; Agilent, 2014)
h = 2019
Tmin = 0.448, Tmax = 1.000k = 1616
38711 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.022H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.045 w = 1/[σ2(Fo2) + (0.0106P)2 + 1.2155P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.003
3830 reflectionsΔρmax = 0.62 e Å3
268 parametersΔρmin = 0.88 e Å3
9 restraintsExtinction correction: SHELXL2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00033 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The structure of 1 was solved in the space group P21/c (No. 14) using direct methods in the SHELXT (Sheldrick, 2015a) structure-solution program and refined by full-matrix least-squares minimization on F2 using SHELXL 2018/3 (Sheldrick, 2015b).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Nd21.07588 (2)0.09859 (2)0.12226 (2)0.01075 (6)
Nd10.42661 (2)0.43378 (2)0.18797 (2)0.01254 (6)
S21.05205 (6)0.38265 (6)0.21038 (9)0.01194 (18)
S10.41004 (6)0.35878 (6)0.21539 (9)0.01539 (19)
O110.93262 (15)0.07269 (16)0.0510 (2)0.0157 (5)
O61.11665 (15)0.45391 (16)0.1313 (2)0.0180 (5)
O51.04359 (16)0.28751 (16)0.1153 (2)0.0177 (5)
O80.96805 (15)0.43635 (16)0.2326 (2)0.0155 (5)
O16W1.16897 (17)0.0982 (2)0.3338 (3)0.0265 (6)
H16A1.2227960.0848730.3216490.040*
H16B1.1520570.0708900.4187580.040*
O17W1.21843 (18)0.1988 (2)0.0366 (3)0.0321 (7)
H17A1.218 (3)0.2626 (15)0.044 (5)0.048*
H17B1.259 (2)0.177 (3)0.083 (4)0.048*
O120.80870 (15)0.03120 (18)0.0300 (3)0.0220 (6)
O12W0.27085 (16)0.37303 (19)0.2316 (3)0.0258 (6)
H12A0.2372280.4229790.2100180.039*
H12B0.2582970.3624630.3258530.039*
O90.56170 (17)0.41489 (18)0.0404 (3)0.0236 (6)
O20.48805 (16)0.42067 (18)0.2617 (3)0.0247 (6)
O13W0.36280 (16)0.5016 (2)0.4426 (3)0.0283 (6)
H13A0.3091530.5137710.4392620.042*
H13B0.3648130.4532020.5085420.042*
O100.67742 (18)0.4309 (2)0.1157 (3)0.0335 (7)
O14W0.5138 (2)0.3668 (2)0.4039 (3)0.0425 (8)
H14A0.545 (3)0.400 (3)0.463 (4)0.064*
H14B0.498 (3)0.313 (2)0.451 (5)0.064*
O10.39367 (18)0.3531 (2)0.0516 (3)0.0348 (7)
C40.8121 (2)0.1900 (3)0.1158 (4)0.0213 (8)
H4A0.7764960.1678370.2055830.026*
H4B0.8569000.2360040.1477410.026*
C10.6402 (2)0.3905 (3)0.0018 (4)0.0178 (8)
C50.8539 (2)0.0942 (2)0.0408 (4)0.0148 (8)
C20.6882 (3)0.3205 (3)0.1001 (4)0.0297 (10)
H2A0.7156510.3640430.1716620.036*
H2B0.6470820.2749060.1573450.036*
C30.7565 (2)0.2524 (3)0.0148 (4)0.0249 (9)
H3A0.7282700.2032290.0483650.030*
H3B0.7937960.2972670.0511880.030*
O180.97596 (18)0.14621 (19)0.3490 (3)0.0206 (6)
H18A0.945 (2)0.095 (2)0.376 (4)0.031*
H18B0.992 (2)0.172 (3)0.425 (3)0.031*
O71.08197 (15)0.34921 (17)0.3553 (2)0.0160 (5)
O40.4228 (2)0.2533 (2)0.2767 (3)0.0447 (8)
O30.33686 (18)0.4071 (2)0.2790 (3)0.0431 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nd20.01192 (11)0.01076 (10)0.00957 (10)0.00054 (7)0.00104 (8)0.00014 (7)
Nd10.01289 (12)0.01314 (11)0.01148 (10)0.00009 (7)0.00057 (8)0.00022 (7)
S20.0158 (5)0.0112 (4)0.0089 (4)0.0013 (3)0.0013 (3)0.0007 (3)
S10.0187 (5)0.0147 (4)0.0133 (4)0.0029 (4)0.0047 (4)0.0003 (3)
O110.0119 (13)0.0187 (12)0.0161 (13)0.0037 (10)0.0000 (11)0.0004 (10)
O60.0206 (14)0.0169 (12)0.0154 (12)0.0016 (11)0.0037 (11)0.0019 (10)
O50.0272 (15)0.0134 (12)0.0128 (12)0.0019 (11)0.0028 (11)0.0042 (9)
O80.0177 (14)0.0140 (12)0.0152 (12)0.0039 (10)0.0036 (11)0.0022 (9)
O16W0.0175 (15)0.0443 (17)0.0177 (14)0.0005 (13)0.0022 (12)0.0048 (12)
O17W0.0298 (18)0.0261 (15)0.0389 (18)0.0074 (14)0.0057 (14)0.0082 (14)
O120.0154 (14)0.0191 (13)0.0313 (14)0.0002 (11)0.0010 (12)0.0079 (11)
O12W0.0194 (15)0.0312 (15)0.0261 (14)0.0007 (12)0.0024 (12)0.0030 (12)
O90.0178 (15)0.0285 (14)0.0241 (14)0.0071 (11)0.0006 (12)0.0010 (11)
O20.0240 (16)0.0300 (14)0.0193 (14)0.0128 (12)0.0021 (12)0.0040 (11)
O13W0.0205 (15)0.0439 (17)0.0201 (13)0.0049 (13)0.0003 (12)0.0037 (12)
O100.0281 (17)0.0360 (16)0.0342 (16)0.0110 (13)0.0090 (14)0.0181 (13)
O14W0.061 (2)0.0426 (19)0.0262 (17)0.0041 (17)0.0190 (16)0.0004 (14)
O10.0471 (19)0.0486 (17)0.0084 (12)0.0274 (15)0.0015 (12)0.0004 (12)
C40.020 (2)0.0195 (19)0.024 (2)0.0058 (16)0.0006 (16)0.0038 (15)
C10.015 (2)0.0190 (18)0.0188 (19)0.0056 (15)0.0017 (16)0.0020 (15)
C50.015 (2)0.0144 (17)0.0149 (18)0.0013 (15)0.0009 (15)0.0031 (14)
C20.029 (2)0.038 (2)0.022 (2)0.0139 (19)0.0004 (18)0.0049 (17)
C30.030 (2)0.023 (2)0.0209 (19)0.0139 (17)0.0010 (17)0.0023 (16)
O180.0267 (16)0.0193 (14)0.0155 (13)0.0062 (11)0.0003 (12)0.0043 (11)
O70.0188 (14)0.0185 (12)0.0111 (11)0.0050 (10)0.0030 (10)0.0002 (9)
O40.057 (2)0.0187 (15)0.0566 (19)0.0073 (14)0.0032 (17)0.0138 (14)
O30.0171 (16)0.069 (2)0.0430 (18)0.0099 (14)0.0029 (14)0.0298 (15)
Geometric parameters (Å, º) top
Nd2—O112.393 (2)O11—C51.265 (4)
Nd2—O11i2.670 (2)O16W—H16A0.8508
Nd2—O52.446 (2)O16W—H16B0.8501
Nd2—O8ii2.487 (2)O17W—H17A0.811 (18)
Nd2—O16W2.476 (3)O17W—H17B0.836 (18)
Nd2—O17W2.606 (3)O12—C51.268 (4)
Nd2—O12i2.514 (2)O12W—H12A0.8534
Nd2—O182.502 (2)O12W—H12B0.8534
Nd2—O7iii2.456 (2)O9—C11.275 (4)
Nd1—O12W2.536 (2)O13W—H13A0.8513
Nd1—O9iv2.785 (2)O13W—H13B0.8508
Nd1—O92.383 (2)O10—C11.255 (4)
Nd1—O2iv2.397 (2)O14W—H14A0.854 (19)
Nd1—O13W2.536 (2)O14W—H14B0.831 (18)
Nd1—O10iv2.481 (3)C4—H4A0.9700
Nd1—O14W2.592 (3)C4—H4B0.9700
Nd1—O12.457 (2)C4—C51.502 (4)
Nd1—O4v2.390 (2)C4—C31.523 (5)
S2—O61.479 (2)C1—C21.491 (5)
S2—O51.485 (2)C2—H2A0.9700
S2—O81.470 (2)C2—H2B0.9700
S2—O71.472 (2)C2—C31.516 (5)
S1—O21.471 (2)C3—H3A0.9700
S1—O11.457 (2)C3—H3B0.9700
S1—O41.449 (3)O18—H18A0.827 (18)
S1—O31.452 (3)O18—H18B0.814 (18)
O11—Nd2—O11i68.86 (8)O8—S2—O6109.74 (13)
O11—Nd2—O585.94 (8)O8—S2—O5109.14 (14)
O11—Nd2—O8ii78.84 (7)O8—S2—O7111.34 (13)
O11—Nd2—O16W145.48 (8)O7—S2—O6109.63 (14)
O11—Nd2—O17W140.93 (8)O7—S2—O5108.47 (13)
O11—Nd2—O12i118.53 (7)O1—S1—O2111.67 (15)
O11—Nd2—O1873.89 (8)O4—S1—O2107.78 (16)
O11—Nd2—O7iii74.65 (7)O4—S1—O1109.63 (16)
O5—Nd2—O11i139.33 (7)O4—S1—O3109.07 (19)
O5—Nd2—O8ii140.68 (7)O3—S1—O2108.79 (16)
O5—Nd2—O16W99.03 (8)O3—S1—O1109.83 (17)
O5—Nd2—O17W71.78 (8)Nd2—O11—Nd2i111.14 (8)
O5—Nd2—O12i140.61 (7)C5—O11—Nd2156.8 (2)
O5—Nd2—O1870.81 (7)C5—O11—Nd2i91.97 (19)
O5—Nd2—O7iii72.67 (7)S2—O5—Nd2138.58 (13)
O8ii—Nd2—O11i66.58 (7)S2—O8—Nd2vi130.54 (13)
O8ii—Nd2—O17W137.65 (9)Nd2—O16W—H16A122.8
O8ii—Nd2—O12i77.46 (7)Nd2—O16W—H16B121.4
O8ii—Nd2—O1870.18 (7)H16A—O16W—H16B104.6
O16W—Nd2—O11i119.98 (8)Nd2—O17W—H17A118 (3)
O16W—Nd2—O8ii75.90 (8)Nd2—O17W—H17B111 (3)
O16W—Nd2—O17W71.46 (9)H17A—O17W—H17B107 (3)
O16W—Nd2—O12i78.27 (8)C5—O12—Nd2i99.3 (2)
O16W—Nd2—O1875.62 (9)Nd1—O12W—H12A109.7
O17W—Nd2—O11i108.23 (8)Nd1—O12W—H12B109.0
O12i—Nd2—O11i49.67 (7)H12A—O12W—H12B104.3
O12i—Nd2—O17W70.17 (8)Nd1—O9—Nd1iv109.09 (9)
O18—Nd2—O11i126.89 (7)C1—O9—Nd1iv88.51 (19)
O18—Nd2—O17W124.49 (8)C1—O9—Nd1161.0 (2)
O18—Nd2—O12i142.32 (8)S1—O2—Nd1iv142.78 (14)
O7iii—Nd2—O11i70.19 (7)Nd1—O13W—H13A109.5
O7iii—Nd2—O8ii135.02 (7)Nd1—O13W—H13B109.6
O7iii—Nd2—O16W139.53 (8)H13A—O13W—H13B104.6
O7iii—Nd2—O17W68.32 (8)C1—O10—Nd1iv103.6 (2)
O7iii—Nd2—O12i84.15 (8)Nd1—O14W—H14A131 (3)
O7iii—Nd2—O18132.77 (8)Nd1—O14W—H14B120 (3)
O12W—Nd1—O9iv108.50 (8)H14A—O14W—H14B104 (3)
O12W—Nd1—O14W110.17 (10)S1—O1—Nd1144.54 (15)
O9—Nd1—O12W146.52 (8)H4A—C4—H4B107.7
O9—Nd1—O9iv70.91 (9)C5—C4—H4A108.8
O9—Nd1—O2iv75.27 (8)C5—C4—H4B108.8
O9—Nd1—O13W141.04 (8)C5—C4—C3113.8 (3)
O9—Nd1—O10iv119.29 (8)C3—C4—H4A108.8
O9—Nd1—O14W83.11 (10)C3—C4—H4B108.8
O9—Nd1—O174.03 (9)O9—C1—Nd1iv66.63 (18)
O9—Nd1—O4v89.01 (9)O9—C1—C2120.3 (3)
O2iv—Nd1—O12W137.40 (8)O10—C1—Nd1iv52.67 (17)
O2iv—Nd1—O9iv70.71 (8)O10—C1—O9118.8 (3)
O2iv—Nd1—O13W71.12 (8)O10—C1—C2120.8 (3)
O2iv—Nd1—O10iv85.99 (9)C2—C1—Nd1iv167.7 (3)
O2iv—Nd1—O14W73.06 (9)O11—C5—Nd2i63.04 (17)
O2iv—Nd1—O1136.14 (8)O11—C5—O12118.9 (3)
O13W—Nd1—O12W71.15 (8)O11—C5—C4121.6 (3)
O13W—Nd1—O9iv114.29 (7)O12—C5—Nd2i55.97 (16)
O13W—Nd1—O14W68.79 (9)O12—C5—C4119.5 (3)
O10iv—Nd1—O12W67.24 (8)C4—C5—Nd2i175.3 (3)
O10iv—Nd1—O9iv48.43 (8)C1—C2—H2A108.7
O10iv—Nd1—O13W77.67 (9)C1—C2—H2B108.7
O10iv—Nd1—O14W144.63 (9)C1—C2—C3114.2 (3)
O14W—Nd1—O9iv139.56 (9)H2A—C2—H2B107.6
O1—Nd1—O12W74.58 (8)C3—C2—H2A108.7
O1—Nd1—O9iv70.08 (8)C3—C2—H2B108.7
O1—Nd1—O13W144.93 (9)C4—C3—H3A108.7
O1—Nd1—O10iv82.52 (10)C4—C3—H3B108.7
O1—Nd1—O14W132.11 (10)C2—C3—C4114.2 (3)
O4v—Nd1—O12W70.57 (9)C2—C3—H3A108.7
O4v—Nd1—O9iv140.98 (9)C2—C3—H3B108.7
O4v—Nd1—O2iv137.22 (10)H3A—C3—H3B107.6
O4v—Nd1—O13W102.45 (9)Nd2—O18—H18A110 (3)
O4v—Nd1—O10iv135.22 (10)Nd2—O18—H18B123 (3)
O4v—Nd1—O14W65.60 (10)H18A—O18—H18B107 (3)
O4v—Nd1—O172.38 (10)S2—O7—Nd2v141.35 (13)
O6—S2—O5108.45 (13)S1—O4—Nd1iii164.56 (18)
Nd2—O11—C5—Nd2i174.9 (5)O8—S2—O5—Nd2128.04 (19)
Nd2—O11—C5—O12178.5 (3)O8—S2—O7—Nd2v32.0 (3)
Nd2i—O11—C5—O123.5 (3)O9—C1—C2—C3148.9 (3)
Nd2—O11—C5—C44.0 (7)O2—S1—O1—Nd118.1 (4)
Nd2i—O11—C5—C4179.0 (3)O2—S1—O4—Nd1iii137.7 (7)
Nd2i—O12—C5—O113.8 (3)O10—C1—C2—C334.9 (5)
Nd2i—O12—C5—C4178.6 (2)O1—S1—O2—Nd1iv31.5 (3)
Nd1—O9—C1—Nd1iv158.3 (7)O1—S1—O4—Nd1iii15.9 (8)
Nd1—O9—C1—O10166.0 (5)C1—C2—C3—C4173.6 (3)
Nd1iv—O9—C1—O107.7 (3)C5—C4—C3—C2157.3 (3)
Nd1iv—O9—C1—C2168.6 (3)C3—C4—C5—O11134.7 (3)
Nd1—O9—C1—C210.3 (9)C3—C4—C5—O1247.8 (4)
Nd1iv—O10—C1—O98.9 (4)O7—S2—O5—Nd26.6 (2)
Nd1iv—O10—C1—C2167.4 (3)O7—S2—O8—Nd2vi59.51 (19)
Nd1iv—C1—C2—C389.6 (11)O4—S1—O2—Nd1iv151.9 (3)
O6—S2—O5—Nd2112.4 (2)O4—S1—O1—Nd1137.5 (3)
O6—S2—O8—Nd2vi62.05 (19)O3—S1—O2—Nd1iv89.9 (3)
O6—S2—O7—Nd2v89.7 (2)O3—S1—O1—Nd1102.7 (3)
O5—S2—O8—Nd2vi179.23 (14)O3—S1—O4—Nd1iii104.4 (8)
O5—S2—O7—Nd2v152.09 (19)
Symmetry codes: (i) x+2, y, z; (ii) x+2, y1/2, z1/2; (iii) x, y+1/2, z+1/2; (iv) x+1, y+1, z; (v) x, y+1/2, z1/2; (vi) x+2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O16W—H16A···O3vii0.851.912.709 (4)155
O16W—H16B···O6v0.851.942.774 (3)165
O17W—H17A···O12Wviii0.81 (2)2.38 (4)2.966 (4)130 (4)
O17W—H17B···O3vii0.84 (2)2.09 (2)2.903 (4)165 (4)
O12W—H12A···O6ix0.852.102.825 (4)143
O12W—H12B···O17Wx0.852.072.904 (4)166
O13W—H13A···O12xi0.851.952.733 (3)153
O13W—H13B···O3xii0.851.992.745 (4)148
O14W—H14A···O13Wxiii0.85 (2)2.13 (2)2.966 (4)165 (4)
O18—H18A···O6ii0.83 (2)2.03 (2)2.826 (3)160 (3)
O18—H18B···O5v0.81 (2)2.00 (2)2.805 (3)170 (4)
Symmetry codes: (ii) x+2, y1/2, z1/2; (v) x, y+1/2, z1/2; (vii) x+1, y+1/2, z1/2; (viii) x+1, y, z; (ix) x1, y, z; (x) x1, y+1/2, z1/2; (xi) x+1, y+1/2, z1/2; (xii) x, y, z1; (xiii) x+1, y+1, z1.
 

Acknowledgements

This research was partially supported by the CMU Junior Research Fellowship Program, Faculty of Science, Chiang Mai University, the Development and Promotion of Science and Technology Talent Project (DPST) through a research fund for graduates with first placement. The authors thank W. Booncharoen for chemical and physical analysis services during the COVID-19 pandemic. SY and YC acknowledge A. Rujiwatra for supervision in the DPST research fund. SW and NK also thank the DPST project for their research grants.

Funding information

Funding for this research was provided by: Faculty of Science, Chiang Mai University; Development and Promotion of Science and Technology Talent Project (DPST) through a research fund for graduates with first placement; CMU Junior Research Fellowship Program.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFurukawa, H., Cordova, K. E., O'Keeffe, M. & Yaghi, O. M. (2013). Science, 341, 1230444–1230444.  Web of Science CrossRef PubMed Google Scholar
First citationGłowiak, T., Dao-Cong Ngoan & Legendziewicz, J. (1986). Acta Cryst. C42, 1494–1496.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHussain, S., Khan, I. U., Harrison, W. T. A. & Tahir, M. N. (2015). J. Struct. Chem. 56, 934–941.  Web of Science CSD CrossRef CAS Google Scholar
First citationKim, H.-C., Huh, S., Kim, J. Y., Moon, H. R., Lee, D. N. & Kim, Y. (2017). CrystEngComm, 19, 99–109.  Web of Science CSD CrossRef CAS Google Scholar
First citationLegendziewicz, J., Keller, B., Turowska-Tyrk, I. & Wojciechowski, W. (1999). New J. Chem. 23, 1097–1103.  Web of Science CSD CrossRef CAS Google Scholar
First citationMarsh, R. E. (2005). Acta Cryst. B61, 359.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPagis, C., Ferbinteanu, M., Rothenberg, G. & Tanase, S. (2016). ACS Catal. 6, 6063–6072.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds