Jerry P. Jasinski tribute\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[3-(anthracen-9-yl)pentane-2,4-dionato-κ2O,O′](N,N-di­methyl­formamide-κO)[tris­­(pyrazol-1-yl-κN2)hydroborato]europium(III)

crossmark logo

aL. V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Prospekt Nauki 31, Kyiv, 03028, Ukraine, bDepartment of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA, cDepartment of Chemistry, Keene State College, Keene, NH 03435, USA, and dDepartment of Chemistry, Drexel University, Philadelphia, PA 19104-2816, USA
*Correspondence e-mail: elenaamikhalyova@gmail.com

(Received 9 January 2022; accepted 19 January 2022; online 28 January 2022)

The title compound, [Eu(C9H10BN6)(C19H15O2)2(C3H7NO)] or [TpEu(Anthracac)2(DMF)], was synthesized by reaction of a tris­(pyrazol­yl)borate (Tp) Eu3+ complex with 3-(anthracen-9-yl)pentane-2,4-dione (HAnthracac) in the presence of tri­ethyl­amine. In the title compound, Eu3+ is located in an octa­vertex square-pyramidal coordination environment. In the two Anthracac ligands, the anthracene and nearly planar acetyl­acetonate fragments are almost orthogonal. Neighboring mol­ecules of TpEu(Anthracac)2(DMF) are connected in the crystal by inter­molecular van der Waals inter­actions, while π-stacking inter­actions are limited to the edges of two anthracene rings.

1. Chemical context

Lanthanide complexes find numerous applications as, for example, luminescent materials, markers, security inks, components of lasers, light-emitting diodes, and many others (Bünzli, 2017[Bünzli, J.-C. G. (2017). Eur. J. Inorg. Chem. pp. 5058-5063.]; Venturini Filho et al., 2018[Venturini Filho, E., de Sousa Filho, P. C., Serra, O. A., Weber, I. T., Lucena, M. A. M. & Luz, P. P. (2018). J. Lumin. 202, 89-96.]; Khullar et al., 2019[Khullar, S., Singh, S., Das, P. & Mandal, S. K. (2019). ACS Omega, 4, 5283-5292.]; Bünzli, 2019[Bünzli, J.-C. G. (2019). Trends Chem. 1, 751-762.]). This variety of uses relies in large parts on the electronic structure of the Ln3+ ions, which leads to electronic transitions occurring between f-orbitals, providing them with unique luminescence characteristics, including high color purity and exact reproducibility of the emitted light color (Sarkar et al., 2019[Sarkar, D., Ganguli, S., Samanta, T. & Mahalingam, V. (2019). Langmuir, 35, 6211-6230.]; Wang, Pu et al., 2019[Wang, F., Pu, Y., Zhang, X., Zhang, F., Cheng, H. & Zhao, Y. (2019). J. Lumin. 206, 192-198.]; Wang, Zhao et al., 2019[Wang, L., Zhao, Z., Wei, C., Wei, H., Liu, Z., Bian, Z. & Huang, C. (2019). Adv. Opt. Mater. 7, 1801256.]). In spite of these advantages, the electronic structure of Ln3+ ions causes the luminescence to be of low intensity due to the forbidden nature of f–f electronic transitions (Bünzli, 2017[Bünzli, J.-C. G. (2017). Eur. J. Inorg. Chem. pp. 5058-5063.]; Zhang et al., 2020[Zhang, H., Chen, Z.-H., Liu, X. & Zhang, F. (2020). Nano Res. 13, 1795-1809.]; Wang, Zhao et al., 2019[Wang, L., Zhao, Z., Wei, C., Wei, H., Liu, Z., Bian, Z. & Huang, C. (2019). Adv. Opt. Mater. 7, 1801256.]), hence the weak absorbance of the exciting radiation. This feature is usually evaded by using organic `antenna' ligands, which are capable of absorbing exciting radiation and transferring the gained energy to the Ln3+ ions (Bünzli, 2017[Bünzli, J.-C. G. (2017). Eur. J. Inorg. Chem. pp. 5058-5063.]; Carneiro Neto et al., 2019[Carneiro Neto, A. N., Teotonio, E. E. S., de Sá, G. F., Brito, H. F., Legendziewicz, J., Carlos, L. D., Felinto, M. C. F. C., Gawryszewska, P., Moura, R. T. Jr, Longo, R. L., Faustino, W. M. & Malta, O. L. (2019). Handbook on the Physics and Chemistry of Rare Earths, vol. 56, pp. 55-162. Amsterdam: Elsevier.]; Aulsebrook et al., 2018[Aulsebrook, M. L., Graham, B., Grace, M. R. & Tuck, K. L. (2018). Coord. Chem. Rev. 375, 191-220.]). Recently, it was shown (Mikhalyova et al., 2017[Mikhalyova, E. A., Yakovenko, A. V., Zeller, M., Gavrilenko, K. S., Kiskin, M. A., Smola, S. S., Dotsenko, V. P., Eremenko, I. L., Addison, A. W. & Pavlishchuk, V. V. (2017). Dalton Trans. 46, 3457-3469.]; Gheno et al., 2014[Gheno, G., Bortoluzzi, M., Ganzerla, R. & Enrichi, F. (2014). J. Lumin. 145, 963-969.]; Mikhalyova et al., 2020[Mikhalyova, E. A., Zeller, M., Jasinski, J. P., Butcher, R. J., Carrella, L. M., Sedykh, A. E., Gavrilenko, K. S., Smola, S. S., Frasso, M., Cazorla, S. C., Perera, K., Shi, A., Ranjbar, H. G., Smith, C., Deac, A., Liu, Y., McGee, S. M., Dotsenko, V. P., Kumke, M. U., Müller-Buschbaum, K., Rentschler, E., Addison, A. W. & Pavlishchuk, V. V. (2020). Dalton Trans. 49, 7774-7789.]; Bortoluzzi et al., 2012[Bortoluzzi, M., Paolucci, G., Gatto, M., Roppa, S., Enrichi, F., Ciorba, S. & Richards, B. S. (2012). J. Lumin. 132, 2378-2384.]) that tris­(pyrazol­yl)borate anions are efficient antenna ligands for Tb3+ and Eu3+, both exhibiting emission in the visible range. Anions of β-diketones with different substituents are also well-known antenna ligands (Wang, Zhao et al., 2019[Wang, L., Zhao, Z., Wei, C., Wei, H., Liu, Z., Bian, Z. & Huang, C. (2019). Adv. Opt. Mater. 7, 1801256.]; Nehra et al., 2022[Nehra, K., Dalal, A., Hooda, A., Bhagwan, S., Saini, R. K., Mari, B., Kumar, S. & Singh, D. (2022). J. Mol. Struct. 1249, 131531.]). To increase the extinction coefficients of the ligands, it can be of advantage to add a large conjugated moiety to their structure. Recently it was found by us (Kandel et al., 2017[Kandel, A. V., Mikhalyova, E. A., Zeller, M., Addison, A. W. & Pavlishchuk, V. V. (2017). Theor. Exp. Chem. 53, 180-186.]; Mikhalyova et al., 2017[Mikhalyova, E. A., Yakovenko, A. V., Zeller, M., Gavrilenko, K. S., Kiskin, M. A., Smola, S. S., Dotsenko, V. P., Eremenko, I. L., Addison, A. W. & Pavlishchuk, V. V. (2017). Dalton Trans. 46, 3457-3469.]), that the combination of several antenna ligands in one compound can have complex and unpredictable effects on its luminescence characteristics, which also depend on the mol­ecular and crystal structure details of the complex. Thus, for this work, an Eu3+ complex with two types of antenna ligands, i.e. tris­(pyrazol­yl)borate (Tp) and 3-(anthracen-9-yl)pentane-2,4-dionate (Anthracac), of the composition TpEu(Anthracac)2(DMF) was obtained and its mol­ecular and crystal structures were studied.

[Scheme 1]

2. Structural commentary

The title compound is a neutral metal-containing complex and crystallizes in the monoclinic P21/n space group with only one mol­ecule in the asymmetric unit (Fig. 1[link]). The unit cell contains two mol­ecules of each enanti­omer, whose crystallographic positions are related by the inversion centers, glide planes and screw axes (Fig. 2[link]). The asymmetric unit consists of the Eu3+ ion surrounded by one Tp and two Anthracac ligands and one di­methyl­formamide mol­ecule. Of these ligands, the Tp is coordinated tridentately, donating three N atoms to the coordination polyhedron, while each Anthracac acts as a bidentate O ligand, donating a combined four O atoms. The DMF mol­ecule acts as a unidentate O donor. As is typical for lanthanide ions with seven, eight or nine coordinating atoms, the assignment of the coordination geometry carries some ambiguity. Several different criteria have been proposed to define the shape of such a coordination polyhedron. Use of the Shape 2.1 software (Casanova et al., 2005[Casanova, D., Llunell, M., Alemany, P. & Alvarez, S. (2005). Chem. Eur. J. 11, 1479-1494.]; Alvarez et al., 2005[Alvarez, S., Alemany, P., Casanova, D., Cirera, J., Llunell, M. & Avnir, D. (2005). Coord. Chem. Rev. 249, 1693-1708.]), indicates that the Eu3+ ion in the title compound is an octa­vertex with a slightly distorted square-anti­prismatic geometry (Fig. 3[link]), with a mean angle between the capping and basal square planes of the coordination polyhedron of 0.75 (8)°. According to the Lippard & Russ (1968[Lippard, S. L. & Russ, B. I. (1968). Inorg. Chem. 7, 1686-1688.]) criterion, the angle between the body-diagonal trapezoids for the title compound, ω, is 88.24 (7)°, which is closer to the angle for a dodeca­hedron (90.0°) than a square anti­prism (79.3°). A more accurate criterion is the one proposed by Porai-Koshits and Aslanov (1972[Porai-Koshits, M. A. & Aslanov, L. A. (1972). J. Struct. Chem. 13, 244-253.]) based on the angles, δ, between pairs of faces inter­secting along the edges connecting the vertices where the five edges inter­sect. The respective angles for the complex here are 6.6 (1), 8.9 (1), 43.3 (1), and 49.7 (1)° and the degrees of non-planarity of the diagonal trapezoids, φ, are 18.81 (9) and 19.74 (1)°. From these criteria, the δ angles are closer to those of an idealized square anti­prism, yet the φ angles correspond to those of a bicapped trigonal prism. Thus, three different criteria define three different polyhedra and among these criteria, only the δ-based one agrees with the assignment using the Shape 2.1 software.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound. Atomic displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity of presentation.
[Figure 2]
Figure 2
Stick diagram of a unit-cell view with symmetry elements: inversion centers (orange), glide planes (violet) and screw axes (green).
[Figure 3]
Figure 3
The geometry of the Eu3+ coordination polyhedron.

The lengths for Eu-donor atom bonds are listed in Table 1[link] and these are in the usual range for compounds with similar ligands (Mikhalyova et al., 2020[Mikhalyova, E. A., Zeller, M., Jasinski, J. P., Butcher, R. J., Carrella, L. M., Sedykh, A. E., Gavrilenko, K. S., Smola, S. S., Frasso, M., Cazorla, S. C., Perera, K., Shi, A., Ranjbar, H. G., Smith, C., Deac, A., Liu, Y., McGee, S. M., Dotsenko, V. P., Kumke, M. U., Müller-Buschbaum, K., Rentschler, E., Addison, A. W. & Pavlishchuk, V. V. (2020). Dalton Trans. 49, 7774-7789.]; Lawrence et al., 2001[Lawrence, R. G., Hamor, T. A., Jones, C. J., Paxton, K. & Rowley, N. M. (2001). J. Chem. Soc. Dalton Trans. pp. 2121-2126.]; Dei et al., 2000[Dei, A., Gatteschi, D., Massa, C. A., Pardi, L. A., Poussereau, S. & Sorace, L. (2000). Chem. Eur. J. 6, 4580-4586.]).

Table 1
Selected bond lengths (Å)

Eu1—O1 2.351 (3) Eu1—O5 2.417 (3)
Eu1—O2 2.313 (3) Eu1—N1 2.582 (3)
Eu1—O3 2.344 (3) Eu1—N3 2.555 (3)
Eu1—O4 2.340 (3) Eu1—N5 2.573 (3)

Regarding the geometrical features of the ligands, it should be noted that the planar anthracene moiety and the nearly planar acetyl­acetonate fragment are almost orthogonal to each other in each Anthracac ligand, subtending dihedral angles of 87.84 (7) and 79.98 (7)°. This is due to the presence of the CH3 groups, which prevent rotation of the anthracenyl fragments along the C2—C4 and C19—C21 bonds.

3. Supra­molecular features

The crystal packing of the title compound consists of separate neutral mol­ecules. Several short contacts are observed (Table 2[link]), but none of these exhibit the typical characteristics of directional attractive inter­actions, i.e. they are not hydrogen bonds or C—H⋯π inter­actions. It thus can be said that these mol­ecules are organized in the lattice predominantly by inter­molecular van der Waals or dispersion inter­actions (Fig. 4[link], Table 2[link]).

Table 2
Selected inter­molecular inter­atomic distances (Å)

C8⋯C15i 3.258 (8) C8⋯H36ii 2.698
H8⋯C15i 2.817 H37⋯C26iii 2.830
H50C⋯N3i 2.680 C48⋯C14iii 3.159 (8)
H50C⋯C41i 2.718    
Symmetry codes: (i) −1 + x, y, z; (ii) x, 2 − y, 1 − z; (iii) −[{1\over 2}] + x, [{3\over 2}] − y, −[{1\over 2}] + z.
[Figure 4]
Figure 4
Packing view along the a-axis (see also Fig. S3).

π-Stacking inter­actions play no dominant role in this structure. For one of the anthracene fragments (C4–C16) no ππ stacking inter­actions are observed at all. For the other anthracenyl group (C21–C34) one π-inter­action is present, but it is limited to part of one of the outer phenyl­ene groups, C29–C34, which is π-stacked with its inversion-related counterpart [symmetry code: (i) 2 − x, 1 − y, 1 − z], with a centroid-to-centroid distance of 3.958 (8) Å (Fig. 5[link]). The remainder of the anthracenyl group does not participate in the ππ stacking inter­action; for the entire anthracene moiety (C21–C34) the distance between the centroids is 6.006 (8) Å. The distance between inversion-related mean planes (C21–C34 and C21i–C34i) is 3.455 Å, indicating a medium strength stacking inter­action (Fig. 5[link]).

[Figure 5]
Figure 5
(a) View of the ππ stacking inter­action observed for one of the phenyl­ene groups of the anthracene fragments and (b) a view of the same, perpendicular to the planes of the anthracenyl (C21—C34) fragments [symmetry code: (i) 2 − x, 1 − y, 1 − z]. Other occurrences of parallel (but not stacked) anthracenyl units are shown in Figs. S1, S2 and S4.

4. Database survey

The Cambridge Structural Database (CSD, version 5.41, updates till Aug 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) contains just one crystal structure with an Ln3+ ion surrounded by two β-diketonate anions and one tris­(pyrazol­yl)borate ligand, namely, bis­(1,3-diphenyl-1,3-propane­dionato-O,O′){hydro­tris­[3-(2-pyrid­yl)pyrazol-1-yl]borato}praseodymium(III) (FOLZUC; Davies et al., 2005[Davies, G. M., Adams, H. & Ward, M. D. (2005). Acta Cryst. C61, m221-m223.]). However, in this compound the Pr3+ ion is deca­coord­inate owing to the presence of 2-pyridyl substituents in the tris­(pyrazol­yl)borate ligand, so a direct comparison of the coordination geometries of this and the title compound is not possible.

Fragments containing one Ln ion surrounded by at least one β-diketonate anion and one tris­(pyrazol­yl)borate ligand encompass 34 entities (including FOLZUC). Most of them (28), contain eight-coordinate lanthanide ions with two tris(pyrazol­yl)borate ligands and one β-diketonate anion: DULWEP, DULWIT, DULWOZ, DULWUF, DULXAM, DULXEQ, DULXIU, DULXOA, DULXUG, DULYAN, DULYER, DULYIV, DULYOB, DULYUH, DULZAO, DULZES, DULZIW, DULZOC, DULZUI and DUMDAT (all Mikhalyova et al., 2020[Mikhalyova, E. A., Zeller, M., Jasinski, J. P., Butcher, R. J., Carrella, L. M., Sedykh, A. E., Gavrilenko, K. S., Smola, S. S., Frasso, M., Cazorla, S. C., Perera, K., Shi, A., Ranjbar, H. G., Smith, C., Deac, A., Liu, Y., McGee, S. M., Dotsenko, V. P., Kumke, M. U., Müller-Buschbaum, K., Rentschler, E., Addison, A. W. & Pavlishchuk, V. V. (2020). Dalton Trans. 49, 7774-7789.]); ESUHOP (Galler et al., 2004[Galler, J. L., Goodchild, S., Gould, J., McDonald, R. & Sella, A. (2004). Polyhedron, 23, 253-262.]); GIFCUT, GIFDAA (Moss et al., 1988[Moss, M. A. J., Jones, C. J. & Edwards, A. J. (1988). Polyhedron, 7, 79-81.]); GIFCUT10, GIFDAA10 (Moss et al., 1989[Moss, M. A. J., Jones, C. J. & Edwards, A. J. (1989). J. Chem. Soc. Dalton Trans. pp. 1393-1400.]); KIFKUI (Guégan et al., 2018[Guégan, F., Riobé, F., Maury, O., Jung, J., Le Guennic, B., Morell, C. & Luneau, D. (2018). Inorg. Chem. Front. 5, 1346-1353.]); XICHIA (Lawrence et al., 2001[Lawrence, R. G., Hamor, T. A., Jones, C. J., Paxton, K. & Rowley, N. M. (2001). J. Chem. Soc. Dalton Trans. pp. 2121-2126.]). Again, the coordination environment of these compounds and the title one cannot be directly compared. One of the compounds, FOLZUC, is discussed above and another, [tris­(3-t-butyl-5-methyl­pyrazol­yl)hydro­borato](2,2,6,6-tetra­methyl­heptane-3,5-dionato)ytter­bium(II) (ESUJIL; Morissette et al., 2004[Morissette, M., Haufe, S., McDonald, R., Ferrence, G. M. & Takats, J. (2004). Polyhedron, 23, 263-271.]) is a neutral mol­ecule of Yb2+. Four entities are complexes with salicyl­aldehyde derivatives [JAJRAO (Onishi et al., 2004[Onishi, M., Kayano, K., Inada, K., Yamaguchi, H., Nagaoka, J., Arikawa, Y. & Takatani, T. (2004). Inorg. Chim. Acta, 357, 4091-4101.]), QIDGAL, QIDGAL01 (Onishi et al., 1999[Onishi, M., Yamaguchi, H., Shimotsuma, H., Hiraki, K., Nagaoka, J. & Kawano, H. (1999). Chem. Lett. 28, 573-574.]), and ZUCCIJ (Lawrence et al., 1996[Lawrence, R. G., Jones, C. J. & Kresinski, R. A. (1996). J. Chem. Soc. Dalton Trans. pp. 501-507.])], which are also β-diketonate anions, but, again, compounds with these anions contain eight-coord­inate Ln3+ ions.

Only three metal-containing structures were found with 3-naphthyl or 3-anthracenyl substituents. The inter­planar angles for acetyl­acetonate vs aryl fragments are 86.4° for [3-(1′-naphth­yl)pentane-2,4-dionato][tris­(2-amino­eth­yl)amine]­cobalt(III) bis­(tetra­fluoro­borate) dihydrate, 87.1° for [3-(2′,4′-di­nitro-1′-naphth­yl)pentane-2,4-dionato][tris­(2-amino­eth­yl)amine]­cobalt(III) dibromide (BEYTEE and BIMLUE, respectively; Nakano & Sato, 1982[Nakano, Y. & Sato, S. (1982). Inorg. Chem. 21, 1315-1318.]) and 83.5° for [3-(9′-anth­r­yl)acetyl­acetonato]chlorido­(1,4,7-trimethyl-1,4,7-tri­aza­cyclo­nona­ne)iron(III) perchlorate mesitylene solvate (NUCZUG; Müller et al., 1998[Müller, M., Weyhermüller, T., Bill, E. & Wieghardt, K. (1998). J. Biol. Inorg. Chem. 3, 96-106.]). These angles are in the same range as for the title compound.

5. Synthesis and crystallization

The starting Tp2EuCl complex was obtained by reaction of TpTl with EuCl3·6H2O in methanol (Kandel et al., 2017[Kandel, A. V., Mikhalyova, E. A., Zeller, M., Addison, A. W. & Pavlishchuk, V. V. (2017). Theor. Exp. Chem. 53, 180-186.]). Then, 307 mg (0.50 mmol) of Tp2EuCl and 138 mg (0.50 mmol) of HAnthracac were dissolved in 15 mL of methyl­ene chloride, followed by the addition of 0.15 mL of tri­ethyl­amine. After the solution had been stirred for 1 h, the reaction mixture was filtered and the filtrate was evaporated under reduced pressure (rotavapor). The resulting residue was washed with water and dried in a vacuum desiccator over P2O5. The crude product was recrystallized by slow diffusion of methyl t-butyl ether into a DMF solution of the compound. The title compound was obtained as orange prismatic crystals (25 mg, yield 10%).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. C—H bond distances were constrained to 0.95 Å for aromatic and alkene C—H moieties, and to 0.98 Å for CH3 moieties. The B—H bond distance was constrained to 1.00 Å. Uiso(H) values were set to kUeq(C) where k = 1.5 for CH3 and 1.2 for C—H units.

Table 3
Experimental details

Crystal data
Chemical formula [Eu(C9H10BN6)(C19H15O2)2(C3H7NO)]
Mr 988.71
Crystal system, space group Monoclinic, P21/n
Temperature (K) 173
a, b, c (Å) 9.3728 (3), 22.5555 (7), 22.0840 (6)
β (°) 96.314 (3)
V3) 4640.4 (2)
Z 4
Radiation type Cu Kα
μ (mm−1) 10.11
Crystal size (mm) 0.48 × 0.18 × 0.12
 
Data collection
Diffractometer Rigaku Oxford Diffraction Gemini Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlisPro. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.163, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 19671, 8850, 7261
Rint 0.048
(sin θ/λ)max−1) 0.615
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.106, 1.03
No. of reflections 8850
No. of parameters 583
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.09, −1.25
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlisPro. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009), Mercury (Macrae et al., 2020); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009), and publCIF (Westrip, 2010).

Bis[3-(anthracen-9-yl)pentane-2,4-dionato-κ2O,O'](N,N-dimethylformamide-κO)[tris(pyrazol-1-yl-κN2)hydroborato]europium(III) top
Crystal data top
[Eu(C9H10BN6)(C19H15O2)2(C3H7NO)]F(000) = 2016
Mr = 988.71Dx = 1.415 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 9.3728 (3) ÅCell parameters from 8094 reflections
b = 22.5555 (7) Åθ = 4.0–71.4°
c = 22.0840 (6) ŵ = 10.11 mm1
β = 96.314 (3)°T = 173 K
V = 4640.4 (2) Å3Prism, orange
Z = 40.48 × 0.18 × 0.12 mm
Data collection top
Rigaku Oxford Diffraction Gemini Eos
diffractometer
8850 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source7261 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 16.0416 pixels mm-1θmax = 71.4°, θmin = 3.9°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
k = 2717
Tmin = 0.163, Tmax = 1.000l = 2624
19671 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0592P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.004
8850 reflectionsΔρmax = 1.09 e Å3
583 parametersΔρmin = 1.25 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Eu10.52702 (2)0.81156 (2)0.43393 (2)0.01770 (8)
O10.4093 (3)0.77371 (12)0.51430 (12)0.0316 (6)
O20.4941 (4)0.88721 (12)0.50175 (13)0.0396 (8)
O30.5692 (3)0.70993 (11)0.42273 (11)0.0263 (6)
O40.7264 (3)0.78408 (11)0.50130 (13)0.0317 (6)
O50.2953 (3)0.77901 (14)0.38675 (14)0.0383 (7)
N10.5855 (4)0.79579 (14)0.32351 (13)0.0248 (7)
N20.6057 (4)0.83970 (15)0.28333 (14)0.0294 (7)
N30.7242 (4)0.88341 (14)0.41029 (14)0.0266 (7)
N40.7259 (4)0.91415 (14)0.35743 (14)0.0268 (7)
N50.4131 (4)0.89911 (15)0.37142 (16)0.0331 (8)
N60.4623 (4)0.92238 (15)0.32156 (16)0.0361 (8)
N70.0779 (5)0.7911 (2)0.3344 (3)0.0597 (14)
C10.3798 (4)0.79077 (17)0.56538 (18)0.0266 (8)
C20.4045 (5)0.84859 (17)0.58988 (17)0.0269 (8)
C30.4583 (5)0.89398 (18)0.55457 (19)0.0339 (10)
C40.3751 (5)0.86189 (16)0.65368 (18)0.0298 (9)
C50.2383 (5)0.88156 (16)0.6657 (2)0.0345 (10)
C60.1212 (5)0.88699 (18)0.6203 (2)0.0424 (11)
H60.13570.87910.57920.051*
C70.0128 (6)0.9033 (2)0.6333 (3)0.0591 (16)
H70.09000.90630.60180.071*
C80.0347 (9)0.9156 (2)0.6950 (4)0.079 (3)
H80.12740.92660.70460.094*
C90.0737 (9)0.9117 (2)0.7394 (3)0.071 (2)
H90.05620.92010.78000.085*
C100.2147 (7)0.89522 (18)0.7277 (2)0.0496 (15)
C110.3259 (8)0.8903 (2)0.7737 (2)0.0584 (18)
H110.30950.90070.81400.070*
C120.4595 (7)0.87091 (19)0.7630 (2)0.0501 (14)
C130.5756 (10)0.8643 (2)0.8103 (3)0.072 (2)
H130.56150.87570.85060.086*
C140.7041 (10)0.8424 (3)0.7996 (3)0.084 (3)
H140.77900.83850.83200.101*
C150.7271 (7)0.8252 (3)0.7400 (3)0.0683 (19)
H150.81690.80880.73280.082*
C160.6219 (6)0.8320 (2)0.6926 (2)0.0471 (12)
H160.64060.82110.65270.056*
C170.4842 (5)0.85520 (18)0.70201 (19)0.0360 (10)
C180.6316 (5)0.66956 (16)0.45555 (16)0.0250 (8)
C190.7273 (4)0.67949 (16)0.50837 (16)0.0253 (8)
C200.7690 (4)0.73674 (18)0.52778 (17)0.0271 (8)
C210.7840 (5)0.62631 (17)0.54511 (18)0.0353 (10)
C220.6957 (6)0.59931 (18)0.58541 (19)0.0417 (12)
C230.5594 (6)0.6217 (2)0.5950 (2)0.0448 (12)
H230.52570.65670.57410.054*
C240.4744 (7)0.5949 (3)0.6332 (2)0.0580 (15)
H240.38430.61180.63940.070*
C250.5201 (10)0.5420 (3)0.6635 (3)0.075 (2)
H250.45950.52290.68920.090*
C260.6484 (9)0.5188 (2)0.6562 (2)0.0654 (19)
H260.67680.48280.67650.079*
C270.7442 (7)0.5466 (2)0.6185 (2)0.0503 (14)
C280.8772 (7)0.5250 (2)0.6124 (2)0.0587 (17)
H280.90880.49050.63470.070*
C290.9690 (7)0.5512 (2)0.5747 (2)0.0540 (15)
C301.1070 (8)0.5289 (3)0.5678 (3)0.074 (2)
H301.14110.49480.59030.089*
C311.1914 (8)0.5550 (3)0.5299 (3)0.071 (2)
H311.28420.53910.52690.085*
C321.1462 (7)0.6054 (3)0.4942 (3)0.0692 (19)
H321.20670.62290.46740.083*
C331.0122 (6)0.6281 (2)0.4999 (2)0.0511 (13)
H330.98060.66200.47640.061*
C340.9201 (6)0.6030 (2)0.5391 (2)0.0434 (12)
C350.2815 (6)0.9201 (2)0.3731 (3)0.0520 (13)
H350.22250.91180.40430.062*
C360.2421 (8)0.9556 (3)0.3235 (4)0.076 (2)
H360.15290.97530.31350.091*
C370.3605 (7)0.9565 (3)0.2915 (3)0.0662 (17)
H370.36860.97740.25470.079*
C380.6116 (6)0.8170 (2)0.22766 (18)0.0374 (10)
H380.62520.83890.19200.045*
C390.5948 (5)0.7566 (2)0.23078 (18)0.0373 (10)
H390.59330.72870.19850.045*
C400.5805 (5)0.74553 (18)0.29162 (17)0.0282 (8)
H400.56880.70720.30830.034*
C410.8332 (5)0.9041 (2)0.4480 (2)0.0384 (10)
H410.85760.89060.48860.046*
C420.9064 (6)0.9479 (2)0.4203 (2)0.0476 (12)
H420.98820.96950.43720.057*
C430.8344 (6)0.95314 (19)0.3629 (2)0.0410 (11)
H430.85760.97990.33230.049*
C440.4746 (8)0.9563 (2)0.5808 (2)0.067 (2)
H44A0.55060.97720.56230.101*
H44B0.49980.95400.62500.101*
H44C0.38390.97780.57200.101*
C450.3115 (6)0.74539 (18)0.6032 (2)0.0405 (11)
H45A0.28550.71020.57830.061*
H45B0.22510.76230.61770.061*
H45C0.37960.73420.63820.061*
C460.8711 (6)0.7442 (2)0.5854 (2)0.0445 (12)
H46A0.96680.73020.57820.067*
H46B0.83630.72110.61830.067*
H46C0.87620.78620.59680.067*
C470.5960 (6)0.60688 (18)0.43470 (19)0.0394 (11)
H47A0.53740.58790.46330.059*
H47B0.68500.58440.43330.059*
H47C0.54240.60780.39400.059*
C480.2187 (6)0.7920 (2)0.3402 (3)0.0481 (12)
H480.26450.80350.30570.058*
C490.0009 (10)0.8083 (3)0.2768 (4)0.106 (4)
H49A0.06680.82100.24850.158*
H49B0.06580.84120.28350.158*
H49C0.05680.77450.25940.158*
C500.0025 (8)0.7747 (4)0.3832 (4)0.094 (3)
H50A0.06360.76440.41920.141*
H50B0.06300.74040.37090.141*
H50C0.06320.80790.39290.141*
B10.6109 (6)0.9057 (2)0.3029 (2)0.0331 (11)
H10.63360.93110.26810.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Eu10.02659 (12)0.01614 (10)0.01118 (10)0.00364 (9)0.00566 (7)0.00032 (7)
O10.0516 (18)0.0232 (13)0.0240 (13)0.0069 (12)0.0212 (13)0.0064 (10)
O20.079 (2)0.0166 (12)0.0292 (14)0.0018 (14)0.0342 (15)0.0044 (10)
O30.0391 (15)0.0230 (12)0.0160 (11)0.0072 (11)0.0003 (11)0.0018 (10)
O40.0422 (17)0.0186 (12)0.0318 (14)0.0022 (12)0.0072 (13)0.0049 (11)
O50.0329 (16)0.0390 (16)0.0406 (17)0.0004 (13)0.0067 (14)0.0018 (13)
N10.0393 (19)0.0235 (15)0.0127 (13)0.0060 (13)0.0075 (13)0.0013 (11)
N20.046 (2)0.0281 (17)0.0149 (14)0.0025 (15)0.0055 (14)0.0022 (12)
N30.0397 (19)0.0229 (14)0.0178 (14)0.0003 (14)0.0060 (14)0.0029 (12)
N40.0397 (19)0.0201 (14)0.0225 (15)0.0010 (14)0.0123 (14)0.0017 (12)
N50.037 (2)0.0259 (16)0.0366 (19)0.0130 (15)0.0052 (16)0.0034 (14)
N60.050 (2)0.0284 (17)0.0277 (17)0.0182 (16)0.0042 (16)0.0058 (13)
N70.039 (2)0.041 (2)0.094 (4)0.0157 (19)0.021 (3)0.021 (2)
C10.033 (2)0.0217 (17)0.0267 (18)0.0019 (15)0.0119 (16)0.0023 (15)
C20.040 (2)0.0227 (17)0.0206 (17)0.0004 (16)0.0159 (16)0.0031 (14)
C30.056 (3)0.0205 (18)0.028 (2)0.0003 (18)0.019 (2)0.0025 (15)
C40.048 (2)0.0183 (17)0.0268 (19)0.0071 (17)0.0188 (18)0.0059 (14)
C50.054 (3)0.0143 (16)0.040 (2)0.0052 (17)0.028 (2)0.0038 (15)
C60.047 (3)0.0206 (18)0.064 (3)0.0014 (19)0.027 (2)0.0067 (19)
C70.050 (3)0.024 (2)0.108 (5)0.000 (2)0.028 (3)0.001 (3)
C80.092 (5)0.022 (2)0.140 (7)0.009 (3)0.090 (5)0.010 (3)
C90.115 (6)0.019 (2)0.093 (5)0.007 (3)0.085 (5)0.000 (3)
C100.091 (4)0.0167 (18)0.051 (3)0.005 (2)0.052 (3)0.0055 (17)
C110.127 (6)0.028 (2)0.027 (2)0.016 (3)0.040 (3)0.0104 (17)
C120.101 (5)0.023 (2)0.028 (2)0.017 (2)0.013 (3)0.0027 (16)
C130.146 (7)0.031 (3)0.034 (3)0.028 (4)0.007 (4)0.002 (2)
C140.126 (7)0.053 (4)0.062 (4)0.045 (4)0.045 (5)0.017 (3)
C150.063 (4)0.057 (3)0.079 (4)0.022 (3)0.015 (3)0.023 (3)
C160.049 (3)0.045 (3)0.047 (3)0.016 (2)0.006 (2)0.005 (2)
C170.059 (3)0.0224 (18)0.028 (2)0.0147 (19)0.011 (2)0.0014 (15)
C180.039 (2)0.0197 (17)0.0168 (16)0.0072 (16)0.0052 (15)0.0013 (13)
C190.035 (2)0.0214 (17)0.0191 (16)0.0052 (15)0.0000 (15)0.0017 (13)
C200.029 (2)0.0293 (19)0.0221 (17)0.0038 (16)0.0012 (16)0.0035 (15)
C210.054 (3)0.0222 (18)0.0261 (19)0.0072 (18)0.0128 (19)0.0028 (15)
C220.075 (4)0.0229 (19)0.0226 (19)0.002 (2)0.012 (2)0.0012 (15)
C230.066 (3)0.035 (2)0.033 (2)0.005 (2)0.001 (2)0.0079 (18)
C240.080 (4)0.052 (3)0.042 (3)0.017 (3)0.009 (3)0.010 (2)
C250.114 (6)0.059 (4)0.050 (3)0.029 (4)0.001 (4)0.022 (3)
C260.115 (6)0.034 (3)0.043 (3)0.016 (3)0.012 (3)0.019 (2)
C270.087 (4)0.025 (2)0.034 (2)0.004 (2)0.018 (3)0.0059 (18)
C280.102 (5)0.029 (2)0.040 (3)0.015 (3)0.017 (3)0.003 (2)
C290.070 (4)0.041 (3)0.044 (3)0.024 (3)0.026 (3)0.017 (2)
C300.090 (5)0.055 (3)0.068 (4)0.038 (4)0.033 (4)0.012 (3)
C310.066 (4)0.071 (4)0.069 (4)0.040 (4)0.023 (3)0.019 (3)
C320.057 (4)0.089 (5)0.058 (4)0.017 (3)0.010 (3)0.028 (3)
C330.051 (3)0.048 (3)0.050 (3)0.020 (2)0.011 (2)0.013 (2)
C340.056 (3)0.034 (2)0.036 (2)0.014 (2)0.014 (2)0.0124 (18)
C350.044 (3)0.032 (2)0.080 (4)0.022 (2)0.007 (3)0.005 (2)
C360.061 (4)0.056 (4)0.109 (6)0.033 (3)0.000 (4)0.020 (4)
C370.076 (4)0.051 (3)0.068 (4)0.023 (3)0.007 (3)0.024 (3)
C380.056 (3)0.042 (2)0.0161 (17)0.004 (2)0.0130 (18)0.0007 (16)
C390.056 (3)0.039 (2)0.0193 (18)0.003 (2)0.0113 (19)0.0079 (16)
C400.037 (2)0.0282 (19)0.0200 (18)0.0001 (17)0.0070 (16)0.0047 (14)
C410.044 (3)0.036 (2)0.034 (2)0.006 (2)0.002 (2)0.0020 (17)
C420.051 (3)0.036 (2)0.056 (3)0.014 (2)0.005 (2)0.004 (2)
C430.057 (3)0.027 (2)0.042 (2)0.009 (2)0.021 (2)0.0025 (17)
C440.140 (6)0.023 (2)0.049 (3)0.020 (3)0.060 (4)0.012 (2)
C450.062 (3)0.0257 (19)0.040 (2)0.014 (2)0.032 (2)0.0065 (17)
C460.054 (3)0.031 (2)0.042 (3)0.002 (2)0.023 (2)0.0043 (18)
C470.064 (3)0.0226 (19)0.028 (2)0.003 (2)0.011 (2)0.0035 (15)
C480.051 (3)0.035 (2)0.056 (3)0.006 (2)0.007 (2)0.004 (2)
C490.100 (6)0.077 (5)0.125 (7)0.032 (5)0.056 (6)0.029 (5)
C500.062 (4)0.090 (6)0.135 (8)0.007 (4)0.035 (5)0.044 (5)
B10.057 (3)0.026 (2)0.0174 (19)0.004 (2)0.008 (2)0.0094 (16)
Geometric parameters (Å, º) top
Eu1—O12.351 (3)C20—C461.515 (5)
Eu1—O22.313 (3)C21—C221.418 (7)
Eu1—O32.344 (3)C21—C341.399 (7)
Eu1—O42.340 (3)C22—C231.411 (8)
Eu1—O52.417 (3)C22—C271.443 (6)
Eu1—N12.582 (3)C23—H230.9500
Eu1—N32.555 (3)C23—C241.364 (7)
Eu1—N52.573 (3)C24—H240.9500
O1—C11.251 (5)C24—C251.410 (9)
O2—C31.258 (5)C25—H250.9500
O3—C181.266 (5)C25—C261.339 (10)
O4—C201.261 (5)C26—H260.9500
O5—C481.223 (6)C26—C271.434 (9)
N1—N21.357 (5)C27—C281.359 (9)
N1—C401.333 (5)C28—H280.9500
N2—C381.339 (5)C28—C291.393 (9)
N2—B11.549 (6)C29—C301.411 (9)
N3—N41.359 (4)C29—C341.455 (7)
N3—C411.330 (6)C30—H300.9500
N4—C431.340 (6)C30—C311.348 (11)
N4—B11.538 (6)C31—H310.9500
N5—N61.346 (5)C31—C321.422 (10)
N5—C351.326 (6)C32—H320.9500
N6—C371.343 (6)C32—C331.374 (8)
N6—B11.542 (7)C33—H330.9500
N7—C481.312 (7)C33—C341.407 (8)
N7—C491.452 (9)C35—H350.9500
N7—C501.431 (10)C35—C361.374 (9)
C1—C21.421 (5)C36—H360.9500
C1—C451.507 (5)C36—C371.380 (10)
C2—C31.413 (5)C37—H370.9500
C2—C41.495 (5)C38—H380.9500
C3—C441.522 (6)C38—C391.374 (6)
C4—C51.409 (6)C39—H390.9500
C4—C171.402 (6)C39—C401.387 (5)
C5—C61.408 (7)C40—H400.9500
C5—C101.445 (6)C41—H410.9500
C6—H60.9500C41—C421.383 (7)
C6—C71.370 (7)C42—H420.9500
C7—H70.9500C42—C431.374 (7)
C7—C81.427 (10)C43—H430.9500
C8—H80.9500C44—H44A0.9800
C8—C91.335 (10)C44—H44B0.9800
C9—H90.9500C44—H44C0.9800
C9—C101.423 (9)C45—H45A0.9800
C10—C111.377 (9)C45—H45B0.9800
C11—H110.9500C45—H45C0.9800
C11—C121.372 (9)C46—H46A0.9800
C12—C131.430 (9)C46—H46B0.9800
C12—C171.436 (6)C46—H46C0.9800
C13—H130.9500C47—H47A0.9800
C13—C141.347 (11)C47—H47B0.9800
C14—H140.9500C47—H47C0.9800
C14—C151.409 (11)C48—H480.9500
C15—H150.9500C49—H49A0.9800
C15—C161.366 (8)C49—H49B0.9800
C16—H160.9500C49—H49C0.9800
C16—C171.429 (7)C50—H50A0.9800
C18—C191.409 (5)C50—H50B0.9800
C18—C471.513 (5)C50—H50C0.9800
C19—C201.402 (5)B1—H11.0000
C19—C211.512 (5)
O1—Eu1—O575.01 (11)C22—C21—C19118.8 (4)
O1—Eu1—N1145.99 (10)C34—C21—C19121.1 (4)
O1—Eu1—N3142.63 (10)C34—C21—C22120.0 (4)
O1—Eu1—N5118.84 (11)C21—C22—C27119.9 (5)
O2—Eu1—O170.86 (9)C23—C22—C21122.8 (4)
O2—Eu1—O3145.67 (9)C23—C22—C27117.3 (5)
O2—Eu1—O486.42 (12)C22—C23—H23118.8
O2—Eu1—O5109.01 (12)C24—C23—C22122.3 (5)
O2—Eu1—N1140.38 (10)C24—C23—H23118.8
O2—Eu1—N379.35 (11)C23—C24—H24120.0
O2—Eu1—N572.80 (11)C23—C24—C25120.1 (7)
O3—Eu1—O179.81 (9)C25—C24—H24120.0
O3—Eu1—O579.12 (10)C24—C25—H25119.9
O3—Eu1—N173.13 (9)C26—C25—C24120.3 (6)
O3—Eu1—N3117.69 (11)C26—C25—H25119.9
O3—Eu1—N5139.36 (10)C25—C26—H26119.1
O4—Eu1—O180.32 (11)C25—C26—C27121.8 (5)
O4—Eu1—O371.10 (9)C27—C26—H26119.1
O4—Eu1—O5144.11 (10)C26—C27—C22118.2 (6)
O4—Eu1—N1109.05 (11)C28—C27—C22119.1 (5)
O4—Eu1—N375.70 (10)C28—C27—C26122.7 (5)
O4—Eu1—N5143.07 (11)C27—C28—H28118.6
O5—Eu1—N179.92 (11)C27—C28—C29122.8 (4)
O5—Eu1—N3137.76 (10)C29—C28—H28118.6
O5—Eu1—N572.66 (11)C28—C29—C30123.2 (6)
N3—Eu1—N170.18 (10)C28—C29—C34119.0 (5)
N3—Eu1—N570.74 (11)C30—C29—C34117.8 (6)
N5—Eu1—N173.60 (11)C29—C30—H30119.4
C1—O1—Eu1137.5 (2)C31—C30—C29121.2 (6)
C3—O2—Eu1139.3 (3)C31—C30—H30119.4
C18—O3—Eu1135.7 (2)C30—C31—H31118.9
C20—O4—Eu1135.2 (3)C30—C31—C32122.3 (6)
C48—O5—Eu1134.9 (3)C32—C31—H31118.9
N2—N1—Eu1125.2 (2)C31—C32—H32121.1
C40—N1—Eu1128.1 (3)C33—C32—C31117.9 (7)
C40—N1—N2105.9 (3)C33—C32—H32121.1
N1—N2—B1121.4 (3)C32—C33—H33118.9
C38—N2—N1110.1 (3)C32—C33—C34122.3 (6)
C38—N2—B1128.4 (3)C34—C33—H33118.9
N4—N3—Eu1125.2 (2)C21—C34—C29119.1 (5)
C41—N3—Eu1128.2 (3)C21—C34—C33122.3 (4)
C41—N3—N4106.1 (3)C33—C34—C29118.6 (5)
N3—N4—B1122.4 (3)N5—C35—H35124.6
C43—N4—N3109.8 (3)N5—C35—C36110.9 (6)
C43—N4—B1127.7 (4)C36—C35—H35124.6
N6—N5—Eu1125.4 (2)C35—C36—H36127.6
C35—N5—Eu1126.3 (3)C35—C36—C37104.8 (5)
C35—N5—N6106.6 (4)C37—C36—H36127.6
N5—N6—B1121.6 (3)N6—C37—C36107.8 (5)
C37—N6—N5109.9 (4)N6—C37—H37126.1
C37—N6—B1128.4 (4)C36—C37—H37126.1
C48—N7—C49119.4 (7)N2—C38—H38125.8
C48—N7—C50122.5 (6)N2—C38—C39108.5 (4)
C50—N7—C49118.0 (7)C39—C38—H38125.8
O1—C1—C2125.6 (4)C38—C39—H39127.7
O1—C1—C45116.1 (3)C38—C39—C40104.5 (4)
C2—C1—C45118.2 (3)C40—C39—H39127.7
C1—C2—C4120.3 (3)N1—C40—C39110.9 (4)
C3—C2—C1120.5 (3)N1—C40—H40124.5
C3—C2—C4119.2 (3)C39—C40—H40124.5
O2—C3—C2124.9 (4)N3—C41—H41124.5
O2—C3—C44116.1 (4)N3—C41—C42111.0 (4)
C2—C3—C44119.1 (4)C42—C41—H41124.5
C5—C4—C2120.4 (4)C41—C42—H42127.7
C17—C4—C2120.1 (4)C43—C42—C41104.6 (4)
C17—C4—C5119.5 (4)C43—C42—H42127.7
C4—C5—C10118.9 (5)N4—C43—C42108.5 (4)
C6—C5—C4123.2 (4)N4—C43—H43125.7
C6—C5—C10117.9 (5)C42—C43—H43125.7
C5—C6—H6118.8C3—C44—H44A109.5
C7—C6—C5122.3 (5)C3—C44—H44B109.5
C7—C6—H6118.8C3—C44—H44C109.5
C6—C7—H7120.5H44A—C44—H44B109.5
C6—C7—C8119.0 (7)H44A—C44—H44C109.5
C8—C7—H7120.5H44B—C44—H44C109.5
C7—C8—H8119.7C1—C45—H45A109.5
C9—C8—C7120.7 (6)C1—C45—H45B109.5
C9—C8—H8119.7C1—C45—H45C109.5
C8—C9—H9118.9H45A—C45—H45B109.5
C8—C9—C10122.1 (6)H45A—C45—H45C109.5
C10—C9—H9118.9H45B—C45—H45C109.5
C9—C10—C5118.0 (6)C20—C46—H46A109.5
C11—C10—C5120.0 (5)C20—C46—H46B109.5
C11—C10—C9122.0 (5)C20—C46—H46C109.5
C10—C11—H11119.0H46A—C46—H46B109.5
C12—C11—C10122.0 (4)H46A—C46—H46C109.5
C12—C11—H11119.0H46B—C46—H46C109.5
C11—C12—C13122.9 (5)C18—C47—H47A109.5
C11—C12—C17119.0 (5)C18—C47—H47B109.5
C13—C12—C17118.1 (6)C18—C47—H47C109.5
C12—C13—H13118.9H47A—C47—H47B109.5
C14—C13—C12122.2 (6)H47A—C47—H47C109.5
C14—C13—H13118.9H47B—C47—H47C109.5
C13—C14—H14120.1O5—C48—N7124.7 (6)
C13—C14—C15119.7 (6)O5—C48—H48117.6
C15—C14—H14120.1N7—C48—H48117.6
C14—C15—H15119.5N7—C49—H49A109.5
C16—C15—C14120.9 (7)N7—C49—H49B109.5
C16—C15—H15119.5N7—C49—H49C109.5
C15—C16—H16119.5H49A—C49—H49B109.5
C15—C16—C17121.1 (6)H49A—C49—H49C109.5
C17—C16—H16119.5H49B—C49—H49C109.5
C4—C17—C12120.6 (5)N7—C50—H50A109.5
C4—C17—C16121.5 (4)N7—C50—H50B109.5
C16—C17—C12117.9 (5)N7—C50—H50C109.5
O3—C18—C19124.9 (3)H50A—C50—H50B109.5
O3—C18—C47115.2 (3)H50A—C50—H50C109.5
C19—C18—C47120.0 (3)H50B—C50—H50C109.5
C18—C19—C21118.2 (3)N2—B1—H1109.9
C20—C19—C18122.0 (3)N4—B1—N2109.6 (3)
C20—C19—C21119.8 (3)N4—B1—N6109.7 (3)
O4—C20—C19125.1 (3)N4—B1—H1109.9
O4—C20—C46115.7 (4)N6—B1—N2107.9 (4)
C19—C20—C46119.3 (3)N6—B1—H1109.9
Selected intermolecular interatomic distances (Å) top
C8···C15i3.258 (8)C8···H36ii2.698
H8···C15i2.817H37···C26iii2.830
H50C···N3i2.680C48···C14iii3.159 (8)
H50C···C41i2.718
Symmetry codes: (i) -1 + x, y, z; (ii) x, 2 - y, 1 - z; (iii) -1/2 + x, 3/2 - y, -1/2 + z.
 

Footnotes

Deceased.

Funding information

This work was partially supported by a grant from the National Research Foundation of Ukraine (project 2020.02/0202), and by the Target Program of Fundamental Research `Prospective fundamental studies and innovative developments of nanomaterials and nanotechnologies for the needs of industry, health protection and agriculture', National Academy of Sciences of Ukraine (contracts No. 32/20-N and 32/21-N). We acknowledge the NSF–MRI program (grant No. CHE-1039027 to JPJ) for funding of the Gemini X-ray diffractometer.

References

First citationAlvarez, S., Alemany, P., Casanova, D., Cirera, J., Llunell, M. & Avnir, D. (2005). Coord. Chem. Rev. 249, 1693–1708.  Web of Science CrossRef CAS Google Scholar
First citationAulsebrook, M. L., Graham, B., Grace, M. R. & Tuck, K. L. (2018). Coord. Chem. Rev. 375, 191–220.  CrossRef CAS Google Scholar
First citationBortoluzzi, M., Paolucci, G., Gatto, M., Roppa, S., Enrichi, F., Ciorba, S. & Richards, B. S. (2012). J. Lumin. 132, 2378–2384.  CrossRef CAS Google Scholar
First citationBünzli, J.-C. G. (2017). Eur. J. Inorg. Chem. pp. 5058–5063.  Google Scholar
First citationBünzli, J.-C. G. (2019). Trends Chem. 1, 751–762.  Google Scholar
First citationCarneiro Neto, A. N., Teotonio, E. E. S., de Sá, G. F., Brito, H. F., Legendziewicz, J., Carlos, L. D., Felinto, M. C. F. C., Gawryszewska, P., Moura, R. T. Jr, Longo, R. L., Faustino, W. M. & Malta, O. L. (2019). Handbook on the Physics and Chemistry of Rare Earths, vol. 56, pp. 55–162. Amsterdam: Elsevier.  Google Scholar
First citationCasanova, D., Llunell, M., Alemany, P. & Alvarez, S. (2005). Chem. Eur. J. 11, 1479–1494.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDavies, G. M., Adams, H. & Ward, M. D. (2005). Acta Cryst. C61, m221–m223.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDei, A., Gatteschi, D., Massa, C. A., Pardi, L. A., Poussereau, S. & Sorace, L. (2000). Chem. Eur. J. 6, 4580–4586.  CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGaller, J. L., Goodchild, S., Gould, J., McDonald, R. & Sella, A. (2004). Polyhedron, 23, 253–262.  CrossRef CAS Google Scholar
First citationGheno, G., Bortoluzzi, M., Ganzerla, R. & Enrichi, F. (2014). J. Lumin. 145, 963–969.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuégan, F., Riobé, F., Maury, O., Jung, J., Le Guennic, B., Morell, C. & Luneau, D. (2018). Inorg. Chem. Front. 5, 1346–1353.  Google Scholar
First citationKandel, A. V., Mikhalyova, E. A., Zeller, M., Addison, A. W. & Pavlishchuk, V. V. (2017). Theor. Exp. Chem. 53, 180–186.  CrossRef CAS Google Scholar
First citationKhullar, S., Singh, S., Das, P. & Mandal, S. K. (2019). ACS Omega, 4, 5283–5292.  CrossRef CAS PubMed Google Scholar
First citationLawrence, R. G., Hamor, T. A., Jones, C. J., Paxton, K. & Rowley, N. M. (2001). J. Chem. Soc. Dalton Trans. pp. 2121–2126.  Web of Science CSD CrossRef Google Scholar
First citationLawrence, R. G., Jones, C. J. & Kresinski, R. A. (1996). J. Chem. Soc. Dalton Trans. pp. 501–507.  CrossRef Google Scholar
First citationLippard, S. L. & Russ, B. I. (1968). Inorg. Chem. 7, 1686–1688.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMikhalyova, E. A., Yakovenko, A. V., Zeller, M., Gavrilenko, K. S., Kiskin, M. A., Smola, S. S., Dotsenko, V. P., Eremenko, I. L., Addison, A. W. & Pavlishchuk, V. V. (2017). Dalton Trans. 46, 3457–3469.  CrossRef CAS PubMed Google Scholar
First citationMikhalyova, E. A., Zeller, M., Jasinski, J. P., Butcher, R. J., Carrella, L. M., Sedykh, A. E., Gavrilenko, K. S., Smola, S. S., Frasso, M., Cazorla, S. C., Perera, K., Shi, A., Ranjbar, H. G., Smith, C., Deac, A., Liu, Y., McGee, S. M., Dotsenko, V. P., Kumke, M. U., Müller-Buschbaum, K., Rentschler, E., Addison, A. W. & Pavlishchuk, V. V. (2020). Dalton Trans. 49, 7774–7789.  CrossRef CAS PubMed Google Scholar
First citationMorissette, M., Haufe, S., McDonald, R., Ferrence, G. M. & Takats, J. (2004). Polyhedron, 23, 263–271.  CrossRef CAS Google Scholar
First citationMoss, M. A. J., Jones, C. J. & Edwards, A. J. (1988). Polyhedron, 7, 79–81.  CrossRef CAS Google Scholar
First citationMoss, M. A. J., Jones, C. J. & Edwards, A. J. (1989). J. Chem. Soc. Dalton Trans. pp. 1393–1400.  CrossRef Google Scholar
First citationMüller, M., Weyhermüller, T., Bill, E. & Wieghardt, K. (1998). J. Biol. Inorg. Chem. 3, 96–106.  Google Scholar
First citationNakano, Y. & Sato, S. (1982). Inorg. Chem. 21, 1315–1318.  CrossRef CAS Google Scholar
First citationNehra, K., Dalal, A., Hooda, A., Bhagwan, S., Saini, R. K., Mari, B., Kumar, S. & Singh, D. (2022). J. Mol. Struct. 1249, 131531.  CrossRef Google Scholar
First citationOnishi, M., Kayano, K., Inada, K., Yamaguchi, H., Nagaoka, J., Arikawa, Y. & Takatani, T. (2004). Inorg. Chim. Acta, 357, 4091–4101.  CrossRef CAS Google Scholar
First citationOnishi, M., Yamaguchi, H., Shimotsuma, H., Hiraki, K., Nagaoka, J. & Kawano, H. (1999). Chem. Lett. 28, 573–574.  CrossRef Google Scholar
First citationPorai-Koshits, M. A. & Aslanov, L. A. (1972). J. Struct. Chem. 13, 244–253.  CrossRef Google Scholar
First citationRigaku OD (2015). CrysAlisPro. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSarkar, D., Ganguli, S., Samanta, T. & Mahalingam, V. (2019). Langmuir, 35, 6211–6230.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVenturini Filho, E., de Sousa Filho, P. C., Serra, O. A., Weber, I. T., Lucena, M. A. M. & Luz, P. P. (2018). J. Lumin. 202, 89–96.  CAS Google Scholar
First citationWang, F., Pu, Y., Zhang, X., Zhang, F., Cheng, H. & Zhao, Y. (2019). J. Lumin. 206, 192–198.  CrossRef CAS Google Scholar
First citationWang, L., Zhao, Z., Wei, C., Wei, H., Liu, Z., Bian, Z. & Huang, C. (2019). Adv. Opt. Mater. 7, 1801256.  CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, H., Chen, Z.-H., Liu, X. & Zhang, F. (2020). Nano Res. 13, 1795–1809.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds