Jerry P. Jasinski tribute
Bis[3-(anthracen-9-yl)pentane-2,4-dionato-κ2O,O′](N,N-dimethylformamide-κO)[tris(pyrazol-1-yl-κN2)hydroborato]europium(III)
aL. V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Prospekt Nauki 31, Kyiv, 03028, Ukraine, bDepartment of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA, cDepartment of Chemistry, Keene State College, Keene, NH 03435, USA, and dDepartment of Chemistry, Drexel University, Philadelphia, PA 19104-2816, USA
*Correspondence e-mail: elenaamikhalyova@gmail.com
The title compound, [Eu(C9H10BN6)(C19H15O2)2(C3H7NO)] or [TpEu(Anthracac)2(DMF)], was synthesized by reaction of a tris(pyrazolyl)borate (Tp−) Eu3+ complex with 3-(anthracen-9-yl)pentane-2,4-dione (HAnthracac) in the presence of triethylamine. In the title compound, Eu3+ is located in an octavertex square-pyramidal coordination environment. In the two Anthracac− ligands, the anthracene and nearly planar acetylacetonate fragments are almost orthogonal. Neighboring molecules of TpEu(Anthracac)2(DMF) are connected in the crystal by intermolecular van der Waals interactions, while π-stacking interactions are limited to the edges of two anthracene rings.
Keywords: crystal structure; lanthanide complexes; luminescence; antenna ligands.
CCDC reference: 2143190
1. Chemical context
Lanthanide complexes find numerous applications as, for example, luminescent materials, markers, security inks, components of lasers, light-emitting diodes, and many others (Bünzli, 2017; Venturini Filho et al., 2018; Khullar et al., 2019; Bünzli, 2019). This variety of uses relies in large parts on the electronic structure of the Ln3+ ions, which leads to electronic transitions occurring between f-orbitals, providing them with unique luminescence characteristics, including high color purity and exact reproducibility of the emitted light color (Sarkar et al., 2019; Wang, Pu et al., 2019; Wang, Zhao et al., 2019). In spite of these advantages, the electronic structure of Ln3+ ions causes the luminescence to be of low intensity due to the forbidden nature of f–f electronic transitions (Bünzli, 2017; Zhang et al., 2020; Wang, Zhao et al., 2019), hence the weak absorbance of the exciting radiation. This feature is usually evaded by using organic `antenna' ligands, which are capable of absorbing exciting radiation and transferring the gained energy to the Ln3+ ions (Bünzli, 2017; Carneiro Neto et al., 2019; Aulsebrook et al., 2018). Recently, it was shown (Mikhalyova et al., 2017; Gheno et al., 2014; Mikhalyova et al., 2020; Bortoluzzi et al., 2012) that tris(pyrazolyl)borate anions are efficient antenna ligands for Tb3+ and Eu3+, both exhibiting emission in the visible range. Anions of β-diketones with different substituents are also well-known antenna ligands (Wang, Zhao et al., 2019; Nehra et al., 2022). To increase the extinction coefficients of the ligands, it can be of advantage to add a large conjugated moiety to their structure. Recently it was found by us (Kandel et al., 2017; Mikhalyova et al., 2017), that the combination of several antenna ligands in one compound can have complex and unpredictable effects on its luminescence characteristics, which also depend on the molecular and details of the complex. Thus, for this work, an Eu3+ complex with two types of antenna ligands, i.e. tris(pyrazolyl)borate (Tp−) and 3-(anthracen-9-yl)pentane-2,4-dionate (Anthracac−), of the composition TpEu(Anthracac)2(DMF) was obtained and its molecular and crystal structures were studied.
2. Structural commentary
The title compound is a neutral metal-containing complex and crystallizes in the monoclinic P21/n with only one molecule in the (Fig. 1). The contains two molecules of each enantiomer, whose crystallographic positions are related by the inversion centers, glide planes and screw axes (Fig. 2). The consists of the Eu3+ ion surrounded by one Tp− and two Anthracac− ligands and one dimethylformamide molecule. Of these ligands, the Tp− is coordinated tridentately, donating three N atoms to the while each Anthracac− acts as a bidentate O ligand, donating a combined four O atoms. The DMF molecule acts as a unidentate O donor. As is typical for lanthanide ions with seven, eight or nine coordinating atoms, the assignment of the coordination geometry carries some ambiguity. Several different criteria have been proposed to define the shape of such a Use of the Shape 2.1 software (Casanova et al., 2005; Alvarez et al., 2005), indicates that the Eu3+ ion in the title compound is an octavertex with a slightly distorted square-antiprismatic geometry (Fig. 3), with a mean angle between the capping and basal square planes of the of 0.75 (8)°. According to the Lippard & Russ (1968) criterion, the angle between the body-diagonal trapezoids for the title compound, ω, is 88.24 (7)°, which is closer to the angle for a dodecahedron (90.0°) than a square antiprism (79.3°). A more accurate criterion is the one proposed by Porai-Koshits and Aslanov (1972) based on the angles, δ, between pairs of faces intersecting along the edges connecting the vertices where the five edges intersect. The respective angles for the complex here are 6.6 (1), 8.9 (1), 43.3 (1), and 49.7 (1)° and the degrees of non-planarity of the diagonal trapezoids, φ, are 18.81 (9) and 19.74 (1)°. From these criteria, the δ angles are closer to those of an idealized square antiprism, yet the φ angles correspond to those of a bicapped trigonal prism. Thus, three different criteria define three different polyhedra and among these criteria, only the δ-based one agrees with the assignment using the Shape 2.1 software.
The lengths for Eu-donor atom bonds are listed in Table 1 and these are in the usual range for compounds with similar ligands (Mikhalyova et al., 2020; Lawrence et al., 2001; Dei et al., 2000).
|
Regarding the geometrical features of the ligands, it should be noted that the planar anthracene moiety and the nearly planar acetylacetonate fragment are almost orthogonal to each other in each Anthracac− ligand, subtending dihedral angles of 87.84 (7) and 79.98 (7)°. This is due to the presence of the CH3 groups, which prevent rotation of the anthracenyl fragments along the C2—C4 and C19—C21 bonds.
3. Supramolecular features
The crystal packing of the title compound consists of separate neutral molecules. Several short contacts are observed (Table 2), but none of these exhibit the typical characteristics of directional attractive interactions, i.e. they are not hydrogen bonds or C—H⋯π interactions. It thus can be said that these molecules are organized in the lattice predominantly by intermolecular van der Waals or dispersion interactions (Fig. 4, Table 2).
|
π-Stacking interactions play no dominant role in this structure. For one of the anthracene fragments (C4–C16) no π–π stacking interactions are observed at all. For the other anthracenyl group (C21–C34) one π-interaction is present, but it is limited to part of one of the outer phenylene groups, C29–C34, which is π-stacked with its inversion-related counterpart [symmetry code: (i) 2 − x, 1 − y, 1 − z], with a centroid-to-centroid distance of 3.958 (8) Å (Fig. 5). The remainder of the anthracenyl group does not participate in the π–π stacking interaction; for the entire anthracene moiety (C21–C34) the distance between the centroids is 6.006 (8) Å. The distance between inversion-related mean planes (C21–C34 and C21i–C34i) is 3.455 Å, indicating a medium strength stacking interaction (Fig. 5).
4. Database survey
The Cambridge Structural Database (CSD, version 5.41, updates till Aug 2020; Groom et al., 2016) contains just one with an Ln3+ ion surrounded by two β-diketonate anions and one tris(pyrazolyl)borate ligand, namely, bis(1,3-diphenyl-1,3-propanedionato-O,O′){hydrotris[3-(2-pyridyl)pyrazol-1-yl]borato}praseodymium(III) (FOLZUC; Davies et al., 2005). However, in this compound the Pr3+ ion is decacoordinate owing to the presence of 2-pyridyl substituents in the tris(pyrazolyl)borate ligand, so a direct comparison of the coordination geometries of this and the title compound is not possible.
Fragments containing one Ln ion surrounded by at least one β-diketonate anion and one tris(pyrazolyl)borate ligand encompass 34 entities (including FOLZUC). Most of them (28), contain eight-coordinate lanthanide ions with two tris(pyrazolyl)borate ligands and one β-diketonate anion: DULWEP, DULWIT, DULWOZ, DULWUF, DULXAM, DULXEQ, DULXIU, DULXOA, DULXUG, DULYAN, DULYER, DULYIV, DULYOB, DULYUH, DULZAO, DULZES, DULZIW, DULZOC, DULZUI and DUMDAT (all Mikhalyova et al., 2020); ESUHOP (Galler et al., 2004); GIFCUT, GIFDAA (Moss et al., 1988); GIFCUT10, GIFDAA10 (Moss et al., 1989); KIFKUI (Guégan et al., 2018); XICHIA (Lawrence et al., 2001). Again, the coordination environment of these compounds and the title one cannot be directly compared. One of the compounds, FOLZUC, is discussed above and another, [tris(3-t-butyl-5-methylpyrazolyl)hydroborato](2,2,6,6-tetramethylheptane-3,5-dionato)ytterbium(II) (ESUJIL; Morissette et al., 2004) is a neutral molecule of Yb2+. Four entities are complexes with salicylaldehyde derivatives [JAJRAO (Onishi et al., 2004), QIDGAL, QIDGAL01 (Onishi et al., 1999), and ZUCCIJ (Lawrence et al., 1996)], which are also β-diketonate anions, but, again, compounds with these anions contain eight-coordinate Ln3+ ions.
Only three metal-containing structures were found with 3-naphthyl or 3-anthracenyl substituents. The interplanar angles for acetylacetonate vs aryl fragments are 86.4° for [3-(1′-naphthyl)pentane-2,4-dionato][tris(2-aminoethyl)amine]cobalt(III) bis(tetrafluoroborate) dihydrate, 87.1° for [3-(2′,4′-dinitro-1′-naphthyl)pentane-2,4-dionato][tris(2-aminoethyl)amine]cobalt(III) dibromide (BEYTEE and BIMLUE, respectively; Nakano & Sato, 1982) and 83.5° for [3-(9′-anthryl)acetylacetonato]chlorido(1,4,7-trimethyl-1,4,7-triazacyclononane)iron(III) perchlorate mesitylene solvate (NUCZUG; Müller et al., 1998). These angles are in the same range as for the title compound.
5. Synthesis and crystallization
The starting Tp2EuCl complex was obtained by reaction of TpTl with EuCl3·6H2O in methanol (Kandel et al., 2017). Then, 307 mg (0.50 mmol) of Tp2EuCl and 138 mg (0.50 mmol) of HAnthracac were dissolved in 15 mL of methylene chloride, followed by the addition of 0.15 mL of triethylamine. After the solution had been stirred for 1 h, the reaction mixture was filtered and the filtrate was evaporated under reduced pressure (rotavapor). The resulting residue was washed with water and dried in a vacuum desiccator over P2O5. The crude product was recrystallized by slow diffusion of methyl t-butyl ether into a DMF solution of the compound. The title compound was obtained as orange prismatic crystals (25 mg, yield 10%).
6. Refinement
Crystal data, data collection and structure . C—H bond distances were constrained to 0.95 Å for aromatic and alkene C—H moieties, and to 0.98 Å for CH3 moieties. The B—H bond distance was constrained to 1.00 Å. Uiso(H) values were set to kUeq(C) where k = 1.5 for CH3 and 1.2 for C—H units.
details are summarized in Table 3Supporting information
CCDC reference: 2143190
https://doi.org/10.1107/S2056989022000676/yy2007sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022000676/yy2007Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989022000676/yy2007sup3.pdf
Data collection: CrysAlis PRO (Rigaku OD, 2015); cell
CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009), Mercury (Macrae et al., 2020); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009), and publCIF (Westrip, 2010).[Eu(C9H10BN6)(C19H15O2)2(C3H7NO)] | F(000) = 2016 |
Mr = 988.71 | Dx = 1.415 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54184 Å |
a = 9.3728 (3) Å | Cell parameters from 8094 reflections |
b = 22.5555 (7) Å | θ = 4.0–71.4° |
c = 22.0840 (6) Å | µ = 10.11 mm−1 |
β = 96.314 (3)° | T = 173 K |
V = 4640.4 (2) Å3 | Prism, orange |
Z = 4 | 0.48 × 0.18 × 0.12 mm |
Rigaku Oxford Diffraction Gemini Eos diffractometer | 8850 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source | 7261 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.048 |
Detector resolution: 16.0416 pixels mm-1 | θmax = 71.4°, θmin = 3.9° |
ω scans | h = −11→11 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2015) | k = −27→17 |
Tmin = 0.163, Tmax = 1.000 | l = −26→24 |
19671 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.042 | H-atom parameters constrained |
wR(F2) = 0.106 | w = 1/[σ2(Fo2) + (0.0592P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.004 |
8850 reflections | Δρmax = 1.09 e Å−3 |
583 parameters | Δρmin = −1.25 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Eu1 | 0.52702 (2) | 0.81156 (2) | 0.43393 (2) | 0.01770 (8) | |
O1 | 0.4093 (3) | 0.77371 (12) | 0.51430 (12) | 0.0316 (6) | |
O2 | 0.4941 (4) | 0.88721 (12) | 0.50175 (13) | 0.0396 (8) | |
O3 | 0.5692 (3) | 0.70993 (11) | 0.42273 (11) | 0.0263 (6) | |
O4 | 0.7264 (3) | 0.78408 (11) | 0.50130 (13) | 0.0317 (6) | |
O5 | 0.2953 (3) | 0.77901 (14) | 0.38675 (14) | 0.0383 (7) | |
N1 | 0.5855 (4) | 0.79579 (14) | 0.32351 (13) | 0.0248 (7) | |
N2 | 0.6057 (4) | 0.83970 (15) | 0.28333 (14) | 0.0294 (7) | |
N3 | 0.7242 (4) | 0.88341 (14) | 0.41029 (14) | 0.0266 (7) | |
N4 | 0.7259 (4) | 0.91415 (14) | 0.35743 (14) | 0.0268 (7) | |
N5 | 0.4131 (4) | 0.89911 (15) | 0.37142 (16) | 0.0331 (8) | |
N6 | 0.4623 (4) | 0.92238 (15) | 0.32156 (16) | 0.0361 (8) | |
N7 | 0.0779 (5) | 0.7911 (2) | 0.3344 (3) | 0.0597 (14) | |
C1 | 0.3798 (4) | 0.79077 (17) | 0.56538 (18) | 0.0266 (8) | |
C2 | 0.4045 (5) | 0.84859 (17) | 0.58988 (17) | 0.0269 (8) | |
C3 | 0.4583 (5) | 0.89398 (18) | 0.55457 (19) | 0.0339 (10) | |
C4 | 0.3751 (5) | 0.86189 (16) | 0.65368 (18) | 0.0298 (9) | |
C5 | 0.2383 (5) | 0.88156 (16) | 0.6657 (2) | 0.0345 (10) | |
C6 | 0.1212 (5) | 0.88699 (18) | 0.6203 (2) | 0.0424 (11) | |
H6 | 0.1357 | 0.8791 | 0.5792 | 0.051* | |
C7 | −0.0128 (6) | 0.9033 (2) | 0.6333 (3) | 0.0591 (16) | |
H7 | −0.0900 | 0.9063 | 0.6018 | 0.071* | |
C8 | −0.0347 (9) | 0.9156 (2) | 0.6950 (4) | 0.079 (3) | |
H8 | −0.1274 | 0.9266 | 0.7046 | 0.094* | |
C9 | 0.0737 (9) | 0.9117 (2) | 0.7394 (3) | 0.071 (2) | |
H9 | 0.0562 | 0.9201 | 0.7800 | 0.085* | |
C10 | 0.2147 (7) | 0.89522 (18) | 0.7277 (2) | 0.0496 (15) | |
C11 | 0.3259 (8) | 0.8903 (2) | 0.7737 (2) | 0.0584 (18) | |
H11 | 0.3095 | 0.9007 | 0.8140 | 0.070* | |
C12 | 0.4595 (7) | 0.87091 (19) | 0.7630 (2) | 0.0501 (14) | |
C13 | 0.5756 (10) | 0.8643 (2) | 0.8103 (3) | 0.072 (2) | |
H13 | 0.5615 | 0.8757 | 0.8506 | 0.086* | |
C14 | 0.7041 (10) | 0.8424 (3) | 0.7996 (3) | 0.084 (3) | |
H14 | 0.7790 | 0.8385 | 0.8320 | 0.101* | |
C15 | 0.7271 (7) | 0.8252 (3) | 0.7400 (3) | 0.0683 (19) | |
H15 | 0.8169 | 0.8088 | 0.7328 | 0.082* | |
C16 | 0.6219 (6) | 0.8320 (2) | 0.6926 (2) | 0.0471 (12) | |
H16 | 0.6406 | 0.8211 | 0.6527 | 0.056* | |
C17 | 0.4842 (5) | 0.85520 (18) | 0.70201 (19) | 0.0360 (10) | |
C18 | 0.6316 (5) | 0.66956 (16) | 0.45555 (16) | 0.0250 (8) | |
C19 | 0.7273 (4) | 0.67949 (16) | 0.50837 (16) | 0.0253 (8) | |
C20 | 0.7690 (4) | 0.73674 (18) | 0.52778 (17) | 0.0271 (8) | |
C21 | 0.7840 (5) | 0.62631 (17) | 0.54511 (18) | 0.0353 (10) | |
C22 | 0.6957 (6) | 0.59931 (18) | 0.58541 (19) | 0.0417 (12) | |
C23 | 0.5594 (6) | 0.6217 (2) | 0.5950 (2) | 0.0448 (12) | |
H23 | 0.5257 | 0.6567 | 0.5741 | 0.054* | |
C24 | 0.4744 (7) | 0.5949 (3) | 0.6332 (2) | 0.0580 (15) | |
H24 | 0.3843 | 0.6118 | 0.6394 | 0.070* | |
C25 | 0.5201 (10) | 0.5420 (3) | 0.6635 (3) | 0.075 (2) | |
H25 | 0.4595 | 0.5229 | 0.6892 | 0.090* | |
C26 | 0.6484 (9) | 0.5188 (2) | 0.6562 (2) | 0.0654 (19) | |
H26 | 0.6768 | 0.4828 | 0.6765 | 0.079* | |
C27 | 0.7442 (7) | 0.5466 (2) | 0.6185 (2) | 0.0503 (14) | |
C28 | 0.8772 (7) | 0.5250 (2) | 0.6124 (2) | 0.0587 (17) | |
H28 | 0.9088 | 0.4905 | 0.6347 | 0.070* | |
C29 | 0.9690 (7) | 0.5512 (2) | 0.5747 (2) | 0.0540 (15) | |
C30 | 1.1070 (8) | 0.5289 (3) | 0.5678 (3) | 0.074 (2) | |
H30 | 1.1411 | 0.4948 | 0.5903 | 0.089* | |
C31 | 1.1914 (8) | 0.5550 (3) | 0.5299 (3) | 0.071 (2) | |
H31 | 1.2842 | 0.5391 | 0.5269 | 0.085* | |
C32 | 1.1462 (7) | 0.6054 (3) | 0.4942 (3) | 0.0692 (19) | |
H32 | 1.2067 | 0.6229 | 0.4674 | 0.083* | |
C33 | 1.0122 (6) | 0.6281 (2) | 0.4999 (2) | 0.0511 (13) | |
H33 | 0.9806 | 0.6620 | 0.4764 | 0.061* | |
C34 | 0.9201 (6) | 0.6030 (2) | 0.5391 (2) | 0.0434 (12) | |
C35 | 0.2815 (6) | 0.9201 (2) | 0.3731 (3) | 0.0520 (13) | |
H35 | 0.2225 | 0.9118 | 0.4043 | 0.062* | |
C36 | 0.2421 (8) | 0.9556 (3) | 0.3235 (4) | 0.076 (2) | |
H36 | 0.1529 | 0.9753 | 0.3135 | 0.091* | |
C37 | 0.3605 (7) | 0.9565 (3) | 0.2915 (3) | 0.0662 (17) | |
H37 | 0.3686 | 0.9774 | 0.2547 | 0.079* | |
C38 | 0.6116 (6) | 0.8170 (2) | 0.22766 (18) | 0.0374 (10) | |
H38 | 0.6252 | 0.8389 | 0.1920 | 0.045* | |
C39 | 0.5948 (5) | 0.7566 (2) | 0.23078 (18) | 0.0373 (10) | |
H39 | 0.5933 | 0.7287 | 0.1985 | 0.045* | |
C40 | 0.5805 (5) | 0.74553 (18) | 0.29162 (17) | 0.0282 (8) | |
H40 | 0.5688 | 0.7072 | 0.3083 | 0.034* | |
C41 | 0.8332 (5) | 0.9041 (2) | 0.4480 (2) | 0.0384 (10) | |
H41 | 0.8576 | 0.8906 | 0.4886 | 0.046* | |
C42 | 0.9064 (6) | 0.9479 (2) | 0.4203 (2) | 0.0476 (12) | |
H42 | 0.9882 | 0.9695 | 0.4372 | 0.057* | |
C43 | 0.8344 (6) | 0.95314 (19) | 0.3629 (2) | 0.0410 (11) | |
H43 | 0.8576 | 0.9799 | 0.3323 | 0.049* | |
C44 | 0.4746 (8) | 0.9563 (2) | 0.5808 (2) | 0.067 (2) | |
H44A | 0.5506 | 0.9772 | 0.5623 | 0.101* | |
H44B | 0.4998 | 0.9540 | 0.6250 | 0.101* | |
H44C | 0.3839 | 0.9778 | 0.5720 | 0.101* | |
C45 | 0.3115 (6) | 0.74539 (18) | 0.6032 (2) | 0.0405 (11) | |
H45A | 0.2855 | 0.7102 | 0.5783 | 0.061* | |
H45B | 0.2251 | 0.7623 | 0.6177 | 0.061* | |
H45C | 0.3796 | 0.7342 | 0.6382 | 0.061* | |
C46 | 0.8711 (6) | 0.7442 (2) | 0.5854 (2) | 0.0445 (12) | |
H46A | 0.9668 | 0.7302 | 0.5782 | 0.067* | |
H46B | 0.8363 | 0.7211 | 0.6183 | 0.067* | |
H46C | 0.8762 | 0.7862 | 0.5968 | 0.067* | |
C47 | 0.5960 (6) | 0.60688 (18) | 0.43470 (19) | 0.0394 (11) | |
H47A | 0.5374 | 0.5879 | 0.4633 | 0.059* | |
H47B | 0.6850 | 0.5844 | 0.4333 | 0.059* | |
H47C | 0.5424 | 0.6078 | 0.3940 | 0.059* | |
C48 | 0.2187 (6) | 0.7920 (2) | 0.3402 (3) | 0.0481 (12) | |
H48 | 0.2645 | 0.8035 | 0.3057 | 0.058* | |
C49 | −0.0009 (10) | 0.8083 (3) | 0.2768 (4) | 0.106 (4) | |
H49A | 0.0668 | 0.8210 | 0.2485 | 0.158* | |
H49B | −0.0658 | 0.8412 | 0.2835 | 0.158* | |
H49C | −0.0568 | 0.7745 | 0.2594 | 0.158* | |
C50 | −0.0025 (8) | 0.7747 (4) | 0.3832 (4) | 0.094 (3) | |
H50A | 0.0636 | 0.7644 | 0.4192 | 0.141* | |
H50B | −0.0630 | 0.7404 | 0.3709 | 0.141* | |
H50C | −0.0632 | 0.8079 | 0.3929 | 0.141* | |
B1 | 0.6109 (6) | 0.9057 (2) | 0.3029 (2) | 0.0331 (11) | |
H1 | 0.6336 | 0.9311 | 0.2681 | 0.040* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Eu1 | 0.02659 (12) | 0.01614 (10) | 0.01118 (10) | 0.00364 (9) | 0.00566 (7) | −0.00032 (7) |
O1 | 0.0516 (18) | 0.0232 (13) | 0.0240 (13) | −0.0069 (12) | 0.0212 (13) | −0.0064 (10) |
O2 | 0.079 (2) | 0.0166 (12) | 0.0292 (14) | −0.0018 (14) | 0.0342 (15) | −0.0044 (10) |
O3 | 0.0391 (15) | 0.0230 (12) | 0.0160 (11) | 0.0072 (11) | −0.0003 (11) | 0.0018 (10) |
O4 | 0.0422 (17) | 0.0186 (12) | 0.0318 (14) | −0.0022 (12) | −0.0072 (13) | 0.0049 (11) |
O5 | 0.0329 (16) | 0.0390 (16) | 0.0406 (17) | −0.0004 (13) | −0.0067 (14) | 0.0018 (13) |
N1 | 0.0393 (19) | 0.0235 (15) | 0.0127 (13) | 0.0060 (13) | 0.0075 (13) | −0.0013 (11) |
N2 | 0.046 (2) | 0.0281 (17) | 0.0149 (14) | 0.0025 (15) | 0.0055 (14) | 0.0022 (12) |
N3 | 0.0397 (19) | 0.0229 (14) | 0.0178 (14) | −0.0003 (14) | 0.0060 (14) | 0.0029 (12) |
N4 | 0.0397 (19) | 0.0201 (14) | 0.0225 (15) | −0.0010 (14) | 0.0123 (14) | −0.0017 (12) |
N5 | 0.037 (2) | 0.0259 (16) | 0.0366 (19) | 0.0130 (15) | 0.0052 (16) | 0.0034 (14) |
N6 | 0.050 (2) | 0.0284 (17) | 0.0277 (17) | 0.0182 (16) | −0.0042 (16) | 0.0058 (13) |
N7 | 0.039 (2) | 0.041 (2) | 0.094 (4) | 0.0157 (19) | −0.021 (3) | −0.021 (2) |
C1 | 0.033 (2) | 0.0217 (17) | 0.0267 (18) | −0.0019 (15) | 0.0119 (16) | −0.0023 (15) |
C2 | 0.040 (2) | 0.0227 (17) | 0.0206 (17) | 0.0004 (16) | 0.0159 (16) | −0.0031 (14) |
C3 | 0.056 (3) | 0.0205 (18) | 0.028 (2) | −0.0003 (18) | 0.019 (2) | −0.0025 (15) |
C4 | 0.048 (2) | 0.0183 (17) | 0.0268 (19) | −0.0071 (17) | 0.0188 (18) | −0.0059 (14) |
C5 | 0.054 (3) | 0.0143 (16) | 0.040 (2) | −0.0052 (17) | 0.028 (2) | −0.0038 (15) |
C6 | 0.047 (3) | 0.0206 (18) | 0.064 (3) | −0.0014 (19) | 0.027 (2) | −0.0067 (19) |
C7 | 0.050 (3) | 0.024 (2) | 0.108 (5) | 0.000 (2) | 0.028 (3) | −0.001 (3) |
C8 | 0.092 (5) | 0.022 (2) | 0.140 (7) | 0.009 (3) | 0.090 (5) | 0.010 (3) |
C9 | 0.115 (6) | 0.019 (2) | 0.093 (5) | 0.007 (3) | 0.085 (5) | 0.000 (3) |
C10 | 0.091 (4) | 0.0167 (18) | 0.051 (3) | −0.005 (2) | 0.052 (3) | −0.0055 (17) |
C11 | 0.127 (6) | 0.028 (2) | 0.027 (2) | −0.016 (3) | 0.040 (3) | −0.0104 (17) |
C12 | 0.101 (5) | 0.023 (2) | 0.028 (2) | −0.017 (2) | 0.013 (3) | −0.0027 (16) |
C13 | 0.146 (7) | 0.031 (3) | 0.034 (3) | −0.028 (4) | −0.007 (4) | 0.002 (2) |
C14 | 0.126 (7) | 0.053 (4) | 0.062 (4) | −0.045 (4) | −0.045 (5) | 0.017 (3) |
C15 | 0.063 (4) | 0.057 (3) | 0.079 (4) | −0.022 (3) | −0.015 (3) | 0.023 (3) |
C16 | 0.049 (3) | 0.045 (3) | 0.047 (3) | −0.016 (2) | 0.006 (2) | 0.005 (2) |
C17 | 0.059 (3) | 0.0224 (18) | 0.028 (2) | −0.0147 (19) | 0.011 (2) | 0.0014 (15) |
C18 | 0.039 (2) | 0.0197 (17) | 0.0168 (16) | 0.0072 (16) | 0.0052 (15) | −0.0013 (13) |
C19 | 0.035 (2) | 0.0214 (17) | 0.0191 (16) | 0.0052 (15) | 0.0000 (15) | 0.0017 (13) |
C20 | 0.029 (2) | 0.0293 (19) | 0.0221 (17) | 0.0038 (16) | −0.0012 (16) | 0.0035 (15) |
C21 | 0.054 (3) | 0.0222 (18) | 0.0261 (19) | 0.0072 (18) | −0.0128 (19) | −0.0028 (15) |
C22 | 0.075 (4) | 0.0229 (19) | 0.0226 (19) | −0.002 (2) | −0.012 (2) | 0.0012 (15) |
C23 | 0.066 (3) | 0.035 (2) | 0.033 (2) | −0.005 (2) | −0.001 (2) | 0.0079 (18) |
C24 | 0.080 (4) | 0.052 (3) | 0.042 (3) | −0.017 (3) | 0.009 (3) | 0.010 (2) |
C25 | 0.114 (6) | 0.059 (4) | 0.050 (3) | −0.029 (4) | 0.001 (4) | 0.022 (3) |
C26 | 0.115 (6) | 0.034 (3) | 0.043 (3) | −0.016 (3) | −0.012 (3) | 0.019 (2) |
C27 | 0.087 (4) | 0.025 (2) | 0.034 (2) | 0.004 (2) | −0.018 (3) | 0.0059 (18) |
C28 | 0.102 (5) | 0.029 (2) | 0.040 (3) | 0.015 (3) | −0.017 (3) | 0.003 (2) |
C29 | 0.070 (4) | 0.041 (3) | 0.044 (3) | 0.024 (3) | −0.026 (3) | −0.017 (2) |
C30 | 0.090 (5) | 0.055 (3) | 0.068 (4) | 0.038 (4) | −0.033 (4) | −0.012 (3) |
C31 | 0.066 (4) | 0.071 (4) | 0.069 (4) | 0.040 (4) | −0.023 (3) | −0.019 (3) |
C32 | 0.057 (4) | 0.089 (5) | 0.058 (4) | 0.017 (3) | −0.010 (3) | −0.028 (3) |
C33 | 0.051 (3) | 0.048 (3) | 0.050 (3) | 0.020 (2) | −0.011 (2) | −0.013 (2) |
C34 | 0.056 (3) | 0.034 (2) | 0.036 (2) | 0.014 (2) | −0.014 (2) | −0.0124 (18) |
C35 | 0.044 (3) | 0.032 (2) | 0.080 (4) | 0.022 (2) | 0.007 (3) | 0.005 (2) |
C36 | 0.061 (4) | 0.056 (4) | 0.109 (6) | 0.033 (3) | 0.000 (4) | 0.020 (4) |
C37 | 0.076 (4) | 0.051 (3) | 0.068 (4) | 0.023 (3) | −0.007 (3) | 0.024 (3) |
C38 | 0.056 (3) | 0.042 (2) | 0.0161 (17) | −0.004 (2) | 0.0130 (18) | 0.0007 (16) |
C39 | 0.056 (3) | 0.039 (2) | 0.0193 (18) | −0.003 (2) | 0.0113 (19) | −0.0079 (16) |
C40 | 0.037 (2) | 0.0282 (19) | 0.0200 (18) | 0.0001 (17) | 0.0070 (16) | −0.0047 (14) |
C41 | 0.044 (3) | 0.036 (2) | 0.034 (2) | −0.006 (2) | −0.002 (2) | −0.0020 (17) |
C42 | 0.051 (3) | 0.036 (2) | 0.056 (3) | −0.014 (2) | 0.005 (2) | −0.004 (2) |
C43 | 0.057 (3) | 0.027 (2) | 0.042 (2) | −0.009 (2) | 0.021 (2) | −0.0025 (17) |
C44 | 0.140 (6) | 0.023 (2) | 0.049 (3) | −0.020 (3) | 0.060 (4) | −0.012 (2) |
C45 | 0.062 (3) | 0.0257 (19) | 0.040 (2) | −0.014 (2) | 0.032 (2) | −0.0065 (17) |
C46 | 0.054 (3) | 0.031 (2) | 0.042 (3) | 0.002 (2) | −0.023 (2) | −0.0043 (18) |
C47 | 0.064 (3) | 0.0226 (19) | 0.028 (2) | 0.003 (2) | −0.011 (2) | −0.0035 (15) |
C48 | 0.051 (3) | 0.035 (2) | 0.056 (3) | 0.006 (2) | −0.007 (2) | −0.004 (2) |
C49 | 0.100 (6) | 0.077 (5) | 0.125 (7) | 0.032 (5) | −0.056 (6) | −0.029 (5) |
C50 | 0.062 (4) | 0.090 (6) | 0.135 (8) | −0.007 (4) | 0.035 (5) | −0.044 (5) |
B1 | 0.057 (3) | 0.026 (2) | 0.0174 (19) | 0.004 (2) | 0.008 (2) | 0.0094 (16) |
Eu1—O1 | 2.351 (3) | C20—C46 | 1.515 (5) |
Eu1—O2 | 2.313 (3) | C21—C22 | 1.418 (7) |
Eu1—O3 | 2.344 (3) | C21—C34 | 1.399 (7) |
Eu1—O4 | 2.340 (3) | C22—C23 | 1.411 (8) |
Eu1—O5 | 2.417 (3) | C22—C27 | 1.443 (6) |
Eu1—N1 | 2.582 (3) | C23—H23 | 0.9500 |
Eu1—N3 | 2.555 (3) | C23—C24 | 1.364 (7) |
Eu1—N5 | 2.573 (3) | C24—H24 | 0.9500 |
O1—C1 | 1.251 (5) | C24—C25 | 1.410 (9) |
O2—C3 | 1.258 (5) | C25—H25 | 0.9500 |
O3—C18 | 1.266 (5) | C25—C26 | 1.339 (10) |
O4—C20 | 1.261 (5) | C26—H26 | 0.9500 |
O5—C48 | 1.223 (6) | C26—C27 | 1.434 (9) |
N1—N2 | 1.357 (5) | C27—C28 | 1.359 (9) |
N1—C40 | 1.333 (5) | C28—H28 | 0.9500 |
N2—C38 | 1.339 (5) | C28—C29 | 1.393 (9) |
N2—B1 | 1.549 (6) | C29—C30 | 1.411 (9) |
N3—N4 | 1.359 (4) | C29—C34 | 1.455 (7) |
N3—C41 | 1.330 (6) | C30—H30 | 0.9500 |
N4—C43 | 1.340 (6) | C30—C31 | 1.348 (11) |
N4—B1 | 1.538 (6) | C31—H31 | 0.9500 |
N5—N6 | 1.346 (5) | C31—C32 | 1.422 (10) |
N5—C35 | 1.326 (6) | C32—H32 | 0.9500 |
N6—C37 | 1.343 (6) | C32—C33 | 1.374 (8) |
N6—B1 | 1.542 (7) | C33—H33 | 0.9500 |
N7—C48 | 1.312 (7) | C33—C34 | 1.407 (8) |
N7—C49 | 1.452 (9) | C35—H35 | 0.9500 |
N7—C50 | 1.431 (10) | C35—C36 | 1.374 (9) |
C1—C2 | 1.421 (5) | C36—H36 | 0.9500 |
C1—C45 | 1.507 (5) | C36—C37 | 1.380 (10) |
C2—C3 | 1.413 (5) | C37—H37 | 0.9500 |
C2—C4 | 1.495 (5) | C38—H38 | 0.9500 |
C3—C44 | 1.522 (6) | C38—C39 | 1.374 (6) |
C4—C5 | 1.409 (6) | C39—H39 | 0.9500 |
C4—C17 | 1.402 (6) | C39—C40 | 1.387 (5) |
C5—C6 | 1.408 (7) | C40—H40 | 0.9500 |
C5—C10 | 1.445 (6) | C41—H41 | 0.9500 |
C6—H6 | 0.9500 | C41—C42 | 1.383 (7) |
C6—C7 | 1.370 (7) | C42—H42 | 0.9500 |
C7—H7 | 0.9500 | C42—C43 | 1.374 (7) |
C7—C8 | 1.427 (10) | C43—H43 | 0.9500 |
C8—H8 | 0.9500 | C44—H44A | 0.9800 |
C8—C9 | 1.335 (10) | C44—H44B | 0.9800 |
C9—H9 | 0.9500 | C44—H44C | 0.9800 |
C9—C10 | 1.423 (9) | C45—H45A | 0.9800 |
C10—C11 | 1.377 (9) | C45—H45B | 0.9800 |
C11—H11 | 0.9500 | C45—H45C | 0.9800 |
C11—C12 | 1.372 (9) | C46—H46A | 0.9800 |
C12—C13 | 1.430 (9) | C46—H46B | 0.9800 |
C12—C17 | 1.436 (6) | C46—H46C | 0.9800 |
C13—H13 | 0.9500 | C47—H47A | 0.9800 |
C13—C14 | 1.347 (11) | C47—H47B | 0.9800 |
C14—H14 | 0.9500 | C47—H47C | 0.9800 |
C14—C15 | 1.409 (11) | C48—H48 | 0.9500 |
C15—H15 | 0.9500 | C49—H49A | 0.9800 |
C15—C16 | 1.366 (8) | C49—H49B | 0.9800 |
C16—H16 | 0.9500 | C49—H49C | 0.9800 |
C16—C17 | 1.429 (7) | C50—H50A | 0.9800 |
C18—C19 | 1.409 (5) | C50—H50B | 0.9800 |
C18—C47 | 1.513 (5) | C50—H50C | 0.9800 |
C19—C20 | 1.402 (5) | B1—H1 | 1.0000 |
C19—C21 | 1.512 (5) | ||
O1—Eu1—O5 | 75.01 (11) | C22—C21—C19 | 118.8 (4) |
O1—Eu1—N1 | 145.99 (10) | C34—C21—C19 | 121.1 (4) |
O1—Eu1—N3 | 142.63 (10) | C34—C21—C22 | 120.0 (4) |
O1—Eu1—N5 | 118.84 (11) | C21—C22—C27 | 119.9 (5) |
O2—Eu1—O1 | 70.86 (9) | C23—C22—C21 | 122.8 (4) |
O2—Eu1—O3 | 145.67 (9) | C23—C22—C27 | 117.3 (5) |
O2—Eu1—O4 | 86.42 (12) | C22—C23—H23 | 118.8 |
O2—Eu1—O5 | 109.01 (12) | C24—C23—C22 | 122.3 (5) |
O2—Eu1—N1 | 140.38 (10) | C24—C23—H23 | 118.8 |
O2—Eu1—N3 | 79.35 (11) | C23—C24—H24 | 120.0 |
O2—Eu1—N5 | 72.80 (11) | C23—C24—C25 | 120.1 (7) |
O3—Eu1—O1 | 79.81 (9) | C25—C24—H24 | 120.0 |
O3—Eu1—O5 | 79.12 (10) | C24—C25—H25 | 119.9 |
O3—Eu1—N1 | 73.13 (9) | C26—C25—C24 | 120.3 (6) |
O3—Eu1—N3 | 117.69 (11) | C26—C25—H25 | 119.9 |
O3—Eu1—N5 | 139.36 (10) | C25—C26—H26 | 119.1 |
O4—Eu1—O1 | 80.32 (11) | C25—C26—C27 | 121.8 (5) |
O4—Eu1—O3 | 71.10 (9) | C27—C26—H26 | 119.1 |
O4—Eu1—O5 | 144.11 (10) | C26—C27—C22 | 118.2 (6) |
O4—Eu1—N1 | 109.05 (11) | C28—C27—C22 | 119.1 (5) |
O4—Eu1—N3 | 75.70 (10) | C28—C27—C26 | 122.7 (5) |
O4—Eu1—N5 | 143.07 (11) | C27—C28—H28 | 118.6 |
O5—Eu1—N1 | 79.92 (11) | C27—C28—C29 | 122.8 (4) |
O5—Eu1—N3 | 137.76 (10) | C29—C28—H28 | 118.6 |
O5—Eu1—N5 | 72.66 (11) | C28—C29—C30 | 123.2 (6) |
N3—Eu1—N1 | 70.18 (10) | C28—C29—C34 | 119.0 (5) |
N3—Eu1—N5 | 70.74 (11) | C30—C29—C34 | 117.8 (6) |
N5—Eu1—N1 | 73.60 (11) | C29—C30—H30 | 119.4 |
C1—O1—Eu1 | 137.5 (2) | C31—C30—C29 | 121.2 (6) |
C3—O2—Eu1 | 139.3 (3) | C31—C30—H30 | 119.4 |
C18—O3—Eu1 | 135.7 (2) | C30—C31—H31 | 118.9 |
C20—O4—Eu1 | 135.2 (3) | C30—C31—C32 | 122.3 (6) |
C48—O5—Eu1 | 134.9 (3) | C32—C31—H31 | 118.9 |
N2—N1—Eu1 | 125.2 (2) | C31—C32—H32 | 121.1 |
C40—N1—Eu1 | 128.1 (3) | C33—C32—C31 | 117.9 (7) |
C40—N1—N2 | 105.9 (3) | C33—C32—H32 | 121.1 |
N1—N2—B1 | 121.4 (3) | C32—C33—H33 | 118.9 |
C38—N2—N1 | 110.1 (3) | C32—C33—C34 | 122.3 (6) |
C38—N2—B1 | 128.4 (3) | C34—C33—H33 | 118.9 |
N4—N3—Eu1 | 125.2 (2) | C21—C34—C29 | 119.1 (5) |
C41—N3—Eu1 | 128.2 (3) | C21—C34—C33 | 122.3 (4) |
C41—N3—N4 | 106.1 (3) | C33—C34—C29 | 118.6 (5) |
N3—N4—B1 | 122.4 (3) | N5—C35—H35 | 124.6 |
C43—N4—N3 | 109.8 (3) | N5—C35—C36 | 110.9 (6) |
C43—N4—B1 | 127.7 (4) | C36—C35—H35 | 124.6 |
N6—N5—Eu1 | 125.4 (2) | C35—C36—H36 | 127.6 |
C35—N5—Eu1 | 126.3 (3) | C35—C36—C37 | 104.8 (5) |
C35—N5—N6 | 106.6 (4) | C37—C36—H36 | 127.6 |
N5—N6—B1 | 121.6 (3) | N6—C37—C36 | 107.8 (5) |
C37—N6—N5 | 109.9 (4) | N6—C37—H37 | 126.1 |
C37—N6—B1 | 128.4 (4) | C36—C37—H37 | 126.1 |
C48—N7—C49 | 119.4 (7) | N2—C38—H38 | 125.8 |
C48—N7—C50 | 122.5 (6) | N2—C38—C39 | 108.5 (4) |
C50—N7—C49 | 118.0 (7) | C39—C38—H38 | 125.8 |
O1—C1—C2 | 125.6 (4) | C38—C39—H39 | 127.7 |
O1—C1—C45 | 116.1 (3) | C38—C39—C40 | 104.5 (4) |
C2—C1—C45 | 118.2 (3) | C40—C39—H39 | 127.7 |
C1—C2—C4 | 120.3 (3) | N1—C40—C39 | 110.9 (4) |
C3—C2—C1 | 120.5 (3) | N1—C40—H40 | 124.5 |
C3—C2—C4 | 119.2 (3) | C39—C40—H40 | 124.5 |
O2—C3—C2 | 124.9 (4) | N3—C41—H41 | 124.5 |
O2—C3—C44 | 116.1 (4) | N3—C41—C42 | 111.0 (4) |
C2—C3—C44 | 119.1 (4) | C42—C41—H41 | 124.5 |
C5—C4—C2 | 120.4 (4) | C41—C42—H42 | 127.7 |
C17—C4—C2 | 120.1 (4) | C43—C42—C41 | 104.6 (4) |
C17—C4—C5 | 119.5 (4) | C43—C42—H42 | 127.7 |
C4—C5—C10 | 118.9 (5) | N4—C43—C42 | 108.5 (4) |
C6—C5—C4 | 123.2 (4) | N4—C43—H43 | 125.7 |
C6—C5—C10 | 117.9 (5) | C42—C43—H43 | 125.7 |
C5—C6—H6 | 118.8 | C3—C44—H44A | 109.5 |
C7—C6—C5 | 122.3 (5) | C3—C44—H44B | 109.5 |
C7—C6—H6 | 118.8 | C3—C44—H44C | 109.5 |
C6—C7—H7 | 120.5 | H44A—C44—H44B | 109.5 |
C6—C7—C8 | 119.0 (7) | H44A—C44—H44C | 109.5 |
C8—C7—H7 | 120.5 | H44B—C44—H44C | 109.5 |
C7—C8—H8 | 119.7 | C1—C45—H45A | 109.5 |
C9—C8—C7 | 120.7 (6) | C1—C45—H45B | 109.5 |
C9—C8—H8 | 119.7 | C1—C45—H45C | 109.5 |
C8—C9—H9 | 118.9 | H45A—C45—H45B | 109.5 |
C8—C9—C10 | 122.1 (6) | H45A—C45—H45C | 109.5 |
C10—C9—H9 | 118.9 | H45B—C45—H45C | 109.5 |
C9—C10—C5 | 118.0 (6) | C20—C46—H46A | 109.5 |
C11—C10—C5 | 120.0 (5) | C20—C46—H46B | 109.5 |
C11—C10—C9 | 122.0 (5) | C20—C46—H46C | 109.5 |
C10—C11—H11 | 119.0 | H46A—C46—H46B | 109.5 |
C12—C11—C10 | 122.0 (4) | H46A—C46—H46C | 109.5 |
C12—C11—H11 | 119.0 | H46B—C46—H46C | 109.5 |
C11—C12—C13 | 122.9 (5) | C18—C47—H47A | 109.5 |
C11—C12—C17 | 119.0 (5) | C18—C47—H47B | 109.5 |
C13—C12—C17 | 118.1 (6) | C18—C47—H47C | 109.5 |
C12—C13—H13 | 118.9 | H47A—C47—H47B | 109.5 |
C14—C13—C12 | 122.2 (6) | H47A—C47—H47C | 109.5 |
C14—C13—H13 | 118.9 | H47B—C47—H47C | 109.5 |
C13—C14—H14 | 120.1 | O5—C48—N7 | 124.7 (6) |
C13—C14—C15 | 119.7 (6) | O5—C48—H48 | 117.6 |
C15—C14—H14 | 120.1 | N7—C48—H48 | 117.6 |
C14—C15—H15 | 119.5 | N7—C49—H49A | 109.5 |
C16—C15—C14 | 120.9 (7) | N7—C49—H49B | 109.5 |
C16—C15—H15 | 119.5 | N7—C49—H49C | 109.5 |
C15—C16—H16 | 119.5 | H49A—C49—H49B | 109.5 |
C15—C16—C17 | 121.1 (6) | H49A—C49—H49C | 109.5 |
C17—C16—H16 | 119.5 | H49B—C49—H49C | 109.5 |
C4—C17—C12 | 120.6 (5) | N7—C50—H50A | 109.5 |
C4—C17—C16 | 121.5 (4) | N7—C50—H50B | 109.5 |
C16—C17—C12 | 117.9 (5) | N7—C50—H50C | 109.5 |
O3—C18—C19 | 124.9 (3) | H50A—C50—H50B | 109.5 |
O3—C18—C47 | 115.2 (3) | H50A—C50—H50C | 109.5 |
C19—C18—C47 | 120.0 (3) | H50B—C50—H50C | 109.5 |
C18—C19—C21 | 118.2 (3) | N2—B1—H1 | 109.9 |
C20—C19—C18 | 122.0 (3) | N4—B1—N2 | 109.6 (3) |
C20—C19—C21 | 119.8 (3) | N4—B1—N6 | 109.7 (3) |
O4—C20—C19 | 125.1 (3) | N4—B1—H1 | 109.9 |
O4—C20—C46 | 115.7 (4) | N6—B1—N2 | 107.9 (4) |
C19—C20—C46 | 119.3 (3) | N6—B1—H1 | 109.9 |
C8···C15i | 3.258 (8) | C8···H36ii | 2.698 |
H8···C15i | 2.817 | H37···C26iii | 2.830 |
H50C···N3i | 2.680 | C48···C14iii | 3.159 (8) |
H50C···C41i | 2.718 |
Symmetry codes: (i) -1 + x, y, z; (ii) x, 2 - y, 1 - z; (iii) -1/2 + x, 3/2 - y, -1/2 + z. |
Footnotes
‡Deceased.
Funding information
This work was partially supported by a grant from the National Research Foundation of Ukraine (project 2020.02/0202), and by the Target Program of Fundamental Research `Prospective fundamental studies and innovative developments of nanomaterials and nanotechnologies for the needs of industry, health protection and agriculture', National Academy of Sciences of Ukraine (contracts No. 32/20-N and 32/21-N). We acknowledge the NSF–MRI program (grant No. CHE-1039027 to JPJ) for funding of the Gemini X-ray diffractometer.
References
Alvarez, S., Alemany, P., Casanova, D., Cirera, J., Llunell, M. & Avnir, D. (2005). Coord. Chem. Rev. 249, 1693–1708. Web of Science CrossRef CAS Google Scholar
Aulsebrook, M. L., Graham, B., Grace, M. R. & Tuck, K. L. (2018). Coord. Chem. Rev. 375, 191–220. CrossRef CAS Google Scholar
Bortoluzzi, M., Paolucci, G., Gatto, M., Roppa, S., Enrichi, F., Ciorba, S. & Richards, B. S. (2012). J. Lumin. 132, 2378–2384. CrossRef CAS Google Scholar
Bünzli, J.-C. G. (2017). Eur. J. Inorg. Chem. pp. 5058–5063. Google Scholar
Bünzli, J.-C. G. (2019). Trends Chem. 1, 751–762. Google Scholar
Carneiro Neto, A. N., Teotonio, E. E. S., de Sá, G. F., Brito, H. F., Legendziewicz, J., Carlos, L. D., Felinto, M. C. F. C., Gawryszewska, P., Moura, R. T. Jr, Longo, R. L., Faustino, W. M. & Malta, O. L. (2019). Handbook on the Physics and Chemistry of Rare Earths, vol. 56, pp. 55–162. Amsterdam: Elsevier. Google Scholar
Casanova, D., Llunell, M., Alemany, P. & Alvarez, S. (2005). Chem. Eur. J. 11, 1479–1494. Web of Science CrossRef PubMed CAS Google Scholar
Davies, G. M., Adams, H. & Ward, M. D. (2005). Acta Cryst. C61, m221–m223. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Dei, A., Gatteschi, D., Massa, C. A., Pardi, L. A., Poussereau, S. & Sorace, L. (2000). Chem. Eur. J. 6, 4580–4586. CrossRef PubMed CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Galler, J. L., Goodchild, S., Gould, J., McDonald, R. & Sella, A. (2004). Polyhedron, 23, 253–262. CrossRef CAS Google Scholar
Gheno, G., Bortoluzzi, M., Ganzerla, R. & Enrichi, F. (2014). J. Lumin. 145, 963–969. CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Guégan, F., Riobé, F., Maury, O., Jung, J., Le Guennic, B., Morell, C. & Luneau, D. (2018). Inorg. Chem. Front. 5, 1346–1353. Google Scholar
Kandel, A. V., Mikhalyova, E. A., Zeller, M., Addison, A. W. & Pavlishchuk, V. V. (2017). Theor. Exp. Chem. 53, 180–186. CrossRef CAS Google Scholar
Khullar, S., Singh, S., Das, P. & Mandal, S. K. (2019). ACS Omega, 4, 5283–5292. CrossRef CAS PubMed Google Scholar
Lawrence, R. G., Hamor, T. A., Jones, C. J., Paxton, K. & Rowley, N. M. (2001). J. Chem. Soc. Dalton Trans. pp. 2121–2126. Web of Science CSD CrossRef Google Scholar
Lawrence, R. G., Jones, C. J. & Kresinski, R. A. (1996). J. Chem. Soc. Dalton Trans. pp. 501–507. CrossRef Google Scholar
Lippard, S. L. & Russ, B. I. (1968). Inorg. Chem. 7, 1686–1688. CrossRef CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mikhalyova, E. A., Yakovenko, A. V., Zeller, M., Gavrilenko, K. S., Kiskin, M. A., Smola, S. S., Dotsenko, V. P., Eremenko, I. L., Addison, A. W. & Pavlishchuk, V. V. (2017). Dalton Trans. 46, 3457–3469. CrossRef CAS PubMed Google Scholar
Mikhalyova, E. A., Zeller, M., Jasinski, J. P., Butcher, R. J., Carrella, L. M., Sedykh, A. E., Gavrilenko, K. S., Smola, S. S., Frasso, M., Cazorla, S. C., Perera, K., Shi, A., Ranjbar, H. G., Smith, C., Deac, A., Liu, Y., McGee, S. M., Dotsenko, V. P., Kumke, M. U., Müller-Buschbaum, K., Rentschler, E., Addison, A. W. & Pavlishchuk, V. V. (2020). Dalton Trans. 49, 7774–7789. CrossRef CAS PubMed Google Scholar
Morissette, M., Haufe, S., McDonald, R., Ferrence, G. M. & Takats, J. (2004). Polyhedron, 23, 263–271. CrossRef CAS Google Scholar
Moss, M. A. J., Jones, C. J. & Edwards, A. J. (1988). Polyhedron, 7, 79–81. CrossRef CAS Google Scholar
Moss, M. A. J., Jones, C. J. & Edwards, A. J. (1989). J. Chem. Soc. Dalton Trans. pp. 1393–1400. CrossRef Google Scholar
Müller, M., Weyhermüller, T., Bill, E. & Wieghardt, K. (1998). J. Biol. Inorg. Chem. 3, 96–106. Google Scholar
Nakano, Y. & Sato, S. (1982). Inorg. Chem. 21, 1315–1318. CrossRef CAS Google Scholar
Nehra, K., Dalal, A., Hooda, A., Bhagwan, S., Saini, R. K., Mari, B., Kumar, S. & Singh, D. (2022). J. Mol. Struct. 1249, 131531. CrossRef Google Scholar
Onishi, M., Kayano, K., Inada, K., Yamaguchi, H., Nagaoka, J., Arikawa, Y. & Takatani, T. (2004). Inorg. Chim. Acta, 357, 4091–4101. CrossRef CAS Google Scholar
Onishi, M., Yamaguchi, H., Shimotsuma, H., Hiraki, K., Nagaoka, J. & Kawano, H. (1999). Chem. Lett. 28, 573–574. CrossRef Google Scholar
Porai-Koshits, M. A. & Aslanov, L. A. (1972). J. Struct. Chem. 13, 244–253. CrossRef Google Scholar
Rigaku OD (2015). CrysAlisPro. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sarkar, D., Ganguli, S., Samanta, T. & Mahalingam, V. (2019). Langmuir, 35, 6211–6230. CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Venturini Filho, E., de Sousa Filho, P. C., Serra, O. A., Weber, I. T., Lucena, M. A. M. & Luz, P. P. (2018). J. Lumin. 202, 89–96. CAS Google Scholar
Wang, F., Pu, Y., Zhang, X., Zhang, F., Cheng, H. & Zhao, Y. (2019). J. Lumin. 206, 192–198. CrossRef CAS Google Scholar
Wang, L., Zhao, Z., Wei, C., Wei, H., Liu, Z., Bian, Z. & Huang, C. (2019). Adv. Opt. Mater. 7, 1801256. CrossRef Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, H., Chen, Z.-H., Liu, X. & Zhang, F. (2020). Nano Res. 13, 1795–1809. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.