research communications
2(H2O)6(glutarato)(SO4)2]n
of a three-dimensional neodymium(III) coordination polymer, [NdaDepartment of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand, and bDepartment of Industrial Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
*Correspondence e-mail: Saranphong.Yimklan@cmu.ac.th
A three-dimensional coordination polymer, poly[hexaaqua(μ4-glutarato)bis(μ3-sulfato)dineodymium(III)], [Nd2(glutarato)(SO4)2(H2O)6]n (glutarato2– = C5H6O42–), 1, consisting of cationic {Nd2(H2O)6(SO4)2}n2n+ layers linked by bridging glutarate ligands, was synthesized by the microwave-heating technique within few minutes. The of 1 consists of two crystallographically independent TPRS-{NdIIIO9} (TPRS is tricapped trigonal–prismatic geometry) units that form an edge-sharing dinuclear cluster interconnected to neighbouring dimers by the μ3-SO42– anions, yielding a cationic two-dimensional {Nd2(H2O)6(SO4)2}n2n+ sheet. Adjacent cationic layers are then linked via the μ4-glutarato2– ligands into a three-dimensional coordination network. Strong O—H⋯O hydrogen bonds are the predominant interaction in the crystal structure.
Keywords: crystal structure; coordination polymer; lanthanide; glutarate.
CCDC reference: 2107848
1. Chemical context
Coordination polymers (CPs) and metal–organic frameworks (MOFs) have attracted much attention because of the fascinating tuneability of their molecular architectures and functionalities that helps to adjust their properties for applications in different areas such as in sensing and magnetism, as well as catalysis. These properties are cooperatively provided by both the inorganic building units and the organic counterparts (Furukawa et al., 2013). Across the periodic table, the not-so-rare earth lanthanides (Ln) have become one of the promising choices for such materials because of their robust Ln—O bonds, versatile coordination geometries and high thermal stability with exotic properties, including and adaptive active sites for catalysis (Pagis et al., 2016). On the other hand, the flexibility of the organic linkers, such as aliphatic polycarboxylates, can also diversify the structural architecture that sometimes defines the macroscopic properties of the materials (Kim et al., 2017).
Herein, we report a microwave synthesis of a new three-dimensional coordination polymer, [Nd2(H2O)6(glutarato)(SO4)2]n (1). The reveals that the glutarates act as bridging ligands binding the cationic {Nd2(H2O)6(SO4)2}n2n+ sheets into a three-dimensional network.
2. Structural commentary
The coordination network 1, [Nd2(H2O)6(glutarato)(SO4)2]n crystallizes in the monoclinic P21/c There are two crystallographically independent NdIII cations (Nd1 and Nd2), two sulfate anions, and six coordinated water molecules in the as illustrated in Fig. 1.
Both NdIII cations are nine-coordinated to O atoms from one bridging glutarate2−, two chelating glutarate2−, two chelating sulfate anions and three coordinated H2O, adopting a distorted tricapped trigonal–prismatic geometry, TPRS-{NdIIIO9} (see Fig. 1b), forming an edge-sharing dinuclear unit with its symmetry-related NdIIIO9 polyhedron. The NdIII—O bond distances are in the range of 2.383 (2)–2.785 (2) Å, which are reasonable and comparable to those reported for other NdIII coordination polymers such as [Nd(H2O)4(glutarato)]Cl (Hussain et al., 2015), [Nd(H2O)4(glutarato)]Cl·2H2O (Legendziewicz et al., 1999) and [Nd2(H2O)2(glutarato)]·2H2O (Głowiak et al., 1986). In contrast to the above-mentioned coordination polymers, [Nd(glutarato)(H2O)4]Cl (Hussain et al., 2015) and [Nd(glutarato)(H2O)4]Cl·2H2O (Legendziewicz et al., 1999) consisting of cationic {Nd(H2O)x(glutarato)}nn+ (x = 2, 4) subunits compensated by uncoordinated chloride anions, each of the tetrahedral SO42– ligands in 1 links three adjacent NdIII atoms, forming a neutral two-dimensional network of [Nd2(H2O)6(glutarato)(SO4)2]n. The S—O bond distances are in the range 1.449 (3)–1.485 (2) Å, with O—S—O angles ranging from 107.78 (16) to 111.67 (15)°. The flexible glutarate linker exhibits a (μ4-κ2O:κO′:κ2O′′:κO′′′ coordination mode with an anti–anti conformation as depicted in Fig. 2a. There are six crystallographically independent water molecules completing the coordination sites of the two NdIII atoms (three H2O molecules for each NdIII atom, Fig. 2b).
3. Supramolecular features
The polymeric structure of 1 can be described as a three-dimensional non-porous framework, which is constructed from edge-sharing TPRS-{NdIIIO9} polyhedra linked through sulfate anions, acting as tritopic inorganic linkers, into a cationic [Nd2(H2O)6(SO4)2]n2n+ sheets parallel to the (011) layers, as illustrated in Fig. 3a. It is noteworthy that these sheets also contain large inorganic [Nd(SO4)]4 rings further stabilized by O—H⋯O hydrogen bonds between the water molecules and sulfate anions (Table 1). Eventually, the final three-dimensional network is formed by connecting these adjacent cationic sheets by the glutarate ligands (Fig. 3b). This three-dimensional arrangement also features O—H⋯O hydrogen bonds between two water molecules or between a water molecule and oxygen atoms of the glutarate ligands (Fig. 2b). In total, all but one hydrogen atom from the six crystallographically independent water molecules are involved in hydrogen bonding (Table 1). Analysis of these hydrogen bonds revealed thirteen different first-order graph sets (Bernstein et al., 1995) consisting of five rings and eight different chains.
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016) confirms that no NdIII coordination polymer containing both glutarate2– and SO42– has been reported. However, several related polymeric structures, viz. catena-[(μ-pentanedioato)tetraaquaneodymium chloride] (NEMXIP; Hussain et al., 2015), catena-[(μ4-glutarato)tetraaquadineodymium chloride dihydrate] (DIQZAE01; Marsh, 2005), catena-[bis(μ4-pentane-1,5-dionato)(μ2-pentane-1,5-dionato)diaquadineodymium(III) tetrahydrate] (FAQYUR; Legendziewicz et al., 1999) and catena-[tris(μ3-glutarato-O,O,O′,O′′,O′′′)diaquadineodymium(III) dihydrate] (FAFGAU; Głowiak et al., 1986), have been reported.
5. Synthesis and crystallization
Complex 1 was synthesized by dissolving Nd2(SO4)3·8H2O (1 mmol, 0.721 g), glutaric acid (1 mmol, 0.132 g), and 4,4′-bipyridine (1 mmol, 0.156 g) in 40.0 mL of deionized water under ambient conditions. The solution was transferred into an open glass reactor and then irradiated by microwaves (800 W) for 10 minutes. The solution was let to cool to ambient temperature. Pale-purple block-shaped crystals crystallized from the solution within a few minutes. FT–IR (ATR Mode, cm−1) of 1: νstretch(O—H) 3364, νstretch(C—H) 2990, νas(COO−) 1531, νs(COO−) 1430, δ(O—H) 1355, νs(S—O) 1101, νs(S—O) 1077, νs(SO42–) 596.
6. Refinement
Crystal data, data collection and structure . Carbon-bound H atoms were positioned geometrically (C—H = 0.97 Å) and constrained using the riding-model approximation with Uiso(H) = 1.2Ueq(C). The H atoms from the water molecules were located in the residual electron-density map, and where necessary, refined with distance and angle restraints or riding on the parent oxygen atom.
details are summarized in Table 2
|
Supporting information
CCDC reference: 2107848
https://doi.org/10.1107/S2056989022000159/jq2009sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022000159/jq2009Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989022000159/jq2009Isup3.mol
Data collection: CrysAlis PRO (Agilent, 2014); cell
CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Nd2(C5H6O4)(SO4)2(H2O)6] | F(000) = 1376 |
Mr = 718.79 | Dx = 2.740 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 15.5461 (1) Å | Cell parameters from 25026 reflections |
b = 12.6621 (1) Å | θ = 2.1–27.3° |
c = 8.8883 (1) Å | µ = 6.23 mm−1 |
β = 95.287 (1)° | T = 293 K |
V = 1742.19 (3) Å3 | Block, clear light violet |
Z = 4 | 0.2 × 0.2 × 0.2 mm |
SuperNova, Single source at offset/far, HyPix3000 diffractometer | 3830 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source | 3482 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.067 |
ω scans | θmax = 27.4°, θmin = 2.1° |
Absorption correction: multi-scan (CrysAlisPro; Agilent, 2014) | h = −20→19 |
Tmin = 0.448, Tmax = 1.000 | k = −16→16 |
38711 measured reflections | l = −11→11 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.022 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.045 | w = 1/[σ2(Fo2) + (0.0106P)2 + 1.2155P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.003 |
3830 reflections | Δρmax = 0.62 e Å−3 |
268 parameters | Δρmin = −0.88 e Å−3 |
9 restraints | Extinction correction: SHELXL2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.00033 (5) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The structure of 1 was solved in the space group P21/c (No. 14) using direct methods in the SHELXT (Sheldrick, 2015a) structure-solution program and refined by full-matrix least-squares minimization on F2 using SHELXL 2018/3 (Sheldrick, 2015b). |
x | y | z | Uiso*/Ueq | ||
Nd2 | 1.07588 (2) | 0.09859 (2) | −0.12226 (2) | 0.01075 (6) | |
Nd1 | 0.42661 (2) | 0.43378 (2) | −0.18797 (2) | 0.01254 (6) | |
S2 | 1.05205 (6) | 0.38265 (6) | −0.21038 (9) | 0.01194 (18) | |
S1 | 0.41004 (6) | 0.35878 (6) | 0.21539 (9) | 0.01539 (19) | |
O11 | 0.93262 (15) | 0.07269 (16) | −0.0510 (2) | 0.0157 (5) | |
O6 | 1.11665 (15) | 0.45391 (16) | −0.1313 (2) | 0.0180 (5) | |
O5 | 1.04359 (16) | 0.28751 (16) | −0.1153 (2) | 0.0177 (5) | |
O8 | 0.96805 (15) | 0.43635 (16) | −0.2326 (2) | 0.0155 (5) | |
O16W | 1.16897 (17) | 0.0982 (2) | −0.3338 (3) | 0.0265 (6) | |
H16A | 1.222796 | 0.084873 | −0.321649 | 0.040* | |
H16B | 1.152057 | 0.070890 | −0.418758 | 0.040* | |
O17W | 1.21843 (18) | 0.1988 (2) | −0.0366 (3) | 0.0321 (7) | |
H17A | 1.218 (3) | 0.2626 (15) | −0.044 (5) | 0.048* | |
H17B | 1.259 (2) | 0.177 (3) | −0.083 (4) | 0.048* | |
O12 | 0.80870 (15) | 0.03120 (18) | 0.0300 (3) | 0.0220 (6) | |
O12W | 0.27085 (16) | 0.37303 (19) | −0.2316 (3) | 0.0258 (6) | |
H12A | 0.237228 | 0.422979 | −0.210018 | 0.039* | |
H12B | 0.258297 | 0.362463 | −0.325853 | 0.039* | |
O9 | 0.56170 (17) | 0.41489 (18) | −0.0404 (3) | 0.0236 (6) | |
O2 | 0.48805 (16) | 0.42067 (18) | 0.2617 (3) | 0.0247 (6) | |
O13W | 0.36280 (16) | 0.5016 (2) | −0.4426 (3) | 0.0283 (6) | |
H13A | 0.309153 | 0.513771 | −0.439262 | 0.042* | |
H13B | 0.364813 | 0.453202 | −0.508542 | 0.042* | |
O10 | 0.67742 (18) | 0.4309 (2) | 0.1157 (3) | 0.0335 (7) | |
O14W | 0.5138 (2) | 0.3668 (2) | −0.4039 (3) | 0.0425 (8) | |
H14A | 0.545 (3) | 0.400 (3) | −0.463 (4) | 0.064* | |
H14B | 0.498 (3) | 0.313 (2) | −0.451 (5) | 0.064* | |
O1 | 0.39367 (18) | 0.3531 (2) | 0.0516 (3) | 0.0348 (7) | |
C4 | 0.8121 (2) | 0.1900 (3) | −0.1158 (4) | 0.0213 (8) | |
H4A | 0.776496 | 0.167837 | −0.205583 | 0.026* | |
H4B | 0.856900 | 0.236004 | −0.147741 | 0.026* | |
C1 | 0.6402 (2) | 0.3905 (3) | −0.0018 (4) | 0.0178 (8) | |
C5 | 0.8539 (2) | 0.0942 (2) | −0.0408 (4) | 0.0148 (8) | |
C2 | 0.6882 (3) | 0.3205 (3) | −0.1001 (4) | 0.0297 (10) | |
H2A | 0.715651 | 0.364043 | −0.171662 | 0.036* | |
H2B | 0.647082 | 0.274906 | −0.157345 | 0.036* | |
C3 | 0.7565 (2) | 0.2524 (3) | −0.0148 (4) | 0.0249 (9) | |
H3A | 0.728270 | 0.203229 | 0.048365 | 0.030* | |
H3B | 0.793796 | 0.297267 | 0.051188 | 0.030* | |
O18 | 0.97596 (18) | 0.14621 (19) | −0.3490 (3) | 0.0206 (6) | |
H18A | 0.945 (2) | 0.095 (2) | −0.376 (4) | 0.031* | |
H18B | 0.992 (2) | 0.172 (3) | −0.425 (3) | 0.031* | |
O7 | 1.08197 (15) | 0.34921 (17) | −0.3553 (2) | 0.0160 (5) | |
O4 | 0.4228 (2) | 0.2533 (2) | 0.2767 (3) | 0.0447 (8) | |
O3 | 0.33686 (18) | 0.4071 (2) | 0.2790 (3) | 0.0431 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Nd2 | 0.01192 (11) | 0.01076 (10) | 0.00957 (10) | 0.00054 (7) | 0.00104 (8) | 0.00014 (7) |
Nd1 | 0.01289 (12) | 0.01314 (11) | 0.01148 (10) | 0.00009 (7) | 0.00057 (8) | 0.00022 (7) |
S2 | 0.0158 (5) | 0.0112 (4) | 0.0089 (4) | 0.0013 (3) | 0.0013 (3) | 0.0007 (3) |
S1 | 0.0187 (5) | 0.0147 (4) | 0.0133 (4) | −0.0029 (4) | 0.0047 (4) | 0.0003 (3) |
O11 | 0.0119 (13) | 0.0187 (12) | 0.0161 (13) | 0.0037 (10) | 0.0000 (11) | −0.0004 (10) |
O6 | 0.0206 (14) | 0.0169 (12) | 0.0154 (12) | −0.0016 (11) | −0.0037 (11) | −0.0019 (10) |
O5 | 0.0272 (15) | 0.0134 (12) | 0.0128 (12) | 0.0019 (11) | 0.0028 (11) | 0.0042 (9) |
O8 | 0.0177 (14) | 0.0140 (12) | 0.0152 (12) | 0.0039 (10) | 0.0036 (11) | 0.0022 (9) |
O16W | 0.0175 (15) | 0.0443 (17) | 0.0177 (14) | −0.0005 (13) | 0.0022 (12) | −0.0048 (12) |
O17W | 0.0298 (18) | 0.0261 (15) | 0.0389 (18) | −0.0074 (14) | −0.0057 (14) | 0.0082 (14) |
O12 | 0.0154 (14) | 0.0191 (13) | 0.0313 (14) | 0.0002 (11) | 0.0010 (12) | 0.0079 (11) |
O12W | 0.0194 (15) | 0.0312 (15) | 0.0261 (14) | −0.0007 (12) | −0.0024 (12) | −0.0030 (12) |
O9 | 0.0178 (15) | 0.0285 (14) | 0.0241 (14) | 0.0071 (11) | 0.0006 (12) | 0.0010 (11) |
O2 | 0.0240 (16) | 0.0300 (14) | 0.0193 (14) | −0.0128 (12) | −0.0021 (12) | 0.0040 (11) |
O13W | 0.0205 (15) | 0.0439 (17) | 0.0201 (13) | 0.0049 (13) | 0.0003 (12) | −0.0037 (12) |
O10 | 0.0281 (17) | 0.0360 (16) | 0.0342 (16) | 0.0110 (13) | −0.0090 (14) | −0.0181 (13) |
O14W | 0.061 (2) | 0.0426 (19) | 0.0262 (17) | 0.0041 (17) | 0.0190 (16) | −0.0004 (14) |
O1 | 0.0471 (19) | 0.0486 (17) | 0.0084 (12) | −0.0274 (15) | 0.0015 (12) | −0.0004 (12) |
C4 | 0.020 (2) | 0.0195 (19) | 0.024 (2) | 0.0058 (16) | 0.0006 (16) | 0.0038 (15) |
C1 | 0.015 (2) | 0.0190 (18) | 0.0188 (19) | 0.0056 (15) | −0.0017 (16) | −0.0020 (15) |
C5 | 0.015 (2) | 0.0144 (17) | 0.0149 (18) | 0.0013 (15) | −0.0009 (15) | −0.0031 (14) |
C2 | 0.029 (2) | 0.038 (2) | 0.022 (2) | 0.0139 (19) | −0.0004 (18) | −0.0049 (17) |
C3 | 0.030 (2) | 0.023 (2) | 0.0209 (19) | 0.0139 (17) | 0.0010 (17) | −0.0023 (16) |
O18 | 0.0267 (16) | 0.0193 (14) | 0.0155 (13) | −0.0062 (11) | −0.0003 (12) | 0.0043 (11) |
O7 | 0.0188 (14) | 0.0185 (12) | 0.0111 (11) | 0.0050 (10) | 0.0030 (10) | −0.0002 (9) |
O4 | 0.057 (2) | 0.0187 (15) | 0.0566 (19) | −0.0073 (14) | −0.0032 (17) | 0.0138 (14) |
O3 | 0.0171 (16) | 0.069 (2) | 0.0430 (18) | 0.0099 (14) | 0.0029 (14) | −0.0298 (15) |
Nd2—O11 | 2.393 (2) | O11—C5 | 1.265 (4) |
Nd2—O11i | 2.670 (2) | O16W—H16A | 0.8508 |
Nd2—O5 | 2.446 (2) | O16W—H16B | 0.8501 |
Nd2—O8ii | 2.487 (2) | O17W—H17A | 0.811 (18) |
Nd2—O16W | 2.476 (3) | O17W—H17B | 0.836 (18) |
Nd2—O17W | 2.606 (3) | O12—C5 | 1.268 (4) |
Nd2—O12i | 2.514 (2) | O12W—H12A | 0.8534 |
Nd2—O18 | 2.502 (2) | O12W—H12B | 0.8534 |
Nd2—O7iii | 2.456 (2) | O9—C1 | 1.275 (4) |
Nd1—O12W | 2.536 (2) | O13W—H13A | 0.8513 |
Nd1—O9iv | 2.785 (2) | O13W—H13B | 0.8508 |
Nd1—O9 | 2.383 (2) | O10—C1 | 1.255 (4) |
Nd1—O2iv | 2.397 (2) | O14W—H14A | 0.854 (19) |
Nd1—O13W | 2.536 (2) | O14W—H14B | 0.831 (18) |
Nd1—O10iv | 2.481 (3) | C4—H4A | 0.9700 |
Nd1—O14W | 2.592 (3) | C4—H4B | 0.9700 |
Nd1—O1 | 2.457 (2) | C4—C5 | 1.502 (4) |
Nd1—O4v | 2.390 (2) | C4—C3 | 1.523 (5) |
S2—O6 | 1.479 (2) | C1—C2 | 1.491 (5) |
S2—O5 | 1.485 (2) | C2—H2A | 0.9700 |
S2—O8 | 1.470 (2) | C2—H2B | 0.9700 |
S2—O7 | 1.472 (2) | C2—C3 | 1.516 (5) |
S1—O2 | 1.471 (2) | C3—H3A | 0.9700 |
S1—O1 | 1.457 (2) | C3—H3B | 0.9700 |
S1—O4 | 1.449 (3) | O18—H18A | 0.827 (18) |
S1—O3 | 1.452 (3) | O18—H18B | 0.814 (18) |
O11—Nd2—O11i | 68.86 (8) | O8—S2—O6 | 109.74 (13) |
O11—Nd2—O5 | 85.94 (8) | O8—S2—O5 | 109.14 (14) |
O11—Nd2—O8ii | 78.84 (7) | O8—S2—O7 | 111.34 (13) |
O11—Nd2—O16W | 145.48 (8) | O7—S2—O6 | 109.63 (14) |
O11—Nd2—O17W | 140.93 (8) | O7—S2—O5 | 108.47 (13) |
O11—Nd2—O12i | 118.53 (7) | O1—S1—O2 | 111.67 (15) |
O11—Nd2—O18 | 73.89 (8) | O4—S1—O2 | 107.78 (16) |
O11—Nd2—O7iii | 74.65 (7) | O4—S1—O1 | 109.63 (16) |
O5—Nd2—O11i | 139.33 (7) | O4—S1—O3 | 109.07 (19) |
O5—Nd2—O8ii | 140.68 (7) | O3—S1—O2 | 108.79 (16) |
O5—Nd2—O16W | 99.03 (8) | O3—S1—O1 | 109.83 (17) |
O5—Nd2—O17W | 71.78 (8) | Nd2—O11—Nd2i | 111.14 (8) |
O5—Nd2—O12i | 140.61 (7) | C5—O11—Nd2 | 156.8 (2) |
O5—Nd2—O18 | 70.81 (7) | C5—O11—Nd2i | 91.97 (19) |
O5—Nd2—O7iii | 72.67 (7) | S2—O5—Nd2 | 138.58 (13) |
O8ii—Nd2—O11i | 66.58 (7) | S2—O8—Nd2vi | 130.54 (13) |
O8ii—Nd2—O17W | 137.65 (9) | Nd2—O16W—H16A | 122.8 |
O8ii—Nd2—O12i | 77.46 (7) | Nd2—O16W—H16B | 121.4 |
O8ii—Nd2—O18 | 70.18 (7) | H16A—O16W—H16B | 104.6 |
O16W—Nd2—O11i | 119.98 (8) | Nd2—O17W—H17A | 118 (3) |
O16W—Nd2—O8ii | 75.90 (8) | Nd2—O17W—H17B | 111 (3) |
O16W—Nd2—O17W | 71.46 (9) | H17A—O17W—H17B | 107 (3) |
O16W—Nd2—O12i | 78.27 (8) | C5—O12—Nd2i | 99.3 (2) |
O16W—Nd2—O18 | 75.62 (9) | Nd1—O12W—H12A | 109.7 |
O17W—Nd2—O11i | 108.23 (8) | Nd1—O12W—H12B | 109.0 |
O12i—Nd2—O11i | 49.67 (7) | H12A—O12W—H12B | 104.3 |
O12i—Nd2—O17W | 70.17 (8) | Nd1—O9—Nd1iv | 109.09 (9) |
O18—Nd2—O11i | 126.89 (7) | C1—O9—Nd1iv | 88.51 (19) |
O18—Nd2—O17W | 124.49 (8) | C1—O9—Nd1 | 161.0 (2) |
O18—Nd2—O12i | 142.32 (8) | S1—O2—Nd1iv | 142.78 (14) |
O7iii—Nd2—O11i | 70.19 (7) | Nd1—O13W—H13A | 109.5 |
O7iii—Nd2—O8ii | 135.02 (7) | Nd1—O13W—H13B | 109.6 |
O7iii—Nd2—O16W | 139.53 (8) | H13A—O13W—H13B | 104.6 |
O7iii—Nd2—O17W | 68.32 (8) | C1—O10—Nd1iv | 103.6 (2) |
O7iii—Nd2—O12i | 84.15 (8) | Nd1—O14W—H14A | 131 (3) |
O7iii—Nd2—O18 | 132.77 (8) | Nd1—O14W—H14B | 120 (3) |
O12W—Nd1—O9iv | 108.50 (8) | H14A—O14W—H14B | 104 (3) |
O12W—Nd1—O14W | 110.17 (10) | S1—O1—Nd1 | 144.54 (15) |
O9—Nd1—O12W | 146.52 (8) | H4A—C4—H4B | 107.7 |
O9—Nd1—O9iv | 70.91 (9) | C5—C4—H4A | 108.8 |
O9—Nd1—O2iv | 75.27 (8) | C5—C4—H4B | 108.8 |
O9—Nd1—O13W | 141.04 (8) | C5—C4—C3 | 113.8 (3) |
O9—Nd1—O10iv | 119.29 (8) | C3—C4—H4A | 108.8 |
O9—Nd1—O14W | 83.11 (10) | C3—C4—H4B | 108.8 |
O9—Nd1—O1 | 74.03 (9) | O9—C1—Nd1iv | 66.63 (18) |
O9—Nd1—O4v | 89.01 (9) | O9—C1—C2 | 120.3 (3) |
O2iv—Nd1—O12W | 137.40 (8) | O10—C1—Nd1iv | 52.67 (17) |
O2iv—Nd1—O9iv | 70.71 (8) | O10—C1—O9 | 118.8 (3) |
O2iv—Nd1—O13W | 71.12 (8) | O10—C1—C2 | 120.8 (3) |
O2iv—Nd1—O10iv | 85.99 (9) | C2—C1—Nd1iv | 167.7 (3) |
O2iv—Nd1—O14W | 73.06 (9) | O11—C5—Nd2i | 63.04 (17) |
O2iv—Nd1—O1 | 136.14 (8) | O11—C5—O12 | 118.9 (3) |
O13W—Nd1—O12W | 71.15 (8) | O11—C5—C4 | 121.6 (3) |
O13W—Nd1—O9iv | 114.29 (7) | O12—C5—Nd2i | 55.97 (16) |
O13W—Nd1—O14W | 68.79 (9) | O12—C5—C4 | 119.5 (3) |
O10iv—Nd1—O12W | 67.24 (8) | C4—C5—Nd2i | 175.3 (3) |
O10iv—Nd1—O9iv | 48.43 (8) | C1—C2—H2A | 108.7 |
O10iv—Nd1—O13W | 77.67 (9) | C1—C2—H2B | 108.7 |
O10iv—Nd1—O14W | 144.63 (9) | C1—C2—C3 | 114.2 (3) |
O14W—Nd1—O9iv | 139.56 (9) | H2A—C2—H2B | 107.6 |
O1—Nd1—O12W | 74.58 (8) | C3—C2—H2A | 108.7 |
O1—Nd1—O9iv | 70.08 (8) | C3—C2—H2B | 108.7 |
O1—Nd1—O13W | 144.93 (9) | C4—C3—H3A | 108.7 |
O1—Nd1—O10iv | 82.52 (10) | C4—C3—H3B | 108.7 |
O1—Nd1—O14W | 132.11 (10) | C2—C3—C4 | 114.2 (3) |
O4v—Nd1—O12W | 70.57 (9) | C2—C3—H3A | 108.7 |
O4v—Nd1—O9iv | 140.98 (9) | C2—C3—H3B | 108.7 |
O4v—Nd1—O2iv | 137.22 (10) | H3A—C3—H3B | 107.6 |
O4v—Nd1—O13W | 102.45 (9) | Nd2—O18—H18A | 110 (3) |
O4v—Nd1—O10iv | 135.22 (10) | Nd2—O18—H18B | 123 (3) |
O4v—Nd1—O14W | 65.60 (10) | H18A—O18—H18B | 107 (3) |
O4v—Nd1—O1 | 72.38 (10) | S2—O7—Nd2v | 141.35 (13) |
O6—S2—O5 | 108.45 (13) | S1—O4—Nd1iii | 164.56 (18) |
Nd2—O11—C5—Nd2i | −174.9 (5) | O8—S2—O5—Nd2 | 128.04 (19) |
Nd2—O11—C5—O12 | −178.5 (3) | O8—S2—O7—Nd2v | 32.0 (3) |
Nd2i—O11—C5—O12 | −3.5 (3) | O9—C1—C2—C3 | −148.9 (3) |
Nd2—O11—C5—C4 | 4.0 (7) | O2—S1—O1—Nd1 | −18.1 (4) |
Nd2i—O11—C5—C4 | 179.0 (3) | O2—S1—O4—Nd1iii | −137.7 (7) |
Nd2i—O12—C5—O11 | 3.8 (3) | O10—C1—C2—C3 | 34.9 (5) |
Nd2i—O12—C5—C4 | −178.6 (2) | O1—S1—O2—Nd1iv | 31.5 (3) |
Nd1—O9—C1—Nd1iv | 158.3 (7) | O1—S1—O4—Nd1iii | −15.9 (8) |
Nd1—O9—C1—O10 | 166.0 (5) | C1—C2—C3—C4 | −173.6 (3) |
Nd1iv—O9—C1—O10 | 7.7 (3) | C5—C4—C3—C2 | −157.3 (3) |
Nd1iv—O9—C1—C2 | −168.6 (3) | C3—C4—C5—O11 | −134.7 (3) |
Nd1—O9—C1—C2 | −10.3 (9) | C3—C4—C5—O12 | 47.8 (4) |
Nd1iv—O10—C1—O9 | −8.9 (4) | O7—S2—O5—Nd2 | 6.6 (2) |
Nd1iv—O10—C1—C2 | 167.4 (3) | O7—S2—O8—Nd2vi | −59.51 (19) |
Nd1iv—C1—C2—C3 | 89.6 (11) | O4—S1—O2—Nd1iv | 151.9 (3) |
O6—S2—O5—Nd2 | −112.4 (2) | O4—S1—O1—Nd1 | −137.5 (3) |
O6—S2—O8—Nd2vi | 62.05 (19) | O3—S1—O2—Nd1iv | −89.9 (3) |
O6—S2—O7—Nd2v | −89.7 (2) | O3—S1—O1—Nd1 | 102.7 (3) |
O5—S2—O8—Nd2vi | −179.23 (14) | O3—S1—O4—Nd1iii | 104.4 (8) |
O5—S2—O7—Nd2v | 152.09 (19) |
Symmetry codes: (i) −x+2, −y, −z; (ii) −x+2, y−1/2, −z−1/2; (iii) x, −y+1/2, z+1/2; (iv) −x+1, −y+1, −z; (v) x, −y+1/2, z−1/2; (vi) −x+2, y+1/2, −z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O16W—H16A···O3vii | 0.85 | 1.91 | 2.709 (4) | 155 |
O16W—H16B···O6v | 0.85 | 1.94 | 2.774 (3) | 165 |
O17W—H17A···O12Wviii | 0.81 (2) | 2.38 (4) | 2.966 (4) | 130 (4) |
O17W—H17B···O3vii | 0.84 (2) | 2.09 (2) | 2.903 (4) | 165 (4) |
O12W—H12A···O6ix | 0.85 | 2.10 | 2.825 (4) | 143 |
O12W—H12B···O17Wx | 0.85 | 2.07 | 2.904 (4) | 166 |
O13W—H13A···O12xi | 0.85 | 1.95 | 2.733 (3) | 153 |
O13W—H13B···O3xii | 0.85 | 1.99 | 2.745 (4) | 148 |
O14W—H14A···O13Wxiii | 0.85 (2) | 2.13 (2) | 2.966 (4) | 165 (4) |
O18—H18A···O6ii | 0.83 (2) | 2.03 (2) | 2.826 (3) | 160 (3) |
O18—H18B···O5v | 0.81 (2) | 2.00 (2) | 2.805 (3) | 170 (4) |
Symmetry codes: (ii) −x+2, y−1/2, −z−1/2; (v) x, −y+1/2, z−1/2; (vii) x+1, −y+1/2, z−1/2; (viii) x+1, y, z; (ix) x−1, y, z; (x) x−1, −y+1/2, z−1/2; (xi) −x+1, y+1/2, −z−1/2; (xii) x, y, z−1; (xiii) −x+1, −y+1, −z−1. |
Acknowledgements
This research was partially supported by the CMU Junior Research Fellowship Program, Faculty of Science, Chiang Mai University, the Development and Promotion of Science and Technology Talent Project (DPST) through a research fund for graduates with first placement. The authors thank W. Booncharoen for chemical and physical analysis services during the COVID-19 pandemic. SY and YC acknowledge A. Rujiwatra for supervision in the DPST research fund. SW and NK also thank the DPST project for their research grants.
Funding information
Funding for this research was provided by: Faculty of Science, Chiang Mai University; Development and Promotion of Science and Technology Talent Project (DPST) through a research fund for graduates with first placement; CMU Junior Research Fellowship Program.
References
Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England. Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Furukawa, H., Cordova, K. E., O'Keeffe, M. & Yaghi, O. M. (2013). Science, 341, 1230444–1230444. Web of Science CrossRef PubMed Google Scholar
Głowiak, T., Dao-Cong Ngoan & Legendziewicz, J. (1986). Acta Cryst. C42, 1494–1496. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hussain, S., Khan, I. U., Harrison, W. T. A. & Tahir, M. N. (2015). J. Struct. Chem. 56, 934–941. Web of Science CSD CrossRef CAS Google Scholar
Kim, H.-C., Huh, S., Kim, J. Y., Moon, H. R., Lee, D. N. & Kim, Y. (2017). CrystEngComm, 19, 99–109. Web of Science CSD CrossRef CAS Google Scholar
Legendziewicz, J., Keller, B., Turowska-Tyrk, I. & Wojciechowski, W. (1999). New J. Chem. 23, 1097–1103. Web of Science CSD CrossRef CAS Google Scholar
Marsh, R. E. (2005). Acta Cryst. B61, 359. Web of Science CSD CrossRef IUCr Journals Google Scholar
Pagis, C., Ferbinteanu, M., Rothenberg, G. & Tanase, S. (2016). ACS Catal. 6, 6063–6072. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.