research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 2-amino-4-(4-meth­­oxy­phen­yl)-6-oxo-1-phenyl-1,4,5,6-tetra­hydro­pyridine-3-carbo­nitrile

crossmark logo

aDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148 Baku, Azerbaijan, bPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow, 117198, Russian Federation, cN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and eAcad Sci Republ Tadzhikistan, Kh. Yu. Yusufbekov Pamir Biol. Inst., 1 Kholdorova St, Khorog 736002, Gbao, Tajikistan
*Correspondence e-mail: anzurat2003@mail.ru

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 3 February 2022; accepted 15 February 2022; online 22 February 2022)

The central tetra­hydro­pyridine ring of the title compound, C19H17N3O2, adopts a screw-boat conformation. In the crystal, strong C—H⋯O and N—H⋯N hydrogen bonds form dimers with R22(14) and R22(12) ring motifs, respectively, between consecutive mol­ecules along the c-axis direction. Inter­molecular N—H⋯O and C—H⋯O hydrogen bonds connect these dimers, forming a three-dimensional network. C—H⋯π inter­actions and ππ stacking inter­actions contribute to the stabilization of the mol­ecular packing. A Hirshfeld surface analysis indicates that the contributions from the most prevalent inter­actions are H⋯H (47.1%), C⋯H/H⋯C (20.9%), O⋯H/H⋯O (15.3%) and N⋯H/H⋯N (11.4%).

1. Chemical context

Carbon–carbon and carbon–nitro­gen bond-forming reactions represent an important synthetic class in organic chemistry (Yadigarov et al., 2009[Yadigarov, R. R., Khalilov, A. N., Mamedov, I. G., Nagiev, F. N., Magerramov, A. M. & Allakhverdiev, M. A. (2009). Russ. J. Org. Chem. 45, 1856-1858.]; Abdelhamid et al., 2011[Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744.]; Yin et al., 2020[Yin, J., Khalilov, A. N., Muthupandi, P., Ladd, R. & Birman, V. B. (2020). J. Am. Chem. Soc. 142, 60-63.]; Khalilov et al., 2021[Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.]). Notably, pyridine derivatives are widely applied in the discovery of biologically active mol­ecules and multifunctional materials (Magerramov et al., 2018[Magerramov, A. M., Naghiyev, F. N., Mamedova, G. Z., Asadov, Kh. A. & Mamedov, I. G. (2018). Russ. J. Org. Chem. 54, 1731-1734.]; Sherman & Murugan, 2015[Sherman, A. R. & Murugan, R. (2015). Adv. Heterocycl. Chem. 14, 227-269.]; Mamedov et al., 2020[Mamedov, I., Naghiyev, F., Maharramov, A., Uwangue, O., Farewell, A., Sunnerhagen, P. & Erdelyi, M. (2020). Mendeleev Commun. 30, 498-499.]). On the other hand, the tetra­hydro­pyridine moiety is an essential part of diverse biologically active compounds, food additives and natural products (Mateeva et al., 2005[Mateeva, N. N., Winfield, L. L. & Redda, K. K. (2005). Curr. Med. Chem. 12, 551-571.]).

[Scheme 1]

In the framework of ongoing structural studies (Safavora et al., 2019[Safavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. Z. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1183-1185.]; Naghiyev et al., 2020[Naghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A. & Brito, I. (2020). Molecules, 25, 2235-2248.]; 2021a[Naghiyev, F. N., Grishina, M. M., Khrustalev, V. N., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021a). Acta Cryst. E77, 195-199.],b[Naghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Khalilov, A. N., Akobirshoeva, A. A. & Mamedov, İ. G. (2021b). Acta Cryst. E77, 512-515.]; Maharramov et al., 2021[Maharramov, A. M., Shikhaliyev, N. G., Zeynalli, N. R., Niyazova, A. A., Garazade, Kh. A. & Shikhaliyeva, I. M. (2021). UNEC J. Engineer. Appl. Sci. 1, 5-11.]), we report here the crystal structure and Hirshfeld surface analysis of the title compound, 2-amino-4-(4-meth­oxy­phen­yl)-6-oxo-1-phenyl-1,4,5,6-tetra­hydro­pyridine-3- carbo­nitrile.

2. Structural commentary

The title compound (Fig. 1[link]) crystallizes in the monoclinic space group P21/n with Z = 4. The central N1/C2–C6 tetra­hydro­pyridine ring of the mol­ecule adopts a screw-boat conformation with puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) QT = 0.503 (2) Å, θ = 66.1 (2)°, φ = 153.3 (2)°. The C7–C12 phenyl ring, which is attached to N1, is in an equatorial position and makes a dihedral angle of 54.43 (9)° with the mean plane of the tetra­hydro­pyridine ring. The C13–C18 meth­oxy­phenyl ring, which is attached to C4, is in an axial position. The dihedral angle between the C7–C12 phenyl and C13–C18 meth­oxy­phenyl rings is 68.61 (10)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.

3. Supra­molecular features

As shown in Fig. 2[link], strong inter­molecular C11—H11⋯O1 and N3—H3C⋯N2 hydrogen bonds (Table 1[link]) form dimers with [R_{2}^{2}](14) and [R_{2}^{2}](12) ring motifs (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]), respectively, between adjacent mol­ecules along the c-axis direction. These dimers are connected by N3—H3D⋯O2 and C14—H14⋯O1 hydrogen bonds, forming a three-dimensional network (Table 1[link]; Fig. 3[link]). Furthermore, C—H⋯π [C10—H10⋯Cg3iii and C18—H18⋯Cg3v; symmetry codes: (iii) −x + 1, −y + 1, −z + 1; (v) −x + [{1\over 2}], y + [{1\over 2}], −z + [{3\over 2}].; Cg3 is the centroid of the C13–C18 meth­oxy­phenyl ring; Table 1[link]] and ππ stacking inter­actions [Cg2⋯Cg2iii = 3.8918 (15) Å and slippage = 1.551 Å; Cg2 is the centroid of the C7–C12 phenyl ring] contribute to the stabilization of the mol­ecular packing (Figs. 4[link] and 5[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C13–C18 benzene ring of the meth­oxy­phenyl group.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3C⋯N2i 0.91 (2) 2.10 (2) 2.996 (2) 166 (2)
N3—H3D⋯O2ii 0.91 (2) 2.48 (2) 3.152 (2) 131.0 (19)
C11—H11⋯O1iii 0.95 2.55 3.210 (3) 127
C14—H14⋯O1iv 0.95 2.48 3.199 (2) 133
C10—H10⋯Cg3iii 0.95 2.99 3.813 (3) 146
C18—H18⋯Cg3v 0.95 2.87 3.716 (2) 150
Symmetry codes: (i) [-x, -y, -z+1]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+1, -y+1, -z+1]; (iv) [x, y-1, z]; (v) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
A general view of the N—H⋯N, N—H⋯O and C—H⋯O hydrogen bonds in the crystal packing of the title compound [symmetry codes: (i) −x, −y, −z + 1; (ii) x − [{1\over 2}], −y + [{1\over 2}], z − [{1\over 2}]; (iii) −x + 1, −y + 1, −z + 1; (iv) x, y − 1, z; (vi) [{1\over 2}] + x, [{1\over 2}] − y, [{1\over 2}] + z].
[Figure 3]
Figure 3
The crystal packing of the title compound, viewed along the b axis, showing the N—H⋯N, N—H⋯O and C—H⋯O hydrogen bonds as dashed lines.
[Figure 4]
Figure 4
A general view of the C—H⋯π inter­actions and ππ stacking inter­actions in the crystal packing of the title compound [symmetry codes: (iii) −x + 1, −y + 1, −z + 1; (v) −x + [{1\over 2}], y + [{1\over 2}], −z + [{3\over 2}]].
[Figure 5]
Figure 5
The crystal packing of the title compound, viewed along the b axis, showing the C—H⋯π inter­actions and ππ stacking inter­actions as dashed lines.

4. Hirshfeld surface analysis

The Hirshfeld surface analysis was performed and the associated two dimensional fingerprint plots generated using Crystal Explorer 17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). The Hirshfeld surface was calculated using a standard (high) surface resolution with the three-dimensional dnorm surface plotted over a fixed colour scale mapped over the range −0.4835 (red) to 1.8469 (blue) a.u. The dnorm mapping indicates that strong hydrogen-bonding inter­actions, such as N—H⋯N, N—H⋯O and C—H⋯O hydrogen bonds (Tables 1[link] and 2[link]), appear to be the primary inter­actions in the structure, seen as a bright-red area in the Hirshfeld surface (Fig. 6[link]).

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

Contact Distance Symmetry operation
O1⋯H14 2.48 x, 1 + y, z
H11⋯O1 2.55 1 − x, 1 − y, 1 − z
N2⋯H17 2.70 [{1\over 2}] − x, −[{1\over 2}] + y, [{3\over 2}] − z
O2⋯H3D 2.48 (2) [{1\over 2}] + x, [{1\over 2}] − y, [{1\over 2}] + z
H3C⋯N2 2.10 (3) -x, −y, 1 − z
C20⋯C6 3.318 (3) -x, 1 − y, 1 − z
[Figure 6]
Figure 6
Hirshfeld surface mapped over dnorm showing the N—H⋯N, N—H⋯O and C—H⋯O inter­molecular contacts.

The Hirshfeld surface mapped over electrostatic potential (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]) is shown in Fig. 7[link]. The blue regions indicate positive electrostatic potential (hydrogen-bond donors), while the red regions indicate negative electrostatic potential (hydrogen-bond acceptors).

[Figure 7]
Figure 7
View of the three-dimensional Hirshfeld surface of the title compound, showing the hydrogen-bonding inter­actions, plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions, respectively, around the atoms, corresponding to positive and negative potentials.

The two-dimensional fingerprint plots are illustrated in Fig. 8[link]. H⋯H contacts comprise 47.1% of the total inter­actions (Fig. 8[link]b), followed by C⋯H/H⋯C (Fig. 8[link]c; 20.9%), O⋯H/H⋯O (Fig. 8[link]d; 15.3%) and N⋯H/H⋯N (Fig. 8[link]e; 11.4%). The percentage contributions of the C⋯C, C⋯N/N⋯C and N⋯N contacts are negligible, at 3.1, 1.4 and 0.8%, respectively. The predominance of H⋯H, C⋯H/H⋯C, O⋯H/H⋯O and N⋯H/H⋯N contacts indicate that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

[Figure 8]
Figure 8
(a) The full two-dimensional fingerprint plot for the title compound and those delineated into (b) H⋯H (47.1%), (c) C⋯H/H⋯C (20.9%), (d) O⋯H/H⋯O (15.3%) and (e) N⋯H/H⋯N (11.4%) contacts.

5. Database survey

A search of the Cambridge Structural Database (CSD, version 5.42, update of September 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) found four compounds with the 6-oxo-1-phenyl-1,4,5,6-tetra­hydro­pyridine unit that are similar to the title compound, viz. 5-acetyl-2-amino-4-(4-bromo­phen­yl)-6-oxo-1-phenyl-1,4,5,6-tetra­hydro­pyridine-3-carbo­nitrile (I) (YAXQAT; Mamedov et al., 2022[Mamedov, I. G., Khrustalev, V. N., Akkurt, M., Novikov, A. P., Asgarova, A. R., Aliyeva, K. N. & Akobirshoeva, A. A. (2022). Acta Cryst. E78, 291-296.]), 2-amino-4-(2,6-di­chloro­phen­yl)-5-(1-hy­droxy­ethyl­idene)-6-oxo-1-phenyl-1,4,5,6-tetra­hydro­pyridine-3-car­b­o­nitrile (II) (OZAKOS, Naghiyev et al., 2021c[Naghiyev, F. N., Pavlova, A. V., Khrustalev, V. N., Akkurt, M., Khalilov, A. N., Akobirshoeva, A. A. & Mamedov, İ. G. (2021c). Acta Cryst. E77, 930-934.]), methyl 6-oxo-4-phenyl-2-[(Z)-2-(pyridin-2-yl)ethen­yl]-1,4,5,6-tetra­hydro­pyridine-3-carboxyl­ate (III) (PEDFEL, Smits et al., 2012[Smits, R., Belyakov, S., Vigante, B. & Duburs, G. (2012). Acta Cryst. E68, o3489.]) and ethyl 5-eth­oxy­methyl­ene-2-methyl-6-oxo-4-phenyl-1,4,5,6-tetra­hydro­pyridine-3-carboxyl­ate (IV) (VAGXAD, Novoa de Armas et al., 2003[Novoa de Armas, H., Peeters, O. M., Blaton, N. M., De Ranter, C. J., Suárez Navarro, M., Verdecia Reyes, Y., Ochoa Rodríguez, E. & Salfrán, E. (2003). Acta Cryst. E59, o230-o231.]).

Compound (I) crystallizes in the monoclinic space group Pc with Z = 4, and with two mol­ecules, A and B, in the asymmetric unit. These mol­ecules are stereoisomers with an R,R absolute configuration at C3 and C4 in mol­ecule A, whereas the corresponding atoms in B, C23 and C24, have an S configuration. In both mol­ecules, the conformation of the central di­hydro­pyridine ring is close to screw-boat. The mol­ecular conformation is stabilized by N—H⋯O hydrogen bonds, forming a dimer with an [R_{2}^{2}](16) ring motif. Both mol­ecules of the dimers are connected by inter­molecular N—H⋯O and N—H⋯N hydrogen bonds with an R23(14) ring motif into chains along the c-axis direction. Furthermore C—Br⋯π and C=O⋯π stacking inter­actions between these ribbons contribute to the stabilization of the mol­ecular packing.

Compound (II) crystallizes in the monoclinic space group P21/c with Z = 4 and the asymmetric unit comprises one mol­ecule. The central tetra­hydro­pyridine ring is almost planar with a maximum deviation of 0.074 (3) Å for C4. The phenyl and di­chloro­phenyl rings are at an angle of 21.28 (15)°. They form dihedral angles of 86.10 (15) and 87.17 (14)°, respectively, with the central tetra­hydro­pyridine ring. A strong intra­molecular O2—H2⋯O1 hydrogen bond stabilizes the mol­ecular conformation of the mol­ecule, creating an S(6) ring motif. In the crystal, mol­ecules are linked by inter­molecular N—H⋯N and C—H⋯N hydrogen bonds, and N—H⋯π and C—H⋯π inter­actions, forming a three-dimensional network.

In mol­ecule (III) (monoclinic space group P21/c, Z = 4), the cis configuration of the pyridinyl-vinyl fragment is stabilized by a strong intra­molecular N—H⋯N hydrogen bond. The phenyl and pyridine rings are inclined to one another by 77.3 (1)°. In the crystal, inversion dimers are present via pairs of C—H⋯O hydrogen bonds and are further linked by C—H⋯O hydrogen bonds and C—H⋯π inter­actions.

For compound (IV) (monoclinic space group C2/c, Z = 8), the mol­ecules form dimers by means of a pair of N—H⋯O hydrogen bonds. The 2(1H)-pyridone ring displays a screw-boat conformation.

6. Synthesis and crystallization

To a solution of 2-(4-meth­oxy­benzyl­idene)malono­nitrile (0.94 g; 5.1 mmol) and acetoacetanilide (0.92 g; 5.2 mmol) in methanol (25 mL), 3-4 drops of piperidine were added and the mixture was stirred at 328–333 K for 10 min and was kept at room temperature for 48 h. Then 15 mL of methanol were removed from the reaction mixture, which was left overnight. The precipitated crystals were separated by filtration and recrystallized from ethanol/water (1:1) solution (yield 61%; m.p. 471–472 K).

1H NMR (300 MHz, DMSO-d6, ppm.): 2.80 (dddd, 1H, CH2); 3.19 (dddd, 1H, CH2); 3.82 (s, 3H, OCH3); 3.93 (t, 1H, CH); 5.85 (s, 2H, NH2); 7.15–7.58 (m, 9H, 2Ar—H). 13C NMR (75 MHz, DMSO-d6, ppm.): 36.06 (CH—Ar), 40.42 (CH2), 53.78 (OCH3), 59.05 (Cquat.), 112.89 (2CHar), 121.21 (CN), 128.61 (CHar.), 128.88 (2CHar.), 130.44 (2CHar.), 130.51 (2CHar.), 136.06 (Car. quat.), 137.02 (Car. quat.), 154.59 (Car. quat.), 155.18 (Cquat.), 168.82 (N—C=O).

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms bonded to nitro­gen were located in a difference-Fourier map, and only their positional parameters were refined [N3—H3C = 0.91 (2) and N3—H3D = 0.91 (2) Å with Uiso(H) = 1.2Ueq(N)]. C-bound H atoms were positioned geometrically, with C—H = 0.95–1.00 Å, and were refined with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl).

Table 3
Experimental details

Crystal data
Chemical formula C19H17N3O2
Mr 319.36
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 12.910 (3), 6.3200 (13), 21.170 (4)
β (°) 106.48 (3)
V3) 1656.3 (7)
Z 4
Radiation type Synchrotron, λ = 0.80246 Å
μ (mm−1) 0.11
Crystal size (mm) 0.40 × 0.15 × 0.07
 
Data collection
Diffractometer Rayonix SX165 CCD
Absorption correction Multi-scan (SCALA;Evans, 2006[Evans, P. (2006). Acta Cryst. D62, 72-82.])
Tmin, Tmax 0.950, 0.985
No. of measured, independent and observed [I > 2σ(I)] reflections 26143, 3603, 3125
Rint 0.049
(sin θ/λ)max−1) 0.643
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.143, 1.05
No. of reflections 3603
No. of parameters 225
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.29, −0.27
Computer programs: Marccd (Doyle, 2011[Doyle, R. A. (2011). Marccd software manual. Rayonix LLC, Evanston, IL 60201, USA.]), iMosflm (Battye et al., 2011[Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271-281.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: Marccd (Doyle, 2011); cell refinement: iMosflm (Battye et al., 2011); data reduction: iMosflm (Battye et al., 2011); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

2-Amino-4-(4-methoxyphenyl)-6-oxo-1-phenyl-1,4,5,6-tetrahydropyridine-3-carbonitrile top
Crystal data top
C19H17N3O2F(000) = 672
Mr = 319.36Dx = 1.281 Mg m3
Monoclinic, P21/nSynchrotron radiation, λ = 0.80246 Å
a = 12.910 (3) ÅCell parameters from 600 reflections
b = 6.3200 (13) Åθ = 2.4–30.0°
c = 21.170 (4) ŵ = 0.11 mm1
β = 106.48 (3)°T = 100 K
V = 1656.3 (7) Å3Prism, colourless
Z = 40.40 × 0.15 × 0.07 mm
Data collection top
Rayonix SX165 CCD
diffractometer
3125 reflections with I > 2σ(I)
/f scanRint = 0.049
Absorption correction: multi-scan
(Scala;Evans, 2006)
θmax = 31.1°, θmin = 2.3°
Tmin = 0.950, Tmax = 0.985h = 1616
26143 measured reflectionsk = 87
3603 independent reflectionsl = 2727
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.143 w = 1/[σ2(Fo2) + (0.059P)2 + 1.3785P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3603 reflectionsΔρmax = 0.29 e Å3
225 parametersΔρmin = 0.27 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: difference Fourier mapExtinction coefficient: 0.033 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.33220 (11)0.8608 (2)0.55256 (7)0.0332 (3)
O20.55206 (12)0.1472 (3)0.79862 (7)0.0413 (4)
N10.24126 (11)0.5628 (2)0.50951 (7)0.0269 (3)
N20.03015 (13)0.1368 (3)0.56257 (8)0.0321 (4)
N30.12078 (12)0.3027 (3)0.45307 (8)0.0300 (4)
H3C0.0857 (18)0.177 (4)0.4520 (11)0.036*
H3D0.1458 (19)0.336 (4)0.4183 (12)0.036*
C20.26361 (14)0.7307 (3)0.55371 (9)0.0272 (4)
C30.19790 (14)0.7407 (3)0.60221 (9)0.0287 (4)
H3A0.12840.81220.58140.034*
H3B0.23720.82540.64090.034*
C40.17589 (14)0.5196 (3)0.62495 (9)0.0277 (4)
H40.12210.53390.65060.033*
C50.12391 (13)0.3942 (3)0.56355 (9)0.0268 (4)
C60.15916 (13)0.4149 (3)0.50888 (9)0.0262 (4)
C70.30690 (13)0.5355 (3)0.46514 (9)0.0279 (4)
C80.31570 (15)0.6969 (3)0.42287 (9)0.0338 (4)
H80.27650.82490.42150.041*
C90.38256 (17)0.6690 (4)0.38261 (11)0.0408 (5)
H90.39060.78000.35410.049*
C100.43779 (17)0.4806 (4)0.38357 (11)0.0421 (5)
H100.48270.46240.35540.051*
C110.42768 (16)0.3194 (4)0.42533 (10)0.0379 (5)
H110.46510.18980.42560.045*
C120.36267 (15)0.3466 (3)0.46698 (9)0.0314 (4)
H120.35640.23700.49640.038*
C130.27801 (14)0.4188 (3)0.66992 (9)0.0266 (4)
C140.32417 (14)0.2403 (3)0.65102 (9)0.0274 (4)
H140.29270.18220.60850.033*
C150.41514 (15)0.1438 (3)0.69241 (9)0.0298 (4)
H150.44430.01970.67870.036*
C160.46259 (15)0.2306 (3)0.75379 (9)0.0316 (4)
C170.41891 (15)0.4125 (3)0.77340 (9)0.0333 (4)
H170.45200.47350.81530.040*
C180.32761 (15)0.5043 (3)0.73205 (9)0.0301 (4)
H180.29800.62730.74600.036*
C190.5911 (2)0.0507 (4)0.78134 (12)0.0535 (6)
H19A0.61530.03210.74180.080*
H19B0.53290.15580.77260.080*
H19C0.65170.09950.81780.080*
C200.03871 (13)0.2533 (3)0.56225 (9)0.0268 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0328 (7)0.0278 (7)0.0408 (7)0.0063 (5)0.0132 (6)0.0045 (6)
O20.0378 (7)0.0485 (9)0.0319 (7)0.0068 (6)0.0005 (6)0.0031 (6)
N10.0262 (7)0.0245 (7)0.0304 (7)0.0025 (6)0.0086 (6)0.0026 (6)
N20.0318 (8)0.0294 (8)0.0348 (8)0.0028 (6)0.0093 (6)0.0009 (7)
N30.0311 (8)0.0297 (8)0.0288 (8)0.0072 (6)0.0079 (6)0.0025 (6)
C20.0272 (8)0.0218 (8)0.0310 (9)0.0010 (6)0.0058 (7)0.0001 (7)
C30.0300 (8)0.0248 (8)0.0319 (9)0.0000 (7)0.0096 (7)0.0022 (7)
C40.0267 (8)0.0268 (9)0.0305 (9)0.0005 (7)0.0098 (7)0.0023 (7)
C50.0240 (8)0.0255 (8)0.0300 (9)0.0003 (6)0.0060 (6)0.0015 (7)
C60.0233 (7)0.0228 (8)0.0303 (8)0.0006 (6)0.0040 (6)0.0003 (7)
C70.0243 (8)0.0310 (9)0.0278 (8)0.0053 (7)0.0064 (6)0.0040 (7)
C80.0319 (9)0.0351 (10)0.0331 (9)0.0054 (8)0.0072 (7)0.0005 (8)
C90.0395 (10)0.0479 (12)0.0366 (10)0.0109 (9)0.0135 (8)0.0021 (9)
C100.0368 (10)0.0531 (13)0.0404 (11)0.0106 (9)0.0173 (9)0.0088 (10)
C110.0304 (9)0.0418 (11)0.0426 (11)0.0044 (8)0.0122 (8)0.0118 (9)
C120.0296 (9)0.0313 (9)0.0329 (9)0.0019 (7)0.0083 (7)0.0033 (8)
C130.0279 (8)0.0239 (8)0.0286 (8)0.0032 (6)0.0089 (7)0.0008 (7)
C140.0276 (8)0.0259 (8)0.0278 (8)0.0031 (7)0.0067 (7)0.0011 (7)
C150.0308 (8)0.0283 (9)0.0312 (9)0.0005 (7)0.0105 (7)0.0018 (7)
C160.0300 (9)0.0356 (10)0.0273 (9)0.0003 (7)0.0047 (7)0.0052 (7)
C170.0347 (9)0.0368 (10)0.0269 (9)0.0047 (8)0.0063 (7)0.0033 (8)
C180.0342 (9)0.0280 (9)0.0290 (9)0.0020 (7)0.0106 (7)0.0030 (7)
C190.0529 (13)0.0586 (15)0.0408 (12)0.0229 (12)0.0002 (10)0.0033 (11)
C200.0264 (8)0.0245 (8)0.0280 (8)0.0024 (7)0.0054 (6)0.0005 (7)
Geometric parameters (Å, º) top
O1—C21.214 (2)C8—H80.9500
O2—C161.375 (2)C9—C101.385 (3)
O2—C191.434 (3)C9—H90.9500
N1—C21.390 (2)C10—C111.379 (3)
N1—C61.410 (2)C10—H100.9500
N1—C71.443 (2)C11—C121.390 (3)
N2—C201.156 (2)C11—H110.9500
N3—C61.346 (2)C12—H120.9500
N3—H3C0.91 (2)C13—C141.387 (2)
N3—H3D0.91 (2)C13—C181.398 (3)
C2—C31.507 (2)C14—C151.391 (3)
C3—C41.530 (2)C14—H140.9500
C3—H3A0.9900C15—C161.383 (3)
C3—H3B0.9900C15—H150.9500
C4—C51.508 (2)C16—C171.395 (3)
C4—C131.529 (2)C17—C181.381 (3)
C4—H41.0000C17—H170.9500
C5—C61.365 (2)C18—H180.9500
C5—C201.410 (2)C19—H19A0.9800
C7—C81.383 (3)C19—H19B0.9800
C7—C121.389 (3)C19—H19C0.9800
C8—C91.386 (3)
C16—O2—C19116.44 (16)C8—C9—H9119.7
C2—N1—C6121.62 (15)C11—C10—C9120.19 (19)
C2—N1—C7118.78 (14)C11—C10—H10119.9
C6—N1—C7119.55 (14)C9—C10—H10119.9
C6—N3—H3C122.5 (15)C10—C11—C12119.9 (2)
C6—N3—H3D117.7 (15)C10—C11—H11120.0
H3C—N3—H3D118 (2)C12—C11—H11120.0
O1—C2—N1121.14 (16)C7—C12—C11119.35 (19)
O1—C2—C3122.71 (16)C7—C12—H12120.3
N1—C2—C3116.16 (15)C11—C12—H12120.3
C2—C3—C4111.53 (14)C14—C13—C18117.78 (17)
C2—C3—H3A109.3C14—C13—C4121.64 (16)
C4—C3—H3A109.3C18—C13—C4120.58 (16)
C2—C3—H3B109.3C13—C14—C15122.01 (17)
C4—C3—H3B109.3C13—C14—H14119.0
H3A—C3—H3B108.0C15—C14—H14119.0
C5—C4—C13114.33 (15)C16—C15—C14119.18 (17)
C5—C4—C3106.59 (15)C16—C15—H15120.4
C13—C4—C3111.84 (14)C14—C15—H15120.4
C5—C4—H4108.0O2—C16—C15123.92 (18)
C13—C4—H4108.0O2—C16—C17116.22 (17)
C3—C4—H4108.0C15—C16—C17119.86 (17)
C6—C5—C20119.33 (16)C18—C17—C16120.13 (17)
C6—C5—C4120.46 (15)C18—C17—H17119.9
C20—C5—C4120.21 (16)C16—C17—H17119.9
N3—C6—C5124.45 (16)C17—C18—C13121.01 (18)
N3—C6—N1116.48 (16)C17—C18—H18119.5
C5—C6—N1119.07 (16)C13—C18—H18119.5
C8—C7—C12121.01 (17)O2—C19—H19A109.5
C8—C7—N1120.29 (17)O2—C19—H19B109.5
C12—C7—N1118.68 (16)H19A—C19—H19B109.5
C7—C8—C9118.95 (19)O2—C19—H19C109.5
C7—C8—H8120.5H19A—C19—H19C109.5
C9—C8—H8120.5H19B—C19—H19C109.5
C10—C9—C8120.5 (2)N2—C20—C5178.6 (2)
C10—C9—H9119.7
C6—N1—C2—O1177.75 (16)C12—C7—C8—C90.9 (3)
C7—N1—C2—O14.8 (3)N1—C7—C8—C9177.59 (17)
C6—N1—C2—C32.1 (2)C7—C8—C9—C101.5 (3)
C7—N1—C2—C3175.40 (15)C8—C9—C10—C110.8 (3)
O1—C2—C3—C4143.36 (18)C9—C10—C11—C120.6 (3)
N1—C2—C3—C436.8 (2)C8—C7—C12—C110.4 (3)
C2—C3—C4—C554.71 (18)N1—C7—C12—C11178.91 (16)
C2—C3—C4—C1370.92 (19)C10—C11—C12—C71.1 (3)
C13—C4—C5—C684.4 (2)C5—C4—C13—C147.1 (2)
C3—C4—C5—C639.7 (2)C3—C4—C13—C14114.15 (18)
C13—C4—C5—C2095.23 (19)C5—C4—C13—C18172.53 (16)
C3—C4—C5—C20140.67 (16)C3—C4—C13—C1866.2 (2)
C20—C5—C6—N32.7 (3)C18—C13—C14—C151.7 (3)
C4—C5—C6—N3176.95 (17)C4—C13—C14—C15177.99 (16)
C20—C5—C6—N1177.30 (15)C13—C14—C15—C161.4 (3)
C4—C5—C6—N13.1 (2)C19—O2—C16—C155.2 (3)
C2—N1—C6—N3159.46 (16)C19—O2—C16—C17174.22 (19)
C7—N1—C6—N323.1 (2)C14—C15—C16—O2179.53 (17)
C2—N1—C6—C520.5 (2)C14—C15—C16—C170.1 (3)
C7—N1—C6—C5156.97 (16)O2—C16—C17—C18178.57 (17)
C2—N1—C7—C857.2 (2)C15—C16—C17—C180.9 (3)
C6—N1—C7—C8125.25 (18)C16—C17—C18—C130.6 (3)
C2—N1—C7—C12121.29 (18)C14—C13—C18—C170.6 (3)
C6—N1—C7—C1256.3 (2)C4—C13—C18—C17179.03 (17)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C13–C18 benzene ring of the methoxyphenyl group.
D—H···AD—HH···AD···AD—H···A
N3—H3C···N2i0.91 (2)2.10 (2)2.996 (2)166 (2)
N3—H3D···O2ii0.91 (2)2.48 (2)3.152 (2)131.0 (19)
C11—H11···O1iii0.952.553.210 (3)127
C14—H14···O1iv0.952.483.199 (2)133
C10—H10···Cg3iii0.952.993.813 (3)146
C18—H18···Cg3v0.952.873.716 (2)150
Symmetry codes: (i) x, y, z+1; (ii) x1/2, y+1/2, z1/2; (iii) x+1, y+1, z+1; (iv) x, y1, z; (v) x+1/2, y+1/2, z+3/2.
Summary of short interatomic contacts (Å) in the title compound top
ContactDistanceSymmetry operation
O1···H142.48x, 1 + y, z
H11···O12.551 - x, 1 - y, 1 - z
N2···H172.701/2 - x, -1/2 + y, 3/2 - z
O2···H3D2.48 (2)1/2 + x, 1/2 - y, 1/2 + z
H3C···N22.10 (3)-x, -y, 1 - z
C20···C63.318 (3)-x, 1 - y, 1 - z
 

Acknowledgements

Authors' contributions are as follows. Conceptualization, KAA and EZH; methodology, EZH and KAA; investigation, KAA, MA and EVD; writing (original draft), MA and KAA; writing (review and editing of the manuscript), MA and EZH; visualization, MA, EZH and KAA; funding acquisition, VNK, ATH and AAA; resources, AAA, VNK and KAA; supervision, KAA and MA.

Funding information

This work was supported by the Baku State University and the Ministry of Science and Higher Education of the Russian Federation.

References

First citationAbdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBattye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271–281.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDoyle, R. A. (2011). Marccd software manual. Rayonix LLC, Evanston, IL 60201, USA.  Google Scholar
First citationEvans, P. (2006). Acta Cryst. D62, 72–82.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationKhalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.  Web of Science CrossRef Google Scholar
First citationMagerramov, A. M., Naghiyev, F. N., Mamedova, G. Z., Asadov, Kh. A. & Mamedov, I. G. (2018). Russ. J. Org. Chem. 54, 1731–1734.  Web of Science CSD CrossRef CAS Google Scholar
First citationMaharramov, A. M., Shikhaliyev, N. G., Zeynalli, N. R., Niyazova, A. A., Garazade, Kh. A. & Shikhaliyeva, I. M. (2021). UNEC J. Engineer. Appl. Sci. 1, 5–11.  Google Scholar
First citationMamedov, I., Naghiyev, F., Maharramov, A., Uwangue, O., Farewell, A., Sunnerhagen, P. & Erdelyi, M. (2020). Mendeleev Commun. 30, 498–499.  Web of Science CrossRef CAS Google Scholar
First citationMamedov, I. G., Khrustalev, V. N., Akkurt, M., Novikov, A. P., Asgarova, A. R., Aliyeva, K. N. & Akobirshoeva, A. A. (2022). Acta Cryst. E78, 291–296.  CrossRef IUCr Journals Google Scholar
First citationMateeva, N. N., Winfield, L. L. & Redda, K. K. (2005). Curr. Med. Chem. 12, 551–571.  PubMed CAS Google Scholar
First citationNaghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A. & Brito, I. (2020). Molecules, 25, 2235–2248.  Web of Science CSD CrossRef CAS Google Scholar
First citationNaghiyev, F. N., Grishina, M. M., Khrustalev, V. N., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021a). Acta Cryst. E77, 195–199.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Pavlova, A. V., Khrustalev, V. N., Akkurt, M., Khalilov, A. N., Akobirshoeva, A. A. & Mamedov, İ. G. (2021c). Acta Cryst. E77, 930–934.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Khalilov, A. N., Akobirshoeva, A. A. & Mamedov, İ. G. (2021b). Acta Cryst. E77, 512–515.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNovoa de Armas, H., Peeters, O. M., Blaton, N. M., De Ranter, C. J., Suárez Navarro, M., Verdecia Reyes, Y., Ochoa Rodríguez, E. & Salfrán, E. (2003). Acta Cryst. E59, o230–o231.  CSD CrossRef IUCr Journals Google Scholar
First citationSafavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. Z. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1183–1185.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSherman, A. R. & Murugan, R. (2015). Adv. Heterocycl. Chem. 14, 227–269.  CrossRef Google Scholar
First citationSmits, R., Belyakov, S., Vigante, B. & Duburs, G. (2012). Acta Cryst. E68, o3489.  CSD CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationYadigarov, R. R., Khalilov, A. N., Mamedov, I. G., Nagiev, F. N., Magerramov, A. M. & Allakhverdiev, M. A. (2009). Russ. J. Org. Chem. 45, 1856–1858.  Web of Science CrossRef CAS Google Scholar
First citationYin, J., Khalilov, A. N., Muthupandi, P., Ladd, R. & Birman, V. B. (2020). J. Am. Chem. Soc. 142, 60–63.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds