Jerry P. Jasinski tribute\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
ADDENDA AND ERRATA
A correction has been published for this article. To view the correction, click here.

A cuboidal [Cu4(SO4)4] structure supported by β-picoline ligands

crossmark logo

aPortsmouth Abbey School, 285 Cory's Lane, Portsmouth, RI, 02871, USA, and bUniversity of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
*Correspondence e-mail: dmanke@umassd.edu

Edited by M. Zeller, Purdue University, USA (Received 15 January 2022; accepted 23 January 2022; online 28 January 2022)

The solid-state structure of the cobalt–β-picoline–sulfate complex tetra-μ3-sulfato-tetra­kis­[bis­(3-methyl­pyridine)­cobalt(II)], [Co4(SO4)4(C6H7N)8], is reported. The tetra­meric cobalt cluster contains a cuboidal core comprised of four cobalt(II) cations and four sulfate anions at alternate cube vertices. The cobalt corners are each capped with two β-picoline ligands. The sulfate anions adopt a rare [3.2110] bridging motif, and the cuboidal cluster is unprecedented in coordination chemistry.

1. Chemical context

For the past few years, our lab has examined the solid-state structures of first-row transition-metal–pyridine–sulfate complexes (Park et al., 2019[Park, A. M., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2019). Acta Cryst. E75, 1888-1891.]; Pham et al., 2018[Pham, D. N. K., Roy, M., Kreider-Mueller, A., Golen, J. A. & Manke, D. R. (2018). Acta Cryst. E74, 857-861.]; Roy et al., 2018[Roy, M., Pham, D. N. K., Kreider-Mueller, A., Golen, J. A. & Manke, D. R. (2018). Acta Cryst. C74, 263-268.]). Despite the first such compound being reported in 1886 (Jørgensen, 1886[Jørgensen, S. M. (1886). J. Prakt. Chem. 33, 489-538.]; Manke, 2021[Manke, D. R. (2021). Bull. Hist. Chem. 46, 179-185.]), the structures of only two had been described in the literature when we started exploring this class of compounds. A series of these structures including Fe, Co, Ni, and Zn, showed one-dimensional coordination polymers exhibiting sulfate dianions bridging in μ-sulfato-κ2O:O′ modes. Inter­estingly, by modifying growth conditions, cobalt demonstrated two additional crystalline forms with variation in the bridging mode of sulfate ions that was not observed for the other metals. We have also explored the structural chemistry of such complexes with substituted pyridines, including γ-picoline, which showed similar structural chemistry to that observed with the pyridine ligand (Pham et al., 2019[Pham, D. N. K., Roy, M., Kreider-Mueller, A., Golen, J. A. & Manke, D. R. (2019). Acta Cryst. C75, 568-574.]). When we looked at the reaction of cobalt sulfate with β-picoline, a unique structure was obtained, a tetra­mer exhibiting an unprecedented cuboidal Cu4(SO4)4 core, described herein.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound contains one cobalt cation, one sulfate anion, and two β-picoline ligands (Fig. 1[link]). When grown out, the cobalt center demonstrates a pseudo-octa­hedral coordination environment. This consists of two β-picoline nitro­gen atoms, two oxygen atoms of a chelating sulfate ligand, one oxygen atom of a second sulfate anion, which bridges to another metal, and one terminal oxygen atom of a third sulfate ligand. The grown-out structure forms a tetra­mer of (β-pic)2CoSO4 units, demonstrating a cuboidal core in which four vertices are occupied by cobalt cations, and the other four vertices are occupied by sulfate anions (Fig. 2[link]). The sulfate anions all bridge three Co2+ cations, demonstrating [3.2110] bridging by Harris notation (Fig. 3[link]). Harris notation is written as [X·YYYY] where X is the number of metals that a ligand bridges, and the Ys are the number of metals connected to each donor atom in the ligand (Papatriantafyllopoulou et al., 2009[Papatriantafyllopoulou, C., Manessi-Zoupa, E., Escuer, A. & Perlepes, S. P. (2009). Inorg. Chim. Acta, 362, 634-650.]). The [3.2110] bridging motif is rare in sulfates and has only been observed in 1D coordination polymers of copper (Li et al., 2008[Li, G., Xing, Y., Song, S., Xu, N., Liu, X. & Su, Z. (2008). J. Solid State Chem. 181, 2406-2411.]) and lanthanide/iron mixed-metal 3D coordination polymers (He et al., 2017[He, X., Cheng, W., Lin, Q., Dong, Y. & Xu, Y. (2017). Cryst. Growth Des. 17, 347-354.]). There are two C—H⋯O inter­actions between the ortho hydrogens of one β-picoline ligand and the oxygens of two sulfate ions (Table 1[link]). This results in a plane-to-plane angle between the CoN3O plane and the pyridine ring of 16.25 (9)°. These inter­actions are not present in the second unique picoline ligand, giving a larger plane-to-plane angle of 26.95 (9)°.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O4i 0.93 2.53 3.116 (4) 121
C3—H3⋯O2ii 0.93 2.46 3.135 (4) 129
C5—H5⋯O1 0.93 2.49 3.070 (4) 121
Symmetry codes: (i) [y, -x+1, -z+1]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The asymmetric unit of the title compound showing the atomic labeling. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 2]
Figure 2
The [3.2110] coordination mode of sulfate in the title compound.
[Figure 3]
Figure 3
The cuboidal tetra­mer of the title compound. H atoms have been omitted for clarity.

3. Supra­molecular features

The crystal packing for the compound is shown in Fig. 4[link]. The are weak C—H⋯O inter­actions between the trans-hydrogen atom of one picoline ligand and one of the terminal sulfate oxygens of a neighboring cuboid [C3—H3⋯O2ii; symmetry code: (ii) [{1\over 2}] + x, [{3\over 2}] − y, [{1\over 2}] − z, Table 1[link]). This inter­action might assist in the inter­digitation of the cuboids in the structure. No significant ππ inter­actions are observed.

[Figure 4]
Figure 4
The crystal packing of the title compound shown along the c axis. H atoms have been omitted for clarity.

4. Database survey

The reported structures demonstrating sulfate ions with [3.2110] bridging modes are with copper (DOHKIV, DOHKIB: Li et al., 2008[Li, G., Xing, Y., Song, S., Xu, N., Liu, X. & Su, Z. (2008). J. Solid State Chem. 181, 2406-2411.]) or mixtures of lanthanides with iron (He et al., 2017[He, X., Cheng, W., Lin, Q., Dong, Y. & Xu, Y. (2017). Cryst. Growth Des. 17, 347-354.]), including dysprosium (DADNOO), erbium (DADPEG), europium (DADNII), gadolinium (DADNUU) and samarium (DADPAC). The prior structures of metal–pyridine sulfate complexes include three variations with pyridine (QIBFOZ: Pham et al., 2018[Pham, D. N. K., Roy, M., Kreider-Mueller, A., Golen, J. A. & Manke, D. R. (2018). Acta Cryst. E74, 857-861.]; QOXJAR, QOXJEV: Park et al., 2019[Park, A. M., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2019). Acta Cryst. E75, 1888-1891.]) and one with γ-picoline (ROFMIL: Pham et al., 2019[Pham, D. N. K., Roy, M., Kreider-Mueller, A., Golen, J. A. & Manke, D. R. (2019). Acta Cryst. C75, 568-574.]), all of which demonstrate 1D coordination polymers that are structurally quite different than the cuboidal compound reported here.

5. Synthesis and crystallization

32 mg of CoSO4·7H2O were dissolved in 2.0 mL of 3-methyl­pyridine (Aldrich) and heated at 343 K for 24 h. Dark-pink crystals suitable for X-ray analysis were obtained.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms were placed in calculated positions [C—H = 0.93 Å (sp2) and 0.96 Å (sp3)]. Isotropic displacement parameters were set to 1.2UeqC (sp2) or 1.5UeqC (sp3).

Table 2
Experimental details

Crystal data
Chemical formula [Co4(SO4)4(C6H7N)8]
Mr 1364.96
Crystal system, space group Tetragonal, P[\overline{4}]21c
Temperature (K) 298
a, c (Å) 15.6121 (16), 11.8359 (13)
V3) 2884.9 (7)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.35
Crystal size (mm) 0.24 × 0.22 × 0.20
 
Data collection
Diffractometer Bruker D8 Venture CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2018[Bruker (2018). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.517, 0.562
No. of measured, independent and observed [I > 2σ(I)] reflections 54595, 2744, 2624
Rint 0.037
(sin θ/λ)max−1) 0.611
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.046, 1.14
No. of reflections 2744
No. of parameters 184
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.16, −0.20
Absolute structure Flack x determined using 1117 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.007 (4)
Computer programs: APEX3 and SAINT (Bruker, 2018[Bruker (2018). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Tetra-µ3-sulfato-tetrakis[bis(3-methylpyridine)cobalt(II)] top
Crystal data top
[Co4(SO4)4(C6H7N)8]Dx = 1.571 Mg m3
Mr = 1364.96Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P421cCell parameters from 9496 reflections
a = 15.6121 (16) Åθ = 2.9–25.7°
c = 11.8359 (13) ŵ = 1.35 mm1
V = 2884.9 (7) Å3T = 298 K
Z = 2BLOCK, pink
F(000) = 14000.24 × 0.22 × 0.20 mm
Data collection top
Bruker D8 Venture CMOS
diffractometer
2624 reflections with I > 2σ(I)
φ and ω scansRint = 0.037
Absorption correction: multi-scan
(SADABS; Bruker, 2018)
θmax = 25.7°, θmin = 2.9°
Tmin = 0.517, Tmax = 0.562h = 1919
54595 measured reflectionsk = 1919
2744 independent reflectionsl = 1414
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0165P)2 + 1.2064P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.019(Δ/σ)max = 0.001
wR(F2) = 0.046Δρmax = 0.16 e Å3
S = 1.14Δρmin = 0.20 e Å3
2744 reflectionsExtinction correction: SHELXL-2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
184 parametersExtinction coefficient: 0.0049 (4)
0 restraintsAbsolute structure: Flack x determined using 1117 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Hydrogen site location: inferred from neighbouring sitesAbsolute structure parameter: 0.007 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.64636 (2)0.49053 (2)0.41389 (3)0.02066 (11)
S10.52522 (4)0.64004 (4)0.35520 (5)0.02043 (15)
O10.58168 (12)0.57205 (12)0.30908 (15)0.0267 (4)
O20.49144 (15)0.69145 (13)0.26473 (17)0.0370 (5)
O30.45605 (11)0.59894 (11)0.42553 (16)0.0240 (4)
O40.57304 (12)0.69234 (11)0.43961 (15)0.0258 (4)
N10.75982 (14)0.57112 (15)0.4121 (2)0.0319 (5)
N20.70169 (16)0.42286 (15)0.2775 (2)0.0293 (5)
C10.82170 (19)0.5691 (2)0.4896 (3)0.0400 (7)
H10.8136800.5346270.5527860.048*
C20.8976 (2)0.6156 (2)0.4819 (3)0.0489 (8)
C30.9084 (2)0.6660 (2)0.3863 (3)0.0546 (10)
H30.9582960.6976970.3766880.065*
C40.8451 (2)0.6690 (2)0.3064 (3)0.0541 (10)
H40.8514660.7029770.2424450.065*
C50.7719 (2)0.6210 (2)0.3218 (3)0.0434 (8)
H50.7291570.6234710.2671100.052*
C60.9650 (3)0.6110 (3)0.5724 (4)0.0829 (15)
H6A0.9464450.5726760.6309130.124*
H6B0.9739380.6670090.6036110.124*
H6C1.0175670.5903280.5403580.124*
C70.6638 (2)0.4183 (2)0.1768 (3)0.0340 (7)
H70.6117340.4463380.1671400.041*
C80.6978 (2)0.3738 (2)0.0853 (3)0.0422 (7)
C90.7741 (2)0.3311 (2)0.1032 (3)0.0499 (9)
H90.7985040.2994130.0450000.060*
C100.8143 (2)0.3351 (2)0.2062 (3)0.0490 (9)
H100.8659070.3068370.2181140.059*
C110.7766 (2)0.3817 (2)0.2914 (3)0.0386 (8)
H110.8039620.3848290.3611260.046*
C120.6512 (3)0.3707 (3)0.0255 (3)0.0732 (12)
H12A0.5908950.3779190.0127050.110*
H12B0.6612050.3163280.0610990.110*
H12C0.6716340.4157460.0736300.110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01998 (17)0.02203 (18)0.01997 (16)0.00207 (14)0.00180 (15)0.00176 (14)
S10.0216 (3)0.0201 (3)0.0196 (3)0.0031 (3)0.0031 (2)0.0046 (3)
O10.0293 (10)0.0290 (10)0.0218 (9)0.0075 (8)0.0056 (8)0.0029 (8)
O20.0435 (12)0.0380 (11)0.0297 (10)0.0114 (11)0.0007 (10)0.0133 (9)
O30.0227 (9)0.0272 (9)0.0223 (9)0.0037 (7)0.0042 (8)0.0004 (8)
O40.0259 (9)0.0213 (9)0.0301 (11)0.0045 (8)0.0048 (8)0.0015 (7)
N10.0281 (12)0.0299 (12)0.0378 (13)0.0040 (10)0.0080 (12)0.0009 (12)
N20.0305 (12)0.0272 (12)0.0301 (13)0.0033 (11)0.0070 (11)0.0008 (11)
C10.0349 (16)0.0417 (17)0.0434 (18)0.0091 (14)0.0040 (14)0.0014 (14)
C20.0337 (16)0.051 (2)0.062 (2)0.0128 (14)0.0054 (17)0.0051 (19)
C30.0408 (19)0.043 (2)0.080 (3)0.0156 (16)0.0191 (18)0.0026 (18)
C40.052 (2)0.042 (2)0.068 (3)0.0086 (16)0.019 (2)0.0151 (18)
C50.0396 (18)0.0437 (19)0.0470 (19)0.0036 (15)0.0103 (16)0.0107 (16)
C60.048 (2)0.102 (4)0.098 (4)0.026 (2)0.017 (3)0.002 (3)
C70.0376 (17)0.0333 (15)0.0310 (15)0.0005 (13)0.0067 (13)0.0015 (13)
C80.061 (2)0.0340 (16)0.0314 (15)0.0070 (14)0.0115 (17)0.0043 (14)
C90.067 (2)0.0349 (17)0.048 (2)0.0039 (16)0.0277 (18)0.0072 (15)
C100.047 (2)0.0364 (18)0.063 (2)0.0135 (15)0.0187 (18)0.0001 (16)
C110.0369 (18)0.0342 (17)0.045 (2)0.0085 (14)0.0064 (14)0.0007 (14)
C120.107 (4)0.076 (3)0.036 (2)0.002 (3)0.002 (3)0.012 (2)
Geometric parameters (Å, º) top
Co1—S1i2.7458 (7)C3—C41.368 (6)
Co1—O12.0441 (19)C4—H40.9300
Co1—O3i2.2037 (19)C4—C51.379 (5)
Co1—O3ii2.1274 (18)C5—H50.9300
Co1—O4i2.1229 (18)C6—H6A0.9600
Co1—N12.173 (2)C6—H6B0.9600
Co1—N22.114 (2)C6—H6C0.9600
S1—O11.4839 (19)C7—H70.9300
S1—O21.438 (2)C7—C81.391 (4)
S1—O31.5069 (18)C8—C91.382 (5)
S1—O41.491 (2)C8—C121.501 (5)
N1—C11.332 (4)C9—H90.9300
N1—C51.336 (4)C9—C101.371 (6)
N2—C71.333 (4)C10—H100.9300
N2—C111.345 (4)C10—C111.376 (5)
C1—H10.9300C11—H110.9300
C1—C21.392 (4)C12—H12A0.9600
C2—C31.389 (5)C12—H12B0.9600
C2—C61.503 (5)C12—H12C0.9600
C3—H30.9300
O1—Co1—S1i129.94 (5)N1—C1—H1118.0
O1—Co1—O3ii94.41 (7)N1—C1—C2124.0 (3)
O1—Co1—O3i97.00 (7)C2—C1—H1118.0
O1—Co1—O4i162.52 (7)C1—C2—C6121.6 (4)
O1—Co1—N192.08 (9)C3—C2—C1116.9 (3)
O1—Co1—N292.84 (9)C3—C2—C6121.5 (3)
O3i—Co1—S1i33.21 (5)C2—C3—H3120.2
O3ii—Co1—S1i81.36 (5)C4—C3—C2119.7 (3)
O3ii—Co1—O3i86.57 (8)C4—C3—H3120.2
O3ii—Co1—N1173.44 (9)C3—C4—H4120.4
O4i—Co1—S1i32.58 (5)C3—C4—C5119.3 (3)
O4i—Co1—O3ii83.94 (7)C5—C4—H4120.4
O4i—Co1—O3i65.55 (7)N1—C5—C4122.6 (4)
O4i—Co1—N190.16 (9)N1—C5—H5118.7
N1—Co1—S1i95.20 (8)C4—C5—H5118.7
N1—Co1—O3i93.61 (8)C2—C6—H6A109.5
N2—Co1—S1i136.90 (7)C2—C6—H6B109.5
N2—Co1—O3i170.11 (9)C2—C6—H6C109.5
N2—Co1—O3ii91.63 (8)H6A—C6—H6B109.5
N2—Co1—O4i104.59 (8)H6A—C6—H6C109.5
N2—Co1—N187.07 (9)H6B—C6—H6C109.5
O1—S1—Co1iii116.43 (7)N2—C7—H7118.2
O1—S1—O3108.92 (10)N2—C7—C8123.6 (3)
O1—S1—O4109.93 (11)C8—C7—H7118.2
O2—S1—Co1iii133.48 (9)C7—C8—C12120.8 (3)
O2—S1—O1110.07 (11)C9—C8—C7116.8 (3)
O2—S1—O3112.71 (12)C9—C8—C12122.4 (3)
O2—S1—O4112.15 (12)C8—C9—H9119.7
O3—S1—Co1iii53.22 (7)C10—C9—C8120.6 (3)
O4—S1—Co1iii50.06 (7)C10—C9—H9119.7
O4—S1—O3102.82 (11)C9—C10—H10120.6
S1—O1—Co1121.04 (10)C9—C10—C11118.7 (3)
Co1ii—O3—Co1iii124.11 (9)C11—C10—H10120.6
S1—O3—Co1ii141.48 (12)N2—C11—C10122.3 (3)
S1—O3—Co1iii93.57 (9)N2—C11—H11118.9
S1—O4—Co1iii97.36 (9)C10—C11—H11118.9
C1—N1—Co1124.8 (2)C8—C12—H12A109.5
C1—N1—C5117.5 (3)C8—C12—H12B109.5
C5—N1—Co1117.4 (2)C8—C12—H12C109.5
C7—N2—Co1121.9 (2)H12A—C12—H12B109.5
C7—N2—C11118.1 (3)H12A—C12—H12C109.5
C11—N2—Co1120.0 (2)H12B—C12—H12C109.5
Co1iii—S1—O1—Co11.75 (15)O4—S1—O3—Co1iii7.25 (10)
Co1iii—S1—O3—Co1ii168.6 (2)N1—C1—C2—C30.5 (5)
Co1—N1—C1—C2173.9 (3)N1—C1—C2—C6179.7 (4)
Co1—N1—C5—C4174.0 (3)N2—C7—C8—C91.5 (5)
Co1—N2—C7—C8179.4 (2)N2—C7—C8—C12179.5 (3)
Co1—N2—C11—C10178.4 (2)C1—N1—C5—C40.4 (5)
O1—S1—O3—Co1iii109.34 (9)C1—C2—C3—C40.8 (5)
O1—S1—O3—Co1ii59.3 (2)C2—C3—C4—C50.6 (6)
O1—S1—O4—Co1iii108.29 (10)C3—C4—C5—N10.1 (6)
O2—S1—O1—Co1176.64 (13)C5—N1—C1—C20.1 (5)
O2—S1—O3—Co1iii128.20 (11)C6—C2—C3—C4179.4 (4)
O2—S1—O3—Co1ii63.1 (2)C7—N2—C11—C100.6 (4)
O2—S1—O4—Co1iii128.92 (11)C7—C8—C9—C101.5 (5)
O3—S1—O1—Co159.31 (15)C8—C9—C10—C110.6 (5)
O3—S1—O4—Co1iii7.57 (11)C9—C10—C11—N20.5 (5)
O4—S1—O1—Co152.63 (15)C11—N2—C7—C80.5 (4)
O4—S1—O3—Co1ii175.90 (17)C12—C8—C9—C10179.4 (3)
Symmetry codes: (i) y, x+1, z+1; (ii) x+1, y+1, z; (iii) y+1, x, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O4i0.932.533.116 (4)121
C3—H3···O2iv0.932.463.135 (4)129
C5—H5···O10.932.493.070 (4)121
Symmetry codes: (i) y, x+1, z+1; (iv) x+1/2, y+3/2, z+1/2.
 

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. CHE-1429086).

References

First citationBruker (2018). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHe, X., Cheng, W., Lin, Q., Dong, Y. & Xu, Y. (2017). Cryst. Growth Des. 17, 347–354.  CrossRef CAS Google Scholar
First citationJørgensen, S. M. (1886). J. Prakt. Chem. 33, 489–538.  Google Scholar
First citationLi, G., Xing, Y., Song, S., Xu, N., Liu, X. & Su, Z. (2008). J. Solid State Chem. 181, 2406–2411.  CrossRef CAS Google Scholar
First citationManke, D. R. (2021). Bull. Hist. Chem. 46, 179–185.  Google Scholar
First citationPapatriantafyllopoulou, C., Manessi-Zoupa, E., Escuer, A. & Perlepes, S. P. (2009). Inorg. Chim. Acta, 362, 634–650.  Web of Science CrossRef CAS Google Scholar
First citationPark, A. M., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2019). Acta Cryst. E75, 1888–1891.  CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPham, D. N. K., Roy, M., Kreider-Mueller, A., Golen, J. A. & Manke, D. R. (2018). Acta Cryst. E74, 857–861.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPham, D. N. K., Roy, M., Kreider-Mueller, A., Golen, J. A. & Manke, D. R. (2019). Acta Cryst. C75, 568–574.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRoy, M., Pham, D. N. K., Kreider-Mueller, A., Golen, J. A. & Manke, D. R. (2018). Acta Cryst. C74, 263–268.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds