research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (Z)-4-{[4-(3-methyl-3-phenyl­cyclo­but­yl)thia­zol-2-yl]amino}-4-oxobut-2-enoic acid

crossmark logo

aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139, Samsun, Turkey, bDepartment of Computer and Electronic Engineering Technology, Sanaa Community College, Sanaa, Yemen, cOndokuz Mayıs University, Faculty of Engineering, Department of Electrical and Electronic Engineering, 55139, Samsun, Turkey, dDepartment of Chemistry, Kamil Ozdag Science, Karamanoğlu Mehmetbey University, 70200, Karaman, Turkey, and eDepartment of Chemistry, Sciences Faculty, Fırat University, 23119, Elazığ, Turkey
*Correspondence e-mail: okan.simsek@omu.edu.tr, eiad.saif@scc.edu.ye

Edited by V. Jancik, Universidad Nacional Autónoma de México, México (Received 10 December 2021; accepted 2 January 2022; online 7 January 2022)

The title cyclo­butyl compound, C18H18N2O3S, was synthesized by the inter­action of 4-(3-methyl-3-phenyl­cyclo­but­yl)thia­zol-2-amine and maleic anhydride, and crystallizes in the ortho­rhom­bic space group P212121 with Z′ = 1. The mol­ecular geometry is partially stabilized by an intra­molecular N—H⋯O hydrogen bond forming an S11(7) ring motif. The mol­ecule is non-planar with a dihedral angle of 88.29 (11)° between the thia­zole and benzene rings. In the crystal, the mol­ecules are linked by O—H⋯N hydrogen bonds, forming supra­molecular ribbons with C11(9) chain motifs. To further analyze the inter­molecular inter­actions, a Hirshfeld surface analysis was performed. The results indicate that the most important contributions to the overall surface are from H⋯H (43%), C⋯H (18%), O⋯H (17%) and N⋯H (6%), inter­actions.

1. Chemical context

Cyclo­butanes are four-membered carbocycles, which present a unique structural feature in bioactive natural products. Many natural cyclo­butanes contain various substituents (Hui et al., 2021[Hui, C., Brieger, L., Strohmann, C. & Antonchick, A. P. (2021). J. Am. Chem. Soc. 143, 18864-18870.]). Complex derivatives of cyclo­butanes have an important place in biology and biotechnology (Dinçer et al., 2004[Dinçer, M., Özdemir, N., Yılmaz, İ, Çukurovalı, A. & Büyükgüngör, O. (2004). Acta Cryst. C60, o674-o676.]). In addition, it has been shown that 3-substituted cyclo­butane carb­oxy­lic acid derivatives exhibit anti-inflammatory and anti­depressant activities (Dehmlow & Schmidt, 1990[Dehmlow, E. V. & Schmidt, S. (1990). Liebigs Ann. Chem. pp. 411-414.]), and can also form liquid crystals (Coghi et al., 1976[Coghi, L., Lanfredi, A. M. M. & Tiripicchio, A. (1976). J. Chem. Soc. Perkin Trans. 2, pp. 1808-1810.]). In addition, thia­zole is a heterocyclic organic compound that has a five-membered ring containing three carbon, one sulfur, and one nitro­gen atoms. Thia­zoles are found in many potent biologically active compounds, such as sulfa­thia­zole (anti­microbial drug), ritonavir (anti­retroviral drug), abafungin (anti­fungal drug), bleomycine, and tiazofurin (anti­neoplastic drug) (Kashyap et al., 2012[Kashyap, S. J., Garg, V. K., Sharma, P. K., Kumar, N., Dudhe, R. & Gupta, J. K. (2012). Med. Chem. Res. 21, 2123-2132.]; Mohapatra et al., 2019[Mohapatra, R. K., Sarangi, A. K., Azam, M., El-ajaily, M. M., Kudrat-E-Zahan, Md., Patjoshi, S. B. & Dash, D. C. (2019). J. Mol. Struct. 1179, 65-75.]). In this study, (Z)-4-{[4-(3-methyl-3-phenyl­cyclo­but­yl)thia­zol-2-yl]amino}-4-oxobut-2-enoic acid was synthesized from 4-(3-methyl-3-phenyl­cyclo­but­yl)thia­zol-2-amine and maleic anhydride and was characterized by single crystal X-ray diffraction and the crystal packing was analyzed using Hirshfeld surface analysis.

2. Structural commentary

The title cyclo­butyl derivative crystallizes in the ortho­rhom­bic P212121 space group with Z′ = 1. Its mol­ecular structure is illustrated in Fig. 1[link], showing the intra­molecular N—H⋯O hydrogen bond forming an [S_{1}^{1}](7) ring motif. The mol­ecule is non-planar as the thia­zole and benzene rings are twisted with respect to each other, subtending a dihedral angle of 88.29 (11)°. In addition, the cyclo­butyl ring is twisted by 58.1 (2) and 40.2 (2)°, with respect to the thia­zole, and benzene rings. In the thia­zole ring, the C12—N1 bond length is 1.386 (4) Å and classified as a single bond.

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 40% probability level. Dashed lines denote the intra­molecular N—H⋯O hydrogen bonds forming an [S_{1}^{1}](7) ring motif.

The cyclo­butane adopts a puckered (butterfly) conformation. The average carbon–carbon (C—C) bond lengths within the ring is 1.5506 Å, with average C—C—C bond angles of 88.89°, while the average torsion angle within the C4 ring is 15.83°. When these parameters are compared with the recently published cyclo­butane derivatives (Gumus et al., 2021[Gumus, M. K., Sen, F., Kansiz, S., Dege, N. & Saif, E. (2021). Acta Cryst. E77, 1267-1271.]), it is seen that there are no considerable differences. The S1—C13 and S1—C14 bond lengths are 1.727 (4) and 1.716 (3) Å, typical of a single bond. These values are comparable to those reported previously [1.718 (4) Å (Kansiz et al., 2021[Kansiz, S., Dege, N., Ozturk, S., Akdemir, N., Tarcan, E., Arslanhan, A. & Saif, E. (2021). Acta Cryst. E77, 138-141.]) and 1.727 (9) Å (Qadir et al., 2021[Qadir, A. M., Kansiz, S., Dege, N. & Saif, E. (2021). Acta Cryst. E77, 1126-1129.])], but are longer than the values of 1.685 (4) and 1.698 (3) Å reported by Albayati et al. (2020[Albayati, M. R., Kansız, S., Dege, N., Kaya, S., Marzouki, R., Lgaz, H., Salghi, R., Ali, I. H., Alghamdi, M. M. & Chung, I.-M. (2020). J. Mol. Struct. 1205, 127654.]).

3. Supra­molecular features

The crystal packing of the title compound (Fig. 2[link]) features inter­molecular hydrogen bonds (C16—H16⋯O1i and O3—H3A⋯N1ii; symmetry codes are given in Table 1[link]). In the crystal, the mol­ecules are linked by O3—H3A⋯N1 hydrogen bonds forming supra­molecular ribbons via C11(9) motifs. Adjacent ribbons are connected by C16—H16⋯O1 hydrogen bonds, leading to the formation of layers lying parallel to the bc plane.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O1i 0.93 2.35 3.233 (4) 159
N2—H2A⋯O2 0.86 1.83 2.651 (4) 158
O3—H3A⋯N1ii 0.82 1.81 2.607 (3) 165
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{5\over 2}}, -z+1]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].
[Figure 2]
Figure 2
A view of the crystal packing of the title compound. Blue dashed lines denote the inter­molecular O3—H3A⋯N1 hydrogen bonds forming a C11(9) motif (Table 1[link]).

4. Database survey

A search of the Cambridge Structural Database (CSD Version 5.42, update of September 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 4-(3-methyl-3-phenyl­cyclo­but­yl)thia­zole moiety gave several hits including 4-{[4-(3-mesityl-3-methyl­cyclo­but­yl)-1,3-thia­zol-2-yl]amino}-4-oxo­butanoic acid dihydrate (CIBQIP; Şen et al., 2013[Şen, F., Dinçer, M., Çukurovalı, A. & Yılmaz, İ. (2013). J. Mol. Struct. 1046, 1-8.]), 2-[4-(3-(2,5-di­methyl­phen­yl)-3-methyl­cyclo­but­yl]-1,3-thia­zol-2-yl)-1H-iso­indole-1,3(2H)-dione (HAMKAJ; Öz­demir et al., 2010[Özdemir, N., Dinçer, M. & Çukurovalı, A. (2010). J. Mol. Model. 16, 291-302.]), 2-chloro-N-[4-(3-methyl-3-phenyl­cyclo­but­yl)-1,3-thia­zol-2-yl]-N′-(naphthalen-1-yl­methyl­idene)ace­to­hydrazide (IJULIJ; Inkaya et al., 2011a[Inkaya, E., Dinçer, M., Çukurovalı, A. & Yılmaz, E. (2011a). Acta Cryst. E67, o310.]), N-[4-(3-methyl-3-phenyl­cyclo­but­yl)-1,3-thia­zol-2-yl]acetamide (LUXDIU; Ekici et al., 2020[Ekici, Ö., Demircioğlu, Z., Ersanlı, C. C. & Çukurovalı, A. (2020). J. Mol. Struct. 1204, 127513.]), N′-benzyl­idene-2-chloro-N-[4-(3-methyl-3-phenyl­cyclo­but­yl)-1,3-thia­zol-2-yl]acetohydrazide (PICZUY; Demir et al., 2012[Demir, S., Dinçer, M., Çukurovalı, A. & Yılmaz, İ. (2012). Int. J. Quantum Chem. 112, 1016-1028.]), 2-chloro-N′-[4-(di­methyl­amino)­benzyl­idene]-N-[4-(3-methyl-3-phenyl­cyclo­but­yl)-1,3-thia­zol-2-yl]acetohydrazide (QAKFUF; Inkaya et al., 2011b[Inkaya, E., Dinçer, M., Çukurovalı, A. & Yılmaz, E. (2011b). Acta Cryst. E67, o131-o132.]), 2-chloro-N′-(2-furyl­methyl­ene)-N-[4-(3-methyl-3-phenyl­cyclo­but­yl)-1,3-thia­zol-2-yl]acetohydrazide (URECEB; Demir et al., 2016[Demir, S., Dinçer, M., Çukurovalı, A. & Yılmaz, İ. (2016). Mol. Cryst. Liq. Cryst. 629, 44-60.]) and 4-[4-(3-mesityl-3-methyl­cyclo­but­yl)-1,3-thia­zol-2-yl]-1-thia-4-aza­spiro­[4.5]decan-3-one (VOXBER; Şen et al., 2015[Şen, F., Ekici, Ö., Dinçer, M. & Çukurovalı, A. (2015). J. Mol. Struct. 1086, 109-117.]). In LUXDIU (Ekici et al., 2020[Ekici, Ö., Demircioğlu, Z., Ersanlı, C. C. & Çukurovalı, A. (2020). J. Mol. Struct. 1204, 127513.]), the cyclo­butyl ring has puckering parameters Q = 0.240 (4) Å and θ = 17.67 (2)°, that are close to those for the title compound [Q = 0.216 (2) Å and θ = 15.83 (5)°]. The cyclo­butane ring is puckered, with a dihedral angle of 25.20 (5)° in IJULIJ (Inkaya et al., 2011a[Inkaya, E., Dinçer, M., Çukurovalı, A. & Yılmaz, E. (2011a). Acta Cryst. E67, o310.]) and 22.99 (47)° in QAKFUF (Inkaya et al., 2011b[Inkaya, E., Dinçer, M., Çukurovalı, A. & Yılmaz, E. (2011b). Acta Cryst. E67, o131-o132.]). In HAMKAJ (Özdemir et al., 2010[Özdemir, N., Dinçer, M. & Çukurovalı, A. (2010). J. Mol. Model. 16, 291-302.]), the cyclo­butane ring has a puckered conformation with 28.84 (22)°. This value is significantly bigger than those in the literature; 20.03 (3)° (PICZUY; Demir et al., 2012[Demir, S., Dinçer, M., Çukurovalı, A. & Yılmaz, İ. (2012). Int. J. Quantum Chem. 112, 1016-1028.]) and 18.9 (3)° (CIBQIP; Şen et al., 2013[Şen, F., Dinçer, M., Çukurovalı, A. & Yılmaz, İ. (2013). J. Mol. Struct. 1046, 1-8.]). In the title compound, the C—S bond lengths within the thia­zole ring are 1.727 (4) and 1.716 (3) Å, which are congruent with similar examples from the literature, 1.697 (6) and 1.739 (6) Å (VOXBER; Şen et al., 2015[Şen, F., Ekici, Ö., Dinçer, M. & Çukurovalı, A. (2015). J. Mol. Struct. 1086, 109-117.]) and 1.701 (4) and 1.726 (2) Å (URECEB; Demir et al., 2016[Demir, S., Dinçer, M., Çukurovalı, A. & Yılmaz, İ. (2016). Mol. Cryst. Liq. Cryst. 629, 44-60.]). These values are shorter than the standard value for a Csp2—S single bond (1.76 Å). In all structures, the phenyl and thia­zole rings are cis-related with respect to the cyclo­butane ring. The asymmetric units in all above-mentioned examples contain only one mol­ecule.

5. Hirshfeld surface analysis

To compare qu­anti­tatively the different inter­molecular inter­actions affecting the mol­ecular packing in the studied compound, the Hirshfeld surface analysis was employed. The strength of the present inter­molecular inter­actions can be displayed on the Hirshfeld surface (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) generated by CrystalExplorer17 (Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17.5. University of Western Australia. https://hirshfeldsurface.net.]), here indicated by the red spots (Fig. 3[link]). Furthermore, the Hirshfeld surface analysis is a valuable tool for predicting the properties of a crystal and its potential applications (Al-thamili et al., 2020[Al-thamili, D. M., Almansour, A. I., Arumugam, N., Kansız, S., Dege, N., Soliman, S. M., Azam, M. & Kumar, R. S. (2020). J. Mol. Struct. 1222, 128940.]; Ilmi et al., 2020[Ilmi, R., Kansız, S., Al-Rasbi, N., Dege, N., Raithby, P. R. & Khan, M. S. (2020). New J. Chem. 44, 5673-5683.]). The contributions of the different types of inter­molecular inter­actions for the title compound are shown in the two-dimensional fingerprint plots in Fig. 3[link]. Fig. 4[link] displays the diverse contacts and their percentages observed in the crystal structure of the C18H18O3S compound based on the Hirshfeld calculations. The mol­ecular packing of the title compound is mainly controlled by relatively strong O⋯H (17%) and N⋯H (6%) inter­actions ions and by abundant, but weaker, H⋯H (43%) and C⋯H (18%) 8%) van der Waals type interactions. S⋯H (6.8%), S⋯C (1.8%), C⋯O (1.7%), C⋯C (1.7%) and C⋯N (1.5%) contacts are also present. The corresponding fingerprint plots and decomposed dnorm maps for these inter­actions are shown in Fig. 3[link]. The results also indicate the presence of N—H⋯O, C—H⋯O and O—H⋯N hydrogen bonds.

[Figure 3]
Figure 3
The Hirshfeld surface analysis of the title compound mapped with dnorm over the range −0.763 to 1.558 showing C—H⋯O and O—H⋯N hydrogen-bonded contacts.
[Figure 4]
Figure 4
Inter­molecular inter­actions and their percentages in C18H18N2O3S.

6. Synthesis and crystallization

A mixture of 4-(3-methyl-3-phenyl­cyclo­but­yl)thia­zol-2-amine (2.4436 g, 10 mmol) and maleic anhydride (0.9806 g, 10 mmol) in 20 mL of dry toluene under argon atmosphere was refluxed for 12 h (monitored by TLC). Solvent was removed under reduced pressure and the residue crystallized from ethanol in the form of brilliant yellow crystals. The reaction scheme is shown in Fig. 5[link]. Yield 94%, m.p. 460 K. Characteristic IR bands (cm−1): 2975–2855 ν(C—H aliphatics), 1670 ν(C=O), 1626 ν(C=O), 1569 ν(C=N azomethine), 699 ν(C—S—C). Characteristic 1H NMR shifts (THF-d8 + acetone-d6, TMS, ppm): 1.26 (s, 3H, –CH3), 2.15–2.20 (m, 2H, –CH2– in cyclo­butane ring), 2.31–2.36 (m, 2H, –CH2– in cyclo­butane ring), 3.48 (quint, J = 9.2 Hz, 2H, >CH– in cyclo­butane ring), 6.10 (d, J = 12.8 Hz, 1H, –CH=), 6.27 (d, J = 12.4 Hz, 1H, =CH–), 6.50 (s, 1H, S—CH=in thia­zole ring), 6.89–6.92 (m, 3H, aromatics), 7.00 (m, 2H, aromatics). –OH and –NH– protons of this mol­ecule have not been determined in the 1H NMR spectrum. Characteristic 13C NMR shifts (THF-d8 + acetone-d6, TMS, ppm): 165.30, 162.65, 156.96, 154.69, 152.29, 132.00, 130.84, 127.71, 124.81, 124.21, 107.19, 40.25, 38.16, 30.20, 29.35.

[Figure 5]
Figure 5
The synthesis of (Z)-4-{[4-(3-methyl-3-phenyl­cyclo­but­yl)thia­zol-2-yl]amino}-4-oxobut-2-enoic acid.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Although the acidic protons from the O–H and N–H bonds could be located in the difference-Fourier map, even very strong distance restraints were not sufficient to obtain proper distances between the parent atom and hydrogen. Therefore, both protons were refined in geometrical positions using the corresponding AFIX instructions with O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O), and N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N), respectively. The C-bound H atoms were positioned geometrically (C—H = 0.93, 0.96, 0.97 and 0.98 Å) and refined using a riding model, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C18H18N2O3S
Mr 342.40
Crystal system, space group Orthorhombic, P212121
Temperature (K) 296
a, b, c (Å) 5.9685 (4), 11.0580 (9), 26.215 (2)
V3) 1730.2 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.21
Crystal size (mm) 0.78 × 0.71 × 0.59
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.832, 0.899
No. of measured, independent and observed [I > 2σ(I)] reflections 7546, 3338, 2648
Rint 0.058
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.113, 0.97
No. of reflections 3338
No. of parameters 218
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.20, −0.16
Absolute structure Flack x determined using 907 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.05 (8)
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2020).

(Z)-4-{[4-(3-Methyl-3-phenylcyclobutyl)thiazol-2-yl]amino}-4-oxobut-2-enoic acid top
Crystal data top
C18H18N2O3SDx = 1.314 Mg m3
Mr = 342.40Melting point: 460 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
a = 5.9685 (4) ÅCell parameters from 7998 reflections
b = 11.0580 (9) Åθ = 1.6–27.3°
c = 26.215 (2) ŵ = 0.21 mm1
V = 1730.2 (2) Å3T = 296 K
Z = 4Prism, light yellow
F(000) = 7200.78 × 0.71 × 0.59 mm
Data collection top
Stoe IPDS 2
diffractometer
3338 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2648 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.058
rotation method scansθmax = 26.0°, θmin = 1.6°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 77
Tmin = 0.832, Tmax = 0.899k = 1312
7546 measured reflectionsl = 3230
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.045 w = 1/[σ2(Fo2) + (0.0679P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.113(Δ/σ)max = 0.001
S = 0.97Δρmax = 0.20 e Å3
3338 reflectionsΔρmin = 0.16 e Å3
218 parametersExtinction correction: SHELXL2017/1 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.014 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack x determined using 907 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.05 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4002 (6)0.8359 (3)0.80585 (12)0.0711 (8)
H10.2742220.7945870.7943360.085*
C20.4122 (8)0.8741 (4)0.85639 (13)0.0839 (11)
H20.2935670.8586060.8784300.101*
C30.5971 (8)0.9343 (4)0.87390 (14)0.0897 (12)
H30.6044830.9589680.9077680.108*
C40.7710 (7)0.9581 (4)0.84151 (14)0.0877 (11)
H40.8964410.9993480.8533400.105*
C50.7611 (6)0.9208 (4)0.79108 (13)0.0764 (9)
H50.8804170.9374150.7693670.092*
C60.5764 (5)0.8595 (3)0.77256 (11)0.0626 (7)
C70.5717 (5)0.8175 (3)0.71772 (11)0.0642 (8)
C80.6388 (6)0.9135 (4)0.67725 (13)0.0751 (9)
H8A0.6281670.9960950.6894440.090*
H8B0.7834480.8985610.6616200.090*
C90.4381 (6)0.8741 (3)0.64378 (12)0.0695 (8)
H90.4860750.8148970.6181840.083*
C100.3400 (5)0.8091 (4)0.69128 (12)0.0706 (9)
H10A0.2234030.8546860.7084370.085*
H10B0.2917170.7268370.6846300.085*
C110.7026 (7)0.6997 (4)0.71183 (14)0.0864 (10)
H11A0.6981040.6741970.6768460.130*
H11B0.8553700.7124280.7219450.130*
H11C0.6365890.6384860.7329960.130*
C120.2935 (6)0.9681 (3)0.62006 (11)0.0664 (8)
C130.3006 (7)1.0888 (3)0.62654 (14)0.0823 (10)
H130.4080131.1288140.6459440.099*
C140.0010 (6)1.0208 (3)0.57345 (11)0.0636 (8)
C150.3247 (6)1.0930 (3)0.52675 (12)0.0682 (8)
C160.5193 (6)1.0635 (3)0.49439 (13)0.0712 (9)
H160.6226581.1261760.4917760.085*
C170.5769 (6)0.9646 (3)0.46806 (12)0.0710 (8)
H170.7144620.9693590.4515020.085*
C180.4561 (6)0.8490 (3)0.46116 (12)0.0674 (8)
N10.1187 (4)0.9299 (2)0.58924 (9)0.0609 (6)
N20.1832 (5)1.0037 (2)0.54206 (10)0.0677 (7)
H2A0.2093190.9314740.5314020.081*
O10.2951 (5)1.1985 (2)0.54005 (10)0.0859 (7)
O20.3074 (5)0.8116 (2)0.48857 (12)0.0998 (9)
O30.5286 (4)0.7906 (2)0.42168 (8)0.0776 (7)
H3A0.4597810.7267350.4189110.116*
S10.0856 (2)1.16026 (8)0.59435 (4)0.0829 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0678 (18)0.073 (2)0.0730 (18)0.0039 (18)0.0067 (16)0.0099 (16)
C20.093 (3)0.088 (3)0.0708 (19)0.018 (2)0.018 (2)0.0131 (17)
C30.104 (3)0.098 (3)0.067 (2)0.025 (3)0.006 (2)0.0036 (18)
C40.082 (2)0.100 (3)0.082 (2)0.007 (2)0.016 (2)0.012 (2)
C50.0613 (18)0.092 (3)0.076 (2)0.0016 (18)0.0035 (16)0.0028 (17)
C60.0600 (16)0.0635 (19)0.0644 (15)0.0079 (16)0.0002 (14)0.0052 (13)
C70.0552 (16)0.070 (2)0.0676 (16)0.0017 (16)0.0036 (13)0.0008 (14)
C80.0637 (19)0.095 (3)0.0663 (18)0.0158 (17)0.0057 (14)0.0062 (16)
C90.0714 (18)0.075 (2)0.0626 (16)0.0095 (17)0.0003 (15)0.0063 (14)
C100.0590 (17)0.077 (2)0.0757 (18)0.0103 (16)0.0003 (15)0.0048 (16)
C110.076 (2)0.087 (3)0.096 (2)0.012 (2)0.0016 (19)0.016 (2)
C120.0735 (19)0.071 (2)0.0550 (15)0.0107 (17)0.0018 (15)0.0046 (13)
C130.095 (3)0.073 (3)0.079 (2)0.015 (2)0.015 (2)0.0097 (17)
C140.073 (2)0.058 (2)0.0592 (15)0.0101 (15)0.0050 (14)0.0059 (13)
C150.083 (2)0.0537 (19)0.0677 (18)0.0004 (16)0.0095 (16)0.0001 (13)
C160.077 (2)0.060 (2)0.0762 (19)0.0093 (16)0.0005 (16)0.0013 (15)
C170.0756 (19)0.061 (2)0.0759 (18)0.0136 (17)0.0069 (17)0.0009 (15)
C180.0757 (19)0.0570 (18)0.0696 (17)0.0036 (16)0.0085 (16)0.0025 (15)
N10.0687 (15)0.0577 (15)0.0565 (13)0.0073 (12)0.0034 (12)0.0068 (11)
N20.0778 (16)0.0501 (14)0.0753 (15)0.0039 (13)0.0071 (14)0.0072 (12)
O10.1089 (18)0.0548 (14)0.0940 (15)0.0059 (13)0.0042 (14)0.0051 (12)
O20.1046 (19)0.0668 (16)0.128 (2)0.0217 (15)0.0505 (18)0.0262 (14)
O30.0922 (16)0.0679 (14)0.0727 (13)0.0082 (12)0.0112 (12)0.0049 (11)
S10.1047 (7)0.0564 (5)0.0875 (6)0.0127 (5)0.0120 (5)0.0076 (4)
Geometric parameters (Å, º) top
C1—C61.391 (5)C10—H10B0.9700
C1—C21.393 (5)C11—H11A0.9600
C1—H10.9300C11—H11B0.9600
C2—C31.368 (6)C11—H11C0.9600
C2—H20.9300C12—C131.346 (5)
C3—C41.366 (6)C12—N11.386 (4)
C3—H30.9300C13—S11.727 (4)
C4—C51.386 (5)C13—H130.9300
C4—H40.9300C14—N11.301 (4)
C5—C61.382 (5)C14—N21.377 (4)
C5—H50.9300C14—S11.716 (3)
C6—C71.511 (4)C15—O11.230 (4)
C7—C111.526 (5)C15—N21.360 (4)
C7—C101.550 (4)C15—C161.475 (5)
C7—C81.553 (4)C16—C171.338 (5)
C8—C91.547 (5)C16—H160.9300
C8—H8A0.9700C17—C181.479 (5)
C8—H8B0.9700C17—H170.9300
C9—C121.488 (5)C18—O21.215 (4)
C9—C101.553 (5)C18—O31.295 (4)
C9—H90.9800N2—H2A0.8600
C10—H10A0.9700O3—H3A0.8200
C6—C1—C2120.0 (4)C9—C10—H10A113.7
C6—C1—H1120.0C7—C10—H10B113.7
C2—C1—H1120.0C9—C10—H10B113.7
C3—C2—C1120.6 (4)H10A—C10—H10B110.9
C3—C2—H2119.7C7—C11—H11A109.5
C1—C2—H2119.7C7—C11—H11B109.5
C4—C3—C2119.9 (3)H11A—C11—H11B109.5
C4—C3—H3120.1C7—C11—H11C109.5
C2—C3—H3120.1H11A—C11—H11C109.5
C3—C4—C5120.2 (4)H11B—C11—H11C109.5
C3—C4—H4119.9C13—C12—N1113.6 (3)
C5—C4—H4119.9C13—C12—C9128.5 (3)
C6—C5—C4121.0 (3)N1—C12—C9117.8 (3)
C6—C5—H5119.5C12—C13—S1111.6 (3)
C4—C5—H5119.5C12—C13—H13124.2
C5—C6—C1118.3 (3)S1—C13—H13124.2
C5—C6—C7120.0 (3)N1—C14—N2121.2 (3)
C1—C6—C7121.7 (3)N1—C14—S1115.3 (2)
C6—C7—C11110.4 (3)N2—C14—S1123.5 (3)
C6—C7—C10117.4 (3)O1—C15—N2121.1 (3)
C11—C7—C10111.1 (3)O1—C15—C16119.0 (3)
C6—C7—C8115.8 (3)N2—C15—C16119.9 (3)
C11—C7—C8112.5 (3)C17—C16—C15132.8 (3)
C10—C7—C888.0 (2)C17—C16—H16113.6
C9—C8—C789.8 (2)C15—C16—H16113.6
C9—C8—H8A113.7C16—C17—C18130.1 (3)
C7—C8—H8A113.7C16—C17—H17114.9
C9—C8—H8B113.7C18—C17—H17114.9
C7—C8—H8B113.7O2—C18—O3123.1 (3)
H8A—C8—H8B110.9O2—C18—C17125.4 (3)
C12—C9—C8119.3 (3)O3—C18—C17111.5 (3)
C12—C9—C10116.1 (3)C14—N1—C12111.3 (3)
C8—C9—C1088.1 (2)C15—N2—C14124.5 (3)
C12—C9—H9110.5C15—N2—H2A117.7
C8—C9—H9110.5C14—N2—H2A117.7
C10—C9—H9110.5C18—O3—H3A109.5
C7—C10—C989.7 (2)C14—S1—C1388.22 (18)
C7—C10—H10A113.7
C6—C1—C2—C30.4 (6)C8—C9—C10—C715.9 (3)
C1—C2—C3—C40.5 (6)C8—C9—C12—C135.7 (5)
C2—C3—C4—C50.3 (6)C10—C9—C12—C1397.8 (4)
C3—C4—C5—C60.1 (6)C8—C9—C12—N1178.4 (3)
C4—C5—C6—C10.0 (5)C10—C9—C12—N178.1 (4)
C4—C5—C6—C7178.7 (3)N1—C12—C13—S10.4 (4)
C2—C1—C6—C50.1 (5)C9—C12—C13—S1175.7 (3)
C2—C1—C6—C7178.8 (3)O1—C15—C16—C17168.3 (4)
C5—C6—C7—C1180.9 (4)N2—C15—C16—C1712.7 (6)
C1—C6—C7—C1197.7 (4)C15—C16—C17—C182.2 (7)
C5—C6—C7—C10150.3 (3)C16—C17—C18—O219.8 (6)
C1—C6—C7—C1031.1 (5)C16—C17—C18—O3160.4 (4)
C5—C6—C7—C848.3 (4)N2—C14—N1—C12179.7 (3)
C1—C6—C7—C8133.0 (3)S1—C14—N1—C120.1 (3)
C6—C7—C8—C9135.5 (3)C13—C12—N1—C140.2 (4)
C11—C7—C8—C996.2 (3)C9—C12—N1—C14176.4 (3)
C10—C7—C8—C915.8 (3)O1—C15—N2—C141.0 (5)
C7—C8—C9—C12134.9 (3)C16—C15—N2—C14178.0 (3)
C7—C8—C9—C1015.8 (3)N1—C14—N2—C15175.5 (3)
C6—C7—C10—C9134.0 (3)S1—C14—N2—C154.7 (4)
C11—C7—C10—C997.6 (3)N1—C14—S1—C130.3 (3)
C8—C7—C10—C915.8 (3)N2—C14—S1—C13179.5 (3)
C12—C9—C10—C7137.8 (3)C12—C13—S1—C140.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O1i0.932.353.233 (4)159
N2—H2A···O20.861.832.651 (4)158
O3—H3A···N1ii0.821.812.607 (3)165
Symmetry codes: (i) x1/2, y+5/2, z+1; (ii) x1/2, y+3/2, z+1.
 

Acknowledgements

Author contributions are as follows. Conceptualization, OS, MD, AC and ES; synthesis, AC and IY; writing (review and editing of the manuscript) OS, ND and AC; formal analysis, AC, OS, ND and MD; crystal-structure determination, OS, AC and ND; validation, AC, MD, ND and ES; project administration, AC, OS, ES and IY.

Funding information

Funding for this research was provided by Ondokuz Mayıs University under Project No. PYO·FEN.1906.19.001.

References

First citationAlbayati, M. R., Kansız, S., Dege, N., Kaya, S., Marzouki, R., Lgaz, H., Salghi, R., Ali, I. H., Alghamdi, M. M. & Chung, I.-M. (2020). J. Mol. Struct. 1205, 127654.  Web of Science CSD CrossRef Google Scholar
First citationAl-thamili, D. M., Almansour, A. I., Arumugam, N., Kansız, S., Dege, N., Soliman, S. M., Azam, M. & Kumar, R. S. (2020). J. Mol. Struct. 1222, 128940.  Google Scholar
First citationCoghi, L., Lanfredi, A. M. M. & Tiripicchio, A. (1976). J. Chem. Soc. Perkin Trans. 2, pp. 1808–1810.  CSD CrossRef Web of Science Google Scholar
First citationDehmlow, E. V. & Schmidt, S. (1990). Liebigs Ann. Chem. pp. 411–414.  Google Scholar
First citationDemir, S., Dinçer, M., Çukurovalı, A. & Yılmaz, İ. (2012). Int. J. Quantum Chem. 112, 1016–1028.  Web of Science CSD CrossRef CAS Google Scholar
First citationDemir, S., Dinçer, M., Çukurovalı, A. & Yılmaz, İ. (2016). Mol. Cryst. Liq. Cryst. 629, 44–60.  Web of Science CSD CrossRef CAS Google Scholar
First citationDinçer, M., Özdemir, N., Yılmaz, İ, Çukurovalı, A. & Büyükgüngör, O. (2004). Acta Cryst. C60, o674–o676.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEkici, Ö., Demircioğlu, Z., Ersanlı, C. C. & Çukurovalı, A. (2020). J. Mol. Struct. 1204, 127513.  Web of Science CSD CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGumus, M. K., Sen, F., Kansiz, S., Dege, N. & Saif, E. (2021). Acta Cryst. E77, 1267–1271.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHui, C., Brieger, L., Strohmann, C. & Antonchick, A. P. (2021). J. Am. Chem. Soc. 143, 18864–18870.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationIlmi, R., Kansız, S., Al-Rasbi, N., Dege, N., Raithby, P. R. & Khan, M. S. (2020). New J. Chem. 44, 5673–5683.  Web of Science CSD CrossRef CAS Google Scholar
First citationInkaya, E., Dinçer, M., Çukurovalı, A. & Yılmaz, E. (2011a). Acta Cryst. E67, o310.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationInkaya, E., Dinçer, M., Çukurovalı, A. & Yılmaz, E. (2011b). Acta Cryst. E67, o131–o132.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKansiz, S., Dege, N., Ozturk, S., Akdemir, N., Tarcan, E., Arslanhan, A. & Saif, E. (2021). Acta Cryst. E77, 138–141.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKashyap, S. J., Garg, V. K., Sharma, P. K., Kumar, N., Dudhe, R. & Gupta, J. K. (2012). Med. Chem. Res. 21, 2123–2132.  Web of Science CrossRef CAS Google Scholar
First citationMohapatra, R. K., Sarangi, A. K., Azam, M., El-ajaily, M. M., Kudrat-E-Zahan, Md., Patjoshi, S. B. & Dash, D. C. (2019). J. Mol. Struct. 1179, 65–75.  Web of Science CrossRef CAS Google Scholar
First citationÖzdemir, N., Dinçer, M. & Çukurovalı, A. (2010). J. Mol. Model. 16, 291–302.  Web of Science PubMed Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationQadir, A. M., Kansiz, S., Dege, N. & Saif, E. (2021). Acta Cryst. E77, 1126–1129.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationŞen, F., Dinçer, M., Çukurovalı, A. & Yılmaz, İ. (2013). J. Mol. Struct. 1046, 1–8.  Google Scholar
First citationŞen, F., Ekici, Ö., Dinçer, M. & Çukurovalı, A. (2015). J. Mol. Struct. 1086, 109–117.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17.5. University of Western Australia. https://hirshfeldsurface.net.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds