research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of six 4-(4-nitro­phenyl)­piperazin-1-ium salts

crossmark logo

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore-570 006, India, bInstitute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Strasse 2, D-64287 Darmstadt, Germany, and cDepartment of Physical and Analytical Chemistry, Faculty of Chemistry, Oviedo University-CINN, Oviedo 33006, Spain
*Correspondence e-mail: sgg@uniovi.es

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 30 March 2022; accepted 19 April 2022; online 26 April 2022)

Six piperazinium salts, namely 4-(4-nitro­phenyl)­piperazin-1-ium 4-bromo­ben­zo­ate dihydrate, C10H14N3O2+·C7H4BrO2·2H2O, (I), 4-(4-nitro­phenyl)­pi­per­a­zin-1-ium 4-iodo­benzoate dihydrate, C10H14N3O2+·C7H4IO2·2H2O, (II), 4-(4-nitro­phenyl)­piperazin-1-ium 4-hy­droxy­benzoate monohydrate, C10H14N3O2+·C7H5O3·H2O, (III), 4-(4-nitro­phenyl)­piperazin-1-ium 4-methyl­benzoate monohydrate, C10H14N3O2+·C8H7O2·H2O, (IV), 4-(4-nitro­phenyl)­piperazin-1-ium 4-meth­oxy­benzoate hemihydrate, 2C10H14N3O2+·2C8H7O3·H2O, (V), and 4-(4-nitro­phenyl)­piperazin-1-ium 4-eth­oxy­benzoate, 2C10H14N3O2+·2C9H9O3, (VI), have been synthesized and their crystal structures solved by single-crystal X-ray diffraction, revealing that all of them crystallize in the triclinic space group P[\overline{1}] except for (V), which crystallizes in the monoclinic space group P21/c and has a disordered nitro group. Compounds (I) and (II) are isostructural. The crystal packing of (I)–(V) is constructed from organic chains formed by a combination of hydrogen bonds of type N—H⋯O and/or O—H⋯O and other weak inter­actions of type C—H⋯O and/or C—H⋯π, forming sheets, whereas (VI) shows a cationic and anionic-based layer structure.

1. Chemical context

Piperazines and substituted piperazines are important pharmacophores that can be found in many biologically active compounds used to treat a number of different diseases (Berkheij, 2005[Berkheij, M., van der Sluis, L., Sewing, C., den Boer, D. J., Terpstra, J. W., Hiemstra, H., Iwema Bakker, W. I., van den Hoogenband, A. & van Maarseveen, J. H. (2005). Tetrahedron Lett. 46, 2369-2371.]) as anti­fungal (Upadhayaya et al., 2004[Upadhayaya, P. S., Sinha, N., Jain, S., Kishore, N., Chandra, R. & Arora, S. K. (2004). Bioorg. Med. Chem. 12, 2225-2238.]), anti-bacterial, anti-malarial and anti-psychotic agents (Choudhary et al., 2006[Chaudhary, P., Kumar, R., Verma, K., Singh, D., Yadav, V., Chhillar, A. K., Sharma, G. L. & Chandra, R. (2006). Bioorg. Med. Chem. 14, 1819-1826.]). A valuable insight into advances on the anti­microbial activity of piperazine derivatives was given by Kharb et al. (2012[Kharb, R., Bansal, K. & Sharma, A. K. (2012). Der Pharma Chem. 4, 2470-2488.]). Piperazines are among the most important building blocks in current drug discovery and are found in biologically active compounds across a number of different therapeutic areas (Brockunier et al., 2004[Brockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett. 14, 4763-4766.]; Bogatcheva et al., 2006[Bogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045-3048.]). Pharmacological and toxicological information for piperazine derivatives is reviewed by Elliott (2011[Elliott, S. (2011). Drug Test. Anal. 3, 430-438.]).

4-Nitro­phenyl­piperazinium chloride monohydrate has been used as an inter­mediate in the synthesis of anti­cancer drugs, transcriptase inhibitors and anti­fungal reagents and is also an important reagent for potassium channel openers, which show considerable biomolecular current-voltage rectification characteristics (Lu, 2007[Lu, Y.-X. (2007). Acta Cryst. E63, o3611.]). The inclusion behaviours of 4-sulf­on­ato­calix[n]arenes (SCXn) (n = 4, 6, 8) with 1-(4-nitrophen­yl)piperazine (NPP) were investigated by UV spectroscopy and fluorescence spectroscopy at different pH values (Zhang et al., 2014[Zhang, Y., Chao, J., Zhao, S., Xu, P., Wang, H., Guo, Z. & Liu, D. (2014). Spectrochim. Acta Part A, 132, 44-51.]). The design, synthesis and biological profiling of aryl­piperazine-based scaffolds for the management of androgen-sensitive prostatic disorders was reported by Gupta et al. (2016[Gupta, S., Pandey, D., Mandalapu, D., Bala, V., Sharma, V., Shukla, M., Yadav, S. K., Singh, N., Jaiswal, S., Maikhuri, J. P., Lal, J., Siddiqi, M. I., Gupta, G. & Sharma, V. L. (2016). Med. Chem. Commun. 7, 2111-2121.]). 4-Nitro­phenyl­piperazine was the starting material in the synthesis and biological evaluation of novel piperazine-containing hydrazone derivatives (Kaya et al., 2016[Kaya, B., Ozkay, Y., Temel, H. E. & &Kaplancikli, Z. A. (2016). J. Chem. Art. ID, pp. 5878410 https://dx.doi.org/10.1155/2016/5878410.]). The crystal structure of 4-nitro­phenyl piperazinium chloride monohydrate was reported by Lu (2007[Lu, Y.-X. (2007). Acta Cryst. E63, o3611.]) and that of 4,6-di­meth­oxy­pyrimidin-2-amine-1-(4-nitro­phen­yl)piperazine (1:1) by Wang et al. (2014[Wang, X.-Y., Wang, M.-Z., Guo, F.-J., Sun, J. & Qian, S.-S. (2014). Z. Kristallogr. New Cryst. Struct. 229, 97-98.]) while Ayeni et al. (2019[O. Ayeni, A., M. Watkins, G. & C. Hosten, E. (2019). Bull. Chem. Soc. Eth. 33, 341.]) described the synthesis and crystal structure of a Schiff base, 5-methyl-2-{[4-(4-nitro­phen­yl)piperazin-1-yl]meth­yl}phenol is published. NMR-based investigations of acyl-functionalized piperazines concerning their conformational behaviour in solution has been studied and the crystal structures of 1-(4-fluoro­benzo­yl)-4-(4-nitro­phen­yl)piperazine, 1-(4-bromo­benzo­yl)-4-(4-nitro­phen­yl)piperazine and 1-(3-bromo­benzo­yl)-4-(4-nitro­phen­yl)piperazine have been reported (Wodtke et al., 2018[Wodtke, R., Steinberg, J., Köckerling, M., Löser, R. & Mamat, C. (2018). RSC Adv. 8, 40921-40933.]). We have recently reported the crystal structures of some salts of 4-meth­oxy­phenyl­piperazine (Kiran Kumar et al., 2019[Kiran Kumar, H., Yathirajan, H. S., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1494-1506.]) and also 2-meth­oxy­phenyl­piperazine (Harish Chinthal et al., 2020[Harish Chinthal, C., Kavitha, C. N., Yathirajan, H. S., Foro, S., Rathore, R. S. & Glidewell, C. (2020). Acta Cryst. E76, 1779-1793.]), as well as some salts of piperazine derivatives (Archana et al., 2021[Archana, S. D., Kumar, H. K., Yathirajan, H. S., Foro, S., Abdelbaky, M. S. M. & Garcia-Granda, S. (2021). Acta Cryst. E77, 1135-1139.]).

[Scheme 1]

In view of the importance of piperazines in general and the use of 4-nitro­phenyl­piperazine in particular, the present paper reports the crystal structures of some salts of 4-nitro­phenyl­piperazine with organic acids. The crystal structures of 4-(4-nitro­phenyl)­piperazin-1-ium 4-bromo­benzoate dihydrate (I)[link], 4-(4-nitro­phenyl)­piperazin-1-ium 4-iodo­benzoate dihydrate (II)[link], 4-(4-nitro­phenyl)­piperazin-1-ium 4-hy­droxy­ben­zoate monohydrate (III)[link], 4-(4-nitro­phenyl)­piperazin-1-ium 4-methyl­benzoate monohydrate (IV)[link], 4-(4-nitro­phenyl)­pi­per­azin-1-ium 4-meth­oxy­benzoate hemihydrate (V)[link] and 4-(4-nitro­phenyl)­piperazin-1-ium 4-eth­oxy­benzoate (VI)[link] are reported herein.

2. Structural commentary

The asymmetric units of the title salts are shown in Figs. 1[link]–6[link][link][link][link][link]. They include 1:1 dihydrated salts [(I), (II)], 1:1 monohydrated salts [(III), (IV)], 2:2 monohydrated salt (V)[link] and solvent-free 2:2 salt (VI)[link]. Compounds (I)[link] and (II)[link] are isostructural. In all salts, the cation is common and consists of a protonated chair-shaped piperazine ring (N1/N2/C7–C10), which makes dihedral angles of 10.91 (1), 12.13 (1), 14.82 (6), 3.11 (8), 5.73 (1) and 13.08 (9)°, respectively, for compounds (I)–(VI) with the nitro­benzene moiety (N3/O1/O2/C1–C6) and exhibits a maximum deviation from its mean plane at atom N2 of −0.253 (2), 0.254 (2), 0.288 (2), 0.278 (2), 0.241 (3) and 0.303 (3) Å in (I)–(VI), respectively. The piperazine rings of the additional cations (N4/N5/C25–C28) in compounds (V)[link] and (VI)[link] have the same conformation, making dihedral angles of 64.53 (1) and 21.70 (1)°, respectively, with the nitro­benzene moieties (N6/O6/O7/C19–C25). Within the cations, the benzene rings are almost planar, with maximum deviations from mean plane ranging from −0.016 (3) Å at atom C20 for (VI)[link] to 0.003 (2) Å at atom C4 for (III)[link]. The p-nitro substituent groups deviate significantly from planes of the benzene rings in all compounds except the (C1–C6) ring of (VI)[link]. The anions of the title salts are formed from a benzoate anion with different p-substituents for each compound that deviate significantly from planarity, with maximum deviations of 0.045 (1) Å at Br1 for (I)[link], 0.063 (1) Å at I1 for (II)[link], −0.021 (2) Å at hydroxyl atom O3 for (III)[link], −0.010 (1) Å at methyl atom C18 for (IV)[link], −0.033 (1) and 0.034 (1) Å at meth­oxy atoms O5 and O10 for (V)[link] and −0.025 (2) and −0.013 (2) Å at eth­oxy atoms O5 and O10 for (VI)[link].

[Figure 1]
Figure 1
The independent components of compound (I)[link] showing the atom-labelling scheme and the hydrogen bonds, drawn as dashed lines. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
The independent components of compound (II)[link] showing the atom-labelling scheme and the hydrogen bonds, drawn as dashed lines. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3]
Figure 3
The independent components of compound (III)[link] showing the atom-labelling scheme and the hydrogen bonds, drawn as dashed lines. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 4]
Figure 4
The independent components of compound (IV)[link] showing the atom-labelling scheme and the hydrogen bonds, drawn as dashed lines. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 5]
Figure 5
The independent components of compound (V)[link] showing the atom-labelling scheme and the hydrogen bonds, drawn as dashed lines. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 6]
Figure 6
The independent components of compound (VI)[link] showing the atom-labelling scheme Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal structures of the two isomorphous salts (I)[link] and (II)[link], the ions are arranged in chains perpendicular to the a-axis direction. The water mol­ecules play an essential role in holding the chains together, forming complex sheets in the bc plane (Figs. 7[link] and 8[link], Tables 1[link] and 2[link]). The cations and anions in (III)[link] are linked through strong O—H⋯O and N—H⋯O hydrogen bonds, forming chains along the [011] direction (Fig. 9[link]a, Table 3[link]). These chains are further linked via the water mol­ecules and C9—H9A⋯O3 inter­actions, generating a three-dimensional supra­molecular architecture along the a axis (Fig. 9[link]b). The structure of (IV)[link] is constructed from double chains running along the [101] direction. Each chain is formed by linking the mol­ecules through a combination of N—H⋯O, O—H⋯O and C—H⋯O inter­actions (Fig. 10[link]a, Table 4[link]); the resulting double chains are symmetrically related by an inversion center and are connected via N2—H21⋯O4 and C7—H7A⋯O4 inter­actions. These hydrated double chains are weakly linked into sheets lying in the bc plane by C—H⋯π (arene) inter­actions (Fig. 10[link]b). The supra­molecular assembly of compound (V)[link], which has a disordered nitro group, is built up of N2—H22N⋯O11, O11—H11O⋯O4 and N5—H51⋯O9 hydrogen bonds linking the ions into organic chains running parallel to the [010] direction (Fig. 11[link]a, Table 5[link]). The chains are further connected cooperatively through other inter­actions of type N—H⋯O, generating a multilayer network along the b-axis direction (Fig. 11[link]b). In compound (VI)[link], a set of N—H⋯O, C—H⋯O and C—H⋯π inter­actions (Fig. 12[link]a, Table 6[link]) link the mol­ecules into cationic and anionic layers running parallel to the b-axis direction and join these layer motifs, generating the complete mol­ecular structure along the a axis (Fig. 12[link]b).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H21⋯O5i 0.85 (2) 1.99 (2) 2.810 (3) 162 (3)
N2—H22⋯O6ii 0.83 (2) 1.91 (2) 2.707 (3) 160 (3)
C3—H3⋯O1iii 0.93 2.59 3.260 (4) 130
C13—H13⋯O4iv 0.93 2.57 3.483 (3) 166
C15—H15⋯O2v 0.93 2.47 3.269 (4) 144
O5—H1W⋯O3vi 0.80 (2) 1.97 (2) 2.759 (2) 169 (3)
O5—H2W⋯O3i 0.80 (2) 2.00 (2) 2.772 (2) 161 (3)
O6—H4W⋯O4 0.82 (2) 2.03 (2) 2.832 (3) 166 (3)
O6—H3W⋯O4vii 0.78 (2) 1.99 (2) 2.760 (3) 169 (3)
Symmetry codes: (i) [-x+1, -y+1, -z]; (ii) x, y+1, z; (iii) [-x+2, -y+2, -z+1]; (iv) x+1, y, z; (v) [-x+1, -y+1, -z+1]; (vi) [x, y-1, z]; (vii) [-x, -y+1, -z].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H21⋯O5i 0.86 (2) 1.99 (2) 2.825 (4) 164 (4)
N2—H22⋯O6ii 0.85 (2) 1.88 (2) 2.702 (3) 163 (4)
C3—H3⋯O1iii 0.93 2.59 3.275 (4) 131
C13—H13⋯O4iv 0.93 2.62 3.526 (4) 166
C15—H15⋯O2v 0.93 2.49 3.311 (4) 147
O5—H1W⋯O3vi 0.81 (2) 1.96 (2) 2.756 (3) 170 (4)
O5—H2W⋯O3i 0.81 (2) 1.96 (2) 2.753 (3) 166 (4)
O6—H4W⋯O4 0.80 (2) 2.08 (2) 2.836 (3) 160 (4)
O6—H3W⋯O4vii 0.80 (2) 1.95 (2) 2.728 (3) 165 (4)
Symmetry codes: (i) [-x+1, -y+1, -z]; (ii) x, y+1, z; (iii) [-x+2, -y+2, -z+1]; (iv) x+1, y, z; (v) [-x+1, -y+1, -z+1]; (vi) [x, y-1, z]; (vii) [-x, -y+1, -z].

Table 3
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H21⋯O5 0.89 (2) 1.93 (2) 2.819 (2) 177 (3)
N2—H22⋯O4i 0.94 (2) 1.65 (2) 2.583 (2) 177 (3)
O3—H17⋯O6 0.85 (2) 1.82 (2) 2.669 (2) 177 (3)
O6—H1W⋯O5ii 0.83 (2) 1.95 (2) 2.768 (2) 169 (3)
O6—H2W⋯O1iii 0.83 (2) 2.11 (2) 2.944 (2) 178 (3)
Symmetry codes: (i) [-x+1, -y+2, -z+2]; (ii) [-x, -y+1, -z+1]; (iii) [-x, -y, -z].

Table 4
Hydrogen-bond geometry (Å, °) for (IV)[link]

Cg3 is the centroids of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H21⋯O4i 0.89 (2) 1.93 (2) 2.811 (3) 167 (4)
N2—H22⋯O3ii 0.91 (2) 1.81 (2) 2.717 (3) 177 (4)
C3—H3⋯O1iii 0.93 2.54 3.427 (4) 161
C9—H9A⋯O5iv 0.97 2.31 3.113 (3) 140
O5—H1W⋯O4i 0.84 (2) 1.92 (2) 2.756 (3) 171 (4)
O5—H2W⋯O3 0.85 (2) 1.94 (2) 2.772 (3) 164 (4)
C6—H6⋯Cg3v 0.93 2.93 3.590 (3) 129
Symmetry codes: (i) x+1, y, z; (ii) [-x+1, -y+1, -z]; (iii) [-x+1, -y, -z+1]; (iv) [-x+2, -y+1, -z]; (v) [x+1, y-1, z].

Table 5
Hydrogen-bond geometry (Å, °) for (V)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7B⋯O7i 0.97 2.54 3.451 (5) 157
C9—H9B⋯O4ii 0.97 2.31 3.270 (5) 169
C20—H20⋯O9 0.93 2.53 3.461 (5) 174
C25—H25A⋯O2aiii 0.97 2.5 3.206 (10) 130
C25—H25A⋯O2′biii 0.97 2.49 3.212 (11) 131
C27—H27A⋯O7i 0.97 2.58 3.548 (5) 175
C28—H28B⋯O9 0.97 2.55 3.489 (5) 164
C36—H36C⋯O1′bii 0.96 2.49 3.395 (14) 158
N2—H21N⋯O8iv 0.88 (2) 1.83 (2) 2.697 (4) 166 (4)
N2—H21N⋯O9iv 0.88 (2) 2.57 (3) 3.196 (4) 129 (3)
N2—H22N⋯O11v 0.88 (2) 1.89 (2) 2.758 (5) 169 (4)
N5—H51N⋯O9vi 0.87 (2) 1.93 (2) 2.778 (5) 164 (4)
N5—H52N⋯O3vii 0.91 (2) 1.82 (2) 2.724 (5) 171 (4)
O11—H11O⋯O4 0.84 (2) 1.83 (2) 2.663 (4) 176 (4)
O11—H12O⋯O8v 0.84 (2) 1.92 (2) 2.754 (4) 173 (4)
Symmetry codes: (i) [-x+1, -y+1, -z]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [-x, -y+1, -z]; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [x, y-1, z]; (vii) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Table 6
Hydrogen-bond geometry (Å, °) for (VI)[link]

Cg2 and Cg6 are the centroids of the C1–C6 and C30–C35 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H31N⋯O3i 0.94 (2) 1.68 (2) 2.613 (3) 172 (5)
N2—H31N⋯O4i 0.94 (2) 2.51 (4) 3.157 (3) 127 (4)
N2—H32N⋯O9ii 0.90 (2) 1.96 (2) 2.843 (3) 171 (5)
N5—H61N⋯O8i 0.91 (2) 1.78 (2) 2.686 (3) 175 (5)
N5—H61N⋯O9i 0.91 (2) 2.59 (4) 3.174 (3) 122 (4)
N5—H62N⋯O4iii 0.90 (2) 1.83 (2) 2.708 (3) 165 (5)
C22—H22⋯O2iv 0.93 2.6 3.502 (5) 165
C27—H27B⋯O9i 0.97 2.59 3.215 (3) 123
C28—H28B⋯O7v 0.97 2.65 3.410 (4) 135
C29—H29B⋯O1i 0.97 2.53 3.249 (4) 131
C35—H35⋯O4iii 0.93 2.52 3.263 (3) 137
C10—H10ACg6 0.97 2.82 3.746 (3) 159
C29—H29ACg2 0.97 2.76 3.556 (3) 139
Symmetry codes: (i) x+1, y, z; (ii) [x+1, y-1, z]; (iii) x, y+1, z; (iv) [-x, -y+1, -z+1]; (v) [-x, -y+2, -z+1].
[Figure 7]
Figure 7
(a) A general view of the main inter­molecular inter­actions (N—H⋯O and O—H⋯O) and (b) the mol­ecular packing of (I)[link] with hydrogen bonds shown as dashed lines.
[Figure 8]
Figure 8
(a) A general view of the main inter­molecular inter­actions (N—H⋯O and O—H⋯O) in (II)[link] and (b) the mol­ecular packing of (II)[link] with hydrogen bonds shown as dashed lines.
[Figure 9]
Figure 9
(a) A general view of the main inter­molecular inter­actions (N—H⋯O and O—H⋯O) in (III)[link] and (b) the mol­ecular packing of (III)[link] with hydrogen bonds shown as dashed lines.
[Figure 10]
Figure 10
(a) A general view of the main inter­molecular inter­actions (N—H⋯O and O—H⋯O) in (IV)[link] and (b) the mol­ecular packing of (IV)[link] with hydrogen bonds shown as dashed lines.
[Figure 11]
Figure 11
(a) A general view of the main inter­molecular inter­actions (N—H⋯O and O—H⋯O) in (V)[link] and (b) the mol­ecular packing of (V)[link] with hydrogen bonds shown as dashed lines.
[Figure 12]
Figure 12
(a) A general view of the main inter­molecular inter­actions (N—H⋯O, O—H⋯O and C—H⋯O) in (VI)[link] and (b) the mol­ecular packing of (VI)[link] with hydrogen bonds shown as dashed lines.

4. Database survey

A search of the Cambridge Structural Database (Version 2020.3, last update February 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the phenyl piperazinium cation and para substituent benzoate anion involved in the reported six salts gave the following hits, 4-(4-meth­oxy­phen­yl)piperazin-1-ium 4-fluoro­benzoate mono­hydrate, 4-(4-meth­oxy­phen­yl)piperazin-1-ium 4-chloro­benzoate monohydrate and 4-(4-meth­oxy­phen­yl)piperazin-1-ium 4-bromo­benzoate monohydrate (FOVPOY, FOVPUE and FOVQAL; Kiran Kumar et al., 2019[Kiran Kumar, H., Yathirajan, H. S., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1494-1506.]) and 4-(4-meth­oxy­phen­yl)piperazin-1-ium 4-iodo­benzoate monohydrate (KUJ­PUD; Kiran Kumar et al., 2020[Kiran Kumar, H., Yathirajan, H. S., Harish Chinthal, C., Foro, S. & Glidewell, C. (2020). Acta Cryst. E75, 488-495.]). They exhibit a meth­oxy group as a substituent in the phenyl piperazinium cation rather than a nitro group as in the title compounds (I)–(VI) and they also crystallize as monohydrates similar to compounds (III)–(V). Although the title compounds (I)[link] and (II)[link] have halogen-based anions and chain-based structures, they are not isostructural with the above compounds, the crystal structures of which are based on differently sized chains of rings formed via a combination of hydrogen bonds of type N—H⋯O and O—H⋯O and other weak inter­actions of type C—H⋯O and C—H⋯π to form sheets. In 4-(4-meth­oxy­phen­yl)piperazin-1-ium 4-amino­benzoate monohydrate (IHIMEU; Kiran Kumar et al., 2020[Kiran Kumar, H., Yathirajan, H. S., Harish Chinthal, C., Foro, S. & Glidewell, C. (2020). Acta Cryst. E75, 488-495.]) the presence of an amino substituent on the anion, which acts as both a donor and an acceptor of hydrogen bonds, makes the supra­molecular assembly of this compound more complex than for the compounds reported herein.

5. Synthesis and crystallization

Synthesis:

For the synthesis of salts (I)–(VI), a solution of commercially available (from Sigma–Aldrich) 4-nitro­phenyl­piperazine (100 mg, 0.483 mol) in methanol (10 ml) was mixed with equimolar solutions of the appropriate acids in methanol (10 ml) and ethyl acetate (10 ml), viz.4-bromo­benzoic acid (97 mg, 0.483 mol) for (I)[link], 4-iodo­benzoic acid (120 mg, 0.483 mol) for (II)[link], 4-hy­droxy­benzoic acid (67 mg, 0.483 mol) for (III)[link], 4-methyl­benzoic acid (66 mg, 0.483 mol) for (IV)[link], 4-meth­oxy­benzoic acid (73 mg, 0.483 mol) for (V)[link] and 4-eth­oxy­benzoic­acid (80 mg, 0.483 mol) for (VI)[link]. The corres­ponding solutions were stirred for 15 minutes at room temperature and allowed to stand at the same temperature. The products obtained were subjected to crystallization.

Crystallization: Crystallization was carried out using the slow evaporation technique. X-ray quality crystals were formed on slow evaporation in a week for all compounds, where ethanol:ethyl­acetate (1:1) was used for crystallization. The corresponding melting points were 430–432 K (I)[link], 453–455 K (II)[link], 446–448 K (III)[link], 398–400 K (IV)[link], 413–415 K (V)[link] and 408–410 K (VI)[link].

6. Refinement

Crystal data, data collection and refinement details are summarized in Table 7[link]. C-bound H atoms were positioned with idealized geometry and refined using a riding model with C—H = 0.93 Å (aromatic), 0.96 Å (meth­yl) or 0.97 Å (methyl­ene). The H atoms on the N atom were located in a difference map and later restrained to N—H = 0.86 (2) Å. All H atoms were refined with isotropic displacement parameters set at 1.2 Ueq (C-aromatic, C-methyl­ene, N) or 1.5 Ueq (C-meth­yl) times those of the parent atom. For the disordered nitro group in (V)[link], the component atoms were restrained to have the same Uij components and the occupancy ratio is 0.519 (6):0.481 (6).

Table 7
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula C10H14N3O2+·C7H4BrO2·2H2O C10H14N3O2+·C7H4IO2·2H2O C10H14N3O2+·C7H5O3·H2O
Mr 444.28 491.28 363.37
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 293 293 293
a, b, c (Å) 7.738 (1), 9.320 (1), 13.949 (2) 7.7652 (4), 9.2852 (5), 13.930 (1) 9.636 (1), 10.301 (1), 10.867 (1)
α, β, γ (°) 94.46 (1), 95.04 (1), 104.71 (2) 94.985 (5), 95.331 (5), 104.875 (6) 103.90 (1), 108.32 (1), 112.96 (1)
V3) 964.0 (2) 960.09 (10) 857.80 (17)
Z 2 2 2
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 2.17 1.71 0.11
Crystal size (mm) 0.48 × 0.44 × 0.24 0.48 × 0.48 × 0.2 0.50 × 0.32 × 0.24
 
Data collection
Diffractometer Oxford Diffraction Xcalibur Oxford Diffraction Xcalibur Oxford Diffraction Xcalibur
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.])
Tmin, Tmax 0.367, 0.422 0.458, 0.711 0.959, 0.974
No. of measured, independent and observed [I > 2σ(I)] reflections 6123, 3536, 2520 6331, 3518, 2952 5342, 3140, 2342
Rint 0.019 0.017 0.013
(sin θ/λ)max−1) 0.602 0.602 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.104, 1.04 0.029, 0.069, 1.03 0.043, 0.106, 1.05
No. of reflections 3528 3513 3135
No. of parameters 262 262 251
No. of restraints 6 6 5
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.50, −0.51 0.54, −0.66 0.19, −0.19
  (IV) (V) (VI)
Crystal data
Chemical formula C10H14N3O2+·C8H7O2·H2O 2C10H14N3O2+·2C8H7O3·H2O C10H14N3O2+·C9H9O3
Mr 361.39 736.77 373.4
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/c Triclinic, P[\overline{1}]
Temperature (K) 293 293 293
a, b, c (Å) 6.1136 (5), 7.6965 (7), 19.708 (2) 15.808 (1), 7.5198 (7), 31.020 (2) 7.874 (1), 9.263 (1), 27.996 (3)
α, β, γ (°) 79.577 (8), 87.162 (8), 86.699 (8) 90, 92.561 (7), 90 81.030 (6), 85.675 (6), 68.229 (5)
V3) 909.79 (15) 3683.8 (5) 1872.8 (4)
Z 2 4 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.10 0.1 0.10
Crystal size (mm) 0.48 × 0.26 × 0.02 0.5 × 0.36 × 0.36 0.44 × 0.32 × 0.08
 
Data collection
Diffractometer Oxford Diffraction Xcalibur Oxford Diffraction Xcalibur Oxford Diffraction Xcalibur
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.])
Tmin, Tmax 0.970, 0.998 0.958, 0.965 0.963, 0.992
No. of measured, independent and observed [I > 2σ(I)] reflections 5980, 3347, 1911 15326, 6718, 2602 13344, 6868, 3803
Rint 0.019 0.066 0.027
(sin θ/λ)max−1) 0.602 0.602 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.138, 1.01 0.074, 0.169, 1.00 0.061, 0.137, 1.05
No. of reflections 3343 6715 6858
No. of parameters 248 507 501
No. of restraints 4 45 16
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.20, −0.16 0.27, −0.18 0.23, −0.22
Computer programs: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]), CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For all structures, data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020). Software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b), PLATON (Spek, 2020) and publCIF (Westrip, 2010) for (I), (II), (III), (V), (VI); SHELXL2014 (Sheldrick, 2015b),PLATON (Spek, 2020) and publCIF (Westrip, 2010) for (IV).

4-(4-Nitrophenyl)piperazin-1-ium 4-bromobenzoate dihydrate (I) top
Crystal data top
C10H14N3O2+·C7H4BrO2·2H2OZ = 2
Mr = 444.28F(000) = 456
Triclinic, P1Dx = 1.531 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.738 (1) ÅCell parameters from 6123 reflections
b = 9.320 (1) Åθ = 3.0–25.3°
c = 13.949 (2) ŵ = 2.17 mm1
α = 94.46 (1)°T = 293 K
β = 95.04 (1)°Prism, yellow
γ = 104.71 (2)°0.48 × 0.44 × 0.24 mm
V = 964.0 (2) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2520 reflections with I > 2σ(I)
ω scansRint = 0.019
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
θmax = 25.3°, θmin = 3.0°
Tmin = 0.367, Tmax = 0.422h = 98
6123 measured reflectionsk = 611
3536 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: mixed
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0623P)2]
where P = (Fo2 + 2Fc2)/3
3528 reflections(Δ/σ)max < 0.001
262 parametersΔρmax = 0.50 e Å3
6 restraintsΔρmin = 0.51 e Å3
0 constraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.9273 (3)0.7891 (3)0.53814 (19)0.0873 (8)
O20.6916 (3)0.6357 (3)0.57409 (17)0.0767 (6)
N10.3360 (2)1.0060 (2)0.29246 (14)0.0392 (5)
N20.1306 (3)1.1025 (2)0.13987 (16)0.0433 (5)
N30.7641 (3)0.7395 (3)0.53118 (17)0.0537 (6)
C10.4412 (3)0.9374 (2)0.34950 (16)0.0353 (5)
C20.6297 (3)0.9791 (3)0.35426 (19)0.0462 (6)
H20.6853351.0507430.3160270.055*
C30.7335 (3)0.9160 (3)0.4144 (2)0.0479 (6)
H30.8581740.9472260.4181280.057*
C40.6524 (3)0.8067 (3)0.46921 (17)0.0401 (6)
C50.4678 (3)0.7621 (3)0.46618 (18)0.0460 (6)
H50.4140570.6886710.5037220.055*
C60.3636 (3)0.8264 (3)0.40761 (18)0.0430 (6)
H60.2391970.7961180.4061980.052*
C70.4258 (3)1.1047 (3)0.2239 (2)0.0479 (6)
H7A0.4549661.0447870.170750.058*
H7B0.5374171.1697730.2563580.058*
C80.3088 (3)1.1978 (3)0.1846 (2)0.0493 (7)
H8A0.291581.2663850.2365580.059*
H8B0.3682241.2560830.1364690.059*
C90.0406 (3)1.0114 (3)0.2121 (2)0.0495 (6)
H9A0.0747490.9486180.1825990.059*
H9B0.019191.0761650.2651030.059*
C100.1561 (3)0.9148 (3)0.2506 (2)0.0462 (6)
H10A0.0975280.8585260.299740.055*
H10B0.1686660.8443570.19840.055*
Br10.91659 (5)0.45794 (4)0.33416 (3)0.08360 (18)
O30.4483 (2)0.78822 (19)0.01696 (15)0.0543 (5)
O40.2197 (2)0.63974 (18)0.07787 (14)0.0505 (5)
C110.5153 (3)0.6356 (2)0.13620 (18)0.0350 (5)
C120.6851 (3)0.6376 (3)0.10986 (19)0.0431 (6)
H120.718810.6749750.0524510.052*
C130.8046 (3)0.5846 (3)0.1680 (2)0.0499 (7)
H130.9167470.5838440.1491420.06*
C140.7551 (3)0.5332 (3)0.2538 (2)0.0466 (6)
C150.5891 (3)0.5325 (3)0.28271 (19)0.0459 (6)
H150.558280.4991010.3415880.055*
C160.4690 (3)0.5821 (2)0.22315 (19)0.0424 (6)
H160.355720.5795570.2415320.051*
C170.3848 (3)0.6919 (2)0.07250 (19)0.0391 (6)
O50.7579 (2)0.01738 (19)0.02770 (14)0.0468 (4)
O60.0305 (3)0.3352 (2)0.06917 (16)0.0581 (5)
H210.143 (4)1.051 (3)0.0892 (17)0.07*
H220.075 (4)1.160 (3)0.118 (2)0.07*
H1W0.674 (3)0.053 (3)0.031 (2)0.07*
H2W0.720 (4)0.088 (3)0.018 (2)0.07*
H4W0.095 (4)0.421 (2)0.080 (2)0.07*
H3W0.041 (4)0.331 (3)0.0257 (18)0.07*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0490 (13)0.0892 (16)0.122 (2)0.0142 (11)0.0189 (13)0.0497 (15)
O20.0701 (14)0.0858 (15)0.0809 (16)0.0235 (12)0.0004 (12)0.0500 (13)
N10.0347 (10)0.0406 (11)0.0417 (11)0.0091 (8)0.0042 (9)0.0124 (9)
N20.0459 (12)0.0431 (12)0.0435 (13)0.0189 (10)0.0065 (10)0.0088 (10)
N30.0542 (15)0.0524 (13)0.0551 (14)0.0173 (11)0.0090 (12)0.0161 (11)
C10.0396 (13)0.0344 (12)0.0327 (13)0.0132 (10)0.0010 (10)0.0026 (10)
C20.0378 (14)0.0518 (15)0.0515 (16)0.0111 (11)0.0047 (12)0.0229 (12)
C30.0361 (13)0.0503 (15)0.0583 (17)0.0125 (11)0.0001 (12)0.0145 (13)
C40.0441 (14)0.0411 (13)0.0363 (13)0.0156 (11)0.0037 (11)0.0060 (11)
C50.0489 (15)0.0463 (14)0.0429 (15)0.0100 (11)0.0016 (12)0.0177 (11)
C60.0339 (12)0.0498 (14)0.0455 (15)0.0093 (11)0.0025 (11)0.0145 (12)
C70.0416 (14)0.0450 (14)0.0524 (16)0.0036 (11)0.0082 (12)0.0166 (12)
C80.0558 (16)0.0385 (13)0.0499 (16)0.0096 (12)0.0116 (13)0.0117 (11)
C90.0392 (14)0.0603 (16)0.0517 (16)0.0187 (12)0.0040 (12)0.0138 (13)
C100.0354 (13)0.0487 (14)0.0530 (16)0.0077 (11)0.0030 (12)0.0159 (12)
Br10.0734 (3)0.0942 (3)0.0856 (3)0.0319 (2)0.02375 (19)0.0272 (2)
O30.0418 (10)0.0434 (10)0.0808 (13)0.0119 (8)0.0005 (9)0.0298 (9)
O40.0291 (9)0.0497 (10)0.0727 (13)0.0090 (7)0.0003 (8)0.0169 (9)
C110.0330 (12)0.0242 (11)0.0468 (14)0.0078 (9)0.0007 (11)0.0021 (10)
C120.0403 (14)0.0432 (13)0.0504 (16)0.0160 (11)0.0087 (12)0.0125 (11)
C130.0345 (13)0.0548 (15)0.0659 (19)0.0194 (11)0.0057 (13)0.0145 (14)
C140.0443 (15)0.0381 (13)0.0548 (17)0.0096 (11)0.0109 (13)0.0102 (12)
C150.0500 (16)0.0433 (14)0.0403 (15)0.0053 (11)0.0007 (12)0.0082 (11)
C160.0376 (13)0.0378 (13)0.0499 (16)0.0068 (10)0.0051 (12)0.0034 (11)
C170.0375 (13)0.0266 (11)0.0533 (16)0.0108 (10)0.0010 (11)0.0032 (11)
O50.0370 (10)0.0413 (10)0.0619 (12)0.0103 (7)0.0023 (9)0.0133 (9)
O60.0491 (12)0.0429 (10)0.0816 (15)0.0141 (8)0.0142 (10)0.0195 (10)
Geometric parameters (Å, º) top
O1—N31.222 (3)C8—H8B0.97
O2—N31.217 (3)C9—C101.516 (3)
N1—C11.391 (3)C9—H9A0.97
N1—C71.474 (3)C9—H9B0.97
N1—C101.477 (3)C10—H10A0.97
N2—C91.476 (4)C10—H10B0.97
N2—C81.490 (3)Br1—C141.906 (2)
N2—H210.850 (17)O3—C171.264 (3)
N2—H220.833 (18)O4—C171.257 (3)
N3—C41.454 (3)C11—C161.388 (3)
C1—C21.405 (3)C11—C121.391 (3)
C1—C61.410 (3)C11—C171.506 (3)
C2—C31.376 (3)C12—C131.385 (3)
C2—H20.93C12—H120.93
C3—C41.377 (4)C13—C141.374 (4)
C3—H30.93C13—H130.93
C4—C51.378 (4)C14—C151.378 (4)
C5—C61.372 (3)C15—C161.382 (3)
C5—H50.93C15—H150.93
C6—H60.93C16—H160.93
C7—C81.502 (3)O5—H1W0.802 (17)
C7—H7A0.97O5—H2W0.802 (17)
C7—H7B0.97O6—H4W0.823 (17)
C8—H8A0.97O6—H3W0.778 (18)
C1—N1—C7117.46 (19)N2—C8—H8B109.4
C1—N1—C10117.30 (18)C7—C8—H8B109.4
C7—N1—C10112.08 (19)H8A—C8—H8B108
C9—N2—C8109.8 (2)N2—C9—C10110.3 (2)
C9—N2—H21113 (2)N2—C9—H9A109.6
C8—N2—H21110 (2)C10—C9—H9A109.6
C9—N2—H22115 (2)N2—C9—H9B109.6
C8—N2—H22106 (2)C10—C9—H9B109.6
H21—N2—H22102 (3)H9A—C9—H9B108.1
O2—N3—O1122.4 (2)N1—C10—C9111.3 (2)
O2—N3—C4118.8 (2)N1—C10—H10A109.4
O1—N3—C4118.8 (2)C9—C10—H10A109.4
N1—C1—C2121.5 (2)N1—C10—H10B109.4
N1—C1—C6121.4 (2)C9—C10—H10B109.4
C2—C1—C6117.1 (2)H10A—C10—H10B108
C3—C2—C1121.2 (2)C16—C11—C12118.6 (2)
C3—C2—H2119.4C16—C11—C17120.5 (2)
C1—C2—H2119.4C12—C11—C17120.9 (2)
C2—C3—C4119.9 (2)C13—C12—C11120.9 (2)
C2—C3—H3120C13—C12—H12119.5
C4—C3—H3120C11—C12—H12119.5
C3—C4—C5120.6 (2)C14—C13—C12119.0 (2)
C3—C4—N3119.2 (2)C14—C13—H13120.5
C5—C4—N3120.2 (2)C12—C13—H13120.5
C6—C5—C4119.8 (2)C13—C14—C15121.4 (2)
C6—C5—H5120.1C13—C14—Br1119.7 (2)
C4—C5—H5120.1C15—C14—Br1118.9 (2)
C5—C6—C1121.4 (2)C14—C15—C16119.2 (2)
C5—C6—H6119.3C14—C15—H15120.4
C1—C6—H6119.3C16—C15—H15120.4
N1—C7—C8111.5 (2)C15—C16—C11120.9 (2)
N1—C7—H7A109.3C15—C16—H16119.6
C8—C7—H7A109.3C11—C16—H16119.6
N1—C7—H7B109.3O4—C17—O3124.3 (2)
C8—C7—H7B109.3O4—C17—C11117.8 (2)
H7A—C7—H7B108O3—C17—C11117.9 (2)
N2—C8—C7111.17 (19)H1W—O5—H2W108 (3)
N2—C8—H8A109.4H4W—O6—H3W109 (3)
C7—C8—H8A109.4
C7—N1—C1—C210.7 (3)C9—N2—C8—C758.1 (3)
C10—N1—C1—C2148.9 (2)N1—C7—C8—N255.1 (3)
C7—N1—C1—C6171.5 (2)C8—N2—C9—C1058.5 (3)
C10—N1—C1—C633.3 (3)C1—N1—C10—C9165.8 (2)
N1—C1—C2—C3176.8 (2)C7—N1—C10—C953.9 (3)
C6—C1—C2—C31.1 (4)N2—C9—C10—N156.8 (3)
C1—C2—C3—C42.0 (4)C16—C11—C12—C131.3 (3)
C2—C3—C4—C51.6 (4)C17—C11—C12—C13179.4 (2)
C2—C3—C4—N3179.0 (2)C11—C12—C13—C141.7 (4)
O2—N3—C4—C3174.9 (3)C12—C13—C14—C150.4 (4)
O1—N3—C4—C35.0 (4)C12—C13—C14—Br1179.36 (19)
O2—N3—C4—C55.7 (4)C13—C14—C15—C161.2 (4)
O1—N3—C4—C5174.4 (3)Br1—C14—C15—C16177.75 (18)
C3—C4—C5—C60.5 (4)C14—C15—C16—C111.6 (3)
N3—C4—C5—C6179.9 (2)C12—C11—C16—C150.4 (3)
C4—C5—C6—C10.3 (4)C17—C11—C16—C15178.9 (2)
N1—C1—C6—C5177.9 (2)C16—C11—C17—O426.9 (3)
C2—C1—C6—C50.0 (4)C12—C11—C17—O4153.8 (2)
C1—N1—C7—C8166.7 (2)C16—C11—C17—O3153.3 (2)
C10—N1—C7—C853.0 (3)C12—C11—C17—O326.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···O5i0.85 (2)1.99 (2)2.810 (3)162 (3)
N2—H22···O6ii0.83 (2)1.91 (2)2.707 (3)160 (3)
C3—H3···O1iii0.932.593.260 (4)130
C13—H13···O4iv0.932.573.483 (3)166
C15—H15···O2v0.932.473.269 (4)144
O5—H1W···O3vi0.80 (2)1.97 (2)2.759 (2)169 (3)
O5—H2W···O3i0.80 (2)2.00 (2)2.772 (2)161 (3)
O6—H4W···O40.82 (2)2.03 (2)2.832 (3)166 (3)
O6—H3W···O4vii0.78 (2)1.99 (2)2.760 (3)169 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x+2, y+2, z+1; (iv) x+1, y, z; (v) x+1, y+1, z+1; (vi) x, y1, z; (vii) x, y+1, z.
4-(4-Nitrophenyl)piperazin-1-ium 4-iodobenzoate dihydrate (II) top
Crystal data top
C10H14N3O2+·C7H4IO2·2H2OZ = 2
Mr = 491.28F(000) = 492
Triclinic, P1Dx = 1.699 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7652 (4) ÅCell parameters from 6331 reflections
b = 9.2852 (5) Åθ = 2.6–25.4°
c = 13.930 (1) ŵ = 1.71 mm1
α = 94.985 (5)°T = 293 K
β = 95.331 (5)°Prism, brown
γ = 104.875 (6)°0.48 × 0.48 × 0.2 mm
V = 960.09 (10) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2952 reflections with I > 2σ(I)
ω scansRint = 0.017
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
θmax = 25.4°, θmin = 2.6°
Tmin = 0.458, Tmax = 0.711h = 89
6331 measured reflectionsk = 119
3518 independent reflectionsl = 1416
Refinement top
Refinement on F20 constraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.069 w = 1/[σ2(Fo2) + (0.0319P)2 + 0.5892P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3513 reflectionsΔρmax = 0.54 e Å3
262 parametersΔρmin = 0.66 e Å3
6 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.9211 (3)0.7945 (3)0.5327 (2)0.0765 (8)
O20.6869 (3)0.6415 (3)0.5706 (2)0.0702 (7)
N10.3324 (3)1.0055 (2)0.29012 (17)0.0344 (5)
N20.1277 (3)1.1016 (3)0.13972 (19)0.0404 (6)
N30.7583 (4)0.7448 (3)0.52680 (19)0.0471 (6)
C10.4369 (3)0.9384 (3)0.34660 (19)0.0311 (6)
C20.6239 (4)0.9794 (3)0.3495 (2)0.0421 (7)
H20.6782411.0498390.3104580.051*
C30.7273 (4)0.9175 (3)0.4087 (2)0.0434 (7)
H30.8516370.9471380.4110030.052*
C40.6475 (4)0.8107 (3)0.4653 (2)0.0348 (6)
C50.4638 (4)0.7665 (3)0.4644 (2)0.0407 (7)
H50.4111970.6944610.5029070.049*
C60.3609 (4)0.8297 (3)0.4063 (2)0.0390 (7)
H60.2368930.8005520.4058310.047*
C70.4203 (4)1.1048 (3)0.2222 (2)0.0412 (7)
H7A0.4484271.0447060.1684530.049*
H7B0.5321391.1704030.2550770.049*
C80.3038 (4)1.1984 (3)0.1836 (2)0.0439 (7)
H8A0.2875691.2677750.2360.053*
H8B0.3617961.2563750.1352850.053*
C90.0381 (4)1.0095 (4)0.2115 (2)0.0456 (7)
H9A0.076760.9456060.1812390.055*
H9B0.0164291.0745150.2647730.055*
C100.1531 (4)0.9144 (3)0.2497 (2)0.0413 (7)
H10A0.0962060.8596860.2996860.05*
H10B0.1632410.8418460.197580.05*
I10.92211 (3)0.44728 (3)0.33815 (2)0.05798 (10)
O30.4459 (3)0.7894 (2)0.01595 (18)0.0503 (6)
O40.2183 (3)0.6411 (2)0.07685 (16)0.0463 (5)
C110.5106 (3)0.6368 (3)0.1340 (2)0.0321 (6)
C120.6798 (4)0.6390 (3)0.1072 (2)0.0387 (7)
H120.713410.6769980.0501320.046*
C130.7975 (4)0.5851 (3)0.1648 (2)0.0411 (7)
H130.9091150.5840520.1461960.049*
C140.7470 (4)0.5326 (3)0.2509 (2)0.0376 (7)
C150.5813 (4)0.5331 (3)0.2798 (2)0.0398 (7)
H150.5504340.4997140.3385230.048*
C160.4631 (4)0.5834 (3)0.2208 (2)0.0378 (7)
H160.3503450.5816950.2388750.045*
C170.3825 (4)0.6931 (3)0.0705 (2)0.0356 (6)
O50.7577 (3)0.0174 (2)0.02906 (17)0.0446 (5)
O60.0304 (3)0.3341 (3)0.06807 (19)0.0529 (6)
H210.144 (5)1.051 (4)0.0882 (19)0.063*
H220.076 (4)1.162 (3)0.116 (3)0.063*
H1W0.671 (4)0.051 (3)0.032 (3)0.063*
H2W0.711 (5)0.084 (3)0.022 (3)0.063*
H4W0.100 (4)0.414 (3)0.080 (3)0.063*
H3W0.052 (4)0.326 (4)0.027 (2)0.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0437 (15)0.0752 (18)0.108 (2)0.0122 (13)0.0192 (14)0.0400 (16)
O20.0633 (16)0.0754 (18)0.0786 (18)0.0200 (13)0.0033 (13)0.0469 (15)
N10.0300 (12)0.0321 (13)0.0391 (13)0.0054 (10)0.0037 (10)0.0090 (10)
N20.0420 (14)0.0388 (15)0.0413 (15)0.0159 (11)0.0066 (12)0.0072 (11)
N30.0496 (17)0.0450 (16)0.0461 (15)0.0151 (13)0.0076 (13)0.0084 (13)
C10.0328 (14)0.0280 (14)0.0316 (14)0.0093 (11)0.0008 (11)0.0009 (11)
C20.0340 (15)0.0433 (17)0.0496 (18)0.0067 (13)0.0047 (13)0.0196 (14)
C30.0279 (15)0.0464 (18)0.0548 (19)0.0086 (13)0.0010 (13)0.0115 (15)
C40.0369 (15)0.0344 (15)0.0332 (15)0.0118 (12)0.0029 (12)0.0049 (12)
C50.0422 (17)0.0417 (17)0.0383 (16)0.0087 (13)0.0047 (13)0.0139 (13)
C60.0292 (14)0.0443 (17)0.0430 (17)0.0073 (12)0.0016 (12)0.0118 (13)
C70.0353 (15)0.0389 (17)0.0459 (17)0.0034 (13)0.0040 (13)0.0148 (14)
C80.0483 (18)0.0350 (16)0.0447 (17)0.0078 (14)0.0075 (14)0.0095 (13)
C90.0354 (16)0.055 (2)0.0479 (18)0.0160 (14)0.0023 (14)0.0103 (15)
C100.0297 (15)0.0401 (17)0.0524 (18)0.0071 (13)0.0035 (13)0.0110 (14)
I10.05063 (15)0.06217 (17)0.06139 (16)0.01852 (11)0.01269 (10)0.01870 (11)
O30.0370 (11)0.0400 (12)0.0758 (16)0.0088 (9)0.0016 (11)0.0276 (11)
O40.0283 (11)0.0460 (12)0.0629 (14)0.0073 (9)0.0016 (10)0.0134 (10)
C110.0290 (14)0.0241 (14)0.0415 (16)0.0059 (11)0.0004 (12)0.0023 (12)
C120.0376 (16)0.0394 (16)0.0431 (17)0.0138 (13)0.0088 (13)0.0119 (13)
C130.0315 (15)0.0436 (17)0.0516 (19)0.0157 (13)0.0044 (13)0.0082 (14)
C140.0336 (15)0.0306 (15)0.0458 (17)0.0078 (12)0.0064 (13)0.0047 (13)
C150.0421 (17)0.0365 (16)0.0373 (16)0.0043 (13)0.0025 (13)0.0068 (13)
C160.0288 (14)0.0356 (16)0.0471 (17)0.0062 (12)0.0048 (13)0.0018 (13)
C170.0328 (15)0.0241 (14)0.0475 (17)0.0073 (12)0.0011 (13)0.0012 (12)
O50.0345 (11)0.0374 (13)0.0610 (14)0.0094 (9)0.0027 (10)0.0111 (11)
O60.0442 (13)0.0383 (12)0.0735 (17)0.0097 (10)0.0123 (11)0.0164 (12)
Geometric parameters (Å, º) top
O1—N31.222 (3)C8—H8B0.97
O2—N31.221 (3)C9—C101.503 (4)
N1—C11.376 (3)C9—H9A0.97
N1—C101.462 (3)C9—H9B0.97
N1—C71.469 (4)C10—H10A0.97
N2—C81.473 (4)C10—H10B0.97
N2—C91.479 (4)I1—C142.090 (3)
N2—H210.859 (18)O3—C171.257 (3)
N2—H220.850 (18)O4—C171.257 (3)
N3—C41.440 (4)C11—C161.391 (4)
C1—C21.400 (4)C11—C121.395 (4)
C1—C61.410 (4)C11—C171.493 (4)
C2—C31.361 (4)C12—C131.377 (4)
C2—H20.93C12—H120.93
C3—C41.378 (4)C13—C141.386 (4)
C3—H30.93C13—H130.93
C4—C51.378 (4)C14—C151.385 (4)
C5—C61.357 (4)C15—C161.372 (4)
C5—H50.93C15—H150.93
C6—H60.93C16—H160.93
C7—C81.502 (4)O5—H1W0.805 (18)
C7—H7A0.97O5—H2W0.805 (18)
C7—H7B0.97O6—H4W0.795 (18)
C8—H8A0.97O6—H3W0.800 (18)
C1—N1—C10117.2 (2)N2—C8—H8B109.6
C1—N1—C7117.8 (2)C7—C8—H8B109.6
C10—N1—C7112.8 (2)H8A—C8—H8B108.1
C8—N2—C9110.6 (2)N2—C9—C10110.3 (2)
C8—N2—H21108 (3)N2—C9—H9A109.6
C9—N2—H21115 (3)C10—C9—H9A109.6
C8—N2—H22104 (3)N2—C9—H9B109.6
C9—N2—H22118 (3)C10—C9—H9B109.6
H21—N2—H22101 (3)H9A—C9—H9B108.1
O2—N3—O1122.5 (3)N1—C10—C9111.5 (2)
O2—N3—C4119.1 (3)N1—C10—H10A109.3
O1—N3—C4118.4 (3)C9—C10—H10A109.3
N1—C1—C2121.1 (2)N1—C10—H10B109.3
N1—C1—C6121.5 (2)C9—C10—H10B109.3
C2—C1—C6117.4 (2)H10A—C10—H10B108
C3—C2—C1120.9 (3)C16—C11—C12119.5 (3)
C3—C2—H2119.6C16—C11—C17120.4 (2)
C1—C2—H2119.6C12—C11—C17120.1 (2)
C2—C3—C4119.9 (3)C13—C12—C11120.4 (3)
C2—C3—H3120.1C13—C12—H12119.8
C4—C3—H3120.1C11—C12—H12119.8
C5—C4—C3121.2 (3)C12—C13—C14119.0 (3)
C5—C4—N3119.5 (3)C12—C13—H13120.5
C3—C4—N3119.3 (3)C14—C13—H13120.5
C6—C5—C4118.9 (3)C15—C14—C13121.4 (3)
C6—C5—H5120.5C15—C14—I1119.1 (2)
C4—C5—H5120.5C13—C14—I1119.6 (2)
C5—C6—C1121.8 (3)C16—C15—C14119.2 (3)
C5—C6—H6119.1C16—C15—H15120.4
C1—C6—H6119.1C14—C15—H15120.4
N1—C7—C8111.9 (2)C15—C16—C11120.5 (3)
N1—C7—H7A109.2C15—C16—H16119.8
C8—C7—H7A109.2C11—C16—H16119.8
N1—C7—H7B109.2O4—C17—O3125.0 (3)
C8—C7—H7B109.2O4—C17—C11116.9 (2)
H7A—C7—H7B107.9O3—C17—C11118.1 (2)
N2—C8—C7110.2 (2)H1W—O5—H2W101 (4)
N2—C8—H8A109.6H4W—O6—H3W117 (4)
C7—C8—H8A109.6
C10—N1—C1—C2148.6 (3)C9—N2—C8—C758.1 (3)
C7—N1—C1—C28.9 (4)N1—C7—C8—N254.7 (3)
C10—N1—C1—C633.7 (4)C8—N2—C9—C1058.5 (3)
C7—N1—C1—C6173.4 (3)C1—N1—C10—C9165.8 (3)
N1—C1—C2—C3177.1 (3)C7—N1—C10—C952.6 (3)
C6—C1—C2—C30.8 (4)N2—C9—C10—N155.3 (4)
C1—C2—C3—C41.3 (5)C16—C11—C12—C131.6 (4)
C2—C3—C4—C51.0 (5)C17—C11—C12—C13179.0 (3)
C2—C3—C4—N3179.3 (3)C11—C12—C13—C141.7 (4)
O2—N3—C4—C56.3 (4)C12—C13—C14—C150.1 (4)
O1—N3—C4—C5173.9 (3)C12—C13—C14—I1179.0 (2)
O2—N3—C4—C3173.9 (3)C13—C14—C15—C161.6 (4)
O1—N3—C4—C35.8 (4)I1—C14—C15—C16177.4 (2)
C3—C4—C5—C60.1 (5)C14—C15—C16—C111.6 (4)
N3—C4—C5—C6179.8 (3)C12—C11—C16—C150.0 (4)
C4—C5—C6—C10.4 (5)C17—C11—C16—C15179.3 (3)
N1—C1—C6—C5178.0 (3)C16—C11—C17—O426.0 (4)
C2—C1—C6—C50.1 (4)C12—C11—C17—O4154.6 (3)
C1—N1—C7—C8166.2 (2)C16—C11—C17—O3153.1 (3)
C10—N1—C7—C852.5 (3)C12—C11—C17—O326.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···O5i0.86 (2)1.99 (2)2.825 (4)164 (4)
N2—H22···O6ii0.85 (2)1.88 (2)2.702 (3)163 (4)
C3—H3···O1iii0.932.593.275 (4)131
C13—H13···O4iv0.932.623.526 (4)166
C15—H15···O2v0.932.493.311 (4)147
O5—H1W···O3vi0.81 (2)1.96 (2)2.756 (3)170 (4)
O5—H2W···O3i0.81 (2)1.96 (2)2.753 (3)166 (4)
O6—H4W···O40.80 (2)2.08 (2)2.836 (3)160 (4)
O6—H3W···O4vii0.80 (2)1.95 (2)2.728 (3)165 (4)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x+2, y+2, z+1; (iv) x+1, y, z; (v) x+1, y+1, z+1; (vi) x, y1, z; (vii) x, y+1, z.
4-(4-Nitrophenyl)piperazin-1-ium 4-hydroxybenzoate monohydrate (III) top
Crystal data top
C10H14N3O2+·C7H5O3·H2OZ = 2
Mr = 363.37F(000) = 384
Triclinic, P1Dx = 1.407 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.636 (1) ÅCell parameters from 5342 reflections
b = 10.301 (1) Åθ = 2.6–25.3°
c = 10.867 (1) ŵ = 0.11 mm1
α = 103.90 (1)°T = 293 K
β = 108.32 (1)°Rod, yellow
γ = 112.96 (1)°0.50 × 0.32 × 0.24 mm
V = 857.80 (17) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2342 reflections with I > 2σ(I)
ω scansRint = 0.013
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
θmax = 25.3°, θmin = 2.6°
Tmin = 0.959, Tmax = 0.974h = 1111
5342 measured reflectionsk = 1211
3140 independent reflectionsl = 1312
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0386P)2 + 0.3231P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.106(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.19 e Å3
3135 reflectionsΔρmin = 0.19 e Å3
251 parametersExtinction correction: SHELXL2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
5 restraintsExtinction coefficient: 0.032 (3)
0 constraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3138 (2)0.37000 (19)0.65529 (18)0.0346 (4)
C20.1431 (2)0.2527 (2)0.57638 (19)0.0418 (4)
H20.0682350.2508470.6139040.05*
C30.0843 (2)0.1407 (2)0.4450 (2)0.0434 (5)
H30.0294090.0638180.394160.052*
C40.1942 (2)0.1428 (2)0.38907 (19)0.0411 (4)
C50.3624 (2)0.2553 (2)0.4636 (2)0.0483 (5)
H50.4362520.2553930.425320.058*
C60.4208 (2)0.3670 (2)0.5942 (2)0.0472 (5)
H60.534840.4430480.643790.057*
C70.5230 (2)0.6338 (2)0.8284 (2)0.0453 (5)
H7A0.4893410.678260.7634710.054*
H7B0.6112370.6165480.8174070.054*
C80.5933 (2)0.7472 (2)0.9784 (2)0.0493 (5)
H8A0.6435720.710931.0444940.059*
H8B0.6815450.8467190.995040.059*
C90.3302 (3)0.6143 (2)0.9836 (2)0.0457 (5)
H9A0.2428680.6256141.0028960.055*
H9B0.3817430.5794041.0503890.055*
C100.2514 (2)0.4953 (2)0.83370 (19)0.0403 (4)
H10A0.1766010.3948340.826670.048*
H10B0.1831150.5214910.768850.048*
C110.1749 (2)0.5843 (2)0.29147 (19)0.0418 (5)
C120.2469 (3)0.7413 (2)0.3258 (2)0.0495 (5)
H120.2622850.7782090.2582090.059*
C130.2959 (2)0.8431 (2)0.4597 (2)0.0438 (5)
H130.3444540.948630.4818980.053*
C140.2738 (2)0.7906 (2)0.56226 (18)0.0364 (4)
C150.2004 (2)0.6329 (2)0.52544 (19)0.0395 (4)
H150.183370.5955190.5923780.047*
C160.1520 (2)0.5299 (2)0.39188 (19)0.0410 (4)
H160.1042590.4244350.3695910.049*
C170.3293 (2)0.9024 (2)0.7080 (2)0.0440 (5)
N10.37669 (18)0.48418 (16)0.78933 (15)0.0372 (4)
N20.4599 (2)0.76559 (19)1.00415 (18)0.0479 (4)
N30.1322 (2)0.02537 (19)0.25010 (18)0.0518 (4)
O10.2282 (2)0.04014 (19)0.19537 (17)0.0759 (5)
O20.0112 (2)0.08579 (18)0.19233 (16)0.0715 (5)
O30.1311 (2)0.48813 (18)0.15852 (15)0.0637 (4)
O40.3985 (2)1.04290 (17)0.73256 (16)0.0744 (5)
O50.30323 (18)0.85085 (16)0.79750 (14)0.0547 (4)
O60.0679 (3)0.1917 (2)0.09903 (19)0.0809 (6)
H210.412 (3)0.796 (3)0.941 (2)0.097*
H220.513 (3)0.838 (3)1.099 (2)0.097*
H170.070 (3)0.394 (2)0.143 (3)0.097*
H1W0.140 (3)0.168 (3)0.129 (3)0.097*
H2W0.112 (3)0.128 (3)0.015 (2)0.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0348 (10)0.0343 (9)0.0377 (10)0.0187 (8)0.0167 (8)0.0173 (8)
C20.0357 (10)0.0427 (10)0.0444 (11)0.0159 (8)0.0211 (8)0.0168 (9)
C30.0356 (10)0.0380 (10)0.0439 (11)0.0113 (8)0.0148 (8)0.0145 (9)
C40.0463 (11)0.0347 (9)0.0373 (10)0.0191 (8)0.0175 (8)0.0119 (8)
C50.0429 (11)0.0481 (11)0.0505 (12)0.0215 (9)0.0255 (9)0.0120 (10)
C60.0315 (10)0.0440 (11)0.0514 (12)0.0139 (8)0.0177 (9)0.0081 (9)
C70.0379 (10)0.0401 (10)0.0487 (11)0.0133 (8)0.0209 (9)0.0137 (9)
C80.0459 (11)0.0395 (11)0.0468 (11)0.0154 (9)0.0160 (9)0.0117 (9)
C90.0590 (12)0.0451 (11)0.0434 (11)0.0277 (10)0.0295 (10)0.0231 (9)
C100.0429 (10)0.0421 (10)0.0420 (10)0.0213 (9)0.0239 (9)0.0211 (9)
C110.0398 (10)0.0443 (11)0.0361 (10)0.0170 (9)0.0194 (8)0.0133 (9)
C120.0595 (13)0.0525 (12)0.0441 (11)0.0248 (10)0.0315 (10)0.0269 (10)
C130.0494 (11)0.0392 (10)0.0482 (11)0.0207 (9)0.0274 (9)0.0224 (9)
C140.0357 (9)0.0405 (10)0.0381 (10)0.0210 (8)0.0190 (8)0.0183 (8)
C150.0410 (10)0.0440 (10)0.0378 (10)0.0201 (8)0.0208 (8)0.0223 (9)
C160.0409 (10)0.0356 (10)0.0423 (11)0.0151 (8)0.0194 (8)0.0167 (8)
C170.0482 (11)0.0462 (12)0.0409 (11)0.0255 (9)0.0218 (9)0.0180 (9)
N10.0349 (8)0.0348 (8)0.0385 (8)0.0157 (7)0.0170 (7)0.0130 (7)
N20.0616 (11)0.0410 (9)0.0425 (10)0.0259 (8)0.0257 (9)0.0168 (8)
N30.0575 (11)0.0430 (10)0.0443 (10)0.0214 (9)0.0209 (9)0.0124 (8)
O10.0806 (12)0.0662 (11)0.0599 (10)0.0220 (9)0.0434 (9)0.0052 (8)
O20.0600 (10)0.0523 (9)0.0564 (10)0.0087 (8)0.0163 (8)0.0010 (8)
O30.0759 (11)0.0545 (9)0.0430 (8)0.0171 (8)0.0337 (8)0.0121 (7)
O40.1147 (14)0.0416 (9)0.0554 (10)0.0278 (9)0.0450 (10)0.0145 (7)
O50.0721 (10)0.0620 (9)0.0425 (8)0.0375 (8)0.0324 (7)0.0259 (7)
O60.0936 (14)0.0547 (10)0.0652 (11)0.0142 (10)0.0484 (10)0.0041 (8)
Geometric parameters (Å, º) top
C1—N11.392 (2)C10—H10A0.97
C1—C61.397 (2)C10—H10B0.97
C1—C21.402 (2)C11—O31.360 (2)
C2—C31.371 (3)C11—C161.379 (3)
C2—H20.93C11—C121.382 (3)
C3—C41.373 (3)C12—C131.374 (3)
C3—H30.93C12—H120.93
C4—C51.373 (3)C13—C141.389 (2)
C4—N31.446 (2)C13—H130.93
C5—C61.365 (3)C14—C151.383 (2)
C5—H50.93C14—C171.494 (3)
C6—H60.93C15—C161.378 (2)
C7—N11.468 (2)C15—H150.93
C7—C81.501 (3)C16—H160.93
C7—H7A0.97C17—O41.250 (2)
C7—H7B0.97C17—O51.260 (2)
C8—N21.470 (3)N2—H210.893 (17)
C8—H8A0.97N2—H220.935 (17)
C8—H8B0.97N3—O21.221 (2)
C9—N21.476 (2)N3—O11.230 (2)
C9—C101.507 (3)O3—H170.850 (17)
C9—H9A0.97O6—H1W0.832 (17)
C9—H9B0.97O6—H2W0.834 (17)
C10—N11.467 (2)
N1—C1—C6120.65 (15)N1—C10—H10B108.9
N1—C1—C2122.40 (15)C9—C10—H10B108.9
C6—C1—C2116.95 (16)H10A—C10—H10B107.8
C3—C2—C1121.37 (17)O3—C11—C16122.11 (17)
C3—C2—H2119.3O3—C11—C12118.10 (17)
C1—C2—H2119.3C16—C11—C12119.78 (17)
C2—C3—C4119.60 (17)C13—C12—C11120.14 (18)
C2—C3—H3120.2C13—C12—H12119.9
C4—C3—H3120.2C11—C12—H12119.9
C3—C4—C5120.68 (17)C12—C13—C14120.94 (17)
C3—C4—N3119.73 (17)C12—C13—H13119.5
C5—C4—N3119.59 (17)C14—C13—H13119.5
C6—C5—C4119.67 (17)C15—C14—C13118.02 (16)
C6—C5—H5120.2C15—C14—C17121.42 (16)
C4—C5—H5120.2C13—C14—C17120.55 (16)
C5—C6—C1121.72 (17)C16—C15—C14121.51 (17)
C5—C6—H6119.1C16—C15—H15119.2
C1—C6—H6119.1C14—C15—H15119.2
N1—C7—C8113.07 (16)C15—C16—C11119.60 (17)
N1—C7—H7A109C15—C16—H16120.2
C8—C7—H7A109C11—C16—H16120.2
N1—C7—H7B109O4—C17—O5124.14 (18)
C8—C7—H7B109O4—C17—C14116.82 (17)
H7A—C7—H7B107.8O5—C17—C14119.04 (17)
N2—C8—C7110.93 (16)C1—N1—C10116.66 (14)
N2—C8—H8A109.5C1—N1—C7115.79 (14)
C7—C8—H8A109.5C10—N1—C7114.73 (14)
N2—C8—H8B109.5C8—N2—C9108.67 (15)
C7—C8—H8B109.5C8—N2—H21109.1 (18)
H8A—C8—H8B108C9—N2—H21108.9 (18)
N2—C9—C10110.96 (15)C8—N2—H22106.2 (17)
N2—C9—H9A109.4C9—N2—H22110.8 (17)
C10—C9—H9A109.4H21—N2—H22113 (2)
N2—C9—H9B109.4O2—N3—O1122.24 (17)
C10—C9—H9B109.4O2—N3—C4119.43 (17)
H9A—C9—H9B108O1—N3—C4118.32 (17)
N1—C10—C9113.15 (15)C11—O3—H17110.2 (19)
N1—C10—H10A108.9H1W—O6—H2W108 (3)
C9—C10—H10A108.9
N1—C1—C2—C3179.46 (17)O3—C11—C16—C15179.34 (17)
C6—C1—C2—C30.3 (3)C12—C11—C16—C150.4 (3)
C1—C2—C3—C40.0 (3)C15—C14—C17—O4178.09 (18)
C2—C3—C4—C50.4 (3)C13—C14—C17—O41.4 (3)
C2—C3—C4—N3179.58 (17)C15—C14—C17—O52.4 (3)
C3—C4—C5—C60.5 (3)C13—C14—C17—O5178.03 (18)
N3—C4—C5—C6179.41 (18)C6—C1—N1—C10169.31 (17)
C4—C5—C6—C10.3 (3)C2—C1—N1—C1011.5 (2)
N1—C1—C6—C5179.30 (18)C6—C1—N1—C729.6 (2)
C2—C1—C6—C50.1 (3)C2—C1—N1—C7151.19 (18)
N1—C7—C8—N253.2 (2)C9—C10—N1—C1176.12 (15)
N2—C9—C10—N152.1 (2)C9—C10—N1—C743.8 (2)
O3—C11—C12—C13178.90 (18)C8—C7—N1—C1175.25 (16)
C16—C11—C12—C130.1 (3)C8—C7—N1—C1044.3 (2)
C11—C12—C13—C140.2 (3)C7—C8—N2—C961.2 (2)
C12—C13—C14—C150.3 (3)C10—C9—N2—C860.7 (2)
C12—C13—C14—C17179.26 (18)C3—C4—N3—O29.7 (3)
C13—C14—C15—C160.8 (3)C5—C4—N3—O2170.3 (2)
C17—C14—C15—C16178.76 (17)C3—C4—N3—O1171.61 (19)
C14—C15—C16—C110.8 (3)C5—C4—N3—O18.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···O50.89 (2)1.93 (2)2.819 (2)177 (3)
N2—H22···O4i0.94 (2)1.65 (2)2.583 (2)177 (3)
O3—H17···O60.85 (2)1.82 (2)2.669 (2)177 (3)
O6—H1W···O5ii0.83 (2)1.95 (2)2.768 (2)169 (3)
O6—H2W···O1iii0.83 (2)2.11 (2)2.944 (2)178 (3)
Symmetry codes: (i) x+1, y+2, z+2; (ii) x, y+1, z+1; (iii) x, y, z.
4-(4-Nitrophenyl)piperazin-1-ium 4-methylbenzoate monohydrate (IV) top
Crystal data top
C10H14N3O2+·C8H7O2·H2OZ = 2
Mr = 361.39F(000) = 384
Triclinic, P1Dx = 1.319 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.1136 (5) ÅCell parameters from 5980 reflections
b = 7.6965 (7) Åθ = 3.1–25.4°
c = 19.708 (2) ŵ = 0.10 mm1
α = 79.577 (8)°T = 293 K
β = 87.162 (8)°Plate, yellow
γ = 86.699 (8)°0.48 × 0.26 × 0.02 mm
V = 909.79 (15) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer
1911 reflections with I > 2σ(I)
ω scansRint = 0.019
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
θmax = 25.4°, θmin = 3.1°
Tmin = 0.970, Tmax = 0.998h = 57
5980 measured reflectionsk = 89
3347 independent reflectionsl = 2321
Refinement top
Refinement on F20 constraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.053H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.138 w = 1/[σ2(Fo2) + (0.0554P)2 + 0.2441P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3343 reflectionsΔρmax = 0.20 e Å3
248 parametersΔρmin = 0.16 e Å3
4 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7597 (5)0.1408 (4)0.52918 (12)0.1114 (9)
O21.0599 (5)0.2808 (4)0.50875 (13)0.1312 (11)
N10.8270 (3)0.0591 (2)0.20408 (9)0.0426 (5)
N20.8376 (3)0.2441 (3)0.06365 (10)0.0492 (5)
N30.9029 (6)0.1858 (4)0.48992 (13)0.0795 (8)
C10.8503 (4)0.0072 (3)0.27523 (12)0.0421 (6)
C20.6848 (5)0.0416 (4)0.32264 (13)0.0620 (8)
H20.5593850.1078320.3068840.074*
C30.7020 (5)0.0200 (4)0.39241 (13)0.0660 (8)
H30.589580.0050080.4232730.079*
C40.8844 (5)0.1175 (4)0.41582 (13)0.0589 (7)
C51.0511 (5)0.1516 (4)0.37142 (15)0.0698 (8)
H51.1758890.2172260.3880960.084*
C61.0361 (4)0.0894 (4)0.30170 (13)0.0606 (8)
H61.1522070.1123510.2717610.073*
C70.6682 (4)0.2049 (3)0.18122 (12)0.0490 (6)
H7A0.7210930.3135110.1912950.059*
H7B0.5303330.1826010.2070330.059*
C80.6287 (4)0.2287 (4)0.10502 (12)0.0546 (7)
H8A0.5531490.1283850.0958860.066*
H8B0.5354740.3343750.0914540.066*
C90.9774 (4)0.0810 (3)0.08466 (12)0.0525 (7)
H9A1.1135970.0879160.0571290.063*
H9B0.9027530.0208220.0765950.063*
C101.0256 (4)0.0595 (3)0.15971 (12)0.0499 (6)
H10A1.1103420.0507910.1732380.06*
H10B1.114090.1551460.1664260.06*
O30.2656 (3)0.7140 (3)0.07107 (9)0.0598 (5)
O40.0053 (3)0.5296 (3)0.11199 (9)0.0620 (5)
C110.2728 (4)0.5764 (3)0.18855 (12)0.0399 (6)
C120.4646 (4)0.6537 (3)0.19936 (13)0.0484 (6)
H120.5339170.7268760.1628810.058*
C130.5535 (4)0.6230 (3)0.26365 (14)0.0575 (7)
H130.682580.6758620.2694990.069*
C140.4567 (5)0.5162 (3)0.31955 (14)0.0562 (7)
C150.2645 (4)0.4395 (4)0.30874 (14)0.0584 (7)
H150.1950580.3669320.3453950.07*
C160.1748 (4)0.4689 (3)0.24468 (13)0.0496 (6)
H160.0458660.415650.2388970.06*
C170.1749 (4)0.6080 (3)0.11893 (13)0.0437 (6)
C180.5550 (6)0.4855 (4)0.38973 (16)0.0863 (10)
H18A0.4428480.5029290.4240330.129*
H18B0.6677150.5673320.3897420.129*
H18C0.6170020.3666840.4000460.129*
O50.7006 (3)0.7136 (5)0.02422 (13)0.1211 (12)
H210.903 (6)0.338 (4)0.073 (2)0.145*
H220.807 (6)0.256 (5)0.0183 (11)0.145*
H1W0.792 (5)0.667 (5)0.0534 (17)0.145*
H2W0.576 (4)0.720 (6)0.045 (2)0.145*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.145 (2)0.132 (2)0.0477 (14)0.0055 (18)0.0100 (15)0.0001 (14)
O20.153 (2)0.155 (3)0.0702 (17)0.044 (2)0.0390 (17)0.0148 (17)
N10.0427 (11)0.0478 (12)0.0358 (11)0.0059 (9)0.0018 (9)0.0064 (9)
N20.0540 (13)0.0562 (14)0.0357 (11)0.0002 (11)0.0042 (10)0.0041 (10)
N30.111 (2)0.078 (2)0.0469 (17)0.0053 (17)0.0113 (16)0.0005 (14)
C10.0489 (14)0.0408 (14)0.0377 (14)0.0000 (11)0.0047 (11)0.0100 (11)
C20.0675 (17)0.0685 (19)0.0442 (16)0.0202 (15)0.0004 (13)0.0028 (14)
C30.083 (2)0.072 (2)0.0394 (16)0.0130 (17)0.0050 (14)0.0057 (14)
C40.085 (2)0.0556 (17)0.0352 (15)0.0002 (16)0.0113 (14)0.0044 (13)
C50.0719 (19)0.083 (2)0.0515 (19)0.0176 (17)0.0203 (15)0.0060 (16)
C60.0564 (16)0.078 (2)0.0448 (16)0.0167 (15)0.0066 (13)0.0092 (14)
C70.0428 (14)0.0616 (17)0.0401 (14)0.0080 (12)0.0034 (11)0.0050 (12)
C80.0441 (14)0.0706 (18)0.0468 (16)0.0043 (13)0.0071 (12)0.0052 (13)
C90.0597 (16)0.0579 (17)0.0385 (15)0.0061 (13)0.0028 (12)0.0086 (12)
C100.0499 (15)0.0558 (16)0.0417 (15)0.0138 (12)0.0008 (12)0.0080 (12)
O30.0574 (11)0.0779 (13)0.0404 (10)0.0028 (10)0.0074 (8)0.0006 (9)
O40.0577 (11)0.0758 (13)0.0557 (12)0.0102 (10)0.0167 (9)0.0143 (10)
C110.0404 (13)0.0387 (13)0.0413 (14)0.0068 (11)0.0074 (11)0.0103 (11)
C120.0513 (15)0.0449 (15)0.0490 (16)0.0006 (12)0.0065 (12)0.0072 (12)
C130.0547 (16)0.0533 (17)0.0679 (19)0.0004 (13)0.0224 (14)0.0158 (15)
C140.0707 (18)0.0497 (16)0.0498 (17)0.0066 (14)0.0233 (14)0.0103 (13)
C150.0706 (18)0.0570 (17)0.0453 (16)0.0042 (14)0.0099 (13)0.0007 (13)
C160.0488 (15)0.0518 (16)0.0485 (16)0.0039 (13)0.0089 (12)0.0074 (13)
C170.0427 (14)0.0473 (15)0.0420 (15)0.0071 (12)0.0042 (12)0.0121 (12)
C180.114 (3)0.079 (2)0.068 (2)0.003 (2)0.0467 (19)0.0066 (17)
O50.0602 (14)0.210 (3)0.0697 (16)0.0101 (18)0.0093 (12)0.0407 (18)
Geometric parameters (Å, º) top
O1—N31.216 (3)C9—C101.500 (3)
O2—N31.204 (3)C9—H9A0.97
N1—C11.399 (3)C9—H9B0.97
N1—C101.460 (3)C10—H10A0.97
N1—C71.463 (3)C10—H10B0.97
N2—C81.480 (3)O3—O30.000 (5)
N2—C91.483 (3)O3—C171.259 (3)
N2—H210.892 (19)O4—C171.254 (3)
N2—H220.908 (19)C11—C121.387 (3)
N3—C41.468 (3)C11—C161.389 (3)
C1—C21.390 (3)C11—C171.498 (3)
C1—C61.391 (3)C12—C131.379 (3)
C2—C31.378 (4)C12—H120.93
C2—H20.93C13—C141.380 (4)
C3—C41.360 (4)C13—H130.93
C3—H30.93C14—C151.387 (4)
C4—C51.356 (4)C14—C181.509 (4)
C5—C61.377 (4)C15—C161.377 (3)
C5—H50.93C15—H150.93
C6—H60.93C16—H160.93
C7—C81.509 (3)C18—H18A0.96
C7—H7A0.97C18—H18B0.96
C7—H7B0.97C18—H18C0.96
C8—H8A0.97O5—H1W0.843 (19)
C8—H8B0.97O5—H2W0.854 (19)
C1—N1—C10117.39 (18)N2—C9—H9A109.6
C1—N1—C7117.37 (18)C10—C9—H9A109.6
C10—N1—C7113.94 (18)N2—C9—H9B109.6
C8—N2—C9108.7 (2)C10—C9—H9B109.6
C8—N2—H21107 (3)H9A—C9—H9B108.2
C9—N2—H21110 (3)N1—C10—C9112.7 (2)
C8—N2—H22109 (3)N1—C10—H10A109.1
C9—N2—H22110 (3)C9—C10—H10A109.1
H21—N2—H22112 (4)N1—C10—H10B109.1
O2—N3—O1123.5 (3)C9—C10—H10B109.1
O2—N3—C4118.5 (3)H10A—C10—H10B107.8
O1—N3—C4117.9 (3)O3—O3—C170 (10)
C2—C1—C6116.8 (2)C12—C11—C16117.5 (2)
C2—C1—N1121.7 (2)C12—C11—C17121.2 (2)
C6—C1—N1121.4 (2)C16—C11—C17121.2 (2)
C3—C2—C1121.6 (3)C13—C12—C11120.7 (2)
C3—C2—H2119.2C13—C12—H12119.7
C1—C2—H2119.2C11—C12—H12119.7
C4—C3—C2119.6 (3)C12—C13—C14122.0 (2)
C4—C3—H3120.2C12—C13—H13119
C2—C3—H3120.2C14—C13—H13119
C5—C4—C3120.7 (2)C13—C14—C15117.3 (2)
C5—C4—N3119.3 (3)C13—C14—C18121.3 (3)
C3—C4—N3120.0 (3)C15—C14—C18121.4 (3)
C4—C5—C6120.1 (3)C16—C15—C14121.2 (3)
C4—C5—H5119.9C16—C15—H15119.4
C6—C5—H5119.9C14—C15—H15119.4
C5—C6—C1121.2 (2)C15—C16—C11121.3 (2)
C5—C6—H6119.4C15—C16—H16119.3
C1—C6—H6119.4C11—C16—H16119.3
N1—C7—C8112.6 (2)O4—C17—O3123.8 (2)
N1—C7—H7A109.1O4—C17—O3123.8 (2)
C8—C7—H7A109.1O3—C17—O30.0 (2)
N1—C7—H7B109.1O4—C17—C11118.1 (2)
C8—C7—H7B109.1O3—C17—C11118.0 (2)
H7A—C7—H7B107.8O3—C17—C11118.0 (2)
N2—C8—C7111.1 (2)C14—C18—H18A109.5
N2—C8—H8A109.4C14—C18—H18B109.5
C7—C8—H8A109.4H18A—C18—H18B109.5
N2—C8—H8B109.4C14—C18—H18C109.5
C7—C8—H8B109.4H18A—C18—H18C109.5
H8A—C8—H8B108H18B—C18—H18C109.5
N2—C9—C10110.1 (2)H1W—O5—H2W108 (4)
C10—N1—C1—C2164.4 (2)C8—N2—C9—C1060.7 (3)
C7—N1—C1—C222.9 (3)C1—N1—C10—C9168.3 (2)
C10—N1—C1—C618.9 (3)C7—N1—C10—C948.9 (3)
C7—N1—C1—C6160.4 (2)N2—C9—C10—N155.7 (3)
C6—C1—C2—C31.2 (4)C16—C11—C12—C130.3 (3)
N1—C1—C2—C3175.6 (3)C17—C11—C12—C13179.7 (2)
C1—C2—C3—C40.3 (5)C11—C12—C13—C140.3 (4)
C2—C3—C4—C51.3 (5)C12—C13—C14—C150.1 (4)
C2—C3—C4—N3179.1 (3)C12—C13—C14—C18179.4 (3)
O2—N3—C4—C55.0 (4)C13—C14—C15—C160.1 (4)
O1—N3—C4—C5173.8 (3)C18—C14—C15—C16179.6 (3)
O2—N3—C4—C3175.5 (3)C14—C15—C16—C110.1 (4)
O1—N3—C4—C35.7 (4)C12—C11—C16—C150.1 (4)
C3—C4—C5—C60.8 (5)C17—C11—C16—C15179.9 (2)
N3—C4—C5—C6179.6 (3)O3—O3—C17—O40.00 (14)
C4—C5—C6—C10.8 (5)O3—O3—C17—C110.0 (2)
C2—C1—C6—C51.8 (4)C12—C11—C17—O4177.7 (2)
N1—C1—C6—C5175.0 (3)C16—C11—C17—O42.4 (3)
C1—N1—C7—C8170.1 (2)C12—C11—C17—O33.5 (3)
C10—N1—C7—C847.0 (3)C16—C11—C17—O3176.4 (2)
C9—N2—C8—C759.5 (3)C12—C11—C17—O33.5 (3)
N1—C7—C8—N252.7 (3)C16—C11—C17—O3176.4 (2)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroids of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
N2—H21···O4i0.89 (2)1.93 (2)2.811 (3)167 (4)
N2—H22···O3ii0.91 (2)1.81 (2)2.717 (3)177 (4)
C3—H3···O1iii0.932.543.427 (4)161
C9—H9A···O5iv0.972.313.113 (3)140
O5—H1W···O4i0.84 (2)1.92 (2)2.756 (3)171 (4)
O5—H2W···O30.85 (2)1.94 (2)2.772 (3)164 (4)
C6—H6···Cg3v0.932.933.590 (3)129
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z; (iii) x+1, y, z+1; (iv) x+2, y+1, z; (v) x+1, y1, z.
4-(4-Nitrophenyl)piperazin-1-ium 4-methoxybenzoate hemihydrate (V) top
Crystal data top
2C10H14N3O2+·2C8H7O3·H2OF(000) = 1560
Mr = 736.77Dx = 1.328 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2899 reflections
a = 15.808 (1) Åθ = 2.6–25.3°
b = 7.5198 (7) ŵ = 0.1 mm1
c = 31.020 (2) ÅT = 293 K
β = 92.561 (7)°Prism, orange
V = 3683.8 (5) Å30.5 × 0.36 × 0.36 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2602 reflections with I > 2σ(I)
ω scansRint = 0.066
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
θmax = 25.3°, θmin = 2.6°
Tmin = 0.958, Tmax = 0.965h = 1918
15326 measured reflectionsk = 98
6718 independent reflectionsl = 3733
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.074 w = 1/[σ2(Fo2) + (0.0554P)2 + 0.9198P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.169(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.27 e Å3
6715 reflectionsΔρmin = 0.18 e Å3
507 parametersExtinction correction: SHELXL2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
45 restraintsExtinction coefficient: 0.0029 (4)
0 constraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.2115 (2)0.2769 (5)0.15386 (13)0.0456 (11)
C20.2042 (3)0.2439 (6)0.19789 (14)0.0687 (14)
H20.1512360.218050.2082090.082*
C30.2734 (3)0.2487 (7)0.22634 (14)0.0860 (16)
H30.267120.226980.2555320.103*
C40.3512 (3)0.2855 (7)0.21153 (15)0.0702 (14)
C50.3613 (3)0.3157 (6)0.16906 (15)0.0722 (14)
H50.4149160.3390420.1592790.087*
C60.2925 (3)0.3119 (6)0.14031 (13)0.0598 (12)
H60.3003350.3332250.1112310.072*
C70.1555 (2)0.2450 (6)0.07998 (12)0.0599 (12)
H7A0.1665230.1190020.0766360.072*
H7B0.2051920.3093590.071380.072*
C80.0813 (3)0.2965 (6)0.05086 (13)0.0690 (13)
H8A0.0751360.424830.0509370.083*
H8B0.091520.2594890.0215950.083*
C90.0117 (3)0.2610 (6)0.10976 (14)0.0669 (13)
H9A0.0625040.2021510.1189060.08*
H9B0.0201490.388370.1121120.08*
C100.0624 (2)0.2059 (6)0.13852 (12)0.0631 (13)
H10A0.0527930.2429150.167850.076*
H10B0.0668760.0772080.1383310.076*
C110.9721 (3)0.2971 (6)0.30361 (13)0.0510 (11)
C120.8980 (3)0.2023 (6)0.30443 (12)0.0563 (12)
H120.8886580.130670.3281780.068*
C130.8365 (3)0.2095 (6)0.27110 (14)0.0632 (13)
H130.787560.141420.2722810.076*
C140.8487 (3)0.3182 (6)0.23643 (14)0.0628 (12)
C150.9229 (3)0.4129 (6)0.23467 (13)0.0649 (13)
H150.932080.4844940.2108830.078*
C160.9839 (3)0.4028 (6)0.26775 (14)0.0626 (13)
H161.0335920.467980.266010.075*
C171.0355 (3)0.2887 (7)0.34129 (16)0.0608 (13)
C180.7146 (3)0.2457 (8)0.20218 (17)0.118 (2)
H18C0.6814720.2738150.1763870.178*
H18B0.7257590.1202420.203080.178*
H18A0.6840020.2792680.2269480.178*
C190.3816 (3)0.5044 (6)0.09170 (13)0.0503 (11)
C200.3778 (3)0.6432 (6)0.06180 (13)0.0582 (12)
H200.3260820.6977410.0574570.07*
C210.4478 (3)0.6998 (6)0.03904 (13)0.0603 (12)
H210.4430540.7904350.0188770.072*
C220.5251 (2)0.6260 (6)0.04523 (13)0.0499 (11)
C230.5330 (3)0.4942 (6)0.07542 (14)0.0610 (12)
H230.585810.4454120.0801830.073*
C240.4629 (3)0.4354 (6)0.09836 (13)0.0623 (13)
H240.4689430.3471430.1190.075*
C250.3099 (3)0.2720 (7)0.13618 (14)0.0722 (14)
H25A0.365470.2488590.1470480.087*
H25B0.2694010.275160.1605820.087*
C260.2867 (3)0.1245 (6)0.10589 (14)0.0694 (13)
H26A0.2846230.0119990.1211950.083*
H26B0.3291070.1154750.0823930.083*
C270.1998 (2)0.3414 (6)0.06853 (12)0.0579 (12)
H27A0.2374090.3450680.0429680.07*
H27B0.1426820.3652920.0598770.07*
C280.2258 (2)0.4799 (6)0.10009 (13)0.0583 (12)
H28A0.1860990.4806750.1248490.07*
H28B0.2246230.5962610.0866440.07*
C290.2315 (2)0.8165 (5)0.03520 (12)0.0442 (10)
C300.3063 (2)0.9094 (5)0.03221 (13)0.0517 (11)
H300.3199560.9572420.0057610.062*
C310.3609 (2)0.9330 (6)0.06743 (15)0.0597 (12)
H310.4114730.9941620.0644630.072*
C320.3412 (3)0.8662 (6)0.10717 (15)0.0570 (12)
C330.2661 (3)0.7752 (6)0.11108 (13)0.0590 (12)
H330.2514890.7315190.1377820.071*
C340.2130 (2)0.7495 (5)0.07521 (13)0.0524 (11)
H340.1632380.6852770.0779810.063*
C350.1734 (3)0.7879 (6)0.00372 (14)0.0459 (11)
C360.3801 (3)0.8360 (7)0.18157 (17)0.1098 (19)
H36C0.426110.8630240.2017770.165*
H36B0.3298050.8953560.1901610.165*
H36A0.3706560.7099530.1810180.165*
N10.14171 (19)0.2823 (4)0.12508 (10)0.0475 (9)
N20.0026 (2)0.2144 (5)0.06465 (13)0.0581 (10)
N30.4265 (6)0.2464 (13)0.2410 (3)0.075 (2)0.519 (6)
N3'0.4213 (6)0.3345 (15)0.2420 (3)0.075 (2)0.481 (6)
N40.3106 (2)0.4437 (5)0.11425 (10)0.0583 (10)
N50.2034 (2)0.1639 (5)0.08869 (12)0.0612 (10)
N60.5983 (2)0.6796 (6)0.01867 (13)0.0650 (11)
O10.4960 (7)0.2571 (14)0.2266 (4)0.099 (2)0.519 (6)
O1'0.4904 (8)0.3633 (14)0.2283 (4)0.099 (2)0.481 (6)
O20.4177 (6)0.2116 (13)0.2788 (3)0.097 (2)0.519 (6)
O2'0.4086 (6)0.3408 (15)0.2797 (3)0.097 (2)0.481 (6)
O31.1003 (2)0.3818 (4)0.33942 (9)0.0826 (10)
O41.0196 (2)0.1889 (4)0.37194 (10)0.0789 (10)
O50.7922 (2)0.3398 (5)0.20234 (9)0.0895 (11)
O60.58811 (19)0.7838 (5)0.01114 (11)0.0827 (11)
O70.66853 (19)0.6203 (5)0.02668 (10)0.0881 (11)
O80.10807 (17)0.6951 (4)0.00037 (8)0.0590 (8)
O90.19207 (16)0.8596 (4)0.03853 (9)0.0593 (8)
O100.40056 (18)0.8950 (4)0.13979 (10)0.0790 (10)
O111.00751 (19)0.3517 (4)0.44766 (10)0.0649 (9)
H21N0.0388 (19)0.252 (5)0.0468 (11)0.078*
H22N0.007 (3)0.099 (3)0.0609 (12)0.078*
H51N0.190 (2)0.077 (4)0.0717 (11)0.078*
H52N0.164 (2)0.153 (6)0.1110 (9)0.078*
H11O1.010 (3)0.296 (5)0.4244 (9)0.078*
H12O0.969 (2)0.305 (5)0.4618 (12)0.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.043 (3)0.040 (3)0.054 (3)0.002 (2)0.000 (2)0.002 (2)
C20.056 (3)0.100 (4)0.051 (3)0.008 (3)0.007 (3)0.001 (3)
C30.073 (3)0.145 (5)0.039 (3)0.011 (4)0.005 (3)0.004 (3)
C40.052 (3)0.108 (4)0.050 (3)0.009 (3)0.013 (2)0.001 (3)
C50.052 (3)0.107 (4)0.057 (3)0.017 (3)0.001 (3)0.005 (3)
C60.049 (3)0.082 (4)0.048 (3)0.005 (3)0.006 (2)0.009 (2)
C70.050 (3)0.082 (3)0.047 (3)0.009 (3)0.002 (2)0.002 (2)
C80.064 (3)0.077 (3)0.064 (3)0.023 (3)0.018 (2)0.017 (3)
C90.052 (3)0.076 (4)0.073 (4)0.003 (3)0.003 (2)0.015 (3)
C100.052 (3)0.089 (4)0.048 (3)0.013 (3)0.000 (2)0.003 (2)
C110.055 (3)0.049 (3)0.049 (3)0.004 (3)0.004 (2)0.002 (2)
C120.071 (3)0.059 (3)0.039 (3)0.007 (3)0.006 (2)0.008 (2)
C130.058 (3)0.074 (4)0.058 (3)0.010 (3)0.000 (2)0.010 (3)
C140.064 (3)0.071 (4)0.051 (3)0.007 (3)0.012 (3)0.004 (3)
C150.068 (3)0.070 (4)0.056 (3)0.009 (3)0.004 (3)0.018 (2)
C160.058 (3)0.064 (3)0.065 (3)0.009 (3)0.000 (3)0.009 (3)
C170.063 (3)0.057 (4)0.062 (3)0.014 (3)0.010 (3)0.011 (3)
C180.103 (5)0.148 (6)0.100 (4)0.040 (4)0.047 (3)0.023 (4)
C190.044 (3)0.065 (3)0.042 (3)0.002 (3)0.007 (2)0.009 (2)
C200.038 (3)0.071 (3)0.066 (3)0.003 (3)0.002 (2)0.004 (3)
C210.046 (3)0.071 (3)0.064 (3)0.002 (3)0.008 (2)0.009 (2)
C220.035 (3)0.064 (3)0.051 (3)0.007 (2)0.002 (2)0.009 (2)
C230.038 (3)0.068 (3)0.077 (3)0.004 (3)0.012 (2)0.005 (3)
C240.050 (3)0.067 (3)0.071 (3)0.003 (3)0.015 (3)0.011 (2)
C250.063 (3)0.100 (4)0.054 (3)0.009 (3)0.006 (2)0.023 (3)
C260.069 (3)0.068 (4)0.070 (3)0.003 (3)0.008 (3)0.015 (3)
C270.049 (3)0.070 (3)0.054 (3)0.004 (3)0.003 (2)0.012 (3)
C280.042 (3)0.063 (3)0.069 (3)0.006 (2)0.008 (2)0.001 (3)
C290.043 (2)0.045 (3)0.045 (3)0.005 (2)0.004 (2)0.003 (2)
C300.044 (3)0.063 (3)0.049 (3)0.006 (2)0.004 (2)0.007 (2)
C310.044 (3)0.071 (3)0.064 (3)0.005 (2)0.005 (2)0.001 (3)
C320.053 (3)0.064 (3)0.053 (3)0.012 (3)0.013 (3)0.008 (3)
C330.062 (3)0.067 (3)0.048 (3)0.001 (3)0.005 (2)0.005 (2)
C340.052 (3)0.055 (3)0.050 (3)0.004 (2)0.002 (2)0.006 (2)
C350.048 (3)0.040 (3)0.050 (3)0.009 (2)0.005 (2)0.002 (2)
C360.117 (5)0.125 (5)0.083 (4)0.008 (4)0.035 (3)0.004 (4)
N10.041 (2)0.055 (2)0.046 (2)0.0042 (18)0.0010 (17)0.0018 (17)
N20.055 (3)0.047 (2)0.070 (3)0.005 (2)0.0165 (19)0.004 (2)
N30.072 (3)0.081 (4)0.070 (3)0.002 (3)0.004 (2)0.001 (3)
N3'0.072 (3)0.081 (4)0.070 (3)0.002 (3)0.004 (2)0.001 (3)
N40.051 (2)0.072 (3)0.052 (2)0.005 (2)0.0048 (19)0.002 (2)
N50.059 (3)0.063 (3)0.061 (3)0.012 (2)0.009 (2)0.010 (2)
N60.048 (3)0.084 (3)0.064 (3)0.012 (3)0.003 (2)0.021 (2)
O10.075 (3)0.127 (7)0.092 (3)0.011 (5)0.020 (2)0.001 (6)
O1'0.075 (3)0.127 (7)0.092 (3)0.011 (5)0.020 (2)0.001 (6)
O20.097 (3)0.131 (6)0.062 (3)0.003 (5)0.015 (2)0.001 (5)
O2'0.097 (3)0.131 (6)0.062 (3)0.003 (5)0.015 (2)0.001 (5)
O30.073 (2)0.088 (3)0.084 (2)0.010 (2)0.0291 (18)0.0096 (18)
O40.106 (3)0.069 (2)0.060 (2)0.003 (2)0.0170 (18)0.0134 (18)
O50.082 (2)0.115 (3)0.070 (2)0.013 (2)0.0256 (19)0.0253 (19)
O60.072 (2)0.110 (3)0.066 (2)0.023 (2)0.0016 (18)0.002 (2)
O70.046 (2)0.128 (3)0.090 (2)0.001 (2)0.0000 (18)0.023 (2)
O80.0548 (18)0.061 (2)0.060 (2)0.0126 (17)0.0085 (14)0.0027 (15)
O90.0639 (19)0.066 (2)0.0473 (19)0.0027 (16)0.0024 (15)0.0080 (15)
O100.072 (2)0.102 (3)0.061 (2)0.0032 (19)0.0220 (18)0.0004 (19)
O110.063 (2)0.064 (2)0.069 (2)0.0012 (18)0.0089 (17)0.0012 (17)
Geometric parameters (Å, º) top
C1—N11.388 (4)C21—H210.93
C1—C61.391 (5)C22—C231.373 (5)
C1—C21.398 (5)C22—N61.448 (5)
C2—C31.375 (6)C23—C241.363 (5)
C2—H20.93C23—H230.93
C3—C41.359 (6)C24—H240.93
C3—H30.93C25—N41.459 (5)
C4—C51.354 (5)C25—C261.509 (6)
C4—N3'1.471 (10)C25—H25A0.97
C4—N31.499 (9)C25—H25B0.97
C5—C61.375 (5)C26—N51.474 (5)
C5—H50.93C26—H26A0.97
C6—H60.93C26—H26B0.97
C7—N11.453 (4)C27—N51.476 (5)
C7—C81.499 (5)C27—C281.499 (5)
C7—H7A0.97C27—H27A0.97
C7—H7B0.97C27—H27B0.97
C8—N21.469 (5)C28—N41.455 (4)
C8—H8A0.97C28—H28A0.97
C8—H8B0.97C28—H28B0.97
C9—N21.470 (5)C29—C301.379 (5)
C9—C101.499 (5)C29—C341.383 (5)
C9—H9A0.97C29—C351.499 (5)
C9—H9B0.97C30—C311.374 (5)
C10—N11.457 (4)C30—H300.93
C10—H10A0.97C31—C321.379 (5)
C10—H10B0.97C31—H310.93
C11—C121.372 (5)C32—O101.366 (4)
C11—C161.387 (5)C32—C331.380 (5)
C11—C171.506 (6)C33—C341.377 (5)
C12—C131.388 (5)C33—H330.93
C12—H120.93C34—H340.93
C13—C141.371 (5)C35—O91.254 (4)
C13—H130.93C35—O81.258 (4)
C14—O51.363 (5)C36—O101.421 (5)
C14—C151.375 (5)C36—H36C0.96
C15—C161.378 (5)C36—H36B0.96
C15—H150.93C36—H36A0.96
C16—H160.93N2—H21N0.884 (18)
C17—O31.245 (5)N2—H22N0.882 (18)
C17—O41.246 (5)N3—O11.208 (9)
C18—O51.416 (5)N3—O21.213 (9)
C18—H18C0.96N3'—O2'1.196 (9)
C18—H18B0.96N3'—O1'1.210 (10)
C18—H18A0.96N5—H51N0.872 (18)
C19—N41.374 (4)N5—H52N0.910 (18)
C19—C201.399 (5)N6—O61.228 (4)
C19—C241.410 (5)N6—O71.232 (4)
C20—C211.354 (5)O11—H11O0.836 (18)
C20—H200.93O11—H12O0.838 (18)
C21—C221.363 (5)
N1—C1—C6121.1 (4)C22—C23—H23120.2
N1—C1—C2122.4 (4)C23—C24—C19121.9 (4)
C6—C1—C2116.5 (4)C23—C24—H24119
C3—C2—C1121.6 (4)C19—C24—H24119
C3—C2—H2119.2N4—C25—C26110.9 (3)
C1—C2—H2119.2N4—C25—H25A109.5
C4—C3—C2119.6 (4)C26—C25—H25A109.5
C4—C3—H3120.2N4—C25—H25B109.5
C2—C3—H3120.2C26—C25—H25B109.5
C5—C4—C3120.7 (4)H25A—C25—H25B108
C5—C4—N3'117.8 (6)N5—C26—C25108.9 (4)
C3—C4—N3'120.0 (6)N5—C26—H26A109.9
C5—C4—N3120.2 (6)C25—C26—H26A109.9
C3—C4—N3117.3 (6)N5—C26—H26B109.9
C4—C5—C6120.2 (4)C25—C26—H26B109.9
C4—C5—H5119.9H26A—C26—H26B108.3
C6—C5—H5119.9N5—C27—C28109.5 (3)
C5—C6—C1121.3 (4)N5—C27—H27A109.8
C5—C6—H6119.3C28—C27—H27A109.8
C1—C6—H6119.3N5—C27—H27B109.8
N1—C7—C8112.5 (3)C28—C27—H27B109.8
N1—C7—H7A109.1H27A—C27—H27B108.2
C8—C7—H7A109.1N4—C28—C27110.5 (3)
N1—C7—H7B109.1N4—C28—H28A109.5
C8—C7—H7B109.1C27—C28—H28A109.5
H7A—C7—H7B107.8N4—C28—H28B109.5
N2—C8—C7111.5 (3)C27—C28—H28B109.5
N2—C8—H8A109.3H28A—C28—H28B108.1
C7—C8—H8A109.3C30—C29—C34117.5 (4)
N2—C8—H8B109.3C30—C29—C35120.9 (4)
C7—C8—H8B109.3C34—C29—C35121.6 (4)
H8A—C8—H8B108C31—C30—C29121.5 (4)
N2—C9—C10110.5 (3)C31—C30—H30119.3
N2—C9—H9A109.5C29—C30—H30119.3
C10—C9—H9A109.5C30—C31—C32120.3 (4)
N2—C9—H9B109.5C30—C31—H31119.8
C10—C9—H9B109.5C32—C31—H31119.8
H9A—C9—H9B108.1O10—C32—C31115.4 (4)
N1—C10—C9112.3 (3)O10—C32—C33125.3 (4)
N1—C10—H10A109.1C31—C32—C33119.2 (4)
C9—C10—H10A109.1C34—C33—C32119.6 (4)
N1—C10—H10B109.1C34—C33—H33120.2
C9—C10—H10B109.1C32—C33—H33120.2
H10A—C10—H10B107.9C33—C34—C29121.8 (4)
C12—C11—C16117.2 (4)C33—C34—H34119.1
C12—C11—C17120.2 (4)C29—C34—H34119.1
C16—C11—C17122.5 (4)O9—C35—O8123.4 (4)
C11—C12—C13122.4 (4)O9—C35—C29118.2 (4)
C11—C12—H12118.8O8—C35—C29118.3 (4)
C13—C12—H12118.8O10—C36—H36C109.5
C14—C13—C12119.3 (4)O10—C36—H36B109.5
C14—C13—H13120.4H36C—C36—H36B109.5
C12—C13—H13120.4O10—C36—H36A109.5
O5—C14—C13124.7 (4)H36C—C36—H36A109.5
O5—C14—C15116.0 (4)H36B—C36—H36A109.5
C13—C14—C15119.3 (4)C1—N1—C7117.7 (3)
C14—C15—C16120.7 (4)C1—N1—C10118.2 (3)
C14—C15—H15119.6C7—N1—C10111.6 (3)
C16—C15—H15119.6C8—N2—C9110.2 (3)
C15—C16—C11121.0 (4)C8—N2—H21N107 (3)
C15—C16—H16119.5C9—N2—H21N112 (3)
C11—C16—H16119.5C8—N2—H22N108 (3)
O3—C17—O4124.6 (4)C9—N2—H22N112 (3)
O3—C17—C11117.5 (5)H21N—N2—H22N107 (4)
O4—C17—C11117.9 (5)O1—N3—O2121.2 (11)
O5—C18—H18C109.5O1—N3—C4118.2 (10)
O5—C18—H18B109.5O2—N3—C4120.6 (9)
H18C—C18—H18B109.5O2'—N3'—O1'122.0 (11)
O5—C18—H18A109.5O2'—N3'—C4119.0 (9)
H18C—C18—H18A109.5O1'—N3'—C4119.0 (10)
H18B—C18—H18A109.5C19—N4—C28121.8 (3)
N4—C19—C20121.8 (4)C19—N4—C25121.4 (4)
N4—C19—C24122.2 (4)C28—N4—C25108.6 (3)
C20—C19—C24116.0 (4)C26—N5—C27112.8 (3)
C21—C20—C19121.5 (4)C26—N5—H51N108 (3)
C21—C20—H20119.3C27—N5—H51N114 (3)
C19—C20—H20119.3C26—N5—H52N107 (3)
C20—C21—C22121.0 (4)C27—N5—H52N112 (3)
C20—C21—H21119.5H51N—N5—H52N103 (4)
C22—C21—H21119.5O6—N6—O7122.1 (4)
C21—C22—C23120.0 (4)O6—N6—C22118.5 (4)
C21—C22—N6120.4 (4)O7—N6—C22119.3 (4)
C23—C22—N6119.6 (4)C14—O5—C18118.7 (4)
C24—C23—C22119.6 (4)C32—O10—C36116.7 (4)
C24—C23—H23120.2H11O—O11—H12O108 (5)
N1—C1—C2—C3176.3 (4)O10—C32—C33—C34177.5 (4)
C6—C1—C2—C31.0 (6)C31—C32—C33—C341.3 (6)
C1—C2—C3—C40.3 (8)C32—C33—C34—C291.7 (6)
C2—C3—C4—C50.7 (8)C30—C29—C34—C330.7 (6)
C2—C3—C4—N3'164.9 (6)C35—C29—C34—C33179.9 (4)
C2—C3—C4—N3165.5 (6)C30—C29—C35—O94.2 (5)
C3—C4—C5—C60.9 (8)C34—C29—C35—O9176.6 (3)
N3'—C4—C5—C6165.0 (6)C30—C29—C35—O8176.7 (3)
N3—C4—C5—C6165.4 (6)C34—C29—C35—O82.5 (5)
C4—C5—C6—C10.2 (7)C6—C1—N1—C727.3 (5)
N1—C1—C6—C5176.6 (4)C2—C1—N1—C7155.5 (4)
C2—C1—C6—C50.7 (6)C6—C1—N1—C10166.2 (4)
N1—C7—C8—N254.0 (5)C2—C1—N1—C1016.6 (6)
N2—C9—C10—N156.1 (5)C8—C7—N1—C1166.4 (3)
C16—C11—C12—C130.2 (6)C8—C7—N1—C1052.2 (4)
C17—C11—C12—C13178.1 (4)C9—C10—N1—C1165.3 (3)
C11—C12—C13—C141.6 (7)C9—C10—N1—C753.4 (5)
C12—C13—C14—O5178.3 (4)C7—C8—N2—C955.9 (5)
C12—C13—C14—C152.3 (7)C10—C9—N2—C856.8 (4)
O5—C14—C15—C16179.0 (4)C5—C4—N3—O15.9 (11)
C13—C14—C15—C161.6 (7)C3—C4—N3—O1170.9 (8)
C14—C15—C16—C110.1 (7)C5—C4—N3—O2176.8 (7)
C12—C11—C16—C150.6 (6)C3—C4—N3—O211.8 (11)
C17—C11—C16—C15177.3 (4)C5—C4—N3'—O2'166.2 (8)
C12—C11—C17—O3177.7 (4)C3—C4—N3'—O2'0.2 (12)
C16—C11—C17—O30.1 (6)C5—C4—N3'—O1'15.5 (12)
C12—C11—C17—O42.6 (6)C3—C4—N3'—O1'178.5 (9)
C16—C11—C17—O4179.5 (4)C20—C19—N4—C2818.5 (6)
N4—C19—C20—C21178.6 (4)C24—C19—N4—C28163.8 (4)
C24—C19—C20—C213.6 (6)C20—C19—N4—C25163.3 (4)
C19—C20—C21—C221.6 (6)C24—C19—N4—C2519.0 (6)
C20—C21—C22—C231.1 (6)C27—C28—N4—C1986.8 (5)
C20—C21—C22—N6175.8 (4)C27—C28—N4—C2561.9 (4)
C21—C22—C23—C241.4 (6)C26—C25—N4—C1986.9 (4)
N6—C22—C23—C24175.5 (4)C26—C25—N4—C2861.9 (4)
C22—C23—C24—C190.8 (6)C25—C26—N5—C2754.1 (5)
N4—C19—C24—C23179.0 (4)C28—C27—N5—C2654.7 (4)
C20—C19—C24—C233.2 (6)C21—C22—N6—O64.5 (6)
N4—C25—C26—N557.6 (5)C23—C22—N6—O6172.4 (4)
N5—C27—C28—N458.0 (4)C21—C22—N6—O7175.1 (4)
C34—C29—C30—C310.8 (6)C23—C22—N6—O78.0 (6)
C35—C29—C30—C31178.5 (4)C13—C14—O5—C180.5 (7)
C29—C30—C31—C321.2 (6)C15—C14—O5—C18179.9 (4)
C30—C31—C32—O10179.1 (4)C31—C32—O10—C36176.8 (4)
C30—C31—C32—C330.2 (6)C33—C32—O10—C364.4 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···O7i0.972.543.451 (5)157
C9—H9B···O4ii0.972.313.270 (5)169
C20—H20···O90.932.533.461 (5)174
C25—H25A···O2aiii0.972.53.206 (10)130
C25—H25A···O2biii0.972.493.212 (11)131
C27—H27A···O7i0.972.583.548 (5)175
C28—H28B···O90.972.553.489 (5)164
C36—H36C···O1bii0.962.493.395 (14)158
N2—H21N···O8iv0.88 (2)1.83 (2)2.697 (4)166 (4)
N2—H21N···O9iv0.88 (2)2.57 (3)3.196 (4)129 (3)
N2—H22N···O11v0.88 (2)1.89 (2)2.758 (5)169 (4)
N5—H51N···O9vi0.87 (2)1.93 (2)2.778 (5)164 (4)
N5—H52N···O3vii0.91 (2)1.82 (2)2.724 (5)171 (4)
O11—H11O···O40.84 (2)1.83 (2)2.663 (4)176 (4)
O11—H12O···O8v0.84 (2)1.92 (2)2.754 (4)173 (4)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x, y+1, z; (v) x+1, y1/2, z+1/2; (vi) x, y1, z; (vii) x1, y+1/2, z1/2.
4-(4-Nitrophenyl)piperazin-1-ium 4-ethoxybenzoate (VI) top
Crystal data top
C10H14N3O2+·C9H9O3Z = 4
Mr = 373.4F(000) = 792
Triclinic, P1Dx = 1.324 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.874 (1) ÅCell parameters from 4134 reflections
b = 9.263 (1) Åθ = 2.4–28.0°
c = 27.996 (3) ŵ = 0.10 mm1
α = 81.030 (6)°T = 293 K
β = 85.675 (6)°Plate, yellow
γ = 68.229 (5)°0.44 × 0.32 × 0.08 mm
V = 1872.8 (4) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer
3803 reflections with I > 2σ(I)
ω scansRint = 0.027
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
θmax = 25.4°, θmin = 2.4°
Tmin = 0.963, Tmax = 0.992h = 95
13344 measured reflectionsk = 1110
6868 independent reflectionsl = 3333
Refinement top
Refinement on F20 constraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.061H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.137 w = 1/[σ2(Fo2) + (0.0432P)2 + 0.7484P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
6858 reflectionsΔρmax = 0.23 e Å3
501 parametersΔρmin = 0.22 e Å3
16 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3466 (3)0.6545 (4)0.40786 (9)0.1126 (10)
O20.1630 (3)0.5811 (3)0.46683 (9)0.0901 (8)
N30.1931 (4)0.6107 (3)0.42384 (10)0.0667 (7)
N10.3914 (3)0.5404 (2)0.29014 (7)0.0412 (5)
N20.6838 (3)0.4199 (3)0.22275 (9)0.0486 (6)
C10.2485 (3)0.5547 (3)0.32330 (9)0.0364 (6)
C20.0659 (4)0.6276 (3)0.30870 (10)0.0452 (7)
H20.0410540.6635610.2761170.054*
C30.0759 (4)0.6467 (3)0.34138 (10)0.0487 (7)
H30.1958240.696310.3309930.058*
C40.0417 (4)0.5927 (3)0.38966 (10)0.0470 (7)
C50.1352 (4)0.5197 (3)0.40558 (10)0.0460 (7)
H50.1573330.4832650.4382460.055*
C60.2787 (4)0.5009 (3)0.37309 (10)0.0430 (7)
H60.3978370.4517990.3840520.052*
C70.5772 (3)0.4477 (3)0.30663 (10)0.0473 (7)
H7A0.5887570.3388990.3152340.057*
H7B0.5974130.4843210.335540.057*
C80.7216 (4)0.4565 (4)0.26954 (10)0.0539 (8)
H8A0.7258640.5610560.2651020.065*
H8B0.8399910.3826130.2808590.065*
C90.5080 (4)0.5395 (3)0.20545 (10)0.0528 (8)
H9A0.4829350.5204990.1740840.063*
H9B0.5163750.6425120.2015920.063*
C100.3546 (4)0.5366 (4)0.23985 (9)0.0527 (8)
H10A0.2455060.6260870.2296830.063*
H10B0.3298880.4423450.2382740.063*
O30.0728 (3)0.4331 (2)0.15512 (7)0.0578 (5)
O40.1149 (2)0.2978 (2)0.21489 (7)0.0532 (5)
O50.6778 (3)0.3001 (3)0.03965 (7)0.0734 (7)
C110.2434 (4)0.3357 (3)0.13647 (9)0.0400 (6)
C120.4193 (4)0.2483 (3)0.15096 (10)0.0518 (8)
H120.4387170.1984210.1826670.062*
C130.5679 (4)0.2321 (4)0.11995 (10)0.0572 (8)
H130.6854150.1716440.1306630.069*
C140.5409 (4)0.3059 (3)0.07314 (10)0.0524 (8)
C150.3656 (4)0.3930 (4)0.05764 (10)0.0609 (9)
H150.3464060.4422580.025870.073*
C160.2192 (4)0.4072 (3)0.08898 (10)0.0520 (8)
H160.1015210.4660570.0780560.062*
C170.0851 (4)0.3564 (3)0.17148 (10)0.0424 (7)
C180.8615 (4)0.2090 (4)0.05351 (12)0.0820 (11)
H18A0.8749090.1005530.0640590.098*
H18B0.8943620.2494030.0799230.098*
C190.9824 (5)0.2199 (5)0.01002 (14)0.1126 (16)
H19A1.1061480.1520090.0172160.169*
H19B0.9766520.326150.0017690.169*
H19C0.9415250.1885650.0167230.169*
O60.1516 (4)0.7336 (4)0.60499 (10)0.1157 (11)
O70.1799 (4)0.9508 (4)0.61439 (10)0.1162 (11)
N60.1845 (4)0.8525 (5)0.58929 (11)0.0830 (10)
N40.2839 (3)0.9838 (3)0.38867 (8)0.0490 (6)
N50.2937 (3)1.0699 (3)0.28629 (8)0.0462 (6)
C200.2721 (4)0.9472 (3)0.43812 (10)0.0459 (7)
C210.2534 (4)0.8084 (4)0.45928 (11)0.0653 (9)
H210.2594670.7337840.4398390.078*
C220.2260 (5)0.7782 (4)0.50814 (12)0.0747 (10)
H220.2114820.6847540.5211740.09*
C230.2199 (4)0.8824 (5)0.53759 (11)0.0636 (9)
C240.2430 (5)1.0184 (5)0.51872 (13)0.0783 (11)
H240.2406921.0898520.5389380.094*
C250.2700 (5)1.0504 (4)0.46951 (12)0.0711 (10)
H250.2871191.1432540.4570480.085*
C260.3867 (4)1.0795 (3)0.36697 (10)0.0563 (8)
H26A0.512131.0125890.3609710.068*
H26B0.38811.1498720.3891070.068*
C270.3030 (4)1.1732 (3)0.32039 (10)0.0539 (8)
H27A0.1807521.2456080.3267830.065*
H27B0.3753281.2342930.3059270.065*
C280.1907 (4)0.9701 (3)0.30890 (10)0.0498 (7)
H28A0.1933080.8971960.287230.06*
H28B0.0641021.0358010.3140550.06*
C290.2714 (4)0.8803 (3)0.35626 (10)0.0529 (8)
H29A0.1961350.8227510.3713690.064*
H29B0.3925440.8048570.350570.064*
O80.3777 (3)0.8954 (2)0.25237 (8)0.0629 (6)
O90.3341 (3)1.1185 (2)0.25354 (7)0.0569 (5)
O100.2958 (3)0.8011 (3)0.10557 (8)0.0771 (7)
C300.1331 (3)0.9365 (3)0.20503 (9)0.0408 (6)
C310.1058 (4)0.8152 (3)0.17834 (10)0.0508 (7)
H310.1850010.7604230.1830380.061*
C320.0357 (4)0.7741 (3)0.14506 (11)0.0555 (8)
H320.0494210.6941810.1270060.067*
C330.1575 (4)0.8517 (3)0.13846 (10)0.0511 (7)
C340.1341 (4)0.9716 (3)0.16508 (10)0.0512 (7)
H340.2153621.0243540.1612230.061*
C350.0111 (4)1.0121 (3)0.19741 (10)0.0463 (7)
H350.0270191.094150.2147850.056*
C360.2919 (4)0.9871 (4)0.23973 (10)0.0478 (7)
C370.4280 (5)0.8751 (5)0.09807 (14)0.0885 (12)
H37A0.4837420.8687610.1284350.106*
H37B0.3699230.9848350.0850110.106*
C380.5698 (6)0.7907 (7)0.06316 (18)0.153 (2)
H38A0.6674430.8302170.0599760.229*
H38B0.5157010.8072540.0322040.229*
H38C0.6172460.6804060.0748930.229*
H31N0.778 (5)0.425 (6)0.2007 (14)0.183*
H32N0.677 (7)0.324 (3)0.2290 (18)0.183*
H61N0.407 (4)1.009 (5)0.2766 (18)0.183*
H62N0.236 (6)1.131 (5)0.2599 (12)0.183*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0514 (15)0.173 (3)0.0801 (19)0.0138 (17)0.0103 (14)0.0040 (18)
O20.0855 (17)0.129 (2)0.0445 (15)0.0320 (16)0.0107 (13)0.0023 (14)
N30.0550 (18)0.076 (2)0.0573 (19)0.0143 (15)0.0078 (15)0.0036 (15)
N10.0399 (13)0.0448 (14)0.0380 (13)0.0148 (11)0.0030 (10)0.0033 (11)
N20.0450 (14)0.0536 (16)0.0466 (15)0.0175 (13)0.0038 (11)0.0089 (13)
C10.0440 (16)0.0302 (15)0.0369 (16)0.0153 (13)0.0019 (13)0.0053 (12)
C20.0486 (17)0.0463 (17)0.0378 (16)0.0152 (14)0.0064 (14)0.0001 (13)
C30.0392 (16)0.0525 (19)0.0513 (19)0.0132 (14)0.0007 (14)0.0071 (15)
C40.0488 (18)0.0463 (18)0.0441 (18)0.0167 (15)0.0066 (14)0.0065 (14)
C50.0584 (19)0.0406 (17)0.0386 (16)0.0186 (15)0.0016 (14)0.0020 (13)
C60.0433 (16)0.0381 (16)0.0457 (17)0.0127 (13)0.0066 (14)0.0027 (13)
C70.0407 (16)0.0543 (18)0.0470 (18)0.0162 (14)0.0043 (13)0.0088 (14)
C80.0440 (17)0.066 (2)0.057 (2)0.0243 (15)0.0013 (15)0.0150 (16)
C90.0544 (18)0.0547 (19)0.0451 (18)0.0186 (16)0.0029 (14)0.0005 (14)
C100.0452 (17)0.068 (2)0.0392 (17)0.0168 (15)0.0010 (13)0.0005 (15)
O30.0458 (12)0.0732 (15)0.0477 (12)0.0181 (11)0.0023 (10)0.0009 (11)
O40.0585 (12)0.0634 (13)0.0375 (12)0.0259 (11)0.0003 (9)0.0022 (10)
O50.0505 (13)0.0959 (17)0.0504 (13)0.0107 (12)0.0086 (11)0.0129 (12)
C110.0480 (17)0.0392 (16)0.0352 (15)0.0199 (14)0.0001 (13)0.0026 (13)
C120.0524 (18)0.064 (2)0.0362 (16)0.0234 (16)0.0022 (14)0.0074 (14)
C130.0453 (17)0.072 (2)0.0455 (19)0.0155 (16)0.0029 (15)0.0053 (16)
C140.0489 (18)0.060 (2)0.0424 (18)0.0173 (16)0.0060 (15)0.0001 (15)
C150.056 (2)0.075 (2)0.0327 (17)0.0089 (17)0.0009 (15)0.0090 (15)
C160.0458 (17)0.0560 (19)0.0431 (18)0.0091 (15)0.0006 (14)0.0016 (15)
C170.0498 (18)0.0416 (17)0.0418 (18)0.0237 (15)0.0000 (14)0.0054 (14)
C180.050 (2)0.106 (3)0.069 (2)0.014 (2)0.0095 (17)0.007 (2)
C190.058 (2)0.154 (4)0.088 (3)0.011 (2)0.022 (2)0.011 (3)
O60.125 (3)0.136 (3)0.0580 (18)0.028 (2)0.0049 (16)0.0186 (18)
O70.099 (2)0.208 (3)0.0619 (18)0.070 (2)0.0107 (15)0.049 (2)
N60.0584 (19)0.129 (3)0.049 (2)0.022 (2)0.0005 (15)0.010 (2)
N40.0744 (17)0.0449 (14)0.0381 (14)0.0343 (13)0.0005 (12)0.0046 (11)
N50.0553 (15)0.0425 (15)0.0435 (14)0.0231 (12)0.0049 (12)0.0033 (12)
C200.0459 (16)0.0463 (18)0.0443 (18)0.0147 (14)0.0001 (13)0.0083 (14)
C210.099 (3)0.054 (2)0.0440 (19)0.0301 (19)0.0055 (17)0.0063 (16)
C220.101 (3)0.070 (2)0.047 (2)0.031 (2)0.0048 (19)0.0032 (18)
C230.0510 (19)0.091 (3)0.0396 (19)0.0177 (19)0.0027 (15)0.0030 (19)
C240.087 (3)0.110 (3)0.051 (2)0.041 (2)0.0054 (19)0.038 (2)
C250.099 (3)0.074 (2)0.059 (2)0.049 (2)0.0046 (19)0.0196 (19)
C260.071 (2)0.058 (2)0.0524 (19)0.0381 (17)0.0000 (16)0.0085 (16)
C270.072 (2)0.0427 (17)0.0533 (19)0.0303 (16)0.0104 (16)0.0060 (15)
C280.0607 (19)0.0526 (18)0.0439 (18)0.0310 (16)0.0008 (14)0.0043 (14)
C290.077 (2)0.0475 (18)0.0436 (18)0.0344 (16)0.0019 (15)0.0032 (14)
O80.0597 (13)0.0531 (13)0.0781 (15)0.0273 (11)0.0142 (11)0.0062 (11)
O90.0627 (13)0.0524 (13)0.0573 (13)0.0226 (11)0.0088 (10)0.0129 (11)
O100.0744 (15)0.0862 (17)0.0732 (16)0.0304 (14)0.0256 (13)0.0281 (13)
C300.0447 (16)0.0366 (16)0.0382 (16)0.0133 (13)0.0061 (13)0.0021 (13)
C310.0524 (18)0.0469 (18)0.0559 (19)0.0229 (15)0.0043 (15)0.0020 (15)
C320.064 (2)0.0469 (18)0.056 (2)0.0192 (16)0.0013 (16)0.0139 (15)
C330.0507 (18)0.0488 (18)0.0463 (18)0.0113 (15)0.0020 (14)0.0032 (15)
C340.0482 (17)0.0498 (19)0.058 (2)0.0232 (15)0.0023 (15)0.0036 (16)
C350.0490 (17)0.0437 (17)0.0490 (18)0.0186 (14)0.0048 (14)0.0077 (14)
C360.0480 (18)0.0481 (19)0.0442 (18)0.0162 (15)0.0073 (14)0.0022 (15)
C370.075 (3)0.110 (3)0.082 (3)0.040 (2)0.025 (2)0.014 (2)
C380.122 (4)0.205 (6)0.147 (5)0.072 (4)0.083 (4)0.079 (4)
Geometric parameters (Å, º) top
O1—N31.220 (3)O6—N61.231 (4)
O2—N31.213 (3)O7—N61.223 (4)
N3—C41.447 (3)N6—C231.456 (4)
N1—C11.384 (3)N4—C201.378 (3)
N1—C71.462 (3)N4—C261.449 (3)
N1—C101.467 (3)N4—C291.452 (3)
N2—C91.475 (3)N5—C271.476 (4)
N2—C81.481 (4)N5—C281.486 (3)
N2—H31N0.937 (19)N5—H61N0.910 (19)
N2—H32N0.895 (19)N5—H62N0.896 (19)
C1—C21.405 (3)C20—C211.384 (4)
C1—C61.412 (3)C20—C251.391 (4)
C2—C31.366 (4)C21—C221.370 (4)
C2—H20.93C21—H210.93
C3—C41.376 (4)C22—C231.349 (4)
C3—H30.93C22—H220.93
C4—C51.377 (4)C23—C241.359 (5)
C5—C61.372 (3)C24—C251.381 (4)
C5—H50.93C24—H240.93
C6—H60.93C25—H250.93
C7—C81.498 (3)C26—C271.497 (4)
C7—H7A0.97C26—H26A0.97
C7—H7B0.97C26—H26B0.97
C8—H8A0.97C27—H27A0.97
C8—H8B0.97C27—H27B0.97
C9—C101.493 (3)C28—C291.498 (4)
C9—H9A0.97C28—H28A0.97
C9—H9B0.97C28—H28B0.97
C10—H10A0.97C29—H29A0.97
C10—H10B0.97C29—H29B0.97
O3—C171.261 (3)O8—C361.264 (3)
O4—C171.253 (3)O9—C361.252 (3)
O5—C141.365 (3)O10—C331.363 (3)
O5—C181.426 (3)O10—C371.431 (4)
C11—C121.375 (4)C30—C351.372 (3)
C11—C161.383 (3)C30—C311.387 (4)
C11—C171.499 (4)C30—C361.500 (4)
C12—C131.379 (4)C31—C321.376 (4)
C12—H120.93C31—H310.93
C13—C141.373 (4)C32—C331.383 (4)
C13—H130.93C32—H320.93
C14—C151.378 (4)C33—C341.381 (4)
C15—C161.374 (4)C34—C351.378 (4)
C15—H150.93C34—H340.93
C16—H160.93C35—H350.93
C18—C191.502 (4)C37—C381.496 (5)
C18—H18A0.97C37—H37A0.97
C18—H18B0.97C37—H37B0.97
C19—H19A0.96C38—H38A0.96
C19—H19B0.96C38—H38B0.96
C19—H19C0.96C38—H38C0.96
O2—N3—O1122.7 (3)O7—N6—O6123.5 (4)
O2—N3—C4119.3 (3)O7—N6—C23118.2 (4)
O1—N3—C4118.0 (3)O6—N6—C23118.2 (4)
C1—N1—C7118.1 (2)C20—N4—C26121.3 (2)
C1—N1—C10117.0 (2)C20—N4—C29121.3 (2)
C7—N1—C10116.3 (2)C26—N4—C29111.9 (2)
C9—N2—C8107.9 (2)C27—N5—C28110.0 (2)
C9—N2—H31N110 (3)C27—N5—H61N112 (3)
C8—N2—H31N108 (3)C28—N5—H61N110 (3)
C9—N2—H32N111 (3)C27—N5—H62N108 (3)
C8—N2—H32N106 (3)C28—N5—H62N110 (3)
H31N—N2—H32N113 (4)H61N—N5—H62N107 (4)
N1—C1—C2120.9 (2)N4—C20—C21121.8 (3)
N1—C1—C6122.0 (2)N4—C20—C25122.0 (3)
C2—C1—C6117.1 (2)C21—C20—C25116.2 (3)
C3—C2—C1121.3 (3)C22—C21—C20121.6 (3)
C3—C2—H2119.3C22—C21—H21119.2
C1—C2—H2119.3C20—C21—H21119.2
C2—C3—C4120.1 (3)C23—C22—C21120.9 (3)
C2—C3—H3120C23—C22—H22119.6
C4—C3—H3120C21—C22—H22119.6
C3—C4—C5120.6 (3)C22—C23—C24119.7 (3)
C3—C4—N3119.6 (3)C22—C23—N6120.8 (4)
C5—C4—N3119.8 (3)C24—C23—N6119.5 (4)
C6—C5—C4119.8 (3)C23—C24—C25119.9 (3)
C6—C5—H5120.1C23—C24—H24120
C4—C5—H5120.1C25—C24—H24120
C5—C6—C1121.2 (3)C24—C25—C20121.6 (3)
C5—C6—H6119.4C24—C25—H25119.2
C1—C6—H6119.4C20—C25—H25119.2
N1—C7—C8113.3 (2)N4—C26—C27110.5 (2)
N1—C7—H7A108.9N4—C26—H26A109.5
C8—C7—H7A108.9C27—C26—H26A109.5
N1—C7—H7B108.9N4—C26—H26B109.5
C8—C7—H7B108.9C27—C26—H26B109.5
H7A—C7—H7B107.7H26A—C26—H26B108.1
N2—C8—C7110.9 (2)N5—C27—C26111.0 (2)
N2—C8—H8A109.5N5—C27—H27A109.4
C7—C8—H8A109.5C26—C27—H27A109.4
N2—C8—H8B109.5N5—C27—H27B109.4
C7—C8—H8B109.5C26—C27—H27B109.4
H8A—C8—H8B108H27A—C27—H27B108
N2—C9—C10111.5 (2)N5—C28—C29111.1 (2)
N2—C9—H9A109.3N5—C28—H28A109.4
C10—C9—H9A109.3C29—C28—H28A109.4
N2—C9—H9B109.3N5—C28—H28B109.4
C10—C9—H9B109.3C29—C28—H28B109.4
H9A—C9—H9B108H28A—C28—H28B108
N1—C10—C9113.7 (2)N4—C29—C28111.5 (2)
N1—C10—H10A108.8N4—C29—H29A109.3
C9—C10—H10A108.8C28—C29—H29A109.3
N1—C10—H10B108.8N4—C29—H29B109.3
C9—C10—H10B108.8C28—C29—H29B109.3
H10A—C10—H10B107.7H29A—C29—H29B108
C14—O5—C18118.3 (2)C33—O10—C37118.5 (3)
C12—C11—C16117.5 (2)C35—C30—C31117.1 (3)
C12—C11—C17120.9 (2)C35—C30—C36120.9 (3)
C16—C11—C17121.6 (3)C31—C30—C36122.0 (2)
C11—C12—C13122.1 (3)C32—C31—C30121.5 (3)
C11—C12—H12119C32—C31—H31119.2
C13—C12—H12119C30—C31—H31119.2
C14—C13—C12119.5 (3)C31—C32—C33120.0 (3)
C14—C13—H13120.3C31—C32—H32120
C12—C13—H13120.3C33—C32—H32120
O5—C14—C13124.4 (3)O10—C33—C34124.5 (3)
O5—C14—C15116.1 (3)O10—C33—C32116.1 (3)
C13—C14—C15119.5 (3)C34—C33—C32119.4 (3)
C16—C15—C14120.2 (3)C35—C34—C33119.2 (3)
C16—C15—H15119.9C35—C34—H34120.4
C14—C15—H15119.9C33—C34—H34120.4
C15—C16—C11121.2 (3)C30—C35—C34122.7 (3)
C15—C16—H16119.4C30—C35—H35118.6
C11—C16—H16119.4C34—C35—H35118.6
O4—C17—O3123.5 (2)O9—C36—O8124.0 (3)
O4—C17—C11119.3 (3)O9—C36—C30118.3 (3)
O3—C17—C11117.3 (2)O8—C36—C30117.7 (3)
O5—C18—C19107.3 (3)O10—C37—C38107.4 (3)
O5—C18—H18A110.3O10—C37—H37A110.2
C19—C18—H18A110.3C38—C37—H37A110.2
O5—C18—H18B110.3O10—C37—H37B110.2
C19—C18—H18B110.3C38—C37—H37B110.2
H18A—C18—H18B108.5H37A—C37—H37B108.5
C18—C19—H19A109.5C37—C38—H38A109.5
C18—C19—H19B109.5C37—C38—H38B109.5
H19A—C19—H19B109.5H38A—C38—H38B109.5
C18—C19—H19C109.5C37—C38—H38C109.5
H19A—C19—H19C109.5H38A—C38—H38C109.5
H19B—C19—H19C109.5H38B—C38—H38C109.5
C7—N1—C1—C2173.1 (2)C26—N4—C20—C21149.7 (3)
C10—N1—C1—C226.5 (3)C29—N4—C20—C212.0 (4)
C7—N1—C1—C68.5 (3)C26—N4—C20—C2533.3 (4)
C10—N1—C1—C6155.0 (2)C29—N4—C20—C25175.1 (3)
N1—C1—C2—C3177.9 (2)N4—C20—C21—C22174.3 (3)
C6—C1—C2—C30.6 (4)C25—C20—C21—C222.8 (5)
C1—C2—C3—C40.7 (4)C20—C21—C22—C231.3 (5)
C2—C3—C4—C50.3 (4)C21—C22—C23—C240.7 (5)
C2—C3—C4—N3178.7 (3)C21—C22—C23—N6177.8 (3)
O2—N3—C4—C3170.8 (3)O7—N6—C23—C22179.8 (3)
O1—N3—C4—C39.6 (4)O6—N6—C23—C223.4 (5)
O2—N3—C4—C510.2 (4)O7—N6—C23—C241.3 (5)
O1—N3—C4—C5169.4 (3)O6—N6—C23—C24175.1 (3)
C3—C4—C5—C60.2 (4)C22—C23—C24—C250.9 (5)
N3—C4—C5—C6179.2 (3)N6—C23—C24—C25177.6 (3)
C4—C5—C6—C10.2 (4)C23—C24—C25—C200.8 (5)
N1—C1—C6—C5178.3 (2)N4—C20—C25—C24174.6 (3)
C2—C1—C6—C50.2 (4)C21—C20—C25—C242.6 (5)
C1—N1—C7—C8173.0 (2)C20—N4—C26—C27148.9 (3)
C10—N1—C7—C840.3 (3)C29—N4—C26—C2757.0 (3)
C9—N2—C8—C762.2 (3)C28—N5—C27—C2656.4 (3)
N1—C7—C8—N251.8 (3)N4—C26—C27—N557.5 (3)
C8—N2—C9—C1061.5 (3)C27—N5—C28—C2954.8 (3)
C1—N1—C10—C9173.4 (2)C20—N4—C29—C28150.1 (2)
C7—N1—C10—C939.5 (3)C26—N4—C29—C2855.8 (3)
N2—C9—C10—N150.3 (3)N5—C28—C29—N454.6 (3)
C16—C11—C12—C130.5 (4)C35—C30—C31—C321.0 (4)
C17—C11—C12—C13177.6 (3)C36—C30—C31—C32177.1 (3)
C11—C12—C13—C140.4 (5)C30—C31—C32—C331.6 (4)
C18—O5—C14—C131.3 (5)C37—O10—C33—C340.7 (4)
C18—O5—C14—C15178.7 (3)C37—O10—C33—C32178.7 (3)
C12—C13—C14—O5178.9 (3)C31—C32—C33—O10178.6 (3)
C12—C13—C14—C151.0 (5)C31—C32—C33—C340.8 (4)
O5—C14—C15—C16179.2 (3)O10—C33—C34—C35179.8 (3)
C13—C14—C15—C160.7 (5)C32—C33—C34—C350.5 (4)
C14—C15—C16—C110.2 (5)C31—C30—C35—C340.3 (4)
C12—C11—C16—C150.8 (4)C36—C30—C35—C34178.5 (3)
C17—C11—C16—C15177.3 (3)C33—C34—C35—C301.1 (4)
C12—C11—C17—O42.7 (4)C35—C30—C36—O915.2 (4)
C16—C11—C17—O4175.3 (2)C31—C30—C36—O9162.9 (3)
C12—C11—C17—O3177.3 (3)C35—C30—C36—O8166.4 (2)
C16—C11—C17—O34.6 (4)C31—C30—C36—O815.5 (4)
C14—O5—C18—C19178.7 (3)C33—O10—C37—C38176.2 (3)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg6 are the centroids of the C1–C6 and C30–C35 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H31N···O3i0.94 (2)1.68 (2)2.613 (3)172 (5)
N2—H31N···O4i0.94 (2)2.51 (4)3.157 (3)127 (4)
N2—H32N···O9ii0.90 (2)1.96 (2)2.843 (3)171 (5)
N5—H61N···O8i0.91 (2)1.78 (2)2.686 (3)175 (5)
N5—H61N···O9i0.91 (2)2.59 (4)3.174 (3)122 (4)
N5—H62N···O4iii0.90 (2)1.83 (2)2.708 (3)165 (5)
C22—H22···O2iv0.932.63.502 (5)165
C27—H27B···O9i0.972.593.215 (3)123
C28—H28B···O7v0.972.653.410 (4)135
C29—H29B···O1i0.972.533.249 (4)131
C35—H35···O4iii0.932.523.263 (3)137
C10—H10A···Cg60.972.823.746 (3)159
C29—H29A···Cg20.972.763.556 (3)139
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1, z; (iii) x, y+1, z; (iv) x, y+1, z+1; (v) x, y+2, z+1.
 

Funding information

NM is grateful to the University of Mysore for research facilities. HSY thanks the UGC for a BSR Faculty fellowship for three years. SGG gratefully acknowledges financial support from the Spanish Ministerio de Ciencia e Innovación (PID2020–113558RB-C41) and Gobierno del Principado de Asturias (AYUD/2021/50997).

References

First citationArchana, S. D., Kumar, H. K., Yathirajan, H. S., Foro, S., Abdelbaky, M. S. M. & Garcia-Granda, S. (2021). Acta Cryst. E77, 1135–1139.  CSD CrossRef IUCr Journals Google Scholar
First citationO. Ayeni, A., M. Watkins, G. & C. Hosten, E. (2019). Bull. Chem. Soc. Eth. 33, 341.  Google Scholar
First citationBerkheij, M., van der Sluis, L., Sewing, C., den Boer, D. J., Terpstra, J. W., Hiemstra, H., Iwema Bakker, W. I., van den Hoogenband, A. & van Maarseveen, J. H. (2005). Tetrahedron Lett. 46, 2369–2371.  Web of Science CrossRef CAS Google Scholar
First citationBogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045–3048.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett. 14, 4763–4766.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChaudhary, P., Kumar, R., Verma, K., Singh, D., Yadav, V., Chhillar, A. K., Sharma, G. L. & Chandra, R. (2006). Bioorg. Med. Chem. 14, 1819–1826.  Web of Science CrossRef PubMed CAS Google Scholar
First citationElliott, S. (2011). Drug Test. Anal. 3, 430–438.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGupta, S., Pandey, D., Mandalapu, D., Bala, V., Sharma, V., Shukla, M., Yadav, S. K., Singh, N., Jaiswal, S., Maikhuri, J. P., Lal, J., Siddiqi, M. I., Gupta, G. & Sharma, V. L. (2016). Med. Chem. Commun. 7, 2111–2121.  CrossRef CAS Google Scholar
First citationHarish Chinthal, C., Kavitha, C. N., Yathirajan, H. S., Foro, S., Rathore, R. S. & Glidewell, C. (2020). Acta Cryst. E76, 1779–1793.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKaya, B., Ozkay, Y., Temel, H. E. & &Kaplancikli, Z. A. (2016). J. Chem. Art. ID, pp. 5878410 https://dx.doi.org/10.1155/2016/5878410Google Scholar
First citationKharb, R., Bansal, K. & Sharma, A. K. (2012). Der Pharma Chem. 4, 2470–2488.  CAS Google Scholar
First citationKiran Kumar, H., Yathirajan, H. S., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1494–1506.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKiran Kumar, H., Yathirajan, H. S., Harish Chinthal, C., Foro, S. & Glidewell, C. (2020). Acta Cryst. E75, 488–495.  CSD CrossRef IUCr Journals Google Scholar
First citationLu, Y.-X. (2007). Acta Cryst. E63, o3611.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationUpadhayaya, P. S., Sinha, N., Jain, S., Kishore, N., Chandra, R. & Arora, S. K. (2004). Bioorg. Med. Chem. 12, 2225–2238.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWang, X.-Y., Wang, M.-Z., Guo, F.-J., Sun, J. & Qian, S.-S. (2014). Z. Kristallogr. New Cryst. Struct. 229, 97–98.  CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWodtke, R., Steinberg, J., Köckerling, M., Löser, R. & Mamat, C. (2018). RSC Adv. 8, 40921–40933.  CSD CrossRef CAS Google Scholar
First citationZhang, Y., Chao, J., Zhao, S., Xu, P., Wang, H., Guo, Z. & Liu, D. (2014). Spectrochim. Acta Part A, 132, 44–51.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds