research communications
and Hirshfeld surface analysis of 2-amino-4-(4-methoxyphenyl)-6-oxo-1-phenyl-1,4,5,6-tetrahydropyridine-3-carbonitrile
aDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148 Baku, Azerbaijan, bPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow, 117198, Russian Federation, cN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and eAcad Sci Republ Tadzhikistan, Kh. Yu. Yusufbekov Pamir Biol. Inst., 1 Kholdorova St, Khorog 736002, Gbao, Tajikistan
*Correspondence e-mail: anzurat2003@mail.ru
The central tetrahydropyridine ring of the title compound, C19H17N3O2, adopts a screw-boat conformation. In the crystal, strong C—H⋯O and N—H⋯N hydrogen bonds form dimers with R22(14) and R22(12) ring motifs, respectively, between consecutive molecules along the c-axis direction. Intermolecular N—H⋯O and C—H⋯O hydrogen bonds connect these dimers, forming a three-dimensional network. C—H⋯π interactions and π–π stacking interactions contribute to the stabilization of the molecular packing. A Hirshfeld surface analysis indicates that the contributions from the most prevalent interactions are H⋯H (47.1%), C⋯H/H⋯C (20.9%), O⋯H/H⋯O (15.3%) and N⋯H/H⋯N (11.4%).
Keywords: crystal structure; tetrahydropyridine; hydrogen bonds; dimers; Hirshfeld surface analysis.
CCDC reference: 2152191
1. Chemical context
Carbon–carbon and carbon–nitrogen bond-forming reactions represent an important synthetic class in organic chemistry (Yadigarov et al., 2009; Abdelhamid et al., 2011; Yin et al., 2020; Khalilov et al., 2021). Notably, pyridine derivatives are widely applied in the discovery of biologically active molecules and multifunctional materials (Magerramov et al., 2018; Sherman & Murugan, 2015; Mamedov et al., 2020). On the other hand, the tetrahydropyridine moiety is an essential part of diverse biologically active compounds, food additives and natural products (Mateeva et al., 2005).
In the framework of ongoing structural studies (Safavora et al., 2019; Naghiyev et al., 2020; 2021a,b; Maharramov et al., 2021), we report here the and Hirshfeld surface analysis of the title compound, 2-amino-4-(4-methoxyphenyl)-6-oxo-1-phenyl-1,4,5,6-tetrahydropyridine-3- carbonitrile.
2. Structural commentary
The title compound (Fig. 1) crystallizes in the monoclinic P21/n with Z = 4. The central N1/C2–C6 tetrahydropyridine ring of the molecule adopts a screw-boat conformation with puckering parameters (Cremer & Pople, 1975) QT = 0.503 (2) Å, θ = 66.1 (2)°, φ = 153.3 (2)°. The C7–C12 phenyl ring, which is attached to N1, is in an equatorial position and makes a dihedral angle of 54.43 (9)° with the mean plane of the tetrahydropyridine ring. The C13–C18 methoxyphenyl ring, which is attached to C4, is in an axial position. The dihedral angle between the C7–C12 phenyl and C13–C18 methoxyphenyl rings is 68.61 (10)°.
3. Supramolecular features
As shown in Fig. 2, strong intermolecular C11—H11⋯O1 and N3—H3C⋯N2 hydrogen bonds (Table 1) form dimers with (14) and (12) ring motifs (Bernstein et al., 1995), respectively, between adjacent molecules along the c-axis direction. These dimers are connected by N3—H3D⋯O2 and C14—H14⋯O1 hydrogen bonds, forming a three-dimensional network (Table 1; Fig. 3). Furthermore, C—H⋯π [C10—H10⋯Cg3iii and C18—H18⋯Cg3v; symmetry codes: (iii) −x + 1, −y + 1, −z + 1; (v) −x + , y + , −z + .; Cg3 is the centroid of the C13–C18 methoxyphenyl ring; Table 1] and π–π stacking interactions [Cg2⋯Cg2iii = 3.8918 (15) Å and slippage = 1.551 Å; Cg2 is the centroid of the C7–C12 phenyl ring] contribute to the stabilization of the molecular packing (Figs. 4 and 5).
4. Hirshfeld surface analysis
The Hirshfeld surface analysis was performed and the associated two dimensional fingerprint plots generated using Crystal Explorer 17 (Turner et al., 2017). The Hirshfeld surface was calculated using a standard (high) surface resolution with the three-dimensional dnorm surface plotted over a fixed colour scale mapped over the range −0.4835 (red) to 1.8469 (blue) a.u. The dnorm mapping indicates that strong hydrogen-bonding interactions, such as N—H⋯N, N—H⋯O and C—H⋯O hydrogen bonds (Tables 1 and 2), appear to be the primary interactions in the structure, seen as a bright-red area in the Hirshfeld surface (Fig. 6).
|
The Hirshfeld surface mapped over electrostatic potential (Spackman et al., 2008) is shown in Fig. 7. The blue regions indicate positive electrostatic potential (hydrogen-bond donors), while the red regions indicate negative electrostatic potential (hydrogen-bond acceptors).
The two-dimensional fingerprint plots are illustrated in Fig. 8. H⋯H contacts comprise 47.1% of the total interactions (Fig. 8b), followed by C⋯H/H⋯C (Fig. 8c; 20.9%), O⋯H/H⋯O (Fig. 8d; 15.3%) and N⋯H/H⋯N (Fig. 8e; 11.4%). The percentage contributions of the C⋯C, C⋯N/N⋯C and N⋯N contacts are negligible, at 3.1, 1.4 and 0.8%, respectively. The predominance of H⋯H, C⋯H/H⋯C, O⋯H/H⋯O and N⋯H/H⋯N contacts indicate that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).
5. Database survey
A search of the Cambridge Structural Database (CSD, version 5.42, update of September 2021; Groom et al., 2016) found four compounds with the 6-oxo-1-phenyl-1,4,5,6-tetrahydropyridine unit that are similar to the title compound, viz. 5-acetyl-2-amino-4-(4-bromophenyl)-6-oxo-1-phenyl-1,4,5,6-tetrahydropyridine-3-carbonitrile (I) (YAXQAT; Mamedov et al., 2022), 2-amino-4-(2,6-dichlorophenyl)-5-(1-hydroxyethylidene)-6-oxo-1-phenyl-1,4,5,6-tetrahydropyridine-3-carbonitrile (II) (OZAKOS, Naghiyev et al., 2021c), methyl 6-oxo-4-phenyl-2-[(Z)-2-(pyridin-2-yl)ethenyl]-1,4,5,6-tetrahydropyridine-3-carboxylate (III) (PEDFEL, Smits et al., 2012) and ethyl 5-ethoxymethylene-2-methyl-6-oxo-4-phenyl-1,4,5,6-tetrahydropyridine-3-carboxylate (IV) (VAGXAD, Novoa de Armas et al., 2003).
Compound (I) crystallizes in the monoclinic Pc with Z = 4, and with two molecules, A and B, in the These molecules are with an R,R at C3 and C4 in molecule A, whereas the corresponding atoms in B, C23 and C24, have an S configuration. In both molecules, the conformation of the central dihydropyridine ring is close to screw-boat. The molecular conformation is stabilized by N—H⋯O hydrogen bonds, forming a dimer with an (16) ring motif. Both molecules of the dimers are connected by intermolecular N—H⋯O and N—H⋯N hydrogen bonds with an R23(14) ring motif into chains along the c-axis direction. Furthermore C—Br⋯π and C=O⋯π stacking interactions between these ribbons contribute to the stabilization of the molecular packing.
Compound (II) crystallizes in the monoclinic P21/c with Z = 4 and the comprises one molecule. The central tetrahydropyridine ring is almost planar with a maximum deviation of 0.074 (3) Å for C4. The phenyl and dichlorophenyl rings are at an angle of 21.28 (15)°. They form dihedral angles of 86.10 (15) and 87.17 (14)°, respectively, with the central tetrahydropyridine ring. A strong intramolecular O2—H2⋯O1 hydrogen bond stabilizes the molecular conformation of the molecule, creating an S(6) ring motif. In the crystal, molecules are linked by intermolecular N—H⋯N and C—H⋯N hydrogen bonds, and N—H⋯π and C—H⋯π interactions, forming a three-dimensional network.
In molecule (III) (monoclinic P21/c, Z = 4), the cis configuration of the pyridinyl-vinyl fragment is stabilized by a strong intramolecular N—H⋯N hydrogen bond. The phenyl and pyridine rings are inclined to one another by 77.3 (1)°. In the crystal, inversion dimers are present via pairs of C—H⋯O hydrogen bonds and are further linked by C—H⋯O hydrogen bonds and C—H⋯π interactions.
For compound (IV) (monoclinic C2/c, Z = 8), the molecules form dimers by means of a pair of N—H⋯O hydrogen bonds. The 2(1H)-pyridone ring displays a screw-boat conformation.
6. Synthesis and crystallization
To a solution of 2-(4-methoxybenzylidene)malononitrile (0.94 g; 5.1 mmol) and acetoacetanilide (0.92 g; 5.2 mmol) in methanol (25 mL), 3-4 drops of piperidine were added and the mixture was stirred at 328–333 K for 10 min and was kept at room temperature for 48 h. Then 15 mL of methanol were removed from the reaction mixture, which was left overnight. The precipitated crystals were separated by filtration and recrystallized from ethanol/water (1:1) solution (yield 61%; m.p. 471–472 K).
1H NMR (300 MHz, DMSO-d6, ppm.): 2.80 (dd–dd, 1H, CH2); 3.19 (dd–dd, 1H, CH2); 3.82 (s, 3H, OCH3); 3.93 (t, 1H, CH); 5.85 (s, 2H, NH2); 7.15–7.58 (m, 9H, 2Ar—H). 13C NMR (75 MHz, DMSO-d6, ppm.): 36.06 (CH—Ar), 40.42 (CH2), 53.78 (OCH3), 59.05 (Cquat.), 112.89 (2CHar), 121.21 (CN), 128.61 (CHar.), 128.88 (2CHar.), 130.44 (2CHar.), 130.51 (2CHar.), 136.06 (Car. quat.), 137.02 (Car. quat.), 154.59 (Car. quat.), 155.18 (Cquat.), 168.82 (N—C=O).
7. details
Crystal data, data collection and structure . H atoms bonded to nitrogen were located in a difference-Fourier map, and only their positional parameters were refined [N3—H3C = 0.91 (2) and N3—H3D = 0.91 (2) Å with Uiso(H) = 1.2Ueq(N)]. C-bound H atoms were positioned geometrically, with C—H = 0.95–1.00 Å, and were refined with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-methyl).
details are summarized in Table 3
|
Supporting information
CCDC reference: 2152191
https://doi.org/10.1107/S205698902200175X/vm2260sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698902200175X/vm2260Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S205698902200175X/vm2260Isup3.cml
Data collection: Marccd (Doyle, 2011); cell
iMosflm (Battye et al., 2011); data reduction: iMosflm (Battye et al., 2011); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).C19H17N3O2 | F(000) = 672 |
Mr = 319.36 | Dx = 1.281 Mg m−3 |
Monoclinic, P21/n | Synchrotron radiation, λ = 0.80246 Å |
a = 12.910 (3) Å | Cell parameters from 600 reflections |
b = 6.3200 (13) Å | θ = 2.4–30.0° |
c = 21.170 (4) Å | µ = 0.11 mm−1 |
β = 106.48 (3)° | T = 100 K |
V = 1656.3 (7) Å3 | Prism, colourless |
Z = 4 | 0.40 × 0.15 × 0.07 mm |
Rayonix SX165 CCD diffractometer | 3125 reflections with I > 2σ(I) |
/f scan | Rint = 0.049 |
Absorption correction: multi-scan (Scala;Evans, 2006) | θmax = 31.1°, θmin = 2.3° |
Tmin = 0.950, Tmax = 0.985 | h = −16→16 |
26143 measured reflections | k = −8→7 |
3603 independent reflections | l = −27→27 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.054 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.143 | w = 1/[σ2(Fo2) + (0.059P)2 + 1.3785P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
3603 reflections | Δρmax = 0.29 e Å−3 |
225 parameters | Δρmin = −0.27 e Å−3 |
0 restraints | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: difference Fourier map | Extinction coefficient: 0.033 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.33220 (11) | 0.8608 (2) | 0.55256 (7) | 0.0332 (3) | |
O2 | 0.55206 (12) | 0.1472 (3) | 0.79862 (7) | 0.0413 (4) | |
N1 | 0.24126 (11) | 0.5628 (2) | 0.50951 (7) | 0.0269 (3) | |
N2 | −0.03015 (13) | 0.1368 (3) | 0.56257 (8) | 0.0321 (4) | |
N3 | 0.12078 (12) | 0.3027 (3) | 0.45307 (8) | 0.0300 (4) | |
H3C | 0.0857 (18) | 0.177 (4) | 0.4520 (11) | 0.036* | |
H3D | 0.1458 (19) | 0.336 (4) | 0.4183 (12) | 0.036* | |
C2 | 0.26361 (14) | 0.7307 (3) | 0.55371 (9) | 0.0272 (4) | |
C3 | 0.19790 (14) | 0.7407 (3) | 0.60221 (9) | 0.0287 (4) | |
H3A | 0.1284 | 0.8122 | 0.5814 | 0.034* | |
H3B | 0.2372 | 0.8254 | 0.6409 | 0.034* | |
C4 | 0.17589 (14) | 0.5196 (3) | 0.62495 (9) | 0.0277 (4) | |
H4 | 0.1221 | 0.5339 | 0.6506 | 0.033* | |
C5 | 0.12391 (13) | 0.3942 (3) | 0.56355 (9) | 0.0268 (4) | |
C6 | 0.15916 (13) | 0.4149 (3) | 0.50888 (9) | 0.0262 (4) | |
C7 | 0.30690 (13) | 0.5355 (3) | 0.46514 (9) | 0.0279 (4) | |
C8 | 0.31570 (15) | 0.6969 (3) | 0.42287 (9) | 0.0338 (4) | |
H8 | 0.2765 | 0.8249 | 0.4215 | 0.041* | |
C9 | 0.38256 (17) | 0.6690 (4) | 0.38261 (11) | 0.0408 (5) | |
H9 | 0.3906 | 0.7800 | 0.3541 | 0.049* | |
C10 | 0.43779 (17) | 0.4806 (4) | 0.38357 (11) | 0.0421 (5) | |
H10 | 0.4827 | 0.4624 | 0.3554 | 0.051* | |
C11 | 0.42768 (16) | 0.3194 (4) | 0.42533 (10) | 0.0379 (5) | |
H11 | 0.4651 | 0.1898 | 0.4256 | 0.045* | |
C12 | 0.36267 (15) | 0.3466 (3) | 0.46698 (9) | 0.0314 (4) | |
H12 | 0.3564 | 0.2370 | 0.4964 | 0.038* | |
C13 | 0.27801 (14) | 0.4188 (3) | 0.66992 (9) | 0.0266 (4) | |
C14 | 0.32417 (14) | 0.2403 (3) | 0.65102 (9) | 0.0274 (4) | |
H14 | 0.2927 | 0.1822 | 0.6085 | 0.033* | |
C15 | 0.41514 (15) | 0.1438 (3) | 0.69241 (9) | 0.0298 (4) | |
H15 | 0.4443 | 0.0197 | 0.6787 | 0.036* | |
C16 | 0.46259 (15) | 0.2306 (3) | 0.75379 (9) | 0.0316 (4) | |
C17 | 0.41891 (15) | 0.4125 (3) | 0.77340 (9) | 0.0333 (4) | |
H17 | 0.4520 | 0.4735 | 0.8153 | 0.040* | |
C18 | 0.32761 (15) | 0.5043 (3) | 0.73205 (9) | 0.0301 (4) | |
H18 | 0.2980 | 0.6273 | 0.7460 | 0.036* | |
C19 | 0.5911 (2) | −0.0507 (4) | 0.78134 (12) | 0.0535 (6) | |
H19A | 0.6153 | −0.0321 | 0.7418 | 0.080* | |
H19B | 0.5329 | −0.1558 | 0.7726 | 0.080* | |
H19C | 0.6517 | −0.0995 | 0.8178 | 0.080* | |
C20 | 0.03871 (13) | 0.2533 (3) | 0.56225 (9) | 0.0268 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0328 (7) | 0.0278 (7) | 0.0408 (7) | −0.0063 (5) | 0.0132 (6) | −0.0045 (6) |
O2 | 0.0378 (7) | 0.0485 (9) | 0.0319 (7) | 0.0068 (6) | 0.0005 (6) | 0.0031 (6) |
N1 | 0.0262 (7) | 0.0245 (7) | 0.0304 (7) | −0.0025 (6) | 0.0086 (6) | −0.0026 (6) |
N2 | 0.0318 (8) | 0.0294 (8) | 0.0348 (8) | −0.0028 (6) | 0.0093 (6) | 0.0009 (7) |
N3 | 0.0311 (8) | 0.0297 (8) | 0.0288 (8) | −0.0072 (6) | 0.0079 (6) | −0.0025 (6) |
C2 | 0.0272 (8) | 0.0218 (8) | 0.0310 (9) | 0.0010 (6) | 0.0058 (7) | 0.0001 (7) |
C3 | 0.0300 (8) | 0.0248 (8) | 0.0319 (9) | 0.0000 (7) | 0.0096 (7) | −0.0022 (7) |
C4 | 0.0267 (8) | 0.0268 (9) | 0.0305 (9) | −0.0005 (7) | 0.0098 (7) | −0.0023 (7) |
C5 | 0.0240 (8) | 0.0255 (8) | 0.0300 (9) | −0.0003 (6) | 0.0060 (6) | 0.0015 (7) |
C6 | 0.0233 (7) | 0.0228 (8) | 0.0303 (8) | −0.0006 (6) | 0.0040 (6) | 0.0003 (7) |
C7 | 0.0243 (8) | 0.0310 (9) | 0.0278 (8) | −0.0053 (7) | 0.0064 (6) | −0.0040 (7) |
C8 | 0.0319 (9) | 0.0351 (10) | 0.0331 (9) | −0.0054 (8) | 0.0072 (7) | 0.0005 (8) |
C9 | 0.0395 (10) | 0.0479 (12) | 0.0366 (10) | −0.0109 (9) | 0.0135 (8) | 0.0021 (9) |
C10 | 0.0368 (10) | 0.0531 (13) | 0.0404 (11) | −0.0106 (9) | 0.0173 (9) | −0.0088 (10) |
C11 | 0.0304 (9) | 0.0418 (11) | 0.0426 (11) | −0.0044 (8) | 0.0122 (8) | −0.0118 (9) |
C12 | 0.0296 (9) | 0.0313 (9) | 0.0329 (9) | −0.0019 (7) | 0.0083 (7) | −0.0033 (8) |
C13 | 0.0279 (8) | 0.0239 (8) | 0.0286 (8) | −0.0032 (6) | 0.0089 (7) | −0.0008 (7) |
C14 | 0.0276 (8) | 0.0259 (8) | 0.0278 (8) | −0.0031 (7) | 0.0067 (7) | −0.0011 (7) |
C15 | 0.0308 (8) | 0.0283 (9) | 0.0312 (9) | 0.0005 (7) | 0.0105 (7) | 0.0018 (7) |
C16 | 0.0300 (9) | 0.0356 (10) | 0.0273 (9) | −0.0003 (7) | 0.0047 (7) | 0.0052 (7) |
C17 | 0.0347 (9) | 0.0368 (10) | 0.0269 (9) | −0.0047 (8) | 0.0063 (7) | −0.0033 (8) |
C18 | 0.0342 (9) | 0.0280 (9) | 0.0290 (9) | −0.0020 (7) | 0.0106 (7) | −0.0030 (7) |
C19 | 0.0529 (13) | 0.0586 (15) | 0.0408 (12) | 0.0229 (12) | 0.0002 (10) | 0.0033 (11) |
C20 | 0.0264 (8) | 0.0245 (8) | 0.0280 (8) | 0.0024 (7) | 0.0054 (6) | 0.0005 (7) |
O1—C2 | 1.214 (2) | C8—H8 | 0.9500 |
O2—C16 | 1.375 (2) | C9—C10 | 1.385 (3) |
O2—C19 | 1.434 (3) | C9—H9 | 0.9500 |
N1—C2 | 1.390 (2) | C10—C11 | 1.379 (3) |
N1—C6 | 1.410 (2) | C10—H10 | 0.9500 |
N1—C7 | 1.443 (2) | C11—C12 | 1.390 (3) |
N2—C20 | 1.156 (2) | C11—H11 | 0.9500 |
N3—C6 | 1.346 (2) | C12—H12 | 0.9500 |
N3—H3C | 0.91 (2) | C13—C14 | 1.387 (2) |
N3—H3D | 0.91 (2) | C13—C18 | 1.398 (3) |
C2—C3 | 1.507 (2) | C14—C15 | 1.391 (3) |
C3—C4 | 1.530 (2) | C14—H14 | 0.9500 |
C3—H3A | 0.9900 | C15—C16 | 1.383 (3) |
C3—H3B | 0.9900 | C15—H15 | 0.9500 |
C4—C5 | 1.508 (2) | C16—C17 | 1.395 (3) |
C4—C13 | 1.529 (2) | C17—C18 | 1.381 (3) |
C4—H4 | 1.0000 | C17—H17 | 0.9500 |
C5—C6 | 1.365 (2) | C18—H18 | 0.9500 |
C5—C20 | 1.410 (2) | C19—H19A | 0.9800 |
C7—C8 | 1.383 (3) | C19—H19B | 0.9800 |
C7—C12 | 1.389 (3) | C19—H19C | 0.9800 |
C8—C9 | 1.386 (3) | ||
C16—O2—C19 | 116.44 (16) | C8—C9—H9 | 119.7 |
C2—N1—C6 | 121.62 (15) | C11—C10—C9 | 120.19 (19) |
C2—N1—C7 | 118.78 (14) | C11—C10—H10 | 119.9 |
C6—N1—C7 | 119.55 (14) | C9—C10—H10 | 119.9 |
C6—N3—H3C | 122.5 (15) | C10—C11—C12 | 119.9 (2) |
C6—N3—H3D | 117.7 (15) | C10—C11—H11 | 120.0 |
H3C—N3—H3D | 118 (2) | C12—C11—H11 | 120.0 |
O1—C2—N1 | 121.14 (16) | C7—C12—C11 | 119.35 (19) |
O1—C2—C3 | 122.71 (16) | C7—C12—H12 | 120.3 |
N1—C2—C3 | 116.16 (15) | C11—C12—H12 | 120.3 |
C2—C3—C4 | 111.53 (14) | C14—C13—C18 | 117.78 (17) |
C2—C3—H3A | 109.3 | C14—C13—C4 | 121.64 (16) |
C4—C3—H3A | 109.3 | C18—C13—C4 | 120.58 (16) |
C2—C3—H3B | 109.3 | C13—C14—C15 | 122.01 (17) |
C4—C3—H3B | 109.3 | C13—C14—H14 | 119.0 |
H3A—C3—H3B | 108.0 | C15—C14—H14 | 119.0 |
C5—C4—C13 | 114.33 (15) | C16—C15—C14 | 119.18 (17) |
C5—C4—C3 | 106.59 (15) | C16—C15—H15 | 120.4 |
C13—C4—C3 | 111.84 (14) | C14—C15—H15 | 120.4 |
C5—C4—H4 | 108.0 | O2—C16—C15 | 123.92 (18) |
C13—C4—H4 | 108.0 | O2—C16—C17 | 116.22 (17) |
C3—C4—H4 | 108.0 | C15—C16—C17 | 119.86 (17) |
C6—C5—C20 | 119.33 (16) | C18—C17—C16 | 120.13 (17) |
C6—C5—C4 | 120.46 (15) | C18—C17—H17 | 119.9 |
C20—C5—C4 | 120.21 (16) | C16—C17—H17 | 119.9 |
N3—C6—C5 | 124.45 (16) | C17—C18—C13 | 121.01 (18) |
N3—C6—N1 | 116.48 (16) | C17—C18—H18 | 119.5 |
C5—C6—N1 | 119.07 (16) | C13—C18—H18 | 119.5 |
C8—C7—C12 | 121.01 (17) | O2—C19—H19A | 109.5 |
C8—C7—N1 | 120.29 (17) | O2—C19—H19B | 109.5 |
C12—C7—N1 | 118.68 (16) | H19A—C19—H19B | 109.5 |
C7—C8—C9 | 118.95 (19) | O2—C19—H19C | 109.5 |
C7—C8—H8 | 120.5 | H19A—C19—H19C | 109.5 |
C9—C8—H8 | 120.5 | H19B—C19—H19C | 109.5 |
C10—C9—C8 | 120.5 (2) | N2—C20—C5 | 178.6 (2) |
C10—C9—H9 | 119.7 | ||
C6—N1—C2—O1 | −177.75 (16) | C12—C7—C8—C9 | −0.9 (3) |
C7—N1—C2—O1 | 4.8 (3) | N1—C7—C8—C9 | 177.59 (17) |
C6—N1—C2—C3 | 2.1 (2) | C7—C8—C9—C10 | 1.5 (3) |
C7—N1—C2—C3 | −175.40 (15) | C8—C9—C10—C11 | −0.8 (3) |
O1—C2—C3—C4 | −143.36 (18) | C9—C10—C11—C12 | −0.6 (3) |
N1—C2—C3—C4 | 36.8 (2) | C8—C7—C12—C11 | −0.4 (3) |
C2—C3—C4—C5 | −54.71 (18) | N1—C7—C12—C11 | −178.91 (16) |
C2—C3—C4—C13 | 70.92 (19) | C10—C11—C12—C7 | 1.1 (3) |
C13—C4—C5—C6 | −84.4 (2) | C5—C4—C13—C14 | 7.1 (2) |
C3—C4—C5—C6 | 39.7 (2) | C3—C4—C13—C14 | −114.15 (18) |
C13—C4—C5—C20 | 95.23 (19) | C5—C4—C13—C18 | −172.53 (16) |
C3—C4—C5—C20 | −140.67 (16) | C3—C4—C13—C18 | 66.2 (2) |
C20—C5—C6—N3 | −2.7 (3) | C18—C13—C14—C15 | 1.7 (3) |
C4—C5—C6—N3 | 176.95 (17) | C4—C13—C14—C15 | −177.99 (16) |
C20—C5—C6—N1 | 177.30 (15) | C13—C14—C15—C16 | −1.4 (3) |
C4—C5—C6—N1 | −3.1 (2) | C19—O2—C16—C15 | −5.2 (3) |
C2—N1—C6—N3 | 159.46 (16) | C19—O2—C16—C17 | 174.22 (19) |
C7—N1—C6—N3 | −23.1 (2) | C14—C15—C16—O2 | 179.53 (17) |
C2—N1—C6—C5 | −20.5 (2) | C14—C15—C16—C17 | 0.1 (3) |
C7—N1—C6—C5 | 156.97 (16) | O2—C16—C17—C18 | −178.57 (17) |
C2—N1—C7—C8 | −57.2 (2) | C15—C16—C17—C18 | 0.9 (3) |
C6—N1—C7—C8 | 125.25 (18) | C16—C17—C18—C13 | −0.6 (3) |
C2—N1—C7—C12 | 121.29 (18) | C14—C13—C18—C17 | −0.6 (3) |
C6—N1—C7—C12 | −56.3 (2) | C4—C13—C18—C17 | 179.03 (17) |
Cg3 is the centroid of the C13–C18 benzene ring of the methoxyphenyl group. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3C···N2i | 0.91 (2) | 2.10 (2) | 2.996 (2) | 166 (2) |
N3—H3D···O2ii | 0.91 (2) | 2.48 (2) | 3.152 (2) | 131.0 (19) |
C11—H11···O1iii | 0.95 | 2.55 | 3.210 (3) | 127 |
C14—H14···O1iv | 0.95 | 2.48 | 3.199 (2) | 133 |
C10—H10···Cg3iii | 0.95 | 2.99 | 3.813 (3) | 146 |
C18—H18···Cg3v | 0.95 | 2.87 | 3.716 (2) | 150 |
Symmetry codes: (i) −x, −y, −z+1; (ii) x−1/2, −y+1/2, z−1/2; (iii) −x+1, −y+1, −z+1; (iv) x, y−1, z; (v) −x+1/2, y+1/2, −z+3/2. |
Contact | Distance | Symmetry operation |
O1···H14 | 2.48 | x, 1 + y, z |
H11···O1 | 2.55 | 1 - x, 1 - y, 1 - z |
N2···H17 | 2.70 | 1/2 - x, -1/2 + y, 3/2 - z |
O2···H3D | 2.48 (2) | 1/2 + x, 1/2 - y, 1/2 + z |
H3C···N2 | 2.10 (3) | -x, -y, 1 - z |
C20···C6 | 3.318 (3) | -x, 1 - y, 1 - z |
Acknowledgements
Authors' contributions are as follows. Conceptualization, KAA and EZH; methodology, EZH and KAA; investigation, KAA, MA and EVD; writing (original draft), MA and KAA; writing (review and editing of the manuscript), MA and EZH; visualization, MA, EZH and KAA; funding acquisition, VNK, ATH and AAA; resources, AAA, VNK and KAA; supervision, KAA and MA.
Funding information
This work was supported by the Baku State University and the Ministry of Science and Higher Education of the Russian Federation.
References
Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744. Web of Science CSD CrossRef IUCr Journals Google Scholar
Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271–281. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Doyle, R. A. (2011). Marccd software manual. Rayonix LLC, Evanston, IL 60201, USA. Google Scholar
Evans, P. (2006). Acta Cryst. D62, 72–82. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761. Web of Science CrossRef Google Scholar
Magerramov, A. M., Naghiyev, F. N., Mamedova, G. Z., Asadov, Kh. A. & Mamedov, I. G. (2018). Russ. J. Org. Chem. 54, 1731–1734. Web of Science CSD CrossRef CAS Google Scholar
Maharramov, A. M., Shikhaliyev, N. G., Zeynalli, N. R., Niyazova, A. A., Garazade, Kh. A. & Shikhaliyeva, I. M. (2021). UNEC J. Engineer. Appl. Sci. 1, 5–11. Google Scholar
Mamedov, I., Naghiyev, F., Maharramov, A., Uwangue, O., Farewell, A., Sunnerhagen, P. & Erdelyi, M. (2020). Mendeleev Commun. 30, 498–499. Web of Science CrossRef CAS Google Scholar
Mamedov, I. G., Khrustalev, V. N., Akkurt, M., Novikov, A. P., Asgarova, A. R., Aliyeva, K. N. & Akobirshoeva, A. A. (2022). Acta Cryst. E78, 291–296. CrossRef IUCr Journals Google Scholar
Mateeva, N. N., Winfield, L. L. & Redda, K. K. (2005). Curr. Med. Chem. 12, 551–571. PubMed CAS Google Scholar
Naghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A. & Brito, I. (2020). Molecules, 25, 2235–2248. Web of Science CSD CrossRef CAS Google Scholar
Naghiyev, F. N., Grishina, M. M., Khrustalev, V. N., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021a). Acta Cryst. E77, 195–199. Web of Science CSD CrossRef IUCr Journals Google Scholar
Naghiyev, F. N., Pavlova, A. V., Khrustalev, V. N., Akkurt, M., Khalilov, A. N., Akobirshoeva, A. A. & Mamedov, İ. G. (2021c). Acta Cryst. E77, 930–934. Web of Science CSD CrossRef IUCr Journals Google Scholar
Naghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Khalilov, A. N., Akobirshoeva, A. A. & Mamedov, İ. G. (2021b). Acta Cryst. E77, 512–515. Web of Science CSD CrossRef IUCr Journals Google Scholar
Novoa de Armas, H., Peeters, O. M., Blaton, N. M., De Ranter, C. J., Suárez Navarro, M., Verdecia Reyes, Y., Ochoa Rodríguez, E. & Salfrán, E. (2003). Acta Cryst. E59, o230–o231. CSD CrossRef IUCr Journals Google Scholar
Safavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. Z. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1183–1185. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sherman, A. R. & Murugan, R. (2015). Adv. Heterocycl. Chem. 14, 227–269. CrossRef Google Scholar
Smits, R., Belyakov, S., Vigante, B. & Duburs, G. (2012). Acta Cryst. E68, o3489. CSD CrossRef IUCr Journals Google Scholar
Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388. CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Yadigarov, R. R., Khalilov, A. N., Mamedov, I. G., Nagiev, F. N., Magerramov, A. M. & Allakhverdiev, M. A. (2009). Russ. J. Org. Chem. 45, 1856–1858. Web of Science CrossRef CAS Google Scholar
Yin, J., Khalilov, A. N., Muthupandi, P., Ladd, R. & Birman, V. B. (2020). J. Am. Chem. Soc. 142, 60–63. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.