research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 2-{[7-acetyl-4-cyano-6-hy­dr­oxy-8-(4-meth­oxyphen­yl)-1,6-di­methyl-5,6,7,8-tetra­hydro­isoquinolin-3-yl­]sulfan­yl}acetic acid ethyl ester

crossmark logo

aChemistry Department, Faculty of Science, Sana'a University, Sana'a, Yemen, bChemistry Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt, cChemistry Department, College of Science, Jouf University, PO Box 2014.Sakaka, Saudi Arabia, dChemistry and Environmental Division, Manchester Metropolitan University, Manchester, M1 5GD, England, eChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, fDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, and gDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: elhamaltaifi@gmail.com, shaabankamel@yahoo.com

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 3 January 2022; accepted 11 January 2022; online 25 January 2022)

In the title mol­ecule, C25H28N2O5S, (alternative name ethyl 2-{[7-acetyl-4-cyano-6-hy­droxy-8-(4-meth­oxy­phen­yl)-1,6-dimethyl-5,6,7,8-tetra­hydro­isoquinolin-3-yl]sulfanyl}­acetate) the 4-meth­oxy­phenyl group is disposed on one side of the bicyclic core and the oxygen atoms of the hydroxyl and acetyl groups are disposed on the other side. In the crystal, a layered structure parallel to the ac plane is generated by O—H⋯O and C—H⋯O hydrogen bonds plus C—H⋯π(ring) inter­actions.

1. Chemical context

Some tetra­hydro­iso­quinoline (THISQ) based compounds are of medicinal and biological importance, being used as anti­tumoral (Pingaew et al., 2014[Pingaew, R., Mandi, P., Nantasenamat, C., Prachayasittikul, S., Ruchirawat, S. & Prachayasittikul, V. (2014). Eur. J. Med. Chem. 81, 192-203.]; Castillo et al., 2018[Castillo, J.-C., Jiménez, E., Portilla, J., Insuasty, B., Quiroga, J., Moreno-Fuquen, R., Kennedy, A. R. & Abonia, R. (2018). Tetrahedron, 74, 932-947.]), anti­fungal (Scott et al., 2002[Scott, J. D. & Williams, R. (2002). Chem. Rev. 102, 1669-1730.]) and anti-inflammatory agents (Siegfried et al., 1989[Siegfried, L., Helmut, V., Guenther, W., Thomas, S., Eckart, S., Dieter, L., Gunter, L. & Ger East, D. D. (1989). Chem. Abstr. 110, 75554g.]). Other tetra­hydro­iso­quinolines were used as inhibitors including B-rafV600E or p38 kinase inhibitors (Lu et al., 2016[Lu, B., Cao, H., Cao, J., Huang, S., Hu, Q., Liu, D., Shen, R., Shen, X., Tao, W., Wan, H., Wang, D., Yan, Y., Yang, L., Zhang, J., Zhang, L., Zhang, L. & Zhang, M. (2016). Bioorg. Med. Chem. Lett. 26, 819-823.]; Rosales et al., 2007[Rosales, A. & Bernado, V. (2007). Pyrazoloisoquinoline Derivatives. WIPO Patent WO2007/060198A12007.]). The THISQ core can easily be functionalized to build other heterocyclic rings on the carbocyclic ring (Xu et al., 2002[Xu, R., Dwoskin, L. P., Grinevich, V., Sumithran, S. P. & Crooks, P. A. (2002). Drug Dev. Res. 55, 173-186.]; Carroll et al., 2007[Carroll, F. I., Robinson, T. P., Brieaddy, L. E., Atkinson, R. N., Mascarella, S. W., Damaj, M. I., Martin, B. R. & Navarro, H. A. (2007). J. Med. Chem. 50, 6383-6391.]; Demers et al., 2008[Demers, S., Stevenson, H., Candler, J., Bashore, C. G., Arnold, E. P., O'Neill, B. T. & Coe, J. W. (2008). Tetrahedron Lett. 49, 3368-3371.], Marae et al., 2021a[Marae, I. S., Bakhite, E. A., Moustafa, O. S., Abbady, M. S., Mohamed, S. K. & Mague, J. T. (2021a). ACS Omega, 6, 8706-8716.]). Recently, we have used some compounds related to THISQ as durable fluorescent dyes for cotton (Marae et al., 2021b[Marae, I. S., Sharmoukh, W., Bakhite, E. A., Moustafa, O. S., Abbady, M. S. & Emam, H. (2021b). Cellulose, 28, 5937-5956.]). The widespread importance of these compounds motivated us to further study the THISQ core. Here we report the synthesis and crystal structure determination of the title compound.

[Scheme 1]

2. Structural commentary

The ethyl sulfanyl­acetate, acetyl and cyano groups and both methyl groups (C19 and C21) are in equatorial positions with respect to the bicyclic core, while the hydroxyl and anisole groups on the cyclo­hexane ring occupy an axial and bis­ectional position, respectively (Fig. 1[link]). The C10–C15 benzene ring is inclined to the N1/C5–C9 pyridine ring by 82.57 (6)°. The C1–C5/C9 cyclo­hexane ring is in an envelope conformation, with atom C3 at the flap position [deviation from best plane = 0.367 (1) Å] and puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) QT = 0.5180 (12) Å, θ = 53.85 (13)° and φ = 109.07 (17)°.

[Figure 1]
Figure 1
The title mol­ecule with labelling scheme and 50% probability ellipsoids.

3. Supra­molecular features

In the crystal of the title compound, chains of mol­ecules extending along the a-axis direction are formed by O3—H3⋯O1 and C16—H16C⋯O2 hydrogen bonds (Table 1[link] and Fig. 2[link]). These are connected into layers parallel to the ac plane by C21—H21A⋯O2, C22—H22A⋯O3 and C24—H24B⋯O4 hydrogen bonds as well as C22—H22BCg1 inter­actions (Table 1[link] and Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1/C5–C9 pyridine ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1i 0.90 (2) 2.05 (2) 2.9283 (12) 164 (2)
C16—H16C⋯O2ii 0.98 2.47 3.1566 (15) 127
C21—H21A⋯O2iii 0.98 2.51 3.3956 (15) 150
C22—H22A⋯O3iv 0.99 2.44 3.1815 (15) 131
C22—H22BCg1iv 0.99 2.58 3.4559 (15) 147
C24—H24B⋯O4v 0.99 2.52 3.442 (2) 154
Symmetry codes: (i) x+1, y, z; (ii) [x-1, y, z]; (iii) [-x+1, -y+1, -z]; (iv) [-x+1, -y+1, -z+1]; (v) [-x, -y+1, -z+1].
[Figure 2]
Figure 2
A portion of one chain viewed along the b-axis direction. O—H⋯O and C—H⋯O hydrogen bonds are depicted by red and black dashed lines, respectively.
[Figure 3]
Figure 3
Packing viewed along the c-axis direction giving an elevation view of one layer. Hydrogen bonds are depicted as in Fig. 2[link] while C—H⋯π(ring) inter­actions are indicated by green dashed lines.

4. Hirshfeld surface analysis

Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out using CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, M. A., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer. University of Western Australia.]). The Hirshfeld surface and their associated two-dimensional fingerprint plots were used to qu­antify the various inter­molecular inter­actions in the title compound. In the Hirshfeld surface plotted over dnorm in the range −0.4903 (red) to +1.6396 (blue) a.u. (Fig. 4[link]), the white areas indicate contacts with distances equal to the sum of van der Waals radii, and the red and blue areas indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A, 153, 625-636.]). The bright-red spots indicate their roles as the respective donors and/or acceptors.

[Figure 4]
Figure 4
(a) Front and (b) back sides of the three-dimensional Hirshfeld surface of the title compound mapped over dnorm, with a fixed colour scale of −0.4903 (red) to +1.6396 (blue) a.u.

Fingerprint plots (Fig. 5[link]be; Table 2[link]) reveal that H⋯H (47.6%), O⋯H/H⋯O (19.7%), C⋯H/H⋯C (12.5%) and N⋯H/H⋯N (11.6%) inter­actions make the greatest contributions to the surface contacts. S⋯H/H⋯S (6.4%), N⋯C/C⋯N (0.7%), O⋯C/C⋯O (0.5%), O⋯O (0.5%) and C⋯C (0.4%) contacts also contribute to the overall crystal packing of the title compound. The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, O⋯H, C⋯H and N⋯H inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

Contact Distance Symmetry operation
O1⋯H3 2.051 (16) −1 + x, y, z
H21A⋯O2 2.51 1 − x, 1 − y, −z
H22A⋯O3 2.44 1 − x, 1 − y, 1 − z
O4⋯H16A 2.60 x, y, 1 + z
H24B⋯H24B 2.44 x, 1 − y, 1 − z
H11⋯N2 2.61 1 − x, − y, 1 − z
H18B⋯H2 2.49 1 − x, − y, −z
H21C⋯H16B 2.51 x, 1 − y, −z
H25B⋯H25B 2.34 x, 2 − y, 1 − z
[Figure 5]
Figure 5
Two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) O⋯H/H⋯O, (d) C⋯H/H⋯C and (e) N⋯H/H⋯N inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

5. Database survey

A search of the Cambridge Structural Database (CSD version 5.42, updated September 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for tetra­hydro­iso­quinoline derivatives gave nine compounds very similar to the title compound. In the crystal of NAQRIJ (Mague et al., 2017[Mague, J. T., Mohamed, S. K., Akkurt, M., Bakhite, E. A. & Albayati, M. R. (2017). IUCrData, 2, x170390.]), dimers form through complementary sets of inversion-related O—H⋯O and C—H⋯O hydrogen bonds. These are connected into zigzag chains along the c-axis direction by pairwise C—H⋯N inter­actions that also form inversion dimers. In KUGLIK (Langenohl et al., 2020[Langenohl, F., Otte, F. & Strohmann, C. (2020). Acta Cryst. E76, 298-302.]), the heterocyclic amines are alternately connected to the hydrogen-bonding system along the c axis, which leads to the formation of syndiotactic polymer chains in this direction. In the crystal of DUSVIZ (Selvaraj et al., 2020[Selvaraj, J. P., Mary, S., Dhruba, J. B., Huidrom, B. S., Panneerselvam, Y. & Piskala Subburaman, K. (2020). Acta Cryst. E76, 1548-1550.]), mol­ecules are linked via C—H⋯O hydrogen bonds. In AKIVUO (Al-Taifi et al., 2021[Al-Taifi, E. A., Maraei, I. S., Bakhite, E. A., Demirtas, G., Mague, J. T., Mohamed, S. K. & Ramli, Y. (2021). Acta Cryst. E77, 121-125.]), a layered structure with layers parallel to (10[\overline{1}]) is generated by O—H⋯O and C—H⋯O hydrogen bonds. In ULUTAZ (Naghiyev et al., 2021[Naghiyev, F. N., Grishina, M. M., Khrustalev, V. N., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 195-199.]), mol­ecules are linked via N—H⋯O and C—H⋯N hydrogen bonds, forming a three-dimensional network, and the crystal packing is dominated by C—H⋯π bonds. In CARCOQ (Lehmann et al., 2017[Lehmann, A., Lechner, L., Radacki, K., Braunschweig, H. & Holzgrabe, U. (2017). Acta Cryst. E73, 867-870.]), mol­ecules are linked by O—H⋯O hydrogen bonds, forming chains propagating along the a-axis direction. The chains are linked by C—H⋯F hydrogen bonds, forming layers lying parallel to the ab plane. In POPYEB (Ben Ali et al., 2019[Ben Ali, K. & Retailleau, P. (2019). Acta Cryst. E75, 1399-1402.]), mol­ecules are packed in a herringbone manner parallel to (103) and (10[\overline{3}]) via weak C—H⋯O and C—H⋯π(ring) inter­actions. In ENOCIU (Naicker et al., 2011[Naicker, T., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2011). Acta Cryst. C67, o100-o103.]) various C—H⋯π and C—H⋯O bonds link the mol­ecules together. In NIWPAL (Bouasla et al., 2008[Bouasla, R., Berredjem, M., Aouf, N.-E. & Barbey, C. (2008). Acta Cryst. E64, o432.]), the mol­ecules are linked by N—H⋯O inter­molecular hydrogen bonds involving the sulfonamide function to form an infinite two-dimensional network parallel to the (001) plane.

6. Synthesis and crystallization

7-Acetyl-4-cyano-1,6-dimethyl-6-hy­droxy-8-(4-meth­oxy­phen­yl)-5,6,7,8-tetra­hydro-iso­quinoline-3(2H)-thione (5 mmol, 1.91 g) and sodium acetate trihydrate (1.36 g, 10 mmol) were suspended in 50 ml of absolute ethanol, then 0.55 ml of ethyl chloro­acetate (5.3 mmol) were added and the mixture was refluxed for one h. During reflux, the yellow colour disappeared gradually over time to afford a colourless reaction mixture. The reaction mixture was then left to cool at room temperature and the formed precipitate was collected by fiitration, washed with water, dried in air and recystallized from ethanol to give the title compound as cubic crystals, yield 2.11 g (94%); m.p. 453–455 K. IR (cm−1): 3454 (O—H); 3048 (C—H aromatic); 2970, 2913 (C—H aliphatic); 2215 (C≡N); 1743 (C=O, ester); 1697 (C=O, acet­yl). 1H NMR (CDCl3, 400 MHz) δ: 6.80–6.86 (dd, J = 8 Hz, 4H, ArH), 4.24–4.26 (d, J = 8 Hz, 1H, C8H), 4.12–4.15 (q, J = 6 Hz, 2H, OCH2), 3.89–3.92 (dd, 2H, SCH2), 3.78 (s, 3H, OCH3), 3.38 (s, 1H, OH), 3.09–3.12 (d, J = 12 Hz, 1H, C5H), 3.03–3.05 (d, J = 8 Hz, 1H, C7H), 2.89–2.92 (d, J = 12 Hz, 1H, C5H), 1. 90 (s, 3H, CH3 at C-1), 1.80 (s, 3H, COCH3), 1.34 (s, 3H, CH3 at C-6), 1.18–1.21 (t, J = 6 Hz, 3H, CH3 of ester group).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All C-bound H atoms were placed in geometrically idealized positions (C—H = 0.95–1.00 Å) while the hydrogen atom attached to O3 was found from a difference map, and was subsequently refined isotropically [O3—H3 = 0.903 (17) Å] with Uiso(H) = 1.5Ueq(O). All C-bound H atoms were included as riding contributions with isotropic displacement parameters 1.2 times those of the parent atoms (1.5 for methyl groups).

Table 3
Experimental details

Crystal data
Chemical formula C25H28N2O5S
Mr 468.55
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 10.0643 (6), 10.3592 (7), 12.0685 (8)
α, β, γ (°) 83.296 (1), 80.770 (1), 75.638 (1)
V3) 1199.23 (13)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.17
Crystal size (mm) 0.35 × 0.29 × 0.27
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.82, 0.96
No. of measured, independent and observed [I > 2σ(I)] reflections 22695, 6509, 5177
Rint 0.023
(sin θ/λ)max−1) 0.695
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.133, 1.11
No. of reflections 6509
No. of parameters 305
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.71, −0.22
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Ethyl 2-{[7-acetyl-4-cyano-6-hydroxy-8-(4-methoxyphenyl)-1,6-dimethyl-5,6,7,8-tetrahydroisoquinolin-3-yl]sulfanyl}acetate top
Crystal data top
C25H28N2O5SZ = 2
Mr = 468.55F(000) = 496
Triclinic, P1Dx = 1.298 Mg m3
a = 10.0643 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.3592 (7) ÅCell parameters from 9995 reflections
c = 12.0685 (8) Åθ = 2.5–29.5°
α = 83.296 (1)°µ = 0.17 mm1
β = 80.770 (1)°T = 150 K
γ = 75.638 (1)°Block, colourless
V = 1199.23 (13) Å30.35 × 0.29 × 0.27 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
6509 independent reflections
Radiation source: fine-focus sealed tube5177 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 8.3333 pixels mm-1θmax = 29.6°, θmin = 1.7°
φ and ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1414
Tmin = 0.82, Tmax = 0.96l = 1616
22695 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0848P)2 + 0.0389P]
where P = (Fo2 + 2Fc2)/3
6509 reflections(Δ/σ)max < 0.001
305 parametersΔρmax = 0.71 e Å3
0 restraintsΔρmin = 0.22 e Å3
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 10 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 1.00 Å) while that attached to oxygen was placed in a location derived from a difference map and its coordinates adjusted to give O—H = 0.87 %A. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.40179 (4)0.33194 (3)0.67126 (2)0.02919 (11)
O10.01601 (8)0.26808 (9)0.00282 (7)0.0261 (2)
O20.65454 (10)0.31103 (10)0.03628 (7)0.0325 (2)
O30.76674 (8)0.24179 (8)0.18545 (7)0.02199 (18)
H30.8202 (16)0.2524 (10)0.1190 (13)0.033*
O40.08897 (11)0.46076 (12)0.66388 (9)0.0455 (3)
O50.13749 (11)0.65264 (10)0.58156 (8)0.0357 (2)
N10.35085 (10)0.41231 (10)0.46279 (8)0.0208 (2)
N20.67128 (14)0.03469 (14)0.60676 (11)0.0424 (3)
C10.46954 (11)0.29768 (11)0.16884 (9)0.0159 (2)
H10.5005900.3796580.1342720.019*
C20.57706 (11)0.17513 (11)0.12120 (9)0.0173 (2)
H20.5313500.0984680.1295820.021*
C30.70498 (11)0.13262 (11)0.18391 (9)0.0193 (2)
C40.65493 (12)0.09343 (12)0.30675 (10)0.0223 (2)
H4A0.6202660.0113330.3105430.027*
H4B0.7341380.0729240.3502250.027*
C50.54209 (11)0.20148 (11)0.35998 (9)0.0179 (2)
C60.52467 (11)0.20985 (12)0.47729 (9)0.0199 (2)
C70.42631 (12)0.31658 (12)0.52466 (9)0.0205 (2)
C80.36570 (11)0.40524 (11)0.35083 (9)0.0177 (2)
C90.45724 (11)0.29873 (11)0.29599 (9)0.0166 (2)
C100.33305 (11)0.30117 (11)0.12715 (9)0.0176 (2)
C110.24375 (12)0.22431 (12)0.18378 (9)0.0206 (2)
H110.2632340.1761070.2535260.025*
C120.12671 (12)0.21705 (12)0.13990 (10)0.0227 (2)
H120.0657020.1657480.1803010.027*
C130.09882 (11)0.28515 (12)0.03646 (9)0.0200 (2)
C140.18526 (12)0.36397 (12)0.02017 (9)0.0225 (2)
H140.1657330.4121380.0899140.027*
C150.30109 (12)0.37198 (12)0.02605 (9)0.0212 (2)
H150.3594090.4270550.0124310.025*
C160.03346 (13)0.32073 (14)0.11635 (10)0.0267 (3)
H16A0.0521760.2880440.1665730.040*
H16B0.0549050.4186200.1204570.040*
H16C0.1095660.2914840.1395340.040*
C170.61828 (12)0.20825 (12)0.00420 (10)0.0227 (2)
C180.60948 (18)0.11357 (16)0.08583 (12)0.0404 (4)
H18A0.6544850.1389740.1605550.061*
H18B0.5120600.1171870.0895590.061*
H18C0.6561490.0225190.0608490.061*
C190.81182 (13)0.01430 (13)0.13312 (11)0.0280 (3)
H19A0.8490940.0417500.0563290.042*
H19B0.7674560.0594890.1313000.042*
H19C0.8872780.0151080.1792270.042*
C200.60828 (13)0.11221 (13)0.54794 (10)0.0258 (3)
C210.27853 (12)0.52205 (12)0.29046 (10)0.0236 (2)
H21A0.3279120.5409380.2158090.035*
H21B0.2596230.6004770.3337930.035*
H21C0.1909560.5012570.2822260.035*
C220.31143 (14)0.50489 (13)0.67068 (10)0.0286 (3)
H22A0.3050950.5349760.7466540.034*
H22B0.3664490.5581380.6172960.034*
C230.16744 (14)0.53363 (14)0.63858 (10)0.0303 (3)
C240.00183 (17)0.68891 (18)0.54348 (14)0.0490 (4)
H24A0.0720360.6961850.6089380.059*
H24B0.0077970.6198640.4970630.059*
C250.0099 (3)0.8197 (2)0.4757 (3)0.0934 (9)
H25A0.0623430.8108240.4102240.140*
H25B0.0014450.8868820.5220480.140*
H25C0.1011120.8477110.4501170.140*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0375 (2)0.03615 (19)0.01391 (15)0.00874 (14)0.00410 (13)0.00088 (12)
O10.0185 (4)0.0418 (5)0.0196 (4)0.0100 (4)0.0083 (3)0.0052 (4)
O20.0360 (5)0.0411 (6)0.0226 (5)0.0181 (4)0.0007 (4)0.0018 (4)
O30.0192 (4)0.0271 (4)0.0219 (4)0.0090 (3)0.0012 (3)0.0056 (3)
O40.0337 (6)0.0612 (7)0.0426 (6)0.0229 (5)0.0002 (5)0.0106 (5)
O50.0392 (5)0.0333 (5)0.0325 (5)0.0047 (4)0.0021 (4)0.0057 (4)
N10.0213 (5)0.0254 (5)0.0155 (4)0.0052 (4)0.0023 (4)0.0012 (4)
N20.0461 (7)0.0444 (7)0.0312 (6)0.0021 (6)0.0128 (6)0.0117 (5)
C10.0158 (5)0.0182 (5)0.0142 (5)0.0049 (4)0.0033 (4)0.0001 (4)
C20.0163 (5)0.0195 (5)0.0168 (5)0.0050 (4)0.0017 (4)0.0027 (4)
C30.0171 (5)0.0204 (5)0.0206 (5)0.0041 (4)0.0022 (4)0.0033 (4)
C40.0207 (5)0.0217 (6)0.0214 (6)0.0006 (4)0.0038 (4)0.0020 (4)
C50.0174 (5)0.0193 (5)0.0177 (5)0.0061 (4)0.0037 (4)0.0013 (4)
C60.0188 (5)0.0237 (6)0.0171 (5)0.0059 (4)0.0049 (4)0.0034 (4)
C70.0230 (5)0.0254 (6)0.0145 (5)0.0091 (5)0.0029 (4)0.0008 (4)
C80.0158 (5)0.0223 (5)0.0154 (5)0.0053 (4)0.0023 (4)0.0012 (4)
C90.0154 (5)0.0203 (5)0.0153 (5)0.0064 (4)0.0030 (4)0.0002 (4)
C100.0168 (5)0.0206 (5)0.0151 (5)0.0031 (4)0.0032 (4)0.0018 (4)
C110.0194 (5)0.0267 (6)0.0156 (5)0.0060 (4)0.0050 (4)0.0033 (4)
C120.0183 (5)0.0314 (6)0.0193 (5)0.0099 (5)0.0038 (4)0.0048 (5)
C130.0152 (5)0.0271 (6)0.0175 (5)0.0030 (4)0.0040 (4)0.0020 (4)
C140.0216 (5)0.0291 (6)0.0157 (5)0.0045 (5)0.0054 (4)0.0031 (4)
C150.0218 (5)0.0250 (6)0.0175 (5)0.0086 (4)0.0036 (4)0.0034 (4)
C160.0222 (6)0.0387 (7)0.0197 (6)0.0058 (5)0.0095 (5)0.0020 (5)
C170.0189 (5)0.0308 (6)0.0182 (5)0.0050 (5)0.0016 (4)0.0040 (5)
C180.0571 (10)0.0423 (8)0.0242 (7)0.0115 (7)0.0059 (6)0.0121 (6)
C190.0229 (6)0.0268 (6)0.0309 (7)0.0021 (5)0.0023 (5)0.0085 (5)
C200.0283 (6)0.0292 (6)0.0191 (6)0.0073 (5)0.0042 (5)0.0043 (5)
C210.0238 (6)0.0243 (6)0.0194 (5)0.0011 (5)0.0040 (5)0.0011 (4)
C220.0335 (7)0.0344 (7)0.0209 (6)0.0127 (5)0.0005 (5)0.0081 (5)
C230.0315 (7)0.0387 (7)0.0197 (6)0.0099 (6)0.0045 (5)0.0059 (5)
C240.0383 (8)0.0555 (10)0.0449 (9)0.0022 (7)0.0026 (7)0.0031 (8)
C250.0751 (16)0.0498 (12)0.139 (3)0.0112 (11)0.0281 (16)0.0228 (14)
Geometric parameters (Å, º) top
S1—C71.7672 (11)C10—C111.3927 (15)
S1—C221.7966 (14)C11—C121.3882 (16)
O1—C131.3742 (14)C11—H110.9500
O1—C161.4355 (14)C12—C131.3940 (15)
O2—C171.2116 (15)C12—H120.9500
O3—C31.4223 (14)C13—C141.3863 (16)
O3—H30.903 (17)C14—C151.3944 (16)
O4—C231.2046 (17)C14—H140.9500
O5—C231.3298 (17)C15—H150.9500
O5—C241.457 (2)C16—H16A0.9800
N1—C71.3240 (15)C16—H16B0.9800
N1—C81.3439 (14)C16—H16C0.9800
N2—C201.1443 (17)C17—C181.4956 (18)
C1—C91.5206 (14)C18—H18A0.9800
C1—C101.5278 (15)C18—H18B0.9800
C1—C21.5501 (15)C18—H18C0.9800
C1—H11.0000C19—H19A0.9800
C2—C171.5258 (15)C19—H19B0.9800
C2—C31.5421 (15)C19—H19C0.9800
C2—H21.0000C21—H21A0.9800
C3—C41.5290 (16)C21—H21B0.9800
C3—C191.5311 (15)C21—H21C0.9800
C4—C51.5028 (16)C22—C231.5093 (19)
C4—H4A0.9900C22—H22A0.9900
C4—H4B0.9900C22—H22B0.9900
C5—C91.3941 (15)C24—C251.488 (3)
C5—C61.4087 (15)C24—H24A0.9900
C6—C71.3972 (16)C24—H24B0.9900
C6—C201.4369 (16)C25—H25A0.9800
C8—C91.4053 (15)C25—H25B0.9800
C8—C211.4957 (15)C25—H25C0.9800
C10—C151.3893 (15)
C7—S1—C2298.39 (6)C13—C14—C15119.48 (10)
C13—O1—C16116.26 (9)C13—C14—H14120.3
C3—O3—H3109.5C15—C14—H14120.3
C23—O5—C24115.10 (12)C10—C15—C14121.43 (11)
C7—N1—C8119.27 (10)C10—C15—H15119.3
C9—C1—C10113.57 (9)C14—C15—H15119.3
C9—C1—C2113.46 (9)O1—C16—H16A109.5
C10—C1—C2106.92 (8)O1—C16—H16B109.5
C9—C1—H1107.5H16A—C16—H16B109.5
C10—C1—H1107.5O1—C16—H16C109.5
C2—C1—H1107.5H16A—C16—H16C109.5
C17—C2—C3111.24 (9)H16B—C16—H16C109.5
C17—C2—C1108.37 (9)O2—C17—C18121.16 (12)
C3—C2—C1112.73 (9)O2—C17—C2120.04 (11)
C17—C2—H2108.1C18—C17—C2118.78 (11)
C3—C2—H2108.1C17—C18—H18A109.5
C1—C2—H2108.1C17—C18—H18B109.5
O3—C3—C4106.22 (9)H18A—C18—H18B109.5
O3—C3—C19110.37 (9)C17—C18—H18C109.5
C4—C3—C19109.61 (10)H18A—C18—H18C109.5
O3—C3—C2111.05 (9)H18B—C18—H18C109.5
C4—C3—C2107.54 (9)C3—C19—H19A109.5
C19—C3—C2111.84 (9)C3—C19—H19B109.5
C5—C4—C3112.68 (9)H19A—C19—H19B109.5
C5—C4—H4A109.1C3—C19—H19C109.5
C3—C4—H4A109.1H19A—C19—H19C109.5
C5—C4—H4B109.1H19B—C19—H19C109.5
C3—C4—H4B109.1N2—C20—C6177.83 (14)
H4A—C4—H4B107.8C8—C21—H21A109.5
C9—C5—C6118.33 (10)C8—C21—H21B109.5
C9—C5—C4121.92 (10)H21A—C21—H21B109.5
C6—C5—C4119.67 (10)C8—C21—H21C109.5
C7—C6—C5119.09 (10)H21A—C21—H21C109.5
C7—C6—C20119.89 (10)H21B—C21—H21C109.5
C5—C6—C20121.00 (11)C23—C22—S1114.39 (9)
N1—C7—C6122.29 (10)C23—C22—H22A108.7
N1—C7—S1116.98 (9)S1—C22—H22A108.7
C6—C7—S1120.69 (9)C23—C22—H22B108.7
N1—C8—C9122.66 (10)S1—C22—H22B108.7
N1—C8—C21113.87 (10)H22A—C22—H22B107.6
C9—C8—C21123.45 (10)O4—C23—O5124.65 (13)
C5—C9—C8118.17 (10)O4—C23—C22124.79 (13)
C5—C9—C1121.80 (10)O5—C23—C22110.53 (11)
C8—C9—C1119.86 (9)O5—C24—C25107.60 (17)
C15—C10—C11118.27 (10)O5—C24—H24A110.2
C15—C10—C1120.46 (10)C25—C24—H24A110.2
C11—C10—C1121.02 (9)O5—C24—H24B110.2
C12—C11—C10121.02 (10)C25—C24—H24B110.2
C12—C11—H11119.5H24A—C24—H24B108.5
C10—C11—H11119.5C24—C25—H25A109.5
C11—C12—C13119.91 (10)C24—C25—H25B109.5
C11—C12—H12120.0H25A—C25—H25B109.5
C13—C12—H12120.0C24—C25—H25C109.5
O1—C13—C14124.12 (10)H25A—C25—H25C109.5
O1—C13—C12116.04 (10)H25B—C25—H25C109.5
C14—C13—C12119.84 (10)
C9—C1—C2—C17159.86 (9)C21—C8—C9—C5174.35 (10)
C10—C1—C2—C1774.15 (10)N1—C8—C9—C1179.57 (10)
C9—C1—C2—C336.30 (12)C21—C8—C9—C10.96 (16)
C10—C1—C2—C3162.29 (9)C10—C1—C9—C5125.98 (11)
C17—C2—C3—O367.55 (12)C2—C1—C9—C53.61 (14)
C1—C2—C3—O354.40 (12)C10—C1—C9—C858.88 (13)
C17—C2—C3—C4176.63 (9)C2—C1—C9—C8178.74 (9)
C1—C2—C3—C461.42 (12)C9—C1—C10—C15143.67 (11)
C17—C2—C3—C1956.24 (13)C2—C1—C10—C1590.40 (12)
C1—C2—C3—C19178.19 (9)C9—C1—C10—C1142.15 (14)
O3—C3—C4—C564.88 (12)C2—C1—C10—C1183.77 (12)
C19—C3—C4—C5175.88 (10)C15—C10—C11—C120.81 (17)
C2—C3—C4—C554.09 (12)C1—C10—C11—C12173.49 (10)
C3—C4—C5—C923.77 (15)C10—C11—C12—C131.36 (18)
C3—C4—C5—C6153.08 (10)C16—O1—C13—C149.11 (16)
C9—C5—C6—C71.73 (16)C16—O1—C13—C12170.76 (10)
C4—C5—C6—C7175.24 (10)C11—C12—C13—O1177.43 (10)
C9—C5—C6—C20179.59 (11)C11—C12—C13—C142.44 (18)
C4—C5—C6—C203.44 (17)O1—C13—C14—C15178.52 (11)
C8—N1—C7—C62.08 (18)C12—C13—C14—C151.34 (18)
C8—N1—C7—S1179.98 (8)C11—C10—C15—C141.94 (17)
C5—C6—C7—N11.67 (18)C1—C10—C15—C14172.40 (10)
C20—C6—C7—N1177.03 (11)C13—C14—C15—C100.87 (18)
C5—C6—C7—S1179.50 (8)C3—C2—C17—O273.61 (14)
C20—C6—C7—S10.80 (16)C1—C2—C17—O250.84 (14)
C22—S1—C7—N115.41 (11)C3—C2—C17—C18107.90 (13)
C22—S1—C7—C6162.54 (10)C1—C2—C17—C18127.65 (12)
C7—N1—C8—C90.94 (17)C7—S1—C22—C2369.08 (10)
C7—N1—C8—C21177.79 (10)C24—O5—C23—O43.71 (19)
C6—C5—C9—C84.47 (16)C24—O5—C23—C22178.31 (11)
C4—C5—C9—C8172.42 (10)S1—C22—C23—O436.21 (17)
C6—C5—C9—C1179.69 (10)S1—C22—C23—O5145.80 (9)
C4—C5—C9—C12.79 (16)C23—O5—C24—C25176.43 (17)
N1—C8—C9—C54.26 (16)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/C5–C9 pyridine ring.
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.90 (2)2.05 (2)2.9283 (12)164 (2)
C16—H16C···O2ii0.982.473.1566 (15)127
C21—H21A···O2iii0.982.513.3956 (15)150
C22—H22A···O3iv0.992.443.1815 (15)131
C22—H22B···Cg1iv0.992.583.4559 (15)147
C24—H24B···O4v0.992.523.442 (2)154
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+1, y+1, z; (iv) x+1, y+1, z+1; (v) x, y+1, z+1.
Summary of short interatomic contacts (Å) in the title compound top
ContactDistanceSymmetry operation
O1···H32.051 (16)-1 + x, y, z
H21A···O22.511 - x, 1 - y, -z
H22A···O32.441 - x, 1 - y, 1 - z
O4···H16A2.60x, y, 1 + z
H24B···H24B2.44-x, 1 - y, 1 - z
H11···N22.611 - x, - y, 1 - z
H18B···H22.491 - x, - y, -z
H21C···H16B2.51-x, 1 - y, -z
H25B···H25B2.34-x, 2 - y, 1 - z
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. Author contributions are as follows: synthesis and organic chemistry parts preparation, EAA, YAE, ISM; conceptualization and study guide, EAB, SKM; financial support, EAA; crystal data production and validation, JTM; paper preparation and Hirshfeld study, MA.

References

First citationAl-Taifi, E. A., Maraei, I. S., Bakhite, E. A., Demirtas, G., Mague, J. T., Mohamed, S. K. & Ramli, Y. (2021). Acta Cryst. E77, 121–125.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBen Ali, K. & Retailleau, P. (2019). Acta Cryst. E75, 1399–1402.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBouasla, R., Berredjem, M., Aouf, N.-E. & Barbey, C. (2008). Acta Cryst. E64, o432.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarroll, F. I., Robinson, T. P., Brieaddy, L. E., Atkinson, R. N., Mascarella, S. W., Damaj, M. I., Martin, B. R. & Navarro, H. A. (2007). J. Med. Chem. 50, 6383–6391.  CrossRef PubMed CAS Google Scholar
First citationCastillo, J.-C., Jiménez, E., Portilla, J., Insuasty, B., Quiroga, J., Moreno-Fuquen, R., Kennedy, A. R. & Abonia, R. (2018). Tetrahedron, 74, 932–947.  CSD CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDemers, S., Stevenson, H., Candler, J., Bashore, C. G., Arnold, E. P., O'Neill, B. T. & Coe, J. W. (2008). Tetrahedron Lett. 49, 3368–3371.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLangenohl, F., Otte, F. & Strohmann, C. (2020). Acta Cryst. E76, 298–302.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLehmann, A., Lechner, L., Radacki, K., Braunschweig, H. & Holzgrabe, U. (2017). Acta Cryst. E73, 867–870.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLu, B., Cao, H., Cao, J., Huang, S., Hu, Q., Liu, D., Shen, R., Shen, X., Tao, W., Wan, H., Wang, D., Yan, Y., Yang, L., Zhang, J., Zhang, L., Zhang, L. & Zhang, M. (2016). Bioorg. Med. Chem. Lett. 26, 819–823.  CrossRef CAS PubMed Google Scholar
First citationMague, J. T., Mohamed, S. K., Akkurt, M., Bakhite, E. A. & Albayati, M. R. (2017). IUCrData, 2, x170390.  Google Scholar
First citationMarae, I. S., Bakhite, E. A., Moustafa, O. S., Abbady, M. S., Mohamed, S. K. & Mague, J. T. (2021a). ACS Omega, 6, 8706–8716.  CrossRef CAS PubMed Google Scholar
First citationMarae, I. S., Sharmoukh, W., Bakhite, E. A., Moustafa, O. S., Abbady, M. S. & Emam, H. (2021b). Cellulose, 28, 5937–5956.  CrossRef CAS Google Scholar
First citationNaghiyev, F. N., Grishina, M. M., Khrustalev, V. N., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 195–199.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaicker, T., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2011). Acta Cryst. C67, o100–o103.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPingaew, R., Mandi, P., Nantasenamat, C., Prachayasittikul, S., Ruchirawat, S. & Prachayasittikul, V. (2014). Eur. J. Med. Chem. 81, 192–203.  CrossRef CAS PubMed Google Scholar
First citationRosales, A. & Bernado, V. (2007). Pyrazoloisoquinoline Derivatives. WIPO Patent WO2007/060198A12007.  Google Scholar
First citationScott, J. D. & Williams, R. (2002). Chem. Rev. 102, 1669–1730.  CrossRef PubMed CAS Google Scholar
First citationSelvaraj, J. P., Mary, S., Dhruba, J. B., Huidrom, B. S., Panneerselvam, Y. & Piskala Subburaman, K. (2020). Acta Cryst. E76, 1548–1550.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiegfried, L., Helmut, V., Guenther, W., Thomas, S., Eckart, S., Dieter, L., Gunter, L. & Ger East, D. D. (1989). Chem. Abstr. 110, 75554g.  Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, M. A., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer. University of Western Australia.  Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A, 153, 625–636.  Web of Science CSD CrossRef CAS Google Scholar
First citationXu, R., Dwoskin, L. P., Grinevich, V., Sumithran, S. P. & Crooks, P. A. (2002). Drug Dev. Res. 55, 173–186.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds