research communications
and Hirshfeld surface analysis of 2-{[7-acetyl-4-cyano-6-hydroxy-8-(4-methoxyphenyl)-1,6-dimethyl-5,6,7,8-tetrahydroisoquinolin-3-yl]sulfanyl}acetic acid ethyl ester
aChemistry Department, Faculty of Science, Sana'a University, Sana'a, Yemen, bChemistry Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt, cChemistry Department, College of Science, Jouf University, PO Box 2014.Sakaka, Saudi Arabia, dChemistry and Environmental Division, Manchester Metropolitan University, Manchester, M1 5GD, England, eChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, fDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, and gDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: elhamaltaifi@gmail.com, shaabankamel@yahoo.com
In the title molecule, C25H28N2O5S, (alternative name ethyl 2-{[7-acetyl-4-cyano-6-hydroxy-8-(4-methoxyphenyl)-1,6-dimethyl-5,6,7,8-tetrahydroisoquinolin-3-yl]sulfanyl}acetate) the 4-methoxyphenyl group is disposed on one side of the bicyclic core and the oxygen atoms of the hydroxyl and acetyl groups are disposed on the other side. In the crystal, a layered structure parallel to the ac plane is generated by O—H⋯O and C—H⋯O hydrogen bonds plus C—H⋯π(ring) interactions.
CCDC reference: 2141278
1. Chemical context
Some tetrahydroisoquinoline (THISQ) based compounds are of medicinal and biological importance, being used as antitumoral (Pingaew et al., 2014; Castillo et al., 2018), antifungal (Scott et al., 2002) and anti-inflammatory agents (Siegfried et al., 1989). Other tetrahydroisoquinolines were used as inhibitors including B-rafV600E or p38 kinase inhibitors (Lu et al., 2016; Rosales et al., 2007). The THISQ core can easily be functionalized to build other heterocyclic rings on the carbocyclic ring (Xu et al., 2002; Carroll et al., 2007; Demers et al., 2008, Marae et al., 2021a). Recently, we have used some compounds related to THISQ as durable fluorescent dyes for cotton (Marae et al., 2021b). The widespread importance of these compounds motivated us to further study the THISQ core. Here we report the synthesis and determination of the title compound.
2. Structural commentary
The ethyl sulfanylacetate, acetyl and cyano groups and both methyl groups (C19 and C21) are in equatorial positions with respect to the bicyclic core, while the hydroxyl and anisole groups on the cyclohexane ring occupy an axial and bisectional position, respectively (Fig. 1). The C10–C15 benzene ring is inclined to the N1/C5–C9 pyridine ring by 82.57 (6)°. The C1–C5/C9 cyclohexane ring is in an with atom C3 at the flap position [deviation from best plane = 0.367 (1) Å] and puckering parameters (Cremer & Pople, 1975) QT = 0.5180 (12) Å, θ = 53.85 (13)° and φ = 109.07 (17)°.
3. Supramolecular features
In the crystal of the title compound, chains of molecules extending along the a-axis direction are formed by O3—H3⋯O1 and C16—H16C⋯O2 hydrogen bonds (Table 1 and Fig. 2). These are connected into layers parallel to the ac plane by C21—H21A⋯O2, C22—H22A⋯O3 and C24—H24B⋯O4 hydrogen bonds as well as C22—H22B⋯Cg1 interactions (Table 1 and Fig. 3).
4. Hirshfeld surface analysis
Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) was carried out using CrystalExplorer17.5 (Turner et al., 2017). The Hirshfeld surface and their associated two-dimensional fingerprint plots were used to quantify the various intermolecular interactions in the title compound. In the Hirshfeld surface plotted over dnorm in the range −0.4903 (red) to +1.6396 (blue) a.u. (Fig. 4), the white areas indicate contacts with distances equal to the sum of van der Waals radii, and the red and blue areas indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016). The bright-red spots indicate their roles as the respective donors and/or acceptors.
Fingerprint plots (Fig. 5b–e; Table 2) reveal that H⋯H (47.6%), O⋯H/H⋯O (19.7%), C⋯H/H⋯C (12.5%) and N⋯H/H⋯N (11.6%) interactions make the greatest contributions to the surface contacts. S⋯H/H⋯S (6.4%), N⋯C/C⋯N (0.7%), O⋯C/C⋯O (0.5%), O⋯O (0.5%) and C⋯C (0.4%) contacts also contribute to the overall crystal packing of the title compound. The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, O⋯H, C⋯H and N⋯H interactions suggest that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).
|
5. Database survey
A search of the Cambridge Structural Database (CSD version 5.42, updated September 2021; Groom et al., 2016) for tetrahydroisoquinoline derivatives gave nine compounds very similar to the title compound. In the crystal of NAQRIJ (Mague et al., 2017), dimers form through complementary sets of inversion-related O—H⋯O and C—H⋯O hydrogen bonds. These are connected into zigzag chains along the c-axis direction by pairwise C—H⋯N interactions that also form inversion dimers. In KUGLIK (Langenohl et al., 2020), the heterocyclic are alternately connected to the hydrogen-bonding system along the c axis, which leads to the formation of chains in this direction. In the crystal of DUSVIZ (Selvaraj et al., 2020), molecules are linked via C—H⋯O hydrogen bonds. In AKIVUO (Al-Taifi et al., 2021), a layered structure with layers parallel to (10) is generated by O—H⋯O and C—H⋯O hydrogen bonds. In ULUTAZ (Naghiyev et al., 2021), molecules are linked via N—H⋯O and C—H⋯N hydrogen bonds, forming a three-dimensional network, and the crystal packing is dominated by C—H⋯π bonds. In CARCOQ (Lehmann et al., 2017), molecules are linked by O—H⋯O hydrogen bonds, forming chains propagating along the a-axis direction. The chains are linked by C—H⋯F hydrogen bonds, forming layers lying parallel to the ab plane. In POPYEB (Ben Ali et al., 2019), molecules are packed in a herringbone manner parallel to (103) and (10) via weak C—H⋯O and C—H⋯π(ring) interactions. In ENOCIU (Naicker et al., 2011) various C—H⋯π and C—H⋯O bonds link the molecules together. In NIWPAL (Bouasla et al., 2008), the molecules are linked by N—H⋯O intermolecular hydrogen bonds involving the sulfonamide function to form an infinite two-dimensional network parallel to the (001) plane.
6. Synthesis and crystallization
7-Acetyl-4-cyano-1,6-dimethyl-6-hydroxy-8-(4-methoxyphenyl)-5,6,7,8-tetrahydro-isoquinoline-3(2H)-thione (5 mmol, 1.91 g) and sodium acetate trihydrate (1.36 g, 10 mmol) were suspended in 50 ml of absolute ethanol, then 0.55 ml of ethyl chloroacetate (5.3 mmol) were added and the mixture was refluxed for one h. During reflux, the yellow colour disappeared gradually over time to afford a colourless reaction mixture. The reaction mixture was then left to cool at room temperature and the formed precipitate was collected by fiitration, washed with water, dried in air and recystallized from ethanol to give the title compound as cubic crystals, yield 2.11 g (94%); m.p. 453–455 K. IR (cm−1): 3454 (O—H); 3048 (C—H aromatic); 2970, 2913 (C—H aliphatic); 2215 (C≡N); 1743 (C=O, ester); 1697 (C=O, acetyl). 1H NMR (CDCl3, 400 MHz) δ: 6.80–6.86 (dd, J = 8 Hz, 4H, ArH), 4.24–4.26 (d, J = 8 Hz, 1H, C8H), 4.12–4.15 (q, J = 6 Hz, 2H, OCH2), 3.89–3.92 (dd, 2H, SCH2), 3.78 (s, 3H, OCH3), 3.38 (s, 1H, OH), 3.09–3.12 (d, J = 12 Hz, 1H, C5H), 3.03–3.05 (d, J = 8 Hz, 1H, C7H), 2.89–2.92 (d, J = 12 Hz, 1H, C5H), 1. 90 (s, 3H, CH3 at C-1), 1.80 (s, 3H, COCH3), 1.34 (s, 3H, CH3 at C-6), 1.18–1.21 (t, J = 6 Hz, 3H, CH3 of ester group).
7. Refinement
Crystal data, data collection and structure . All C-bound H atoms were placed in geometrically idealized positions (C—H = 0.95–1.00 Å) while the hydrogen atom attached to O3 was found from a difference map, and was subsequently refined isotropically [O3—H3 = 0.903 (17) Å] with Uiso(H) = 1.5Ueq(O). All C-bound H atoms were included as riding contributions with isotropic displacement parameters 1.2 times those of the parent atoms (1.5 for methyl groups).
details are summarized in Table 3
|
Supporting information
CCDC reference: 2141278
https://doi.org/10.1107/S2056989022000378/vm2259sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022000378/vm2259Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989022000378/vm2259Isup3.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C25H28N2O5S | Z = 2 |
Mr = 468.55 | F(000) = 496 |
Triclinic, P1 | Dx = 1.298 Mg m−3 |
a = 10.0643 (6) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.3592 (7) Å | Cell parameters from 9995 reflections |
c = 12.0685 (8) Å | θ = 2.5–29.5° |
α = 83.296 (1)° | µ = 0.17 mm−1 |
β = 80.770 (1)° | T = 150 K |
γ = 75.638 (1)° | Block, colourless |
V = 1199.23 (13) Å3 | 0.35 × 0.29 × 0.27 mm |
Bruker SMART APEX CCD diffractometer | 6509 independent reflections |
Radiation source: fine-focus sealed tube | 5177 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 29.6°, θmin = 1.7° |
φ and ω scans | h = −13→13 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −14→14 |
Tmin = 0.82, Tmax = 0.96 | l = −16→16 |
22695 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.133 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.11 | w = 1/[σ2(Fo2) + (0.0848P)2 + 0.0389P] where P = (Fo2 + 2Fc2)/3 |
6509 reflections | (Δ/σ)max < 0.001 |
305 parameters | Δρmax = 0.71 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 10 sec/frame. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 1.00 Å) while that attached to oxygen was placed in a location derived from a difference map and its coordinates adjusted to give O—H = 0.87 %A. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.40179 (4) | 0.33194 (3) | 0.67126 (2) | 0.02919 (11) | |
O1 | −0.01601 (8) | 0.26808 (9) | −0.00282 (7) | 0.0261 (2) | |
O2 | 0.65454 (10) | 0.31103 (10) | −0.03628 (7) | 0.0325 (2) | |
O3 | 0.76674 (8) | 0.24179 (8) | 0.18545 (7) | 0.02199 (18) | |
H3 | 0.8202 (16) | 0.2524 (10) | 0.1190 (13) | 0.033* | |
O4 | 0.08897 (11) | 0.46076 (12) | 0.66388 (9) | 0.0455 (3) | |
O5 | 0.13749 (11) | 0.65264 (10) | 0.58156 (8) | 0.0357 (2) | |
N1 | 0.35085 (10) | 0.41231 (10) | 0.46279 (8) | 0.0208 (2) | |
N2 | 0.67128 (14) | 0.03469 (14) | 0.60676 (11) | 0.0424 (3) | |
C1 | 0.46954 (11) | 0.29768 (11) | 0.16884 (9) | 0.0159 (2) | |
H1 | 0.500590 | 0.379658 | 0.134272 | 0.019* | |
C2 | 0.57706 (11) | 0.17513 (11) | 0.12120 (9) | 0.0173 (2) | |
H2 | 0.531350 | 0.098468 | 0.129582 | 0.021* | |
C3 | 0.70498 (11) | 0.13262 (11) | 0.18391 (9) | 0.0193 (2) | |
C4 | 0.65493 (12) | 0.09343 (12) | 0.30675 (10) | 0.0223 (2) | |
H4A | 0.620266 | 0.011333 | 0.310543 | 0.027* | |
H4B | 0.734138 | 0.072924 | 0.350225 | 0.027* | |
C5 | 0.54209 (11) | 0.20148 (11) | 0.35998 (9) | 0.0179 (2) | |
C6 | 0.52467 (11) | 0.20985 (12) | 0.47729 (9) | 0.0199 (2) | |
C7 | 0.42631 (12) | 0.31658 (12) | 0.52466 (9) | 0.0205 (2) | |
C8 | 0.36570 (11) | 0.40524 (11) | 0.35083 (9) | 0.0177 (2) | |
C9 | 0.45724 (11) | 0.29873 (11) | 0.29599 (9) | 0.0166 (2) | |
C10 | 0.33305 (11) | 0.30117 (11) | 0.12715 (9) | 0.0176 (2) | |
C11 | 0.24375 (12) | 0.22431 (12) | 0.18378 (9) | 0.0206 (2) | |
H11 | 0.263234 | 0.176107 | 0.253526 | 0.025* | |
C12 | 0.12671 (12) | 0.21705 (12) | 0.13990 (10) | 0.0227 (2) | |
H12 | 0.065702 | 0.165748 | 0.180301 | 0.027* | |
C13 | 0.09882 (11) | 0.28515 (12) | 0.03646 (9) | 0.0200 (2) | |
C14 | 0.18526 (12) | 0.36397 (12) | −0.02017 (9) | 0.0225 (2) | |
H14 | 0.165733 | 0.412138 | −0.089914 | 0.027* | |
C15 | 0.30109 (12) | 0.37198 (12) | 0.02605 (9) | 0.0212 (2) | |
H15 | 0.359409 | 0.427055 | −0.012431 | 0.025* | |
C16 | −0.03346 (13) | 0.32073 (14) | −0.11635 (10) | 0.0267 (3) | |
H16A | 0.052176 | 0.288044 | −0.166573 | 0.040* | |
H16B | −0.054905 | 0.418620 | −0.120457 | 0.040* | |
H16C | −0.109566 | 0.291484 | −0.139534 | 0.040* | |
C17 | 0.61828 (12) | 0.20825 (12) | −0.00420 (10) | 0.0227 (2) | |
C18 | 0.60948 (18) | 0.11357 (16) | −0.08583 (12) | 0.0404 (4) | |
H18A | 0.654485 | 0.138974 | −0.160555 | 0.061* | |
H18B | 0.512060 | 0.117187 | −0.089559 | 0.061* | |
H18C | 0.656149 | 0.022519 | −0.060849 | 0.061* | |
C19 | 0.81182 (13) | 0.01430 (13) | 0.13312 (11) | 0.0280 (3) | |
H19A | 0.849094 | 0.041750 | 0.056329 | 0.042* | |
H19B | 0.767456 | −0.059489 | 0.131300 | 0.042* | |
H19C | 0.887278 | −0.015108 | 0.179227 | 0.042* | |
C20 | 0.60828 (13) | 0.11221 (13) | 0.54794 (10) | 0.0258 (3) | |
C21 | 0.27853 (12) | 0.52205 (12) | 0.29046 (10) | 0.0236 (2) | |
H21A | 0.327912 | 0.540938 | 0.215809 | 0.035* | |
H21B | 0.259623 | 0.600477 | 0.333793 | 0.035* | |
H21C | 0.190956 | 0.501257 | 0.282226 | 0.035* | |
C22 | 0.31143 (14) | 0.50489 (13) | 0.67068 (10) | 0.0286 (3) | |
H22A | 0.305095 | 0.534976 | 0.746654 | 0.034* | |
H22B | 0.366449 | 0.558138 | 0.617296 | 0.034* | |
C23 | 0.16744 (14) | 0.53363 (14) | 0.63858 (10) | 0.0303 (3) | |
C24 | 0.00183 (17) | 0.68891 (18) | 0.54348 (14) | 0.0490 (4) | |
H24A | −0.072036 | 0.696185 | 0.608938 | 0.059* | |
H24B | −0.007797 | 0.619864 | 0.497063 | 0.059* | |
C25 | −0.0099 (3) | 0.8197 (2) | 0.4757 (3) | 0.0934 (9) | |
H25A | 0.062343 | 0.810824 | 0.410224 | 0.140* | |
H25B | 0.001445 | 0.886882 | 0.522048 | 0.140* | |
H25C | −0.101112 | 0.847711 | 0.450117 | 0.140* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0375 (2) | 0.03615 (19) | 0.01391 (15) | −0.00874 (14) | −0.00410 (13) | −0.00088 (12) |
O1 | 0.0185 (4) | 0.0418 (5) | 0.0196 (4) | −0.0100 (4) | −0.0083 (3) | 0.0052 (4) |
O2 | 0.0360 (5) | 0.0411 (6) | 0.0226 (5) | −0.0181 (4) | 0.0007 (4) | 0.0018 (4) |
O3 | 0.0192 (4) | 0.0271 (4) | 0.0219 (4) | −0.0090 (3) | −0.0012 (3) | −0.0056 (3) |
O4 | 0.0337 (6) | 0.0612 (7) | 0.0426 (6) | −0.0229 (5) | −0.0002 (5) | 0.0106 (5) |
O5 | 0.0392 (5) | 0.0333 (5) | 0.0325 (5) | −0.0047 (4) | −0.0021 (4) | −0.0057 (4) |
N1 | 0.0213 (5) | 0.0254 (5) | 0.0155 (4) | −0.0052 (4) | −0.0023 (4) | −0.0012 (4) |
N2 | 0.0461 (7) | 0.0444 (7) | 0.0312 (6) | −0.0021 (6) | −0.0128 (6) | 0.0117 (5) |
C1 | 0.0158 (5) | 0.0182 (5) | 0.0142 (5) | −0.0049 (4) | −0.0033 (4) | 0.0001 (4) |
C2 | 0.0163 (5) | 0.0195 (5) | 0.0168 (5) | −0.0050 (4) | −0.0017 (4) | −0.0027 (4) |
C3 | 0.0171 (5) | 0.0204 (5) | 0.0206 (5) | −0.0041 (4) | −0.0022 (4) | −0.0033 (4) |
C4 | 0.0207 (5) | 0.0217 (6) | 0.0214 (6) | −0.0006 (4) | −0.0038 (4) | 0.0020 (4) |
C5 | 0.0174 (5) | 0.0193 (5) | 0.0177 (5) | −0.0061 (4) | −0.0037 (4) | 0.0013 (4) |
C6 | 0.0188 (5) | 0.0237 (6) | 0.0171 (5) | −0.0059 (4) | −0.0049 (4) | 0.0034 (4) |
C7 | 0.0230 (5) | 0.0254 (6) | 0.0145 (5) | −0.0091 (5) | −0.0029 (4) | 0.0008 (4) |
C8 | 0.0158 (5) | 0.0223 (5) | 0.0154 (5) | −0.0053 (4) | −0.0023 (4) | −0.0012 (4) |
C9 | 0.0154 (5) | 0.0203 (5) | 0.0153 (5) | −0.0064 (4) | −0.0030 (4) | −0.0002 (4) |
C10 | 0.0168 (5) | 0.0206 (5) | 0.0151 (5) | −0.0031 (4) | −0.0032 (4) | −0.0018 (4) |
C11 | 0.0194 (5) | 0.0267 (6) | 0.0156 (5) | −0.0060 (4) | −0.0050 (4) | 0.0033 (4) |
C12 | 0.0183 (5) | 0.0314 (6) | 0.0193 (5) | −0.0099 (5) | −0.0038 (4) | 0.0048 (5) |
C13 | 0.0152 (5) | 0.0271 (6) | 0.0175 (5) | −0.0030 (4) | −0.0040 (4) | −0.0020 (4) |
C14 | 0.0216 (5) | 0.0291 (6) | 0.0157 (5) | −0.0045 (5) | −0.0054 (4) | 0.0031 (4) |
C15 | 0.0218 (5) | 0.0250 (6) | 0.0175 (5) | −0.0086 (4) | −0.0036 (4) | 0.0034 (4) |
C16 | 0.0222 (6) | 0.0387 (7) | 0.0197 (6) | −0.0058 (5) | −0.0095 (5) | 0.0020 (5) |
C17 | 0.0189 (5) | 0.0308 (6) | 0.0182 (5) | −0.0050 (5) | −0.0016 (4) | −0.0040 (5) |
C18 | 0.0571 (10) | 0.0423 (8) | 0.0242 (7) | −0.0115 (7) | −0.0059 (6) | −0.0121 (6) |
C19 | 0.0229 (6) | 0.0268 (6) | 0.0309 (7) | 0.0021 (5) | −0.0023 (5) | −0.0085 (5) |
C20 | 0.0283 (6) | 0.0292 (6) | 0.0191 (6) | −0.0073 (5) | −0.0042 (5) | 0.0043 (5) |
C21 | 0.0238 (6) | 0.0243 (6) | 0.0194 (5) | 0.0011 (5) | −0.0040 (5) | −0.0011 (4) |
C22 | 0.0335 (7) | 0.0344 (7) | 0.0209 (6) | −0.0127 (5) | −0.0005 (5) | −0.0081 (5) |
C23 | 0.0315 (7) | 0.0387 (7) | 0.0197 (6) | −0.0099 (6) | 0.0045 (5) | −0.0059 (5) |
C24 | 0.0383 (8) | 0.0555 (10) | 0.0449 (9) | 0.0022 (7) | −0.0026 (7) | −0.0031 (8) |
C25 | 0.0751 (16) | 0.0498 (12) | 0.139 (3) | 0.0112 (11) | −0.0281 (16) | 0.0228 (14) |
S1—C7 | 1.7672 (11) | C10—C11 | 1.3927 (15) |
S1—C22 | 1.7966 (14) | C11—C12 | 1.3882 (16) |
O1—C13 | 1.3742 (14) | C11—H11 | 0.9500 |
O1—C16 | 1.4355 (14) | C12—C13 | 1.3940 (15) |
O2—C17 | 1.2116 (15) | C12—H12 | 0.9500 |
O3—C3 | 1.4223 (14) | C13—C14 | 1.3863 (16) |
O3—H3 | 0.903 (17) | C14—C15 | 1.3944 (16) |
O4—C23 | 1.2046 (17) | C14—H14 | 0.9500 |
O5—C23 | 1.3298 (17) | C15—H15 | 0.9500 |
O5—C24 | 1.457 (2) | C16—H16A | 0.9800 |
N1—C7 | 1.3240 (15) | C16—H16B | 0.9800 |
N1—C8 | 1.3439 (14) | C16—H16C | 0.9800 |
N2—C20 | 1.1443 (17) | C17—C18 | 1.4956 (18) |
C1—C9 | 1.5206 (14) | C18—H18A | 0.9800 |
C1—C10 | 1.5278 (15) | C18—H18B | 0.9800 |
C1—C2 | 1.5501 (15) | C18—H18C | 0.9800 |
C1—H1 | 1.0000 | C19—H19A | 0.9800 |
C2—C17 | 1.5258 (15) | C19—H19B | 0.9800 |
C2—C3 | 1.5421 (15) | C19—H19C | 0.9800 |
C2—H2 | 1.0000 | C21—H21A | 0.9800 |
C3—C4 | 1.5290 (16) | C21—H21B | 0.9800 |
C3—C19 | 1.5311 (15) | C21—H21C | 0.9800 |
C4—C5 | 1.5028 (16) | C22—C23 | 1.5093 (19) |
C4—H4A | 0.9900 | C22—H22A | 0.9900 |
C4—H4B | 0.9900 | C22—H22B | 0.9900 |
C5—C9 | 1.3941 (15) | C24—C25 | 1.488 (3) |
C5—C6 | 1.4087 (15) | C24—H24A | 0.9900 |
C6—C7 | 1.3972 (16) | C24—H24B | 0.9900 |
C6—C20 | 1.4369 (16) | C25—H25A | 0.9800 |
C8—C9 | 1.4053 (15) | C25—H25B | 0.9800 |
C8—C21 | 1.4957 (15) | C25—H25C | 0.9800 |
C10—C15 | 1.3893 (15) | ||
C7—S1—C22 | 98.39 (6) | C13—C14—C15 | 119.48 (10) |
C13—O1—C16 | 116.26 (9) | C13—C14—H14 | 120.3 |
C3—O3—H3 | 109.5 | C15—C14—H14 | 120.3 |
C23—O5—C24 | 115.10 (12) | C10—C15—C14 | 121.43 (11) |
C7—N1—C8 | 119.27 (10) | C10—C15—H15 | 119.3 |
C9—C1—C10 | 113.57 (9) | C14—C15—H15 | 119.3 |
C9—C1—C2 | 113.46 (9) | O1—C16—H16A | 109.5 |
C10—C1—C2 | 106.92 (8) | O1—C16—H16B | 109.5 |
C9—C1—H1 | 107.5 | H16A—C16—H16B | 109.5 |
C10—C1—H1 | 107.5 | O1—C16—H16C | 109.5 |
C2—C1—H1 | 107.5 | H16A—C16—H16C | 109.5 |
C17—C2—C3 | 111.24 (9) | H16B—C16—H16C | 109.5 |
C17—C2—C1 | 108.37 (9) | O2—C17—C18 | 121.16 (12) |
C3—C2—C1 | 112.73 (9) | O2—C17—C2 | 120.04 (11) |
C17—C2—H2 | 108.1 | C18—C17—C2 | 118.78 (11) |
C3—C2—H2 | 108.1 | C17—C18—H18A | 109.5 |
C1—C2—H2 | 108.1 | C17—C18—H18B | 109.5 |
O3—C3—C4 | 106.22 (9) | H18A—C18—H18B | 109.5 |
O3—C3—C19 | 110.37 (9) | C17—C18—H18C | 109.5 |
C4—C3—C19 | 109.61 (10) | H18A—C18—H18C | 109.5 |
O3—C3—C2 | 111.05 (9) | H18B—C18—H18C | 109.5 |
C4—C3—C2 | 107.54 (9) | C3—C19—H19A | 109.5 |
C19—C3—C2 | 111.84 (9) | C3—C19—H19B | 109.5 |
C5—C4—C3 | 112.68 (9) | H19A—C19—H19B | 109.5 |
C5—C4—H4A | 109.1 | C3—C19—H19C | 109.5 |
C3—C4—H4A | 109.1 | H19A—C19—H19C | 109.5 |
C5—C4—H4B | 109.1 | H19B—C19—H19C | 109.5 |
C3—C4—H4B | 109.1 | N2—C20—C6 | 177.83 (14) |
H4A—C4—H4B | 107.8 | C8—C21—H21A | 109.5 |
C9—C5—C6 | 118.33 (10) | C8—C21—H21B | 109.5 |
C9—C5—C4 | 121.92 (10) | H21A—C21—H21B | 109.5 |
C6—C5—C4 | 119.67 (10) | C8—C21—H21C | 109.5 |
C7—C6—C5 | 119.09 (10) | H21A—C21—H21C | 109.5 |
C7—C6—C20 | 119.89 (10) | H21B—C21—H21C | 109.5 |
C5—C6—C20 | 121.00 (11) | C23—C22—S1 | 114.39 (9) |
N1—C7—C6 | 122.29 (10) | C23—C22—H22A | 108.7 |
N1—C7—S1 | 116.98 (9) | S1—C22—H22A | 108.7 |
C6—C7—S1 | 120.69 (9) | C23—C22—H22B | 108.7 |
N1—C8—C9 | 122.66 (10) | S1—C22—H22B | 108.7 |
N1—C8—C21 | 113.87 (10) | H22A—C22—H22B | 107.6 |
C9—C8—C21 | 123.45 (10) | O4—C23—O5 | 124.65 (13) |
C5—C9—C8 | 118.17 (10) | O4—C23—C22 | 124.79 (13) |
C5—C9—C1 | 121.80 (10) | O5—C23—C22 | 110.53 (11) |
C8—C9—C1 | 119.86 (9) | O5—C24—C25 | 107.60 (17) |
C15—C10—C11 | 118.27 (10) | O5—C24—H24A | 110.2 |
C15—C10—C1 | 120.46 (10) | C25—C24—H24A | 110.2 |
C11—C10—C1 | 121.02 (9) | O5—C24—H24B | 110.2 |
C12—C11—C10 | 121.02 (10) | C25—C24—H24B | 110.2 |
C12—C11—H11 | 119.5 | H24A—C24—H24B | 108.5 |
C10—C11—H11 | 119.5 | C24—C25—H25A | 109.5 |
C11—C12—C13 | 119.91 (10) | C24—C25—H25B | 109.5 |
C11—C12—H12 | 120.0 | H25A—C25—H25B | 109.5 |
C13—C12—H12 | 120.0 | C24—C25—H25C | 109.5 |
O1—C13—C14 | 124.12 (10) | H25A—C25—H25C | 109.5 |
O1—C13—C12 | 116.04 (10) | H25B—C25—H25C | 109.5 |
C14—C13—C12 | 119.84 (10) | ||
C9—C1—C2—C17 | −159.86 (9) | C21—C8—C9—C5 | 174.35 (10) |
C10—C1—C2—C17 | 74.15 (10) | N1—C8—C9—C1 | −179.57 (10) |
C9—C1—C2—C3 | −36.30 (12) | C21—C8—C9—C1 | −0.96 (16) |
C10—C1—C2—C3 | −162.29 (9) | C10—C1—C9—C5 | 125.98 (11) |
C17—C2—C3—O3 | 67.55 (12) | C2—C1—C9—C5 | 3.61 (14) |
C1—C2—C3—O3 | −54.40 (12) | C10—C1—C9—C8 | −58.88 (13) |
C17—C2—C3—C4 | −176.63 (9) | C2—C1—C9—C8 | 178.74 (9) |
C1—C2—C3—C4 | 61.42 (12) | C9—C1—C10—C15 | 143.67 (11) |
C17—C2—C3—C19 | −56.24 (13) | C2—C1—C10—C15 | −90.40 (12) |
C1—C2—C3—C19 | −178.19 (9) | C9—C1—C10—C11 | −42.15 (14) |
O3—C3—C4—C5 | 64.88 (12) | C2—C1—C10—C11 | 83.77 (12) |
C19—C3—C4—C5 | −175.88 (10) | C15—C10—C11—C12 | 0.81 (17) |
C2—C3—C4—C5 | −54.09 (12) | C1—C10—C11—C12 | −173.49 (10) |
C3—C4—C5—C9 | 23.77 (15) | C10—C11—C12—C13 | 1.36 (18) |
C3—C4—C5—C6 | −153.08 (10) | C16—O1—C13—C14 | 9.11 (16) |
C9—C5—C6—C7 | −1.73 (16) | C16—O1—C13—C12 | −170.76 (10) |
C4—C5—C6—C7 | 175.24 (10) | C11—C12—C13—O1 | 177.43 (10) |
C9—C5—C6—C20 | 179.59 (11) | C11—C12—C13—C14 | −2.44 (18) |
C4—C5—C6—C20 | −3.44 (17) | O1—C13—C14—C15 | −178.52 (11) |
C8—N1—C7—C6 | 2.08 (18) | C12—C13—C14—C15 | 1.34 (18) |
C8—N1—C7—S1 | 179.98 (8) | C11—C10—C15—C14 | −1.94 (17) |
C5—C6—C7—N1 | −1.67 (18) | C1—C10—C15—C14 | 172.40 (10) |
C20—C6—C7—N1 | 177.03 (11) | C13—C14—C15—C10 | 0.87 (18) |
C5—C6—C7—S1 | −179.50 (8) | C3—C2—C17—O2 | −73.61 (14) |
C20—C6—C7—S1 | −0.80 (16) | C1—C2—C17—O2 | 50.84 (14) |
C22—S1—C7—N1 | −15.41 (11) | C3—C2—C17—C18 | 107.90 (13) |
C22—S1—C7—C6 | 162.54 (10) | C1—C2—C17—C18 | −127.65 (12) |
C7—N1—C8—C9 | 0.94 (17) | C7—S1—C22—C23 | 69.08 (10) |
C7—N1—C8—C21 | −177.79 (10) | C24—O5—C23—O4 | −3.71 (19) |
C6—C5—C9—C8 | 4.47 (16) | C24—O5—C23—C22 | 178.31 (11) |
C4—C5—C9—C8 | −172.42 (10) | S1—C22—C23—O4 | 36.21 (17) |
C6—C5—C9—C1 | 179.69 (10) | S1—C22—C23—O5 | −145.80 (9) |
C4—C5—C9—C1 | 2.79 (16) | C23—O5—C24—C25 | −176.43 (17) |
N1—C8—C9—C5 | −4.26 (16) |
Cg1 is the centroid of the N1/C5–C9 pyridine ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O1i | 0.90 (2) | 2.05 (2) | 2.9283 (12) | 164 (2) |
C16—H16C···O2ii | 0.98 | 2.47 | 3.1566 (15) | 127 |
C21—H21A···O2iii | 0.98 | 2.51 | 3.3956 (15) | 150 |
C22—H22A···O3iv | 0.99 | 2.44 | 3.1815 (15) | 131 |
C22—H22B···Cg1iv | 0.99 | 2.58 | 3.4559 (15) | 147 |
C24—H24B···O4v | 0.99 | 2.52 | 3.442 (2) | 154 |
Symmetry codes: (i) x+1, y, z; (ii) x−1, y, z; (iii) −x+1, −y+1, −z; (iv) −x+1, −y+1, −z+1; (v) −x, −y+1, −z+1. |
Contact | Distance | Symmetry operation |
O1···H3 | 2.051 (16) | -1 + x, y, z |
H21A···O2 | 2.51 | 1 - x, 1 - y, -z |
H22A···O3 | 2.44 | 1 - x, 1 - y, 1 - z |
O4···H16A | 2.60 | x, y, 1 + z |
H24B···H24B | 2.44 | -x, 1 - y, 1 - z |
H11···N2 | 2.61 | 1 - x, - y, 1 - z |
H18B···H2 | 2.49 | 1 - x, - y, -z |
H21C···H16B | 2.51 | -x, 1 - y, -z |
H25B···H25B | 2.34 | -x, 2 - y, 1 - z |
Acknowledgements
JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. Author contributions are as follows: synthesis and organic chemistry parts preparation, EAA, YAE, ISM; conceptualization and study guide, EAB, SKM; financial support, EAA; crystal data production and validation, JTM; paper preparation and Hirshfeld study, MA.
References
Al-Taifi, E. A., Maraei, I. S., Bakhite, E. A., Demirtas, G., Mague, J. T., Mohamed, S. K. & Ramli, Y. (2021). Acta Cryst. E77, 121–125. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ben Ali, K. & Retailleau, P. (2019). Acta Cryst. E75, 1399–1402. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bouasla, R., Berredjem, M., Aouf, N.-E. & Barbey, C. (2008). Acta Cryst. E64, o432. Web of Science CSD CrossRef IUCr Journals Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Carroll, F. I., Robinson, T. P., Brieaddy, L. E., Atkinson, R. N., Mascarella, S. W., Damaj, M. I., Martin, B. R. & Navarro, H. A. (2007). J. Med. Chem. 50, 6383–6391. CrossRef PubMed CAS Google Scholar
Castillo, J.-C., Jiménez, E., Portilla, J., Insuasty, B., Quiroga, J., Moreno-Fuquen, R., Kennedy, A. R. & Abonia, R. (2018). Tetrahedron, 74, 932–947. CSD CrossRef CAS Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Demers, S., Stevenson, H., Candler, J., Bashore, C. G., Arnold, E. P., O'Neill, B. T. & Coe, J. W. (2008). Tetrahedron Lett. 49, 3368–3371. CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Langenohl, F., Otte, F. & Strohmann, C. (2020). Acta Cryst. E76, 298–302. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lehmann, A., Lechner, L., Radacki, K., Braunschweig, H. & Holzgrabe, U. (2017). Acta Cryst. E73, 867–870. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lu, B., Cao, H., Cao, J., Huang, S., Hu, Q., Liu, D., Shen, R., Shen, X., Tao, W., Wan, H., Wang, D., Yan, Y., Yang, L., Zhang, J., Zhang, L., Zhang, L. & Zhang, M. (2016). Bioorg. Med. Chem. Lett. 26, 819–823. CrossRef CAS PubMed Google Scholar
Mague, J. T., Mohamed, S. K., Akkurt, M., Bakhite, E. A. & Albayati, M. R. (2017). IUCrData, 2, x170390. Google Scholar
Marae, I. S., Bakhite, E. A., Moustafa, O. S., Abbady, M. S., Mohamed, S. K. & Mague, J. T. (2021a). ACS Omega, 6, 8706–8716. CrossRef CAS PubMed Google Scholar
Marae, I. S., Sharmoukh, W., Bakhite, E. A., Moustafa, O. S., Abbady, M. S. & Emam, H. (2021b). Cellulose, 28, 5937–5956. CrossRef CAS Google Scholar
Naghiyev, F. N., Grishina, M. M., Khrustalev, V. N., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 195–199. Web of Science CSD CrossRef IUCr Journals Google Scholar
Naicker, T., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2011). Acta Cryst. C67, o100–o103. Web of Science CSD CrossRef IUCr Journals Google Scholar
Pingaew, R., Mandi, P., Nantasenamat, C., Prachayasittikul, S., Ruchirawat, S. & Prachayasittikul, V. (2014). Eur. J. Med. Chem. 81, 192–203. CrossRef CAS PubMed Google Scholar
Rosales, A. & Bernado, V. (2007). Pyrazoloisoquinoline Derivatives. WIPO Patent WO2007/060198A12007. Google Scholar
Scott, J. D. & Williams, R. (2002). Chem. Rev. 102, 1669–1730. CrossRef PubMed CAS Google Scholar
Selvaraj, J. P., Mary, S., Dhruba, J. B., Huidrom, B. S., Panneerselvam, Y. & Piskala Subburaman, K. (2020). Acta Cryst. E76, 1548–1550. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Siegfried, L., Helmut, V., Guenther, W., Thomas, S., Eckart, S., Dieter, L., Gunter, L. & Ger East, D. D. (1989). Chem. Abstr. 110, 75554g. Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, M. A., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer. University of Western Australia. Google Scholar
Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A, 153, 625–636. Web of Science CSD CrossRef CAS Google Scholar
Xu, R., Dwoskin, L. P., Grinevich, V., Sumithran, S. P. & Crooks, P. A. (2002). Drug Dev. Res. 55, 173–186. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.