research communications
Z)-4-{[4-(3-methyl-3-phenylcyclobutyl)thiazol-2-yl]amino}-4-oxobut-2-enoic acid
and Hirshfeld surface analysis of (aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139, Samsun, Turkey, bDepartment of Computer and Electronic Engineering Technology, Sanaa Community College, Sanaa, Yemen, cOndokuz Mayıs University, Faculty of Engineering, Department of Electrical and Electronic Engineering, 55139, Samsun, Turkey, dDepartment of Chemistry, Kamil Ozdag Science, Karamanoğlu Mehmetbey University, 70200, Karaman, Turkey, and eDepartment of Chemistry, Sciences Faculty, Fırat University, 23119, Elazığ, Turkey
*Correspondence e-mail: okan.simsek@omu.edu.tr, eiad.saif@scc.edu.ye
The title cyclobutyl compound, C18H18N2O3S, was synthesized by the interaction of 4-(3-methyl-3-phenylcyclobutyl)thiazol-2-amine and maleic anhydride, and crystallizes in the orthorhombic P212121 with Z′ = 1. The molecular geometry is partially stabilized by an intramolecular N—H⋯O hydrogen bond forming an S11(7) ring motif. The molecule is non-planar with a dihedral angle of 88.29 (11)° between the thiazole and benzene rings. In the crystal, the molecules are linked by O—H⋯N hydrogen bonds, forming supramolecular ribbons with C11(9) chain motifs. To further analyze the intermolecular interactions, a Hirshfeld surface analysis was performed. The results indicate that the most important contributions to the overall surface are from H⋯H (43%), C⋯H (18%), O⋯H (17%) and N⋯H (6%), interactions.
Keywords: crystal structure; cyclobutyl; thiazole; 4-oxobut-2-enoic acid; Hirshfeld surface analysis.
CCDC reference: 1953658
1. Chemical context
Cyclobutanes are four-membered carbocycles, which present a unique structural feature in bioactive natural products. Many natural cyclobutanes contain various substituents (Hui et al., 2021). Complex derivatives of cyclobutanes have an important place in biology and biotechnology (Dinçer et al., 2004). In addition, it has been shown that 3-substituted cyclobutane carboxylic acid derivatives exhibit anti-inflammatory and antidepressant activities (Dehmlow & Schmidt, 1990), and can also form liquid crystals (Coghi et al., 1976). In addition, thiazole is a heterocyclic organic compound that has a five-membered ring containing three carbon, one sulfur, and one nitrogen atoms. Thiazoles are found in many potent biologically active compounds, such as sulfathiazole (antimicrobial drug), ritonavir (antiretroviral drug), abafungin (antifungal drug), bleomycine, and tiazofurin (antineoplastic drug) (Kashyap et al., 2012; Mohapatra et al., 2019). In this study, (Z)-4-{[4-(3-methyl-3-phenylcyclobutyl)thiazol-2-yl]amino}-4-oxobut-2-enoic acid was synthesized from 4-(3-methyl-3-phenylcyclobutyl)thiazol-2-amine and maleic anhydride and was characterized by single crystal X-ray diffraction and the crystal packing was analyzed using Hirshfeld surface analysis.
2. Structural commentary
The title cyclobutyl derivative crystallizes in the orthorhombic P212121 with Z′ = 1. Its molecular structure is illustrated in Fig. 1, showing the intramolecular N—H⋯O hydrogen bond forming an (7) ring motif. The molecule is non-planar as the thiazole and benzene rings are twisted with respect to each other, subtending a dihedral angle of 88.29 (11)°. In addition, the cyclobutyl ring is twisted by 58.1 (2) and 40.2 (2)°, with respect to the thiazole, and benzene rings. In the thiazole ring, the C12—N1 bond length is 1.386 (4) Å and classified as a single bond.
The cyclobutane adopts a puckered (butterfly) conformation. The average carbon–carbon (C—C) bond lengths within the ring is 1.5506 Å, with average C—C—C bond angles of 88.89°, while the average torsion angle within the C4 ring is 15.83°. When these parameters are compared with the recently published cyclobutane derivatives (Gumus et al., 2021), it is seen that there are no considerable differences. The S1—C13 and S1—C14 bond lengths are 1.727 (4) and 1.716 (3) Å, typical of a single bond. These values are comparable to those reported previously [1.718 (4) Å (Kansiz et al., 2021) and 1.727 (9) Å (Qadir et al., 2021)], but are longer than the values of 1.685 (4) and 1.698 (3) Å reported by Albayati et al. (2020).
3. Supramolecular features
The crystal packing of the title compound (Fig. 2) features intermolecular hydrogen bonds (C16—H16⋯O1i and O3—H3A⋯N1ii; symmetry codes are given in Table 1). In the crystal, the molecules are linked by O3—H3A⋯N1 hydrogen bonds forming supramolecular ribbons via C11(9) motifs. Adjacent ribbons are connected by C16—H16⋯O1 hydrogen bonds, leading to the formation of layers lying parallel to the bc plane.
4. Database survey
A search of the Cambridge Structural Database (CSD Version 5.42, update of September 2021; Groom et al., 2016) for the 4-(3-methyl-3-phenylcyclobutyl)thiazole moiety gave several hits including 4-{[4-(3-mesityl-3-methylcyclobutyl)-1,3-thiazol-2-yl]amino}-4-oxobutanoic acid dihydrate (CIBQIP; Şen et al., 2013), 2-[4-(3-(2,5-dimethylphenyl)-3-methylcyclobutyl]-1,3-thiazol-2-yl)-1H-isoindole-1,3(2H)-dione (HAMKAJ; Özdemir et al., 2010), 2-chloro-N-[4-(3-methyl-3-phenylcyclobutyl)-1,3-thiazol-2-yl]-N′-(naphthalen-1-ylmethylidene)acetohydrazide (IJULIJ; Inkaya et al., 2011a), N-[4-(3-methyl-3-phenylcyclobutyl)-1,3-thiazol-2-yl]acetamide (LUXDIU; Ekici et al., 2020), N′-benzylidene-2-chloro-N-[4-(3-methyl-3-phenylcyclobutyl)-1,3-thiazol-2-yl]acetohydrazide (PICZUY; Demir et al., 2012), 2-chloro-N′-[4-(dimethylamino)benzylidene]-N-[4-(3-methyl-3-phenylcyclobutyl)-1,3-thiazol-2-yl]acetohydrazide (QAKFUF; Inkaya et al., 2011b), 2-chloro-N′-(2-furylmethylene)-N-[4-(3-methyl-3-phenylcyclobutyl)-1,3-thiazol-2-yl]acetohydrazide (URECEB; Demir et al., 2016) and 4-[4-(3-mesityl-3-methylcyclobutyl)-1,3-thiazol-2-yl]-1-thia-4-azaspiro[4.5]decan-3-one (VOXBER; Şen et al., 2015). In LUXDIU (Ekici et al., 2020), the cyclobutyl ring has puckering parameters Q = 0.240 (4) Å and θ = 17.67 (2)°, that are close to those for the title compound [Q = 0.216 (2) Å and θ = 15.83 (5)°]. The cyclobutane ring is puckered, with a dihedral angle of 25.20 (5)° in IJULIJ (Inkaya et al., 2011a) and 22.99 (47)° in QAKFUF (Inkaya et al., 2011b). In HAMKAJ (Özdemir et al., 2010), the cyclobutane ring has a puckered conformation with 28.84 (22)°. This value is significantly bigger than those in the literature; 20.03 (3)° (PICZUY; Demir et al., 2012) and 18.9 (3)° (CIBQIP; Şen et al., 2013). In the title compound, the C—S bond lengths within the thiazole ring are 1.727 (4) and 1.716 (3) Å, which are congruent with similar examples from the literature, 1.697 (6) and 1.739 (6) Å (VOXBER; Şen et al., 2015) and 1.701 (4) and 1.726 (2) Å (URECEB; Demir et al., 2016). These values are shorter than the standard value for a Csp2—S single bond (1.76 Å). In all structures, the phenyl and thiazole rings are cis-related with respect to the cyclobutane ring. The asymmetric units in all above-mentioned examples contain only one molecule.
5. Hirshfeld surface analysis
To compare quantitatively the different intermolecular interactions affecting the molecular packing in the studied compound, the Hirshfeld surface analysis was employed. The strength of the present intermolecular interactions can be displayed on the Hirshfeld surface (Spackman & Jayatilaka, 2009) generated by CrystalExplorer17 (Turner et al., 2017), here indicated by the red spots (Fig. 3). Furthermore, the Hirshfeld surface analysis is a valuable tool for predicting the properties of a crystal and its potential applications (Al-thamili et al., 2020; Ilmi et al., 2020). The contributions of the different types of intermolecular interactions for the title compound are shown in the two-dimensional fingerprint plots in Fig. 3. Fig. 4 displays the diverse contacts and their percentages observed in the of the C18H18O3S compound based on the Hirshfeld calculations. The molecular packing of the title compound is mainly controlled by relatively strong O⋯H (17%) and N⋯H (6%) interactions ions and by abundant, but weaker, H⋯H (43%) and C⋯H (18%) 8%) van der Waals type interactions. S⋯H (6.8%), S⋯C (1.8%), C⋯O (1.7%), C⋯C (1.7%) and C⋯N (1.5%) contacts are also present. The corresponding fingerprint plots and decomposed dnorm maps for these interactions are shown in Fig. 3. The results also indicate the presence of N—H⋯O, C—H⋯O and O—H⋯N hydrogen bonds.
6. Synthesis and crystallization
A mixture of 4-(3-methyl-3-phenylcyclobutyl)thiazol-2-amine (2.4436 g, 10 mmol) and maleic anhydride (0.9806 g, 10 mmol) in 20 mL of dry toluene under argon atmosphere was refluxed for 12 h (monitored by TLC). Solvent was removed under reduced pressure and the residue crystallized from ethanol in the form of brilliant yellow crystals. The reaction scheme is shown in Fig. 5. Yield 94%, m.p. 460 K. Characteristic IR bands (cm−1): 2975–2855 ν(C—H aliphatics), 1670 ν(C=O), 1626 ν(C=O), 1569 ν(C=N azomethine), 699 ν(C—S—C). Characteristic 1H NMR shifts (THF-d8 + acetone-d6, TMS, ppm): 1.26 (s, 3H, –CH3), 2.15–2.20 (m, 2H, –CH2– in cyclobutane ring), 2.31–2.36 (m, 2H, –CH2– in cyclobutane ring), 3.48 (quint, J = 9.2 Hz, 2H, >CH– in cyclobutane ring), 6.10 (d, J = 12.8 Hz, 1H, –CH=), 6.27 (d, J = 12.4 Hz, 1H, =CH–), 6.50 (s, 1H, S—CH=in thiazole ring), 6.89–6.92 (m, 3H, aromatics), 7.00 (m, 2H, aromatics). –OH and –NH– protons of this molecule have not been determined in the 1H NMR spectrum. Characteristic 13C NMR shifts (THF-d8 + acetone-d6, TMS, ppm): 165.30, 162.65, 156.96, 154.69, 152.29, 132.00, 130.84, 127.71, 124.81, 124.21, 107.19, 40.25, 38.16, 30.20, 29.35.
7. Refinement
Crystal data, data collection and structure . Although the acidic protons from the O–H and N–H bonds could be located in the difference-Fourier map, even very strong distance restraints were not sufficient to obtain proper distances between the parent atom and hydrogen. Therefore, both protons were refined in geometrical positions using the corresponding AFIX instructions with O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O), and N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N), respectively. The C-bound H atoms were positioned geometrically (C—H = 0.93, 0.96, 0.97 and 0.98 Å) and refined using a riding model, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.
details are summarized in Table 2Supporting information
CCDC reference: 1953658
https://doi.org/10.1107/S2056989022000032/jq2012sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022000032/jq2012Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989022000032/jq2012Isup3.cml
Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2020).C18H18N2O3S | Dx = 1.314 Mg m−3 |
Mr = 342.40 | Melting point: 460 K |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
a = 5.9685 (4) Å | Cell parameters from 7998 reflections |
b = 11.0580 (9) Å | θ = 1.6–27.3° |
c = 26.215 (2) Å | µ = 0.21 mm−1 |
V = 1730.2 (2) Å3 | T = 296 K |
Z = 4 | Prism, light yellow |
F(000) = 720 | 0.78 × 0.71 × 0.59 mm |
Stoe IPDS 2 diffractometer | 3338 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 2648 reflections with I > 2σ(I) |
Detector resolution: 6.67 pixels mm-1 | Rint = 0.058 |
rotation method scans | θmax = 26.0°, θmin = 1.6° |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | h = −7→7 |
Tmin = 0.832, Tmax = 0.899 | k = −13→12 |
7546 measured reflections | l = −32→30 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.045 | w = 1/[σ2(Fo2) + (0.0679P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.113 | (Δ/σ)max = 0.001 |
S = 0.97 | Δρmax = 0.20 e Å−3 |
3338 reflections | Δρmin = −0.16 e Å−3 |
218 parameters | Extinction correction: SHELXL2017/1 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.014 (3) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack x determined using 907 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Secondary atom site location: difference Fourier map | Absolute structure parameter: −0.05 (8) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.4002 (6) | 0.8359 (3) | 0.80585 (12) | 0.0711 (8) | |
H1 | 0.274222 | 0.794587 | 0.794336 | 0.085* | |
C2 | 0.4122 (8) | 0.8741 (4) | 0.85639 (13) | 0.0839 (11) | |
H2 | 0.293567 | 0.858606 | 0.878430 | 0.101* | |
C3 | 0.5971 (8) | 0.9343 (4) | 0.87390 (14) | 0.0897 (12) | |
H3 | 0.604483 | 0.958968 | 0.907768 | 0.108* | |
C4 | 0.7710 (7) | 0.9581 (4) | 0.84151 (14) | 0.0877 (11) | |
H4 | 0.896441 | 0.999348 | 0.853340 | 0.105* | |
C5 | 0.7611 (6) | 0.9208 (4) | 0.79108 (13) | 0.0764 (9) | |
H5 | 0.880417 | 0.937415 | 0.769367 | 0.092* | |
C6 | 0.5764 (5) | 0.8595 (3) | 0.77256 (11) | 0.0626 (7) | |
C7 | 0.5717 (5) | 0.8175 (3) | 0.71772 (11) | 0.0642 (8) | |
C8 | 0.6388 (6) | 0.9135 (4) | 0.67725 (13) | 0.0751 (9) | |
H8A | 0.628167 | 0.996095 | 0.689444 | 0.090* | |
H8B | 0.783448 | 0.898561 | 0.661620 | 0.090* | |
C9 | 0.4381 (6) | 0.8741 (3) | 0.64378 (12) | 0.0695 (8) | |
H9 | 0.486075 | 0.814897 | 0.618184 | 0.083* | |
C10 | 0.3400 (5) | 0.8091 (4) | 0.69128 (12) | 0.0706 (9) | |
H10A | 0.223403 | 0.854686 | 0.708437 | 0.085* | |
H10B | 0.291717 | 0.726837 | 0.684630 | 0.085* | |
C11 | 0.7026 (7) | 0.6997 (4) | 0.71183 (14) | 0.0864 (10) | |
H11A | 0.698104 | 0.674197 | 0.676846 | 0.130* | |
H11B | 0.855370 | 0.712428 | 0.721945 | 0.130* | |
H11C | 0.636589 | 0.638486 | 0.732996 | 0.130* | |
C12 | 0.2935 (6) | 0.9681 (3) | 0.62006 (11) | 0.0664 (8) | |
C13 | 0.3006 (7) | 1.0888 (3) | 0.62654 (14) | 0.0823 (10) | |
H13 | 0.408013 | 1.128814 | 0.645944 | 0.099* | |
C14 | −0.0010 (6) | 1.0208 (3) | 0.57345 (11) | 0.0636 (8) | |
C15 | −0.3247 (6) | 1.0930 (3) | 0.52675 (12) | 0.0682 (8) | |
C16 | −0.5193 (6) | 1.0635 (3) | 0.49439 (13) | 0.0712 (9) | |
H16 | −0.622658 | 1.126176 | 0.491776 | 0.085* | |
C17 | −0.5769 (6) | 0.9646 (3) | 0.46806 (12) | 0.0710 (8) | |
H17 | −0.714462 | 0.969359 | 0.451502 | 0.085* | |
C18 | −0.4561 (6) | 0.8490 (3) | 0.46116 (12) | 0.0674 (8) | |
N1 | 0.1187 (4) | 0.9299 (2) | 0.58924 (9) | 0.0609 (6) | |
N2 | −0.1832 (5) | 1.0037 (2) | 0.54206 (10) | 0.0677 (7) | |
H2A | −0.209319 | 0.931474 | 0.531402 | 0.081* | |
O1 | −0.2951 (5) | 1.1985 (2) | 0.54005 (10) | 0.0859 (7) | |
O2 | −0.3074 (5) | 0.8116 (2) | 0.48857 (12) | 0.0998 (9) | |
O3 | −0.5286 (4) | 0.7906 (2) | 0.42168 (8) | 0.0776 (7) | |
H3A | −0.459781 | 0.726735 | 0.418911 | 0.116* | |
S1 | 0.0856 (2) | 1.16026 (8) | 0.59435 (4) | 0.0829 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0678 (18) | 0.073 (2) | 0.0730 (18) | 0.0039 (18) | 0.0067 (16) | 0.0099 (16) |
C2 | 0.093 (3) | 0.088 (3) | 0.0708 (19) | 0.018 (2) | 0.018 (2) | 0.0131 (17) |
C3 | 0.104 (3) | 0.098 (3) | 0.067 (2) | 0.025 (3) | −0.006 (2) | −0.0036 (18) |
C4 | 0.082 (2) | 0.100 (3) | 0.082 (2) | 0.007 (2) | −0.016 (2) | −0.012 (2) |
C5 | 0.0613 (18) | 0.092 (3) | 0.076 (2) | 0.0016 (18) | −0.0035 (16) | −0.0028 (17) |
C6 | 0.0600 (16) | 0.0635 (19) | 0.0644 (15) | 0.0079 (16) | −0.0002 (14) | 0.0052 (13) |
C7 | 0.0552 (16) | 0.070 (2) | 0.0676 (16) | −0.0017 (16) | 0.0036 (13) | 0.0008 (14) |
C8 | 0.0637 (19) | 0.095 (3) | 0.0663 (18) | −0.0158 (17) | 0.0057 (14) | 0.0062 (16) |
C9 | 0.0714 (18) | 0.075 (2) | 0.0626 (16) | −0.0095 (17) | −0.0003 (15) | −0.0063 (14) |
C10 | 0.0590 (17) | 0.077 (2) | 0.0757 (18) | −0.0103 (16) | −0.0003 (15) | 0.0048 (16) |
C11 | 0.076 (2) | 0.087 (3) | 0.096 (2) | 0.012 (2) | 0.0016 (19) | −0.016 (2) |
C12 | 0.0735 (19) | 0.071 (2) | 0.0550 (15) | −0.0107 (17) | 0.0018 (15) | −0.0046 (13) |
C13 | 0.095 (3) | 0.073 (3) | 0.079 (2) | −0.015 (2) | −0.015 (2) | −0.0097 (17) |
C14 | 0.073 (2) | 0.058 (2) | 0.0592 (15) | −0.0101 (15) | 0.0050 (14) | −0.0059 (13) |
C15 | 0.083 (2) | 0.0537 (19) | 0.0677 (18) | −0.0004 (16) | 0.0095 (16) | 0.0001 (13) |
C16 | 0.077 (2) | 0.060 (2) | 0.0762 (19) | 0.0093 (16) | −0.0005 (16) | 0.0013 (15) |
C17 | 0.0756 (19) | 0.061 (2) | 0.0759 (18) | 0.0136 (17) | −0.0069 (17) | 0.0009 (15) |
C18 | 0.0757 (19) | 0.0570 (18) | 0.0696 (17) | −0.0036 (16) | −0.0085 (16) | −0.0025 (15) |
N1 | 0.0687 (15) | 0.0577 (15) | 0.0565 (13) | −0.0073 (12) | 0.0034 (12) | −0.0068 (11) |
N2 | 0.0778 (16) | 0.0501 (14) | 0.0753 (15) | −0.0039 (13) | −0.0071 (14) | −0.0072 (12) |
O1 | 0.1089 (18) | 0.0548 (14) | 0.0940 (15) | −0.0059 (13) | 0.0042 (14) | −0.0051 (12) |
O2 | 0.1046 (19) | 0.0668 (16) | 0.128 (2) | 0.0217 (15) | −0.0505 (18) | −0.0262 (14) |
O3 | 0.0922 (16) | 0.0679 (14) | 0.0727 (13) | 0.0082 (12) | −0.0112 (12) | −0.0049 (11) |
S1 | 0.1047 (7) | 0.0564 (5) | 0.0875 (6) | −0.0127 (5) | −0.0120 (5) | −0.0076 (4) |
C1—C6 | 1.391 (5) | C10—H10B | 0.9700 |
C1—C2 | 1.393 (5) | C11—H11A | 0.9600 |
C1—H1 | 0.9300 | C11—H11B | 0.9600 |
C2—C3 | 1.368 (6) | C11—H11C | 0.9600 |
C2—H2 | 0.9300 | C12—C13 | 1.346 (5) |
C3—C4 | 1.366 (6) | C12—N1 | 1.386 (4) |
C3—H3 | 0.9300 | C13—S1 | 1.727 (4) |
C4—C5 | 1.386 (5) | C13—H13 | 0.9300 |
C4—H4 | 0.9300 | C14—N1 | 1.301 (4) |
C5—C6 | 1.382 (5) | C14—N2 | 1.377 (4) |
C5—H5 | 0.9300 | C14—S1 | 1.716 (3) |
C6—C7 | 1.511 (4) | C15—O1 | 1.230 (4) |
C7—C11 | 1.526 (5) | C15—N2 | 1.360 (4) |
C7—C10 | 1.550 (4) | C15—C16 | 1.475 (5) |
C7—C8 | 1.553 (4) | C16—C17 | 1.338 (5) |
C8—C9 | 1.547 (5) | C16—H16 | 0.9300 |
C8—H8A | 0.9700 | C17—C18 | 1.479 (5) |
C8—H8B | 0.9700 | C17—H17 | 0.9300 |
C9—C12 | 1.488 (5) | C18—O2 | 1.215 (4) |
C9—C10 | 1.553 (5) | C18—O3 | 1.295 (4) |
C9—H9 | 0.9800 | N2—H2A | 0.8600 |
C10—H10A | 0.9700 | O3—H3A | 0.8200 |
C6—C1—C2 | 120.0 (4) | C9—C10—H10A | 113.7 |
C6—C1—H1 | 120.0 | C7—C10—H10B | 113.7 |
C2—C1—H1 | 120.0 | C9—C10—H10B | 113.7 |
C3—C2—C1 | 120.6 (4) | H10A—C10—H10B | 110.9 |
C3—C2—H2 | 119.7 | C7—C11—H11A | 109.5 |
C1—C2—H2 | 119.7 | C7—C11—H11B | 109.5 |
C4—C3—C2 | 119.9 (3) | H11A—C11—H11B | 109.5 |
C4—C3—H3 | 120.1 | C7—C11—H11C | 109.5 |
C2—C3—H3 | 120.1 | H11A—C11—H11C | 109.5 |
C3—C4—C5 | 120.2 (4) | H11B—C11—H11C | 109.5 |
C3—C4—H4 | 119.9 | C13—C12—N1 | 113.6 (3) |
C5—C4—H4 | 119.9 | C13—C12—C9 | 128.5 (3) |
C6—C5—C4 | 121.0 (3) | N1—C12—C9 | 117.8 (3) |
C6—C5—H5 | 119.5 | C12—C13—S1 | 111.6 (3) |
C4—C5—H5 | 119.5 | C12—C13—H13 | 124.2 |
C5—C6—C1 | 118.3 (3) | S1—C13—H13 | 124.2 |
C5—C6—C7 | 120.0 (3) | N1—C14—N2 | 121.2 (3) |
C1—C6—C7 | 121.7 (3) | N1—C14—S1 | 115.3 (2) |
C6—C7—C11 | 110.4 (3) | N2—C14—S1 | 123.5 (3) |
C6—C7—C10 | 117.4 (3) | O1—C15—N2 | 121.1 (3) |
C11—C7—C10 | 111.1 (3) | O1—C15—C16 | 119.0 (3) |
C6—C7—C8 | 115.8 (3) | N2—C15—C16 | 119.9 (3) |
C11—C7—C8 | 112.5 (3) | C17—C16—C15 | 132.8 (3) |
C10—C7—C8 | 88.0 (2) | C17—C16—H16 | 113.6 |
C9—C8—C7 | 89.8 (2) | C15—C16—H16 | 113.6 |
C9—C8—H8A | 113.7 | C16—C17—C18 | 130.1 (3) |
C7—C8—H8A | 113.7 | C16—C17—H17 | 114.9 |
C9—C8—H8B | 113.7 | C18—C17—H17 | 114.9 |
C7—C8—H8B | 113.7 | O2—C18—O3 | 123.1 (3) |
H8A—C8—H8B | 110.9 | O2—C18—C17 | 125.4 (3) |
C12—C9—C8 | 119.3 (3) | O3—C18—C17 | 111.5 (3) |
C12—C9—C10 | 116.1 (3) | C14—N1—C12 | 111.3 (3) |
C8—C9—C10 | 88.1 (2) | C15—N2—C14 | 124.5 (3) |
C12—C9—H9 | 110.5 | C15—N2—H2A | 117.7 |
C8—C9—H9 | 110.5 | C14—N2—H2A | 117.7 |
C10—C9—H9 | 110.5 | C18—O3—H3A | 109.5 |
C7—C10—C9 | 89.7 (2) | C14—S1—C13 | 88.22 (18) |
C7—C10—H10A | 113.7 | ||
C6—C1—C2—C3 | −0.4 (6) | C8—C9—C10—C7 | −15.9 (3) |
C1—C2—C3—C4 | 0.5 (6) | C8—C9—C12—C13 | −5.7 (5) |
C2—C3—C4—C5 | −0.3 (6) | C10—C9—C12—C13 | 97.8 (4) |
C3—C4—C5—C6 | 0.1 (6) | C8—C9—C12—N1 | 178.4 (3) |
C4—C5—C6—C1 | 0.0 (5) | C10—C9—C12—N1 | −78.1 (4) |
C4—C5—C6—C7 | −178.7 (3) | N1—C12—C13—S1 | 0.4 (4) |
C2—C1—C6—C5 | 0.1 (5) | C9—C12—C13—S1 | −175.7 (3) |
C2—C1—C6—C7 | 178.8 (3) | O1—C15—C16—C17 | 168.3 (4) |
C5—C6—C7—C11 | 80.9 (4) | N2—C15—C16—C17 | −12.7 (6) |
C1—C6—C7—C11 | −97.7 (4) | C15—C16—C17—C18 | −2.2 (7) |
C5—C6—C7—C10 | −150.3 (3) | C16—C17—C18—O2 | 19.8 (6) |
C1—C6—C7—C10 | 31.1 (5) | C16—C17—C18—O3 | −160.4 (4) |
C5—C6—C7—C8 | −48.3 (4) | N2—C14—N1—C12 | 179.7 (3) |
C1—C6—C7—C8 | 133.0 (3) | S1—C14—N1—C12 | −0.1 (3) |
C6—C7—C8—C9 | −135.5 (3) | C13—C12—N1—C14 | −0.2 (4) |
C11—C7—C8—C9 | 96.2 (3) | C9—C12—N1—C14 | 176.4 (3) |
C10—C7—C8—C9 | −15.8 (3) | O1—C15—N2—C14 | 1.0 (5) |
C7—C8—C9—C12 | 134.9 (3) | C16—C15—N2—C14 | −178.0 (3) |
C7—C8—C9—C10 | 15.8 (3) | N1—C14—N2—C15 | 175.5 (3) |
C6—C7—C10—C9 | 134.0 (3) | S1—C14—N2—C15 | −4.7 (4) |
C11—C7—C10—C9 | −97.6 (3) | N1—C14—S1—C13 | 0.3 (3) |
C8—C7—C10—C9 | 15.8 (3) | N2—C14—S1—C13 | −179.5 (3) |
C12—C9—C10—C7 | −137.8 (3) | C12—C13—S1—C14 | −0.4 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C16—H16···O1i | 0.93 | 2.35 | 3.233 (4) | 159 |
N2—H2A···O2 | 0.86 | 1.83 | 2.651 (4) | 158 |
O3—H3A···N1ii | 0.82 | 1.81 | 2.607 (3) | 165 |
Symmetry codes: (i) x−1/2, −y+5/2, −z+1; (ii) x−1/2, −y+3/2, −z+1. |
Acknowledgements
Author contributions are as follows. Conceptualization, OS, MD, AC and ES; synthesis, AC and IY; writing (review and editing of the manuscript) OS, ND and AC; formal analysis, AC, OS, ND and MD; crystal-structure determination, OS, AC and ND; validation, AC, MD, ND and ES; project administration, AC, OS, ES and IY.
Funding information
Funding for this research was provided by Ondokuz Mayıs University under Project No. PYO·FEN.1906.19.001.
References
Albayati, M. R., Kansız, S., Dege, N., Kaya, S., Marzouki, R., Lgaz, H., Salghi, R., Ali, I. H., Alghamdi, M. M. & Chung, I.-M. (2020). J. Mol. Struct. 1205, 127654. Web of Science CSD CrossRef Google Scholar
Al-thamili, D. M., Almansour, A. I., Arumugam, N., Kansız, S., Dege, N., Soliman, S. M., Azam, M. & Kumar, R. S. (2020). J. Mol. Struct. 1222, 128940. Google Scholar
Coghi, L., Lanfredi, A. M. M. & Tiripicchio, A. (1976). J. Chem. Soc. Perkin Trans. 2, pp. 1808–1810. CSD CrossRef Web of Science Google Scholar
Dehmlow, E. V. & Schmidt, S. (1990). Liebigs Ann. Chem. pp. 411–414. Google Scholar
Demir, S., Dinçer, M., Çukurovalı, A. & Yılmaz, İ. (2012). Int. J. Quantum Chem. 112, 1016–1028. Web of Science CSD CrossRef CAS Google Scholar
Demir, S., Dinçer, M., Çukurovalı, A. & Yılmaz, İ. (2016). Mol. Cryst. Liq. Cryst. 629, 44–60. Web of Science CSD CrossRef CAS Google Scholar
Dinçer, M., Özdemir, N., Yılmaz, İ, Çukurovalı, A. & Büyükgüngör, O. (2004). Acta Cryst. C60, o674–o676. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ekici, Ö., Demircioğlu, Z., Ersanlı, C. C. & Çukurovalı, A. (2020). J. Mol. Struct. 1204, 127513. Web of Science CSD CrossRef Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gumus, M. K., Sen, F., Kansiz, S., Dege, N. & Saif, E. (2021). Acta Cryst. E77, 1267–1271. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hui, C., Brieger, L., Strohmann, C. & Antonchick, A. P. (2021). J. Am. Chem. Soc. 143, 18864–18870. Web of Science CSD CrossRef CAS PubMed Google Scholar
Ilmi, R., Kansız, S., Al-Rasbi, N., Dege, N., Raithby, P. R. & Khan, M. S. (2020). New J. Chem. 44, 5673–5683. Web of Science CSD CrossRef CAS Google Scholar
Inkaya, E., Dinçer, M., Çukurovalı, A. & Yılmaz, E. (2011a). Acta Cryst. E67, o310. Web of Science CSD CrossRef IUCr Journals Google Scholar
Inkaya, E., Dinçer, M., Çukurovalı, A. & Yılmaz, E. (2011b). Acta Cryst. E67, o131–o132. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kansiz, S., Dege, N., Ozturk, S., Akdemir, N., Tarcan, E., Arslanhan, A. & Saif, E. (2021). Acta Cryst. E77, 138–141. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kashyap, S. J., Garg, V. K., Sharma, P. K., Kumar, N., Dudhe, R. & Gupta, J. K. (2012). Med. Chem. Res. 21, 2123–2132. Web of Science CrossRef CAS Google Scholar
Mohapatra, R. K., Sarangi, A. K., Azam, M., El-ajaily, M. M., Kudrat-E-Zahan, Md., Patjoshi, S. B. & Dash, D. C. (2019). J. Mol. Struct. 1179, 65–75. Web of Science CrossRef CAS Google Scholar
Özdemir, N., Dinçer, M. & Çukurovalı, A. (2010). J. Mol. Model. 16, 291–302. Web of Science PubMed Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Qadir, A. M., Kansiz, S., Dege, N. & Saif, E. (2021). Acta Cryst. E77, 1126–1129. Web of Science CSD CrossRef IUCr Journals Google Scholar
Şen, F., Dinçer, M., Çukurovalı, A. & Yılmaz, İ. (2013). J. Mol. Struct. 1046, 1–8. Google Scholar
Şen, F., Ekici, Ö., Dinçer, M. & Çukurovalı, A. (2015). J. Mol. Struct. 1086, 109–117. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17.5. University of Western Australia. https://hirshfeldsurface.net. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.