research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a tri­fluoro­methyl benzoato quadruple-bonded dimolybdenum complex

crossmark logo

aDepartment of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
*Correspondence e-mail: dkiper@fas.harvard.edu

Edited by J. T. Mague, Tulane University, USA (Received 13 December 2021; accepted 4 January 2022; online 7 January 2022)

The study of quadruple bonds between transition metals, in particular those of dimolybdenum, has revealed much about the two-electron bond. The solid-state structure of the quadruple-bonded dimolybdenum(II) complex tetra­kis­[μ-4-(tri­fluoro­methyl)­benzoato-κ2O:O′]bis[(tetra­hydro­furan-κO)molybdenum(II)] 0.762-pentane 0.238-tetra­hydro­furan solvate, [Mo2(p-O2CC6H4CF3)4·2THF]·0.762C5H12·0.238C4H8O or [Mo2(C8H4F3O2)4(C4H8O)2]·0.762C5H12·0.238C4H8O is reported. The complex crystallizes within a triclinic cell and low symmetry (P[\overline{1}]) results from the inter­calated penta­ne/THF solvent mol­ecules. The paddlewheel structure at 100 K has inversion symmetry and comprises four bridging carboxyl­ate ligands encases the Mo2(II,II) core that is characterized by two axially coordinated THF mol­ecules and an Mo—Mo distance of 2.1098 (7) Å.

1. Chemical context

The σ2π4δ2 quadruple bond has contributed prominently to the elucidation of the single most distinguishing feature of the discipline of chemistry – the two-electron bond (Lewis, 1916[Lewis, G. N. (1916). J. Am. Chem. Soc. 38, 762-785.]). As originally defined with the inception of valence and mol­ecular orbital bonding models (Heitler & London, 1927[Heitler, W. & London, F. (1927). Z. Phys. 44, 455-472.]; Pauling, 1928[Pauling, L. (1928). Chem. Rev. 5, 173-213.]; Lennard-Jones, 1929[Lennard-Jones, J. E. (1929). Trans. Faraday Soc. 25, 668-686.]; Mulliken, 1932[Mulliken, R. S. (1932). Phys. Rev. 41, 751-758.]; James & Coolidge, 1933[James, H. M. & Coolidge, A. S. (1933). J. Chem. Phys. 1, 825-835.]; Coulson & Fischer, 1949[Coulson, C. A. & Fischer, I. (1949). Philos. Mag. 40, 386-393.]), the two-electron bond forms from pairing two electrons in two orbitals. Remarkably, the four states that characterize the two-electron bond remained undefined experimentally for over 60 years owing to the dissociative nature of the σ and π anti­bonding orbitals. This experimental challenge was overcome with the two-electron δ bond of quadruple-bonded metal–metal complexes. Anchored by a σ2π4 framework and sterically locking ligands, the four states of the two-electron bond,1δδ, 3δδ*, 1δδ* and 1δ*δ*, were experimentally defined for dimol­yb­denum quadruple-bond complexes (Engebretson et al. 1994[Engebretson, D. S., Graj, E. M., Leroi, G. E. & Nocera, D. G. (1999). J. Am. Chem. Soc. 121, 868-869.], 1999[Engebretson, D. S., Zaleski, J. M., Leroi, G. E. & Nocera, D. G. (1994). Science, 265, 759-762.]; Cotton & Nocera, 2000[Cotton, F. A. & Nocera, D. G. (2000). Acc. Chem. Res. 33, 483-490.]). Within the group of dimolybdenum quadruple-bond complexes, the tetra­acetates are exemplars. The initial structure of Mo2(O2CCH3)4 by Lawton & Mason (1965[Lawton, D. & Mason, R. (1965). J. Am. Chem. Soc. 87, 921-922.]) established the existence of the quadruple bond in the now familiar paddlewheel arrangement of acetates. The dimolybdenum bond distance of 2.11 Å in this structure was subsequently refined nearly a decade later to be 2.0934 (8) (Cotton et al., 1974[Cotton, F. A., Mester, Z. C. & Webb, T. R. (1974). Acta Cryst. B30, 2768-2770.]). Intriguingly, many subsequent structures have shown that the inductive effect of the R group on the carb­oxy­lic acid does not perturb the Mo—Mo bond distance, indicating the robustness of the two-electron bond within a quadruple-bond architecture. It has been postulated that the strength of the Mo—Mo quadruple bond may be perturbed, but only in cases where R is a strong electron-withdrawing group and there is a good axial donor ligand (Cotton et al., 1978[Cotton, F. A., Extine, M. & Gage, L. D. (1978). Inorg. Chem. 17, 172-176.]). To add further to an understanding of Mo2(II,II) quadruple bond distances, we examined a dimolybdenum core ligated by tri­fluoro­meth­ylbenzoate with THF axial donor ligands. We now report the synthesis and X-ray crystal structure of tetra­kis­(μ-4-tri­fluoro­methyl­benzoato-κ2O:O′)dimolybdenum(II) 0.762-pentane 0.238-tetra­hydro­furan solvate [Mo2(p-O2CC6H4CF3)4·2THF]·0.762C5H12·0.238C4H8O. The presence of the CF3 electron-withdrawing group on the bridging benzoate ligands, together with the donor THF axial ligands, results in a slightly elongated metal–metal bond distance as compared to its benzoate congener, Mo2(O2CC6H5)4.

[Scheme 1]

2. Structural commentary

The dimolybdenum complex, [Mo2(p-O2CC6H4CF3)4·2THF] (Fig. 1[link]), was characterized by using single-crystal X-ray diffraction. Half of the mol­ecule (Fig. 1[link]) resides in the asymmetric unit, with the complete mol­ecule generated by inversion about the quadruple-bond inversion center. The fluorine atoms of the tri­fluoro­methyl groups are rotationally disordered and the highest occupancy positions are shown in Fig. 1[link]. The crystallization solvents, THF and pentane, are disordered (0.238:0.762) (Fig. 2[link]).

[Figure 1]
Figure 1
Ellipsoid plot of the dimolybdenum complex. The CF3 groups are rotationally disordered, therefore the highest occupancy positions are shown for each atom. Hydrogen atoms and unbound solvent are omitted for clarity.
[Figure 2]
Figure 2
Crystal packing of the dimolybdenum complex shown along (a) the a-axis, (b) the b-axis and (c) the c-axis. The crystal has triclinic (P[\overline{1}]) symmetry. Pentane and THF solvent mol­ecules are present in the structure. Color scheme: C (gray), O (red), H (white), F (green), Mo (teal).

Selected bond metrics for Mo2(p-O2CC6H4CF3)4·2THF are listed in Table 1[link]. Complete lists of the structural metrics for the compound are presented in the Supporting information. The Mo—Mo bond length is 2.1098 (7) Å. Whereas the bond distance is within the typical range of dimolybdenum quadruple bond lengths of 2.06–2.17Å (Cotton et al., 2002[Cotton, F. A., Daniels, L. M., Hillard, E. A. & Murillo, C. A. (2002). Inorg. Chem. 41, 2466-2470.]), it is slightly longer than what is observed for dimolybdenum cores bridged by carboxyl­ates. As a comparison, the dimolybdenum bond distance in the Mo2(O2CC6H5)4 congener, is 2.096 (1) Å. Thus, with the addition of a CF3 group in the 4-position of benzoate, the Mo—Mo bond length increases by 0.014 (2) Å. A similar trend is observed for the bond distances in the primary coordination sphere. The minimum Mo—O bond distance decreases by 0.008 (5) Å, and the maximum Mo—O bond distance decreases by 0.011 (5) Å as compared to Mo2(O2CC6H5)4. The most significant decrease in bond metrics is observed for the Mo—O1S axial ligand distance, which results in a decrease of 0.033 (4) Å for the axial coordinated oxygen atom of THF as compared to the axially coordinated oxygen in Mo2(O2CC6H5)4. However, we note for this compound that the oxygen is provided from a carboxyl­ate ligand of a neighboring mol­ecule as opposed to an axially coordinated solvent mol­ecule. Consequently, as proposed by Cotton (Cotton et al., 1978[Cotton, F. A., Extine, M. & Gage, L. D. (1978). Inorg. Chem. 17, 172-176.]), the presence of ligands about the dimolybdenum center that are electron withdrawing and donating in the axial position is needed to perturb the overall bonding within a quadruple-bond framework. To this point, the metrics of [Mo2(p-O2CC6H4CF3)4·THF] are indistinguishable from those of Mo2(O2CC6F5)4·THF (Han, 2011[Han, L.-J. (2011). Acta Cryst. E67, m1289-m1290.]). The electron-withdrawing nature of the fluoro-substituted benzoates is established by their pKas as compared to that of benzoate (pKa = 1.75, 3.77 and 4.20 for C6F5COOH, p-CF3 C6H4COOH and C6H5COOH, respectively; Rumble, 2021[Rumble, J. R. (2021). CRC Handbook of Chemistry and Physics, 102nd ed. Boca Raton: CRC Press.]; Boiadjiev & Lightner, 1999[Boiadjiev, S. E. & Lightner, D. A. (1999). J. Phys. Org. Chem. 12, 751-757.]). That an electron-withdrawing group alone is insufficient to perturb the dimolybdenum bond distance is indicated by a comparison of the structures for Mo2(O2CCH3)4 and Mo2(O2CCF3)4. The d(Mo—Mo) of 2.0934 (8) and 2.090 (4) Å for Mo2(O2CCH3)4 and Mo2(O2CCF3)4, respectively (Cotton & Norman, 1971[Cotton, F. A. & Norman, J. G. (1971). J. Coord. Chem. 1, 161-171.]; Cotton et al., 1974[Cotton, F. A., Mester, Z. C. & Webb, T. R. (1974). Acta Cryst. B30, 2768-2770.]), are indistinguishable despite a significant difference in electron-withdrawing properties [pKa(CH3COOH) = 4.76, pKa(CF3COOH) = 0.52; Rumble, 2021[Rumble, J. R. (2021). CRC Handbook of Chemistry and Physics, 102nd ed. Boca Raton: CRC Press.]]. Thus, a donor ligand is needed in addition to electron-withdrawing carboxyl­ate equatorial ligands to observe a difference in the dimolybdenum quadruple bond.

Table 1
Selected geometric parameters (Å, °)

Mo1—O1 2.0996 (17) Mo1—Mo1i 2.1098 (7)
Mo1—O4 2.1030 (17) Mo1—O3i 2.1204 (17)
Mo1—O2i 2.1076 (17) Mo1—O1S 2.5422 (19)
       
O1—Mo1—Mo1i 93.20 (5) O2i—Mo1—Mo1i 90.10 (5)
O4—Mo1—Mo1i 92.37 (5) Mo1i—Mo1—O3i 90.84 (5)
Symmetry code: (i) [-x, -y+1, -z+1].

3. Supra­molecular features

The structure was solved in the triclinic space group P[\overline{1}] with a half of an Mo-dimer per asymmetric unit and one full mol­ecule per unit cell (Fig. 2[link]). The low symmetry arises from the presence of disordered THF/pentane solvent mol­ecules embedded within a solvent channel arising from the crystal packing. The disordered solvents are situated in the body-center of eight [Mo2(p-O2CC6H4CF3)4·THF] complexes with two THF mol­ecules skewed towards the pentane; the next nearest neighbors are a series of four tri­fluoro­methyl groups from distinct [Mo2(p-O2CC6H4CF3)4·THF] complexes. These four tri­fluoro­methyl groups are oriented tangentially to the solvent channel (Fig. 2[link]b) along the b-axis direction with a volume of 162 Å3 for one void volume within the unit cell according to established methods for determining solvent-accessible voids (van der Sluis & Spek, 1990[Sluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194-201.]). The adjacent pairs of symmetry-related benzene rings (C10–C16) in the p-O2CC6H4CF3 ligands inter­act through aromatic ππ stacking inter­actions with a face-to-face distance of 3.7856 (9) Å (Fig. 2[link]b) and form a one-dimensional chain. In addition, the tri­fluoro­methyl group of a p-O2CC6H4CF3 ligand (for C10–C16 and F4–F6) is perpendicular to the aromatic plane of a neighboring p-O2CC6H4CF3 ligand (C1–C7 and F1–F3) with weak C—F⋯π inter­actions (Kawahara et al., 2004[Kawahara, S., Tsuzuki, S. & Uchimaru, T. (2004). J. Phys. Chem. A, 108, 6744-6749.]) [the distances between the F atoms and the C2–C8 plane are 3.024 (2)–3.430 (1) Å]. The coordinated THF mol­ecules also have weak C—H⋯F inter­actions (D'Oria & Novoa, 2008[D'Oria, E. & Novoa, J. J. (2008). CrystEngComm, 10, 423-436.]) with the tri­fluoro­methyl group of the p-O2CC6H4CF3 ligands [the C—H⋯F distances are 2.568 (1)–3.045 (1) Å].

4. Database survey

In a search of the Cambridge Structural Database (WebCSD, accessed 17 December 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), the CSD search fragment, C32H16F12Mo2O8, for Mo2(O2CC6H4CF3)4 yielded no hits in the database and the CSD search fragment, C40H32F12Mo2O10, for [Mo2(p-O2CC6H4CF3)4·THF] also yielded no hits. The CSD reference code for Mo2(O2CC6F5)4·THF (Han, 2011[Han, L.-J. (2011). Acta Cryst. E67, m1289-m1290.]) is AYODOI, for Mo2(O2CC6H5)4 (Cotton et al., 1978[Cotton, F. A., Extine, M. & Gage, L. D. (1978). Inorg. Chem. 17, 172-176.]) is MOBZOA, for Mo2(O2CCH3)4 (Cotton et al., 1974[Cotton, F. A., Mester, Z. C. & Webb, T. R. (1974). Acta Cryst. B30, 2768-2770.]) is MOLACE01, and for Mo2(O2CCF3)4 (Cotton & Norman, 1971[Cotton, F. A. & Norman, J. G. (1971). J. Coord. Chem. 1, 161-171.]) is TFACMO.

5. Purification and crystallization

The overall synthetic scheme is shown in the reaction scheme. Molybdenum hexa­carbonyl, 4-(tri­fluoro­meth­yl) benzoic acid, THF, and 1,2-di­chloro­benzene were purchased from Sigma-Aldrich. Mo(CO)6 and 4-(tri­fluoro­meth­yl)benzoic acid were combined in a flask with THF and anhydrous 1,2-di­chloro­benzene. The reaction was heated under reflux for 24 h at 413 K under nitro­gen (Pence et al., 1999[Pence, L. E., Weisgerber, A. M. & Maounis, F. A. (1999). J. Chem. Educ. 76, 404-405.]). The reaction mixture was cooled, the solution was filtered and the collected residue was washed with di­chloro­methane and hexa­nes.

[Scheme 2]

The crystallization was set up in a glove box. The crude product was dissolved in THF and recrystallized by vapor diffusion of pentane using a 6 by 50 mm borosilicate glass crystallization tube housed within a 20 mL glass vial. The assembly was allowed to stand at 238 K for 24 days. Orange rectangular crystals were observed and harvested for X-ray diffraction analysis.

6. Refinement

Crystal data, data collection and structure refinement details are included in Table 2[link]. Hydrogen atoms on C atoms were placed at idealized positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the atoms to which they are linked (1.5 times for methyl groups). Rotational and positional disorder for one tri­fluoro­methyl substituent containing C1 and C13 was modeled. The overlapping solvent mol­ecules (assigned as THF and pentane based on solvent crystallization conditions and apparent arrangement of electron-density peaks) were disordered adjacent to an inversion center (special position). The restraints on bond lengths and constraints of the atomic displacement parameters on each pair of disorder fragments (SADI/SAME and EADP instructions of SHELXL2014) as well as the restraints of the atomic displacement parameters (SIMU/RIGU instructions of SHELXL2014) were applied for the disorder refinement (Zheng et al., 2008[Zheng, S.-L., Vande Velde, C. M. L., Messerschmidt, M., Volkov, A., Gembicky, M. & Coppens, P. (2008). Chem. Eur. J. 14, 706-713.]). Crystallographic refinement details, including disorder modeling and the software employed, are given in the crystallographic information file (*.cif). To stabilize the refinement model, 713 restraints (SADI/SAME and RIGU/SIMU) were applied to accommodate the disordered tri­fluoro­methyl group, the coordinated THF mol­ecules, as well as the THF/pentane solvent mol­ecules in the channel as detailed by Müller et al. (2006[Müller, P., Herbst-Irmer, R., Spek, A., Schneider, T. & Sawaya, M. (2006). Crystal Structure Refinement: a Crystallographer's Guide to SHELXL, p. 16. Oxford University Press.]) to furnish a data+restraint-to-parameter ratio of 9.75. This ratio increases to 11.6 if the disordered THF/pentane solvent mol­ecules in the channel are squeezed out of the structure.

Table 2
Experimental details

Crystal data
Chemical formula [Mo2(C8H4F3O2)4(C4H8O)2]·0.762C5H12·0.238C4H8O
Mr 1164.68
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 7.7687 (17), 12.099 (5), 12.572 (2)
α, β, γ (°) 85.843 (13), 81.208 (8), 83.107 (16)
V3) 1157.6 (6)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.65
Crystal size (mm) 0.30 × 0.13 × 0.06
 
Data collection
Diffractometer Bruker D8 goniometer with Photon 100 CMOS detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.701, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 39433, 4094, 3814
Rint 0.033
(sin θ/λ)max−1) 0.597
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.064, 1.12
No. of reflections 4094
No. of parameters 493
No. of restraints 713
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.67, −0.39
Computer programs: APEX2 and SAINT (Bruker, 2015[Bruker (2015). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), and PLATON (Spek, 2020).

Tetrakis[µ-4-(trifluoromethyl)benzoato-κ2O:O')bis[(tetrahydrofuran-κO)molybdenum(II)] 0.762-pentane 0.238-tetrahydrofuran solvate top
Crystal data top
[Mo2(C8H4F3O2)4(C4H8O)2]·0.762C5H12·0.238C4H8OZ = 1
Mr = 1164.68F(000) = 586
Triclinic, P1Dx = 1.671 Mg m3
a = 7.7687 (17) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.099 (5) ÅCell parameters from 9835 reflections
c = 12.572 (2) Åθ = 2.5–27.2°
α = 85.843 (13)°µ = 0.65 mm1
β = 81.208 (8)°T = 100 K
γ = 83.107 (16)°Block, orange
V = 1157.6 (6) Å30.30 × 0.13 × 0.06 mm
Data collection top
Bruker D8 goniometer with Photon 100 CMOS detector
diffractometer
3814 reflections with I > 2σ(I)
Radiation source: IµS microfocus tubeRint = 0.033
ω and phi scansθmax = 25.1°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 99
Tmin = 0.701, Tmax = 0.745k = 1414
39433 measured reflectionsl = 1414
4094 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.0191P)2 + 2.0296P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
4094 reflectionsΔρmax = 0.67 e Å3
493 parametersΔρmin = 0.39 e Å3
713 restraints
Special details top

Experimental. A single orange plate (0.297 mm × 0.132 mm × 0.056 mm) was chosen for single crystal X-ray diffraction using a Bruker three-circle platform goniometer equipped with an Photon100 CMOS detector. Data were collected as a series of φ and/or ω scans. Data integration down to 0.84 Å resolution was carried out using SAINT V8.37A with reflection spot size optimization. Absorption corrections were made with the program SADABS 2016/2 (Krause et al., 2015). Space group assignments were determined by examination of systematic absences, E-statistics, and successive refinement of the structures. The structure was solved by the Intrinsic Phasing methods and refined by least squares methods also using SHELXT-2014 and SHELXL-2014 with the OLEX 2 (Dolomanov et al., 2019) interface. The program PLATON (Spek, 2020) was employed to confirm the absence of higher symmetry space groups. All non-H atoms, including the disorder fragment, were located in difference Fourier maps, and then refined anisotropically. Outlier reflections were omitted from refinement when appropriate.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger. All non-H atoms, as well as the disordered atoms were located in difference-Fourier maps, and then refined anisotropically. The restraints on bond lengths and constraints of the atomic displacement parameters on each pair of disorder fragments (SADI/SAME and EADP instructions of SHELXL-2014) as well as the restraints of the atomic displacement parameters (SIMU/RIGU instructions of SHELXL- 2014), if necessary, have been applied for the disorder refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mo10.08669 (3)0.43800 (2)0.51162 (2)0.01390 (8)
C10.8554 (11)0.0198 (7)0.3139 (9)0.0362 (17)0.796 (10)
F10.8182 (10)0.0767 (5)0.2806 (5)0.0615 (15)0.796 (10)
F20.9308 (6)0.0074 (4)0.4035 (4)0.0685 (14)0.796 (10)
F30.9798 (5)0.0542 (3)0.2420 (4)0.0629 (14)0.796 (10)
C1A0.840 (5)0.013 (4)0.301 (5)0.054 (5)0.204 (10)
F1A0.817 (4)0.083 (2)0.327 (2)0.066 (5)0.204 (10)
F2A0.9862 (16)0.0311 (12)0.3439 (19)0.059 (4)0.204 (10)
F3A0.908 (2)0.0366 (15)0.1933 (16)0.080 (5)0.204 (10)
C140.273 (2)0.6434 (15)0.1264 (11)0.044 (4)0.38 (3)
F40.421 (2)0.7128 (18)0.1227 (17)0.052 (4)0.38 (3)
F50.303 (3)0.5510 (13)0.1700 (15)0.055 (3)0.38 (3)
F60.1534 (18)0.692 (2)0.1933 (11)0.059 (3)0.38 (3)
C14A0.2779 (13)0.6523 (8)0.1247 (6)0.034 (2)0.62 (3)
F4A0.4522 (11)0.6827 (10)0.1123 (11)0.0398 (19)0.62 (3)
F5A0.2538 (17)0.5654 (8)0.1889 (9)0.044 (2)0.62 (3)
F6A0.1972 (17)0.7326 (11)0.1815 (8)0.053 (2)0.62 (3)
O10.1106 (2)0.31186 (14)0.45777 (13)0.0156 (4)
O20.2954 (2)0.44209 (14)0.43387 (13)0.0154 (4)
O30.0284 (2)0.60139 (14)0.32975 (13)0.0159 (4)
O40.1488 (2)0.46706 (14)0.35423 (13)0.0160 (4)
C20.6966 (4)0.1020 (2)0.3359 (2)0.0258 (6)
C30.5312 (4)0.0680 (2)0.3649 (2)0.0287 (6)
H30.51550.00860.36450.034*
C40.3887 (4)0.1452 (2)0.3945 (2)0.0238 (6)
H40.27520.12180.41430.029*
C50.4124 (3)0.2572 (2)0.39516 (19)0.0169 (5)
C60.5781 (3)0.2909 (2)0.3642 (2)0.0189 (5)
H60.59370.36770.36350.023*
C70.7206 (3)0.2141 (2)0.3345 (2)0.0231 (6)
H70.83370.23760.31330.028*
C80.2638 (3)0.3418 (2)0.43068 (19)0.0159 (5)
C90.0782 (3)0.5447 (2)0.2967 (2)0.0173 (5)
C100.1245 (3)0.5704 (2)0.1862 (2)0.0190 (5)
C110.2181 (3)0.4987 (2)0.1418 (2)0.0233 (6)
H110.25070.43270.18150.028*
C120.2635 (4)0.5235 (3)0.0398 (2)0.0284 (7)
H120.32630.47430.00910.034*
C130.2173 (4)0.6201 (3)0.0171 (2)0.0282 (7)
C150.1237 (4)0.6919 (3)0.0260 (2)0.0304 (7)
H150.09200.75800.01380.036*
C160.0768 (4)0.6667 (2)0.1275 (2)0.0250 (6)
H160.01170.71530.15720.030*
O1S0.3188 (2)0.31076 (15)0.58783 (14)0.0215 (4)0.397 (15)
C1S0.237 (3)0.1999 (13)0.6187 (15)0.025 (3)0.397 (15)
H1SA0.10850.19890.61020.030*0.397 (15)
H1SB0.26580.14350.57280.030*0.397 (15)
C2S0.310 (5)0.175 (3)0.735 (2)0.032 (4)0.397 (15)
H2SA0.23290.19610.78440.038*0.397 (15)
H2SB0.32540.09460.74940.038*0.397 (15)
C3S0.4855 (15)0.2465 (9)0.7481 (8)0.033 (3)0.397 (15)
H3SA0.58170.20050.74570.039*0.397 (15)
H3SB0.50620.28230.81800.039*0.397 (15)
C4S0.4781 (18)0.3292 (12)0.6608 (11)0.020 (3)0.397 (15)
H4SA0.57900.32720.62170.024*0.397 (15)
H4SB0.48680.40400.68960.024*0.397 (15)
O1T0.3188 (2)0.31076 (15)0.58783 (14)0.0215 (4)0.603 (15)
C1T0.2628 (19)0.1954 (9)0.6098 (9)0.025 (2)0.603 (15)
H1TA0.13650.17780.58310.030*0.603 (15)
H1TB0.33030.14730.57560.030*0.603 (15)
C2T0.298 (3)0.1793 (19)0.7318 (12)0.029 (3)0.603 (15)
H2TA0.18740.17260.76280.035*0.603 (15)
H2TB0.35690.11130.75360.035*0.603 (15)
C3T0.4179 (10)0.2836 (6)0.7699 (4)0.0307 (17)0.603 (15)
H3TA0.52690.26260.81420.037*0.603 (15)
H3TB0.35770.32760.81330.037*0.603 (15)
C4T0.4562 (12)0.3465 (8)0.6735 (7)0.021 (2)0.603 (15)
H4TA0.45870.42730.68260.025*0.603 (15)
H4TB0.57170.33220.65680.025*0.603 (15)
C5S0.2278 (18)0.8776 (12)0.0236 (14)0.077 (4)0.381 (5)
H5SA0.26140.86390.10020.116*0.381 (5)
H5SB0.09980.88450.00580.116*0.381 (5)
H5SC0.27890.81540.02000.116*0.381 (5)
C6S0.2985 (18)0.9909 (13)0.0015 (11)0.070 (3)0.381 (5)
H6SA0.26821.05160.05190.084*0.381 (5)
H6SB0.24621.01410.07440.084*0.381 (5)
C7S0.5068 (17)0.9639 (12)0.0061 (15)0.075 (4)0.381 (5)
H7SA0.53750.89570.03860.090*0.381 (5)
H7SB0.56150.95300.08160.090*0.381 (5)
C8S0.571 (2)1.0696 (17)0.038 (3)0.090 (5)0.381 (5)
H8SA0.52841.07500.11610.108*0.381 (5)
H8SB0.52701.13910.00070.108*0.381 (5)
C9S0.781 (2)1.049 (2)0.0156 (16)0.108 (6)0.381 (5)
H9SA0.81791.01410.05340.162*0.381 (5)
H9SB0.82350.99980.07360.162*0.381 (5)
H9SC0.82921.12040.01280.162*0.381 (5)
O2S0.443 (5)0.928 (3)0.016 (5)0.076 (6)0.119 (5)
C10S0.337 (5)1.033 (3)0.030 (4)0.079 (6)0.119 (5)
H10A0.23101.03770.02460.095*0.119 (5)
H10B0.29991.03990.10260.095*0.119 (5)
C11S0.447 (5)1.125 (2)0.019 (3)0.074 (6)0.119 (5)
H11A0.38401.17820.03380.089*0.119 (5)
H11B0.47881.16520.08870.089*0.119 (5)
C12S0.610 (7)1.062 (4)0.023 (7)0.087 (7)0.119 (5)
H12A0.71671.09590.01060.105*0.119 (5)
H12B0.59911.06460.10200.105*0.119 (5)
C13S0.617 (5)0.950 (3)0.008 (4)0.082 (7)0.119 (5)
H13A0.69220.94000.07860.099*0.119 (5)
H13B0.66620.89710.04620.099*0.119 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.01239 (11)0.01700 (12)0.01261 (12)0.00162 (8)0.00291 (8)0.00050 (8)
C10.030 (3)0.027 (3)0.051 (3)0.002 (2)0.003 (2)0.009 (2)
F10.044 (2)0.036 (2)0.104 (4)0.0089 (15)0.002 (3)0.040 (3)
F20.058 (2)0.075 (3)0.064 (2)0.0443 (19)0.0200 (19)0.0107 (19)
F30.035 (2)0.0470 (17)0.092 (3)0.0125 (14)0.0261 (19)0.0070 (18)
C1A0.030 (8)0.048 (8)0.084 (9)0.013 (6)0.003 (6)0.033 (7)
F1A0.033 (7)0.043 (6)0.116 (13)0.016 (5)0.003 (9)0.029 (8)
F2A0.028 (6)0.049 (7)0.101 (11)0.012 (4)0.011 (6)0.029 (7)
F3A0.042 (8)0.092 (9)0.095 (8)0.030 (6)0.010 (6)0.029 (6)
C140.035 (6)0.070 (6)0.021 (7)0.018 (4)0.010 (4)0.003 (5)
F40.043 (5)0.081 (7)0.022 (4)0.033 (5)0.009 (4)0.006 (6)
F50.058 (7)0.091 (5)0.015 (5)0.000 (4)0.008 (5)0.009 (4)
F60.054 (5)0.099 (8)0.017 (3)0.008 (5)0.009 (3)0.017 (5)
C14A0.033 (4)0.050 (4)0.017 (4)0.008 (3)0.007 (3)0.004 (3)
F4A0.032 (2)0.060 (4)0.025 (3)0.013 (2)0.013 (2)0.000 (3)
F5A0.048 (4)0.064 (3)0.016 (3)0.022 (3)0.011 (3)0.014 (2)
F6A0.061 (4)0.075 (5)0.026 (3)0.017 (3)0.020 (3)0.021 (3)
O10.0144 (9)0.0176 (9)0.0153 (9)0.0026 (7)0.0035 (7)0.0000 (7)
O20.0133 (8)0.0179 (9)0.0154 (9)0.0026 (7)0.0026 (7)0.0001 (7)
O30.0141 (8)0.0195 (9)0.0146 (9)0.0032 (7)0.0033 (7)0.0001 (7)
O40.0144 (8)0.0195 (9)0.0149 (9)0.0025 (7)0.0040 (7)0.0005 (7)
C20.0243 (15)0.0243 (15)0.0277 (15)0.0034 (12)0.0031 (12)0.0055 (12)
C30.0283 (15)0.0207 (14)0.0370 (17)0.0003 (12)0.0040 (13)0.0064 (12)
C40.0199 (14)0.0250 (15)0.0271 (15)0.0037 (11)0.0032 (11)0.0030 (11)
C50.0167 (13)0.0216 (13)0.0125 (12)0.0004 (10)0.0047 (10)0.0005 (10)
C60.0183 (13)0.0203 (13)0.0185 (13)0.0005 (10)0.0058 (10)0.0001 (10)
C70.0155 (13)0.0295 (15)0.0240 (14)0.0001 (11)0.0032 (11)0.0030 (11)
C80.0171 (13)0.0208 (14)0.0105 (12)0.0029 (10)0.0051 (10)0.0016 (10)
C90.0132 (12)0.0203 (13)0.0176 (13)0.0018 (10)0.0014 (10)0.0023 (10)
C100.0159 (13)0.0262 (14)0.0136 (12)0.0035 (10)0.0017 (10)0.0035 (10)
C110.0199 (13)0.0299 (15)0.0198 (14)0.0007 (11)0.0039 (11)0.0031 (11)
C120.0217 (14)0.0448 (18)0.0206 (14)0.0020 (13)0.0093 (11)0.0112 (13)
C130.0221 (14)0.0449 (18)0.0149 (13)0.0080 (13)0.0029 (11)0.0025 (12)
C150.0299 (16)0.0399 (18)0.0187 (14)0.0002 (13)0.0025 (12)0.0068 (12)
C160.0246 (14)0.0310 (15)0.0195 (14)0.0032 (12)0.0045 (11)0.0010 (11)
O1S0.0183 (9)0.0200 (9)0.0255 (10)0.0013 (7)0.0011 (7)0.0022 (7)
C1S0.021 (5)0.016 (4)0.037 (5)0.004 (4)0.001 (4)0.003 (3)
C2S0.035 (6)0.028 (6)0.032 (5)0.003 (5)0.003 (4)0.004 (4)
C3S0.034 (4)0.028 (4)0.031 (4)0.002 (3)0.009 (3)0.002 (3)
C4S0.010 (4)0.028 (5)0.024 (4)0.008 (3)0.006 (3)0.005 (3)
O1T0.0183 (9)0.0200 (9)0.0255 (10)0.0013 (7)0.0011 (7)0.0022 (7)
C1T0.020 (4)0.021 (3)0.033 (3)0.005 (2)0.001 (3)0.002 (2)
C2T0.031 (4)0.022 (4)0.033 (4)0.002 (4)0.009 (3)0.005 (3)
C3T0.026 (3)0.037 (3)0.025 (2)0.005 (3)0.003 (2)0.002 (2)
C4T0.015 (3)0.021 (3)0.027 (3)0.005 (3)0.003 (3)0.003 (2)
C5S0.080 (8)0.080 (8)0.064 (8)0.009 (6)0.005 (6)0.015 (7)
C6S0.082 (8)0.075 (8)0.042 (6)0.015 (6)0.005 (6)0.027 (5)
C7S0.086 (8)0.071 (8)0.056 (6)0.013 (7)0.002 (6)0.025 (6)
C8S0.101 (9)0.083 (8)0.076 (11)0.012 (7)0.011 (7)0.013 (7)
C9S0.109 (10)0.130 (15)0.079 (11)0.002 (9)0.019 (8)0.015 (12)
O2S0.087 (11)0.079 (10)0.049 (11)0.025 (9)0.011 (10)0.020 (9)
C10S0.094 (12)0.078 (11)0.052 (11)0.022 (10)0.005 (11)0.026 (10)
C11S0.092 (12)0.067 (11)0.051 (11)0.026 (10)0.012 (10)0.031 (10)
C12S0.101 (13)0.084 (11)0.067 (12)0.013 (11)0.008 (11)0.019 (11)
C13S0.087 (12)0.080 (11)0.072 (11)0.014 (11)0.020 (11)0.025 (10)
Geometric parameters (Å, º) top
Mo1—O12.0996 (17)C1S—C2S1.512 (13)
Mo1—O42.1030 (17)C1S—H1SA0.9900
Mo1—O2i2.1076 (17)C1S—H1SB0.9900
Mo1—Mo1i2.1098 (7)C2S—C3S1.519 (17)
Mo1—O3i2.1204 (17)C2S—H2SA0.9900
Mo1—O1T2.5422 (19)C2S—H2SB0.9900
Mo1—O1S2.5422 (19)C3S—C4S1.430 (12)
C1—F31.304 (12)C3S—H3SA0.9900
C1—F11.345 (11)C3S—H3SB0.9900
C1—F21.349 (11)C4S—H4SA0.9900
C1—C21.493 (6)C4S—H4SB0.9900
C1A—F1A1.21 (7)O1T—C1T1.431 (9)
C1A—F2A1.38 (5)O1T—C4T1.447 (7)
C1A—F3A1.40 (7)C1T—C2T1.518 (11)
C1A—C21.494 (18)C1T—H1TA0.9900
C14—F61.314 (14)C1T—H1TB0.9900
C14—F41.341 (13)C2T—C3T1.535 (13)
C14—F51.341 (14)C2T—H2TA0.9900
C14—C131.500 (13)C2T—H2TB0.9900
C14A—F6A1.326 (8)C3T—C4T1.434 (8)
C14A—F4A1.348 (9)C3T—H3TA0.9900
C14A—F5A1.349 (8)C3T—H3TB0.9900
C14A—C131.509 (8)C4T—H4TA0.9900
O1—C81.275 (3)C4T—H4TB0.9900
O2—C81.271 (3)C5S—C6S1.605 (14)
O2—Mo1i2.1076 (17)C5S—H5SA0.9800
O3—C91.269 (3)C5S—H5SB0.9800
O3—Mo1i2.1204 (17)C5S—H5SC0.9800
O4—C91.270 (3)C6S—C7S1.602 (14)
C2—C31.384 (4)C6S—H6SA0.9900
C2—C71.389 (4)C6S—H6SB0.9900
C3—C41.382 (4)C7S—C8S1.590 (15)
C3—H30.9500C7S—H7SA0.9900
C4—C51.390 (4)C7S—H7SB0.9900
C4—H40.9500C8S—C9S1.607 (15)
C5—C61.387 (4)C8S—H8SA0.9900
C5—C81.485 (3)C8S—H8SB0.9900
C6—C71.381 (4)C9S—H9SA0.9800
C6—H60.9500C9S—H9SB0.9800
C7—H70.9500C9S—H9SC0.9800
C9—C101.490 (3)O2S—C13S1.425 (18)
C10—C161.391 (4)O2S—C10S1.442 (18)
C10—C111.392 (4)C10S—C11S1.505 (18)
C11—C121.385 (4)C10S—H10A0.9900
C11—H110.9500C10S—H10B0.9900
C12—C131.382 (4)C11S—C12S1.53 (2)
C12—H120.9500C11S—H11A0.9900
C13—C151.385 (4)C11S—H11B0.9900
C15—C161.383 (4)C12S—C13S1.436 (18)
C15—H150.9500C12S—H12A0.9900
C16—H160.9500C12S—H12B0.9900
O1S—C4S1.428 (11)C13S—H13A0.9900
O1S—C1S1.465 (12)C13S—H13B0.9900
O1—Mo1—O489.95 (7)H1SA—C1S—H1SB108.6
O1—Mo1—O2i176.69 (6)C1S—C2S—C3S102.6 (12)
O4—Mo1—O2i89.57 (7)C1S—C2S—H2SA111.3
O1—Mo1—Mo1i93.20 (5)C3S—C2S—H2SA111.3
O4—Mo1—Mo1i92.37 (5)C1S—C2S—H2SB111.3
O2i—Mo1—Mo1i90.10 (5)C3S—C2S—H2SB111.3
O1—Mo1—O3i88.41 (7)H2SA—C2S—H2SB109.2
O4—Mo1—O3i176.47 (7)C4S—C3S—C2S106.9 (10)
O2i—Mo1—O3i91.89 (6)C4S—C3S—H3SA110.3
Mo1i—Mo1—O3i90.84 (5)C2S—C3S—H3SA110.3
O1—Mo1—O1T96.83 (6)C4S—C3S—H3SB110.3
O4—Mo1—O1T98.97 (6)C2S—C3S—H3SB110.3
O2i—Mo1—O1T80.01 (6)H3SA—C3S—H3SB108.6
Mo1i—Mo1—O1T164.83 (4)O1S—C4S—C3S111.1 (8)
O3i—Mo1—O1T78.13 (6)O1S—C4S—H4SA109.4
O1—Mo1—O1S96.83 (6)C3S—C4S—H4SA109.4
O4—Mo1—O1S98.97 (6)O1S—C4S—H4SB109.4
O2i—Mo1—O1S80.01 (6)C3S—C4S—H4SB109.4
Mo1i—Mo1—O1S164.83 (4)H4SA—C4S—H4SB108.0
O3i—Mo1—O1S78.13 (6)C1T—O1T—C4T108.1 (6)
F3—C1—F1106.4 (6)C1T—O1T—Mo1118.0 (6)
F3—C1—F2105.0 (7)C4T—O1T—Mo1120.2 (5)
F1—C1—F2106.0 (8)O1T—C1T—C2T104.5 (9)
F3—C1—C2114.9 (8)O1T—C1T—H1TA110.8
F1—C1—C2112.5 (7)C2T—C1T—H1TA110.8
F2—C1—C2111.3 (6)O1T—C1T—H1TB110.8
F1A—C1A—F2A105 (4)C2T—C1T—H1TB110.8
F1A—C1A—F3A117 (3)H1TA—C1T—H1TB108.9
F2A—C1A—F3A97 (4)C1T—C2T—C3T105.4 (6)
F1A—C1A—C2118 (5)C1T—C2T—H2TA110.7
F2A—C1A—C2108 (3)C3T—C2T—H2TA110.7
F3A—C1A—C2109 (4)C1T—C2T—H2TB110.7
F6—C14—F4106.6 (13)C3T—C2T—H2TB110.7
F6—C14—F5108.3 (13)H2TA—C2T—H2TB108.8
F4—C14—F5106.3 (15)C4T—C3T—C2T105.6 (7)
F6—C14—C13111.0 (12)C4T—C3T—H3TA110.6
F4—C14—C13111.7 (14)C2T—C3T—H3TA110.6
F5—C14—C13112.6 (14)C4T—C3T—H3TB110.6
F6A—C14A—F4A108.9 (7)C2T—C3T—H3TB110.6
F6A—C14A—F5A105.8 (7)H3TA—C3T—H3TB108.7
F4A—C14A—F5A104.3 (8)C3T—C4T—O1T106.8 (5)
F6A—C14A—C13114.5 (7)C3T—C4T—H4TA110.4
F4A—C14A—C13110.8 (8)O1T—C4T—H4TA110.4
F5A—C14A—C13112.0 (8)C3T—C4T—H4TB110.4
C8—O1—Mo1115.86 (15)O1T—C4T—H4TB110.4
C8—O2—Mo1i118.49 (15)H4TA—C4T—H4TB108.6
C9—O3—Mo1i117.28 (15)C6S—C5S—H5SA109.5
C9—O4—Mo1116.71 (15)C6S—C5S—H5SB109.5
C3—C2—C7120.3 (3)H5SA—C5S—H5SB109.5
C3—C2—C1121.5 (5)C6S—C5S—H5SC109.5
C7—C2—C1118.0 (5)H5SA—C5S—H5SC109.5
C3—C2—C1A116 (2)H5SB—C5S—H5SC109.5
C7—C2—C1A124 (3)C7S—C6S—C5S106.0 (10)
C4—C3—C2120.2 (3)C7S—C6S—H6SA110.5
C4—C3—H3119.9C5S—C6S—H6SA110.5
C2—C3—H3119.9C7S—C6S—H6SB110.5
C3—C4—C5119.7 (3)C5S—C6S—H6SB110.5
C3—C4—H4120.2H6SA—C6S—H6SB108.7
C5—C4—H4120.2C8S—C7S—C6S105.2 (12)
C6—C5—C4119.8 (2)C8S—C7S—H7SA110.7
C6—C5—C8119.0 (2)C6S—C7S—H7SA110.7
C4—C5—C8121.2 (2)C8S—C7S—H7SB110.7
C7—C6—C5120.7 (2)C6S—C7S—H7SB110.7
C7—C6—H6119.7H7SA—C7S—H7SB108.8
C5—C6—H6119.7C7S—C8S—C9S104.7 (14)
C6—C7—C2119.3 (3)C7S—C8S—H8SA110.8
C6—C7—H7120.4C9S—C8S—H8SA110.8
C2—C7—H7120.4C7S—C8S—H8SB110.8
O2—C8—O1122.3 (2)C9S—C8S—H8SB110.8
O2—C8—C5118.2 (2)H8SA—C8S—H8SB108.9
O1—C8—C5119.5 (2)C8S—C9S—H9SA109.5
O3—C9—O4122.8 (2)C8S—C9S—H9SB109.5
O3—C9—C10119.1 (2)H9SA—C9S—H9SB109.5
O4—C9—C10118.1 (2)C8S—C9S—H9SC109.5
C16—C10—C11119.7 (2)H9SA—C9S—H9SC109.5
C16—C10—C9120.3 (2)H9SB—C9S—H9SC109.5
C11—C10—C9120.0 (2)C13S—O2S—C10S108.7 (18)
C12—C11—C10120.0 (3)O2S—C10S—C11S107.7 (16)
C12—C11—H11120.0O2S—C10S—H10A110.2
C10—C11—H11120.0C11S—C10S—H10A110.2
C13—C12—C11119.8 (3)O2S—C10S—H10B110.2
C13—C12—H12120.1C11S—C10S—H10B110.2
C11—C12—H12120.1H10A—C10S—H10B108.5
C12—C13—C15120.8 (3)C10S—C11S—C12S103.5 (16)
C12—C13—C14117.3 (7)C10S—C11S—H11A111.1
C15—C13—C14121.9 (7)C12S—C11S—H11A111.1
C12—C13—C14A120.1 (5)C10S—C11S—H11B111.1
C15—C13—C14A119.0 (5)C12S—C11S—H11B111.1
C16—C15—C13119.5 (3)H11A—C11S—H11B109.0
C16—C15—H15120.2C13S—C12S—C11S105.2 (19)
C13—C15—H15120.2C13S—C12S—H12A110.7
C15—C16—C10120.3 (3)C11S—C12S—H12A110.7
C15—C16—H16119.9C13S—C12S—H12B110.7
C10—C16—H16119.9C11S—C12S—H12B110.7
C4S—O1S—C1S106.0 (9)H12A—C12S—H12B108.8
C4S—O1S—Mo1131.9 (7)O2S—C13S—C12S108 (2)
C1S—O1S—Mo1110.8 (10)O2S—C13S—H13A110.1
O1S—C1S—C2S107.0 (10)C12S—C13S—H13A110.1
O1S—C1S—H1SA110.3O2S—C13S—H13B110.1
C2S—C1S—H1SA110.3C12S—C13S—H13B110.1
O1S—C1S—H1SB110.3H13A—C13S—H13B108.4
C2S—C1S—H1SB110.3
F3—C1—C2—C3148.4 (6)C11—C12—C13—C150.9 (4)
F1—C1—C2—C326.5 (11)C11—C12—C13—C14179.0 (8)
F2—C1—C2—C392.4 (8)C11—C12—C13—C14A175.4 (5)
F3—C1—C2—C736.4 (9)F6—C14—C13—C12144.3 (13)
F1—C1—C2—C7158.3 (6)F4—C14—C13—C1296.8 (18)
F2—C1—C2—C782.8 (9)F5—C14—C13—C1222.7 (17)
F1A—C1A—C2—C320 (6)F6—C14—C13—C1535.7 (17)
F2A—C1A—C2—C3139 (3)F4—C14—C13—C1583.1 (18)
F3A—C1A—C2—C3117 (3)F5—C14—C13—C15157.3 (12)
F1A—C1A—C2—C7164 (4)F6A—C14A—C13—C12166.7 (8)
F2A—C1A—C2—C744 (6)F4A—C14A—C13—C1269.7 (10)
F3A—C1A—C2—C760 (4)F5A—C14A—C13—C1246.3 (11)
C7—C2—C3—C41.1 (4)F6A—C14A—C13—C1516.9 (10)
C1—C2—C3—C4174.0 (5)F4A—C14A—C13—C15106.7 (9)
C1A—C2—C3—C4178 (3)F5A—C14A—C13—C15137.3 (8)
C2—C3—C4—C50.1 (4)C12—C13—C15—C160.3 (4)
C3—C4—C5—C61.2 (4)C14—C13—C15—C16179.6 (8)
C3—C4—C5—C8177.5 (2)C14A—C13—C15—C16176.0 (5)
C4—C5—C6—C71.1 (4)C13—C15—C16—C100.6 (4)
C8—C5—C6—C7177.6 (2)C11—C10—C16—C150.8 (4)
C5—C6—C7—C20.1 (4)C9—C10—C16—C15178.4 (2)
C3—C2—C7—C61.2 (4)C4S—O1S—C1S—C2S23 (3)
C1—C2—C7—C6174.1 (5)Mo1—O1S—C1S—C2S125 (3)
C1A—C2—C7—C6177 (3)O1S—C1S—C2S—C3S25 (4)
Mo1i—O2—C8—O11.0 (3)C1S—C2S—C3S—C4S18 (4)
Mo1i—O2—C8—C5178.29 (15)C1S—O1S—C4S—C3S11.2 (18)
Mo1—O1—C8—O21.3 (3)Mo1—O1S—C4S—C3S127.7 (9)
Mo1—O1—C8—C5177.94 (16)C2S—C3S—C4S—O1S5 (3)
C6—C5—C8—O21.7 (3)C4T—O1T—C1T—C2T28.3 (17)
C4—C5—C8—O2177.0 (2)Mo1—O1T—C1T—C2T112.4 (15)
C6—C5—C8—O1179.0 (2)O1T—C1T—C2T—C3T14 (2)
C4—C5—C8—O12.3 (4)C1T—C2T—C3T—C4T5 (2)
Mo1i—O3—C9—O40.1 (3)C2T—C3T—C4T—O1T21.8 (15)
Mo1i—O3—C9—C10179.30 (16)C1T—O1T—C4T—C3T32.4 (11)
Mo1—O4—C9—O31.7 (3)Mo1—O1T—C4T—C3T107.3 (6)
Mo1—O4—C9—C10177.75 (16)C5S—C6S—C7S—C8S170.7 (15)
O3—C9—C10—C1611.2 (4)C6S—C7S—C8S—C9S172.8 (17)
O4—C9—C10—C16168.3 (2)C13S—O2S—C10S—C11S6 (6)
O3—C9—C10—C11169.7 (2)O2S—C10S—C11S—C12S10 (5)
O4—C9—C10—C1110.8 (3)C10S—C11S—C12S—C13S22 (6)
C16—C10—C11—C120.2 (4)C10S—O2S—C13S—C12S21 (7)
C9—C10—C11—C12179.0 (2)C11S—C12S—C13S—O2S27 (7)
C10—C11—C12—C130.7 (4)
Symmetry code: (i) x, y+1, z+1.
 

Footnotes

Authors contributed equally to this work.

§Authors contributed equally to this work

Acknowledgements

We thank Theodore A. Betley and Daniel G. Nocera for helpful discussions and contributions to the preparation of the manuscript.

Funding information

Funding for this research was provided by: the Department of Chemistry and Chemical Biology, Harvard University.

References

First citationBoiadjiev, S. E. & Lightner, D. A. (1999). J. Phys. Org. Chem. 12, 751–757.  CrossRef CAS Google Scholar
First citationBruker (2015). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCotton, F. A., Daniels, L. M., Hillard, E. A. & Murillo, C. A. (2002). Inorg. Chem. 41, 2466–2470.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCotton, F. A., Extine, M. & Gage, L. D. (1978). Inorg. Chem. 17, 172–176.  CSD CrossRef CAS Web of Science Google Scholar
First citationCotton, F. A., Mester, Z. C. & Webb, T. R. (1974). Acta Cryst. B30, 2768–2770.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationCotton, F. A. & Nocera, D. G. (2000). Acc. Chem. Res. 33, 483–490.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCotton, F. A. & Norman, J. G. (1971). J. Coord. Chem. 1, 161–171.  CSD CrossRef Google Scholar
First citationCoulson, C. A. & Fischer, I. (1949). Philos. Mag. 40, 386–393.  CrossRef CAS Google Scholar
First citationD'Oria, E. & Novoa, J. J. (2008). CrystEngComm, 10, 423–436.  CAS Google Scholar
First citationEngebretson, D. S., Graj, E. M., Leroi, G. E. & Nocera, D. G. (1999). J. Am. Chem. Soc. 121, 868–869.  Web of Science CrossRef CAS Google Scholar
First citationEngebretson, D. S., Zaleski, J. M., Leroi, G. E. & Nocera, D. G. (1994). Science, 265, 759–762.  CrossRef PubMed CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHan, L.-J. (2011). Acta Cryst. E67, m1289–m1290.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHeitler, W. & London, F. (1927). Z. Phys. 44, 455–472.  CrossRef CAS Google Scholar
First citationJames, H. M. & Coolidge, A. S. (1933). J. Chem. Phys. 1, 825–835.  CrossRef CAS Google Scholar
First citationKawahara, S., Tsuzuki, S. & Uchimaru, T. (2004). J. Phys. Chem. A, 108, 6744–6749.  Web of Science CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLawton, D. & Mason, R. (1965). J. Am. Chem. Soc. 87, 921–922.  CSD CrossRef CAS Web of Science Google Scholar
First citationLennard-Jones, J. E. (1929). Trans. Faraday Soc. 25, 668–686.  CAS Google Scholar
First citationLewis, G. N. (1916). J. Am. Chem. Soc. 38, 762–785.  CrossRef CAS Google Scholar
First citationMüller, P., Herbst-Irmer, R., Spek, A., Schneider, T. & Sawaya, M. (2006). Crystal Structure Refinement: a Crystallographer's Guide to SHELXL, p. 16. Oxford University Press.  Google Scholar
First citationMulliken, R. S. (1932). Phys. Rev. 41, 751–758.  CrossRef CAS Google Scholar
First citationPauling, L. (1928). Chem. Rev. 5, 173–213.  CrossRef Google Scholar
First citationPence, L. E., Weisgerber, A. M. & Maounis, F. A. (1999). J. Chem. Educ. 76, 404–405.  Web of Science CrossRef CAS Google Scholar
First citationRumble, J. R. (2021). CRC Handbook of Chemistry and Physics, 102nd ed. Boca Raton: CRC Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194–201.  CrossRef Web of Science IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZheng, S.-L., Vande Velde, C. M. L., Messerschmidt, M., Volkov, A., Gembicky, M. & Coppens, P. (2008). Chem. Eur. J. 14, 706–713.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds