Jerry P. Jasinski tribute
Incorporation of in situ generated 3,3′-(sulfanediyl)bis(1-methyl-1,3-imidazolidine-2-thione) into a one-dimensional CuI coordination polymer with sulfur-bridged {CuI4S10}n central cores
aDepartment of Chemistry, Guru Nanak Dev University, Amritsar 143 005, India, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA, and cDepartment of Chemistry, Keene State College, Keene NH 03435-2001, USA
*Correspondence e-mail: tarlokslobana@yahoo.co.in
The reaction of [Cu(CH3CN)4](BF4) with 1-methyl-1,3-imidazolidine-2-thione {SC3H4(NMe)NH}, under aerobic conditions at room temperature, yielded an unusual one-dimensional coordination polymer, namely, catena-poly[[[(1-methyl-1,3-imidazolidine-2-thione-κS)copper(I)]-μ-(1-methyl-1,3-imidazolidine-2-thione)-κ2S:S-copper(I)-μ-[3,3′-(sulfanediyl)bis(1-methyl-1,3-imidazolidine-2-thione)]-κ5S,S′,S′′:S,S′′] bis(tetrafluoridoborate)], {[Cu2(C4H8N2S)2(C8H14N4S3)](BF4)2}n or [Cu4(κ5:L1—N—S—N—L1)2(κ1:L1—NH)2(κ2:L1—NH)2]n(BF4)4n 1 [L1 = SC3 H4(NMe)NH] with sulfur-bridged {CuI4S10}n central cores. The in situ generated bis(1-methyl-1,3-imidazolidinyl-2-thione) sulfide [{SC3H4(NMe)NSN(NMe)C3H4S; abbrev. L1—N—S—N—L1] ligand, in combination with 1-methyl-1,3-imidazolidine-2-thione (L1—NH) ligands, construct this coordination polymer. Each CuI ion is bonded to four sulfur donor atoms in a distorted tetrahedral geometry and the formation of this polymer solely by sulfur donor atoms with {CuI4S10}n central cores, is the first such example in copper–heterocyclic-2-thione chemistry.
CCDC reference: 2150195
1. Chemical context
The coordination chemistry of the coinage metals (Cu–Au) with heterocyclic-2-thione ligands (Fig. 1) is of considerable interest as these metals exhibit a wide range of coordination geometries, giving rise to coordination compounds of differing nuclearity, namely, mononuclear, homo- and hetero-bridged di-nuclear, clusters and coordination polymers (Lobana, 2021; Raper, 1994, 1996, 1997; García-Vázquez et al., 1999). It has been noted that coordination compounds of these metals have displayed promising bio-activity and, in addition, several copper-based reactions are involved in the activation of C=S (thione) bonds (Lobana, 2021).
As part of out ongoing studies in this area, we now describe the synthesis and structure of the title coordination polymer, 1.
2. Structural commentary
The analytical data of the colourless crystals (see Synthesis and crystallization) correspond to the empirical composition C16H30B2Cu2F8N8S5 and its revealed the formation of an unusual coordination polymer, {Cu4(κ5:L1—N—S—N—L1)2(κ1:L1—NH)2(κ2:L1—NH)2}n−(BF4)4n(1) [L1= SC3H4(NMe)]. There is in situ generation of a new thio-ligand, namely, bis(1-methyl-1,3-imidazolidinyl-2-thione) sulfide [SC3H4(NMe)N—S—NSC3H4(NMe); abbrev. L1—N—S—N—L1] in which a sulfur atom connects two —NH groups of two imidazolidine rings. Fig. 2 shows the bonding patterns of L1—NH, and the new thio-ligand, in the polymer 1.
The construction of the polymer 1 is believed to occur as represented in Fig. 3. Here the basic repeat unit is A, which is shown in a simplified way as unit B (omitting the imidazolidine rings). Two such B units combine to form a tetranuclear unit C, a basic building block, to construct the polymer 1. The building block C exhibits all three patterns of ligand bonding as represented in Fig. 2. The crystals of the polymer are monoclinic in the P21/c. Geometric parameters are given in Table 1 Fig. 4 shows the basic dinuclear unit, in which there are three bonding patterns: bridging bidentate sulfur (κ2-L1—NH), monodentate sulfur (κ1-L1—NH), and in situ generated pentadentate sulfur ligand (κ5-L1—N—S—N—L1) (Fig. 2). The combining of two dinuclear moieties gives rise to a tetranuclear moiety as shown in Figs. 2 and 5. The chains of the polymer are hydrogen bonded to BF4 ions lying between the chains by multiple weak C—H⋯F interactions as shown in Fig. 6 and listed in Table 2.
|
Cu1 is bonded to four sulfur donor atoms (S1–S4) (Table 1). Here the thione (C=S) sulfur donor atoms are more strongly bonded relative to the sulfur atom of the —N—S—N— moiety. The Cu2—S2 and Cu2—S3 bond distances are the longest, while the other two Cu2—S1 and Cu2—S5 distances are short, and comparable to the Cu1—sulfur (S1–S3) bond distances, as noted above. The Cu⋯Cu separation of 2.9074 (8) Å, does not reveal any metal–metal interaction (the sum of the van der Waals radii of the Cu atoms is 2.80 Å; Huheey et al., 1993). The C—S bond distances fall in the range 1.699 (4) to 1.723 (4) Å, and lie between a typical double- and single-bond distance (C=S ≃ 1.68 Å; C—S ≃ 1.81 Å; Huheey et al., 1993). Finally, the geometry about Cu1 is significantly distorted from a regular tetrahedron, as revealed by the S—Cu1—S bond angles, which fall in the range 89.72 (4) to 131.86 (4)° and this is illustrated by the τ4' parameter of 0.725 (Okuniewski et al., 2015); in comparison, the geometry of Cu2 is less distorted, with S—Cu2—S bond angles in the range 100.47 (4)–122.65 (4)° and a τ4' parameter of 0.842.
The in situ formation of the new thio-ligand appears in line with the metal-mediated variable chemical activity of N,S-donor thio-ligands, such as the activation of C=S (thione) bonds (Lobana, 2021; Lobana et al., 2010), as well as the activation of C—H and N—H bonds (Lobana et al., 2012, 2007, 2008). The oxidation of heterocyclic-2-thiones such as benzo-1,3-thiazoline-2-thione, pyridine-2-thione, pyrimidine-2-thione, 1,3-imidazolidine-2-thione, quinoline-2-thione, 1,3,4-thiadiazole-2,5-dithiazone and benzo-1,3-thiazoline-2-thione to their disulfides/trisulfides, followed by coordination to the metal ions, has been reported previously (Raper, 1994; Lobana, 2021). In the present case, in relation to the activation of C=S (thione) bonds, in situ generated thio-ligands, A–F, have been reported (Lobana, 2021; Raper, 1994; Ferrari et al., 1981; Kadooka et al., 1976; Simmons et al., 1979; Jeannin et al., 1979) (Fig. 7). In the E and F ligands, R is 2-pyridyl-, 2-pyrimidyl-, etc. and these have C—(S)n—C (n = 2, 3) groups, connecting the heterocyclic rings. In the ligand G, there is one N—S—N connecting group, two thione groups, and thus it is a new and different ligand.
3. Supramolecular features
The BF4− anions lying between the chains are involved in interactions with various N—H and C—H hydrogen atoms of the thio-ligands (Figs. 4 and 6). Consider the dimeric unit shown in Fig. 4. Here the N11—H hydrogen atom interacts with the F12 and F12A fluorine atoms of one BF4− anion while the N51—H hydrogen atom interacts with the F23 fluorine atom of the second BF4− ion. Various other F atoms of both BF4− ions accept C—H⋯F interactions from the imidazolidine ring and the N-methyl group. The distances and angles involving hydrogen-bond interactions are shown in Table 2. In summary, the distances and angles are given as follows: N⋯F = 2.74 (2)–2.764 (11) Å, H⋯F = 2.12–2.15 Å and N—H⋯F = 124–129°; C⋯F = 2.93 (2)–3.57 (2)Å; H⋯F = 2.09–2.64 Å; C—H⋯F = 111–170°. The N⋯F distances are less than the sum of van der Waals radii of N and F, namely, 3.05 to 3.15 Å, and likewise the C⋯F distances are either less than or comparable to the sum of van der Waals radii of C and F, namely, 3.15 to 3.30 Å (Huheey et al., 1993).
4. Database survey
In the light of the novelty of thio-ligands under discussion, a few examples of coordination compounds of pyridine-2-thione, pyrimidine-2-thione, dithiouracil and 1,3-imidazolidine-2-thiones, are delineated here (Fig. 1). For example, pyridine-2-thione (pytH) in combination with copper(I) halides has formed a variety of coordination compounds: namely, mononuclear [CuX(κ1S-pytH)(PPh3)2] (X = Cl, Br), dinuclear, [Cu2Br2(μ-S-pytH)2(PPh3)2], [Cu2Br2(μ-P, P-dppe)2(κ1S-pytH)2] (dppe = Ph2P-CH2-CH2-PPh2), [Cu2(μ-S-pytH)2(κ1S-pytH)4]X2 (X = Cl, Br), [Cu2I2(μ-pytH)2(κ1S-pytH)2] and trinuclear, [Cu3I3(μ-P,P-dppe)3(κ1S-pytH)] (Lobana et al., 1989, 2002; Karagiannidis et al., 1989; Cox et al., 2000; Stergioudis et al., 1987; Mentzafos et al., 1989; Davies et al., 1997; Lobana et al., 2003, 2005).
The examples of coordination polymers include a hexanuclear 6(μ3-S-pytH)4(μ-S-pytH)2(I4)(μ-I)2-}n·2nCH3CN, pyrimidine-2-thione (pymtH) and 2,4-dithiouracil (dtucH2) based linear CuI chain polymers, [Cu(μ-N,S-pymtH)X]n (X = Cl, Br),{Cu(μ-S,S-dtucH2)(PPh3)X}n (X = Cl, Br, I), imidazolidine-2-thione (imdtH2) based polymers, [{Cu6(μ3-S-imdtH2)2(μ-S-imdtH2)4X2(μ-X)4}n] (X = Cl, Br, I-halogen bridged), {Cu6(μ3-S-imdtH2)4(μ-imdtH2)2(μ-I)2I4}n (sulfur-bridged), and an octanuclear polymer, {Cu8(μ3-S-imdtH2)4(μ-S-imdtH2)4(κ1-Cl)8}n. N-Phenyl-1,3-imidazolidine-2-thione also forms a linear chain polymer, {Cu3I3(imdtH-Ph)3}n, with alternate Cu2I2 and Cu2S2 dimeric units forming the chains (Lobana et al., 2003, 2005, 2006, 2009; Li et al., 2005; Sultana et al., 2010; Aulakh et al., 2017).
{CuIn the literature, there are limited reports of complexes with ionic copper(I) salts, and the reported mono-, or di-nuclear ionic complexes have BF4−, ClO4−, PF6− etc., outside the metal coordination sphere (Lobana, 2021). The present study provides a basic background to develop a new class of polymers using copper(I) ionic salts with heterocyclic-2-thiones. The resulting polymeric materials with a central metal atom linked only to sulfur donor atoms may have interesting conductivity properties.
5. Synthesis and crystallization
All solvents were of HPLC grade and were stored over molecular sieves. The precursor, tetrakis(acetonitrile)copper(I) tetrafluoroborate, [Cu(CH3CN)4](BF4), was prepared by the slow addition of HBF4 acid (from boric acid H3BO3 + HF acid in a plastic beaker) to a solution of Cu2O (0.200 g; 1.4 mmol) in dry acetonitrile (25 ml) in a round-bottom flask. The mixture slowly became colourless and a white salt settled in the flask. The mother liquor was removed and the salt was extracted with diethyl ether, followed by evaporation, which gave solid [Cu(CH3CN)4](BF4).
Synthesis of 1-methyl-1,3-imidazolidine-2-thione
Carbon disulfide (4.1 ml, 76 mmol) was added to a cooled solution of 1-methyl-ethylenediamine (CH3-NH-CH2-CH2-NH2) dissolved in ethanol (10 ml) followed by the addition of 10 ml of water (García-Vázquez et al., 2005). A white precipitate formed, and the contents were heated at 333 K, followed by the further addition of CS2. The precipitate initially dissolved, but shortly thereafter, a large amount of precipitate was deposited. The reaction mixture was heated under reflux for 1h, followed by the addition of conc. HCl (0.5 mL). It was further refluxed for one h, and placed for cooling, and precipitate formed was filtered and washed with cold acetone. Colour: white. Yield: 1.15 g, 50%; m.p. 351–354 K.
Synthesis of 1
To a solution of [Cu(CH3CN)4](BF4) (0.050 g, 0.15 mmol) in methanol (10 mL) was added a solution of the thio-ligand, SC3H4(NMe)NH (0.036 g, 0.31 mmol) in methanol. The mixture was stirred for about half an hour, giving rise to the formation of a clear pale-yellow solution. It was kept undisturbed for evaporation at room temperature. The colour of the solution turned green and a colourless crystalline compound was formed at the bottom, which was separated and dried at room temperature. Yield: 0.025 g; 40%; m.p. 450–452 K. Analysis found: C 24.52; H 3.69; N 13.87; S 20.50; C16H30B2Cu2F8N8S5 requires: C 24.14; H 3.77; N 14.08; S 20.11%.
6. Refinement
Crystal data, data collection and structure . All hydrogen atoms were placed geometrically and refined as riding atoms with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). Both BF4 anions and one imidazoline ring are disordered over two sets of sites with occupancy ratios of 0.66 (2)/0.34 (2), 0.72 (2)/0.28 (2), and 0.622 (6)/0.378 (6), respectively.
details are summarized in Table 3
|
Supporting information
CCDC reference: 2150195
https://doi.org/10.1107/S2056989022004911/hb8015sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022004911/hb8015Isup2.hkl
Data collection: CrysAlis PRO (Rigaku, 2019); cell
CrysAlis PRO (Rigaku, 2019); data reduction: CrysAlis RED (Rigaku, 2019); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cu2(C4H8N2S)2(C8H14N4S3)](BF4)2 | F(000) = 1608 |
Mr = 795.48 | Dx = 1.785 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 19.0636 (7) Å | Cell parameters from 11503 reflections |
b = 13.6989 (3) Å | θ = 3.1–32.3° |
c = 11.5770 (4) Å | µ = 1.87 mm−1 |
β = 101.734 (3)° | T = 100 K |
V = 2960.16 (17) Å3 | Chunk, colorless |
Z = 4 | 0.32 × 0.24 × 0.16 mm |
Xcalibur, Eos, Gemini diffractometer | 7139 reflections with I > 2σ(I) |
Detector resolution: 16.1500 pixels mm-1 | Rint = 0.032 |
ω scans | θmax = 29.6°, θmin = 3.1° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku, 2019) | h = −26→26 |
Tmin = 0.673, Tmax = 1.000 | k = −17→19 |
33195 measured reflections | l = −16→16 |
8277 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.055 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.138 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.039P)2 + 14.326P] where P = (Fo2 + 2Fc2)/3 |
8277 reflections | (Δ/σ)max < 0.001 |
506 parameters | Δρmax = 1.91 e Å−3 |
497 restraints | Δρmin = −1.29 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component twin. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 0.17200 (3) | 0.29294 (3) | 0.41072 (4) | 0.02467 (12) | |
Cu2 | 0.19437 (3) | 0.17473 (4) | 0.67264 (5) | 0.03398 (14) | |
S1 | 0.10220 (5) | 0.21261 (7) | 0.51531 (8) | 0.02188 (18) | |
C11 | 0.05713 (19) | 0.2930 (3) | 0.5887 (3) | 0.0239 (7) | |
N11 | 0.0615 (2) | 0.3899 (3) | 0.5829 (4) | 0.0330 (8) | |
H11A | 0.083532 | 0.421452 | 0.534404 | 0.040* | |
C12 | 0.0247 (3) | 0.4373 (4) | 0.6680 (5) | 0.0490 (13) | |
H12A | −0.006637 | 0.491000 | 0.630846 | 0.059* | |
H12B | 0.059362 | 0.462956 | 0.736785 | 0.059* | |
C13 | −0.0185 (3) | 0.3537 (4) | 0.7028 (5) | 0.0476 (13) | |
H13A | −0.014559 | 0.351379 | 0.789336 | 0.057* | |
H13B | −0.069603 | 0.359160 | 0.663905 | 0.057* | |
N12 | 0.01487 (19) | 0.2670 (3) | 0.6605 (3) | 0.0339 (8) | |
C14 | −0.0110 (3) | 0.1701 (4) | 0.6768 (6) | 0.0540 (15) | |
H14A | 0.021727 | 0.121783 | 0.654344 | 0.081* | |
H14B | −0.058844 | 0.161726 | 0.627217 | 0.081* | |
H14C | −0.013555 | 0.160793 | 0.759755 | 0.081* | |
S2 | 0.16050 (5) | 0.44336 (7) | 0.32065 (8) | 0.02344 (18) | |
C21 | 0.2452 (2) | 0.4870 (3) | 0.3691 (3) | 0.0220 (7) | |
N21 | 0.30019 (17) | 0.4367 (2) | 0.4393 (3) | 0.0230 (6) | |
C22 | 0.3681 (2) | 0.4915 (3) | 0.4478 (4) | 0.0295 (8) | |
H22A | 0.396466 | 0.466287 | 0.391463 | 0.035* | |
H22B | 0.397611 | 0.489061 | 0.528730 | 0.035* | |
C23 | 0.3406 (2) | 0.5937 (3) | 0.4154 (4) | 0.0335 (9) | |
H23A | 0.339174 | 0.633096 | 0.486565 | 0.040* | |
H23B | 0.370330 | 0.627624 | 0.367087 | 0.040* | |
N22 | 0.26779 (19) | 0.5744 (2) | 0.3468 (3) | 0.0265 (7) | |
C24 | 0.2230 (3) | 0.6540 (3) | 0.2916 (4) | 0.0328 (9) | |
H24A | 0.183100 | 0.627598 | 0.232845 | 0.049* | |
H24B | 0.251451 | 0.698081 | 0.252849 | 0.049* | |
H24C | 0.204067 | 0.689934 | 0.351782 | 0.049* | |
S3 | 0.20669 (5) | 0.17479 (7) | 0.28720 (9) | 0.02339 (18) | |
C31 | 0.29663 (18) | 0.1774 (3) | 0.3396 (3) | 0.0196 (6) | |
N31 | 0.33350 (16) | 0.2506 (2) | 0.4087 (3) | 0.0208 (6) | |
C32 | 0.4110 (2) | 0.2266 (4) | 0.4393 (4) | 0.0351 (9) | |
H32A | 0.427437 | 0.218752 | 0.525530 | 0.042* | |
H32B | 0.440017 | 0.277800 | 0.410917 | 0.042* | |
C33 | 0.4152 (2) | 0.1304 (3) | 0.3749 (4) | 0.0353 (10) | |
H33A | 0.445475 | 0.137149 | 0.315261 | 0.042* | |
H33B | 0.435200 | 0.078091 | 0.431056 | 0.042* | |
N32 | 0.34084 (19) | 0.1094 (3) | 0.3188 (3) | 0.0296 (7) | |
C34 | 0.3211 (3) | 0.0212 (3) | 0.2520 (4) | 0.0391 (11) | |
H34A | 0.272500 | 0.027972 | 0.204794 | 0.059* | |
H34B | 0.322777 | −0.034105 | 0.306143 | 0.059* | |
H34C | 0.354725 | 0.009827 | 0.199567 | 0.059* | |
S4 | 0.29655 (5) | 0.32490 (6) | 0.49486 (8) | 0.02048 (17) | |
S5 | 0.30419 (5) | 0.12584 (7) | 0.64829 (8) | 0.02327 (18) | |
C51 | 0.3161 (4) | 0.0135 (4) | 0.5964 (6) | 0.0248 (12) | 0.622 (6) |
N51 | 0.3829 (4) | −0.0246 (5) | 0.6150 (7) | 0.0386 (14) | 0.622 (6) |
H51A | 0.421277 | 0.005232 | 0.654537 | 0.046* | 0.622 (6) |
C52 | 0.3839 (4) | −0.1209 (5) | 0.5618 (8) | 0.0435 (16) | 0.622 (6) |
H52A | 0.406344 | −0.169866 | 0.620714 | 0.052* | 0.622 (6) |
H52B | 0.409746 | −0.119777 | 0.495817 | 0.052* | 0.622 (6) |
C53 | 0.3053 (6) | −0.1418 (8) | 0.5183 (14) | 0.0364 (17) | 0.622 (6) |
H53A | 0.295008 | −0.158421 | 0.433318 | 0.044* | 0.622 (6) |
H53B | 0.289407 | −0.196357 | 0.562912 | 0.044* | 0.622 (6) |
N52 | 0.2695 (3) | −0.0493 (4) | 0.5398 (5) | 0.0325 (12) | 0.622 (6) |
C54 | 0.1936 (4) | −0.0347 (6) | 0.4976 (7) | 0.0364 (16) | 0.622 (6) |
H54A | 0.181113 | 0.032894 | 0.512284 | 0.055* | 0.622 (6) |
H54B | 0.166873 | −0.079161 | 0.539145 | 0.055* | 0.622 (6) |
H54C | 0.181205 | −0.048104 | 0.412704 | 0.055* | 0.622 (6) |
C51A | 0.2840 (6) | 0.0129 (8) | 0.5822 (11) | 0.0267 (18) | 0.378 (6) |
N51A | 0.2168 (6) | −0.0181 (7) | 0.5374 (10) | 0.0333 (19) | 0.378 (6) |
H51B | 0.177838 | 0.012996 | 0.546084 | 0.040* | 0.378 (6) |
C52A | 0.2167 (7) | −0.1106 (8) | 0.4719 (12) | 0.041 (2) | 0.378 (6) |
H52C | 0.200468 | −0.100562 | 0.385886 | 0.049* | 0.378 (6) |
H52D | 0.185884 | −0.160175 | 0.498967 | 0.049* | 0.378 (6) |
C53A | 0.2945 (9) | −0.1396 (13) | 0.502 (3) | 0.038 (2) | 0.378 (6) |
H53C | 0.301324 | −0.198020 | 0.553806 | 0.046* | 0.378 (6) |
H53D | 0.313059 | −0.153626 | 0.430208 | 0.046* | 0.378 (6) |
N52A | 0.3305 (5) | −0.0534 (7) | 0.5651 (9) | 0.0344 (16) | 0.378 (6) |
C54A | 0.4056 (6) | −0.0555 (11) | 0.6164 (15) | 0.044 (3) | 0.378 (6) |
H54D | 0.423838 | 0.011507 | 0.627346 | 0.066* | 0.378 (6) |
H54E | 0.431180 | −0.090733 | 0.563981 | 0.066* | 0.378 (6) |
H54F | 0.413072 | −0.088521 | 0.693007 | 0.066* | 0.378 (6) |
B1 | 0.1527 (3) | 0.6462 (4) | 0.6039 (5) | 0.0388 (12) | |
B2 | 0.5451 (3) | 0.1715 (4) | 0.7345 (5) | 0.0456 (14) | |
F11 | 0.1661 (5) | 0.6294 (6) | 0.7267 (5) | 0.0572 (16) | 0.662 (12) |
F12 | 0.1231 (8) | 0.5666 (8) | 0.5451 (12) | 0.094 (3) | 0.662 (12) |
F13 | 0.2172 (5) | 0.6656 (7) | 0.5761 (9) | 0.0743 (18) | 0.662 (12) |
F14 | 0.1088 (5) | 0.7262 (5) | 0.5796 (7) | 0.0744 (18) | 0.662 (12) |
F11A | 0.1480 (10) | 0.6571 (13) | 0.7155 (12) | 0.062 (2) | 0.338 (12) |
F12A | 0.1085 (16) | 0.5744 (17) | 0.549 (3) | 0.098 (5) | 0.338 (12) |
F13A | 0.2223 (8) | 0.6300 (14) | 0.5893 (19) | 0.076 (3) | 0.338 (12) |
F14A | 0.1344 (9) | 0.7331 (9) | 0.5380 (14) | 0.078 (2) | 0.338 (12) |
F21 | 0.4996 (7) | 0.2511 (8) | 0.7097 (12) | 0.065 (2) | 0.699 (14) |
F22 | 0.6131 (3) | 0.1982 (5) | 0.7198 (8) | 0.0571 (14) | 0.699 (14) |
F23 | 0.5171 (4) | 0.0954 (5) | 0.6579 (7) | 0.0553 (15) | 0.699 (14) |
F24 | 0.5484 (5) | 0.1432 (6) | 0.8493 (5) | 0.0664 (16) | 0.699 (14) |
F21A | 0.5052 (15) | 0.2535 (16) | 0.718 (3) | 0.064 (4) | 0.301 (14) |
F22A | 0.6182 (7) | 0.1936 (13) | 0.7683 (16) | 0.063 (2) | 0.301 (14) |
F23A | 0.5376 (9) | 0.1170 (12) | 0.6304 (11) | 0.056 (2) | 0.301 (14) |
F24A | 0.5289 (10) | 0.1148 (13) | 0.8249 (14) | 0.065 (2) | 0.301 (14) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0257 (2) | 0.0236 (2) | 0.0267 (2) | 0.00048 (17) | 0.01001 (18) | 0.00126 (18) |
Cu2 | 0.0295 (3) | 0.0422 (3) | 0.0289 (3) | 0.0125 (2) | 0.0030 (2) | −0.0037 (2) |
S1 | 0.0228 (4) | 0.0213 (4) | 0.0222 (4) | −0.0001 (3) | 0.0059 (3) | 0.0007 (3) |
C11 | 0.0178 (16) | 0.0312 (19) | 0.0220 (17) | 0.0025 (14) | 0.0022 (13) | 0.0023 (14) |
N11 | 0.0318 (18) | 0.0260 (17) | 0.043 (2) | 0.0039 (14) | 0.0112 (16) | −0.0041 (15) |
C12 | 0.044 (3) | 0.052 (3) | 0.048 (3) | 0.014 (2) | 0.005 (2) | −0.020 (3) |
C13 | 0.043 (3) | 0.068 (4) | 0.037 (2) | 0.025 (3) | 0.019 (2) | 0.004 (2) |
N12 | 0.0274 (17) | 0.047 (2) | 0.0311 (18) | 0.0093 (16) | 0.0150 (14) | 0.0086 (16) |
C14 | 0.039 (3) | 0.059 (3) | 0.069 (4) | 0.000 (2) | 0.024 (3) | 0.028 (3) |
S2 | 0.0247 (4) | 0.0210 (4) | 0.0253 (4) | 0.0036 (3) | 0.0067 (3) | 0.0002 (3) |
C21 | 0.0309 (19) | 0.0174 (15) | 0.0181 (15) | 0.0016 (13) | 0.0060 (13) | −0.0008 (13) |
N21 | 0.0261 (15) | 0.0173 (13) | 0.0251 (15) | −0.0037 (11) | 0.0043 (12) | 0.0003 (12) |
C22 | 0.030 (2) | 0.0273 (19) | 0.030 (2) | −0.0064 (15) | 0.0027 (16) | 0.0010 (16) |
C23 | 0.041 (2) | 0.0226 (18) | 0.035 (2) | −0.0088 (17) | 0.0040 (18) | −0.0011 (16) |
N22 | 0.0377 (19) | 0.0178 (14) | 0.0245 (16) | −0.0016 (13) | 0.0071 (14) | −0.0009 (12) |
C24 | 0.048 (3) | 0.0207 (18) | 0.031 (2) | 0.0043 (17) | 0.0121 (19) | 0.0037 (15) |
S3 | 0.0260 (4) | 0.0188 (4) | 0.0248 (4) | −0.0012 (3) | 0.0036 (3) | −0.0024 (3) |
C31 | 0.0221 (16) | 0.0192 (15) | 0.0183 (15) | 0.0023 (12) | 0.0059 (13) | 0.0053 (12) |
N31 | 0.0217 (14) | 0.0207 (14) | 0.0205 (14) | 0.0014 (11) | 0.0053 (11) | 0.0020 (11) |
C32 | 0.0212 (19) | 0.044 (2) | 0.040 (2) | 0.0056 (17) | 0.0049 (17) | 0.001 (2) |
C33 | 0.031 (2) | 0.034 (2) | 0.044 (2) | 0.0103 (17) | 0.0145 (19) | 0.0108 (19) |
N32 | 0.0371 (19) | 0.0249 (16) | 0.0289 (17) | 0.0091 (14) | 0.0119 (14) | 0.0014 (13) |
C34 | 0.063 (3) | 0.0231 (19) | 0.035 (2) | 0.0112 (19) | 0.019 (2) | −0.0022 (17) |
S4 | 0.0255 (4) | 0.0190 (4) | 0.0172 (4) | −0.0005 (3) | 0.0049 (3) | 0.0012 (3) |
S5 | 0.0251 (4) | 0.0208 (4) | 0.0252 (4) | −0.0006 (3) | 0.0082 (3) | −0.0019 (3) |
C51 | 0.037 (3) | 0.018 (2) | 0.024 (3) | 0.002 (2) | 0.018 (3) | 0.003 (2) |
N51 | 0.039 (3) | 0.027 (3) | 0.054 (3) | 0.008 (2) | 0.018 (3) | −0.004 (3) |
C52 | 0.055 (3) | 0.030 (3) | 0.048 (3) | 0.013 (3) | 0.017 (3) | −0.003 (3) |
C53 | 0.059 (4) | 0.020 (3) | 0.034 (4) | 0.003 (3) | 0.020 (3) | −0.003 (3) |
N52 | 0.048 (3) | 0.019 (2) | 0.032 (2) | 0.005 (2) | 0.011 (2) | −0.0053 (19) |
C54 | 0.048 (4) | 0.034 (4) | 0.026 (4) | −0.006 (3) | 0.005 (3) | −0.004 (3) |
C51A | 0.039 (4) | 0.019 (3) | 0.026 (3) | 0.001 (3) | 0.016 (4) | 0.004 (3) |
N51A | 0.044 (4) | 0.024 (4) | 0.032 (4) | −0.002 (3) | 0.007 (4) | −0.003 (3) |
C52A | 0.057 (4) | 0.028 (4) | 0.038 (4) | −0.005 (4) | 0.008 (4) | −0.006 (3) |
C53A | 0.058 (4) | 0.023 (4) | 0.037 (5) | 0.002 (3) | 0.018 (4) | −0.004 (4) |
N52A | 0.046 (3) | 0.024 (3) | 0.038 (3) | 0.004 (3) | 0.019 (3) | −0.002 (3) |
C54A | 0.045 (5) | 0.031 (6) | 0.061 (7) | 0.011 (5) | 0.022 (5) | 0.001 (6) |
B1 | 0.048 (3) | 0.035 (3) | 0.035 (3) | −0.009 (2) | 0.012 (2) | −0.008 (2) |
B2 | 0.048 (3) | 0.047 (3) | 0.038 (3) | 0.020 (3) | 0.000 (2) | −0.008 (2) |
F11 | 0.088 (5) | 0.055 (4) | 0.036 (2) | 0.014 (3) | 0.028 (3) | −0.001 (2) |
F12 | 0.156 (8) | 0.055 (4) | 0.076 (4) | −0.055 (5) | 0.031 (5) | −0.030 (3) |
F13 | 0.086 (3) | 0.069 (5) | 0.080 (4) | −0.019 (3) | 0.047 (3) | 0.007 (4) |
F14 | 0.092 (4) | 0.062 (3) | 0.069 (3) | 0.012 (3) | 0.018 (3) | 0.005 (3) |
F11A | 0.089 (5) | 0.057 (4) | 0.048 (3) | 0.009 (4) | 0.029 (3) | −0.005 (3) |
F12A | 0.136 (10) | 0.067 (8) | 0.085 (8) | −0.051 (8) | 0.008 (8) | −0.020 (7) |
F13A | 0.082 (5) | 0.074 (6) | 0.084 (5) | −0.010 (5) | 0.048 (4) | 0.015 (6) |
F14A | 0.096 (4) | 0.063 (4) | 0.077 (4) | −0.004 (4) | 0.024 (3) | 0.009 (4) |
F21 | 0.074 (4) | 0.061 (4) | 0.048 (4) | 0.041 (3) | −0.012 (3) | −0.016 (3) |
F22 | 0.061 (3) | 0.055 (2) | 0.059 (3) | 0.008 (2) | 0.020 (3) | −0.004 (3) |
F23 | 0.056 (3) | 0.048 (3) | 0.060 (3) | 0.007 (2) | 0.007 (2) | −0.015 (2) |
F24 | 0.074 (3) | 0.072 (4) | 0.048 (3) | 0.007 (3) | 0.000 (3) | 0.000 (3) |
F21A | 0.071 (7) | 0.059 (7) | 0.052 (8) | 0.038 (7) | −0.010 (7) | −0.018 (7) |
F22A | 0.066 (4) | 0.065 (4) | 0.054 (4) | 0.012 (3) | 0.003 (4) | −0.007 (4) |
F23A | 0.061 (4) | 0.050 (4) | 0.056 (4) | 0.011 (3) | 0.009 (3) | −0.011 (3) |
F24A | 0.070 (4) | 0.063 (4) | 0.058 (4) | 0.006 (3) | 0.004 (3) | −0.003 (3) |
Cu1—S1 | 2.2590 (10) | C34—H34C | 0.9800 |
Cu1—S2 | 2.2997 (10) | S5—C51 | 1.684 (6) |
Cu1—S3 | 2.3423 (10) | S5—C51A | 1.735 (10) |
Cu1—S4 | 2.4162 (10) | C51—N52 | 1.312 (8) |
Cu1—Cu2i | 2.9074 (8) | C51—N51 | 1.352 (8) |
Cu2—S5 | 2.2696 (11) | N51—C52 | 1.458 (8) |
Cu2—S1 | 2.3179 (11) | N51—H51A | 0.8800 |
Cu2—S3ii | 2.4364 (11) | C52—C53 | 1.507 (11) |
Cu2—S2ii | 2.5338 (11) | C52—H52A | 0.9900 |
S1—C11 | 1.723 (4) | C52—H52B | 0.9900 |
C11—N12 | 1.319 (5) | C53—N52 | 1.484 (9) |
C11—N11 | 1.333 (5) | C53—H53A | 0.9900 |
N11—C12 | 1.471 (6) | C53—H53B | 0.9900 |
N11—H11A | 0.8800 | N52—C54 | 1.445 (9) |
C12—C13 | 1.512 (8) | C54—H54A | 0.9800 |
C12—H12A | 0.9900 | C54—H54B | 0.9800 |
C12—H12B | 0.9900 | C54—H54C | 0.9800 |
C13—N12 | 1.477 (6) | C51A—N52A | 1.312 (11) |
C13—H13A | 0.9900 | C51A—N51A | 1.348 (12) |
C13—H13B | 0.9900 | N51A—C52A | 1.477 (11) |
N12—C14 | 1.442 (6) | N51A—H51B | 0.8800 |
C14—H14A | 0.9800 | C52A—C53A | 1.505 (14) |
C14—H14B | 0.9800 | C52A—H52C | 0.9900 |
C14—H14C | 0.9800 | C52A—H52D | 0.9900 |
S2—C21 | 1.706 (4) | C53A—N52A | 1.481 (12) |
C21—N22 | 1.317 (5) | C53A—H53C | 0.9900 |
C21—N21 | 1.373 (5) | C53A—H53D | 0.9900 |
N21—C22 | 1.482 (5) | N52A—C54A | 1.434 (12) |
N21—S4 | 1.669 (3) | C54A—H54D | 0.9800 |
C22—C23 | 1.516 (6) | C54A—H54E | 0.9800 |
C22—H22A | 0.9900 | C54A—H54F | 0.9800 |
C22—H22B | 0.9900 | B1—F11A | 1.323 (12) |
C23—N22 | 1.475 (5) | B1—F12 | 1.347 (9) |
C23—H23A | 0.9900 | B1—F13 | 1.358 (9) |
C23—H23B | 0.9900 | B1—F12A | 1.365 (13) |
N22—C24 | 1.450 (5) | B1—F14 | 1.374 (8) |
C24—H24A | 0.9800 | B1—F13A | 1.387 (13) |
C24—H24B | 0.9800 | B1—F11 | 1.411 (8) |
C24—H24C | 0.9800 | B1—F14A | 1.419 (12) |
S3—C31 | 1.699 (4) | B2—F21A | 1.349 (13) |
C31—N32 | 1.312 (5) | B2—F24 | 1.374 (8) |
C31—N31 | 1.381 (5) | B2—F21 | 1.387 (8) |
N31—C32 | 1.484 (5) | B2—F24A | 1.388 (13) |
N31—S4 | 1.678 (3) | B2—F22 | 1.390 (8) |
C32—C33 | 1.524 (6) | B2—F23A | 1.400 (12) |
C32—H32A | 0.9900 | B2—F22A | 1.400 (13) |
C32—H32B | 0.9900 | B2—F23 | 1.403 (8) |
C33—N32 | 1.464 (6) | F11—F11A | 0.512 (15) |
C33—H33A | 0.9900 | F13—F13A | 0.514 (17) |
C33—H33B | 0.9900 | F14—F14A | 0.758 (14) |
N32—C34 | 1.442 (5) | F22—F22A | 0.554 (15) |
C34—H34A | 0.9800 | F23—F23A | 0.626 (15) |
C34—H34B | 0.9800 | F24—F24A | 0.571 (15) |
S1—Cu1—S2 | 131.86 (4) | C51—N51—H51A | 124.0 |
S1—Cu1—S3 | 105.12 (4) | C52—N51—H51A | 124.0 |
S2—Cu1—S3 | 110.79 (4) | N51—C52—C53 | 102.5 (6) |
S1—Cu1—S4 | 120.66 (4) | N51—C52—H52A | 111.3 |
S2—Cu1—S4 | 90.89 (4) | C53—C52—H52A | 111.3 |
S3—Cu1—S4 | 89.72 (4) | N51—C52—H52B | 111.3 |
S1—Cu1—Cu2i | 142.97 (3) | C53—C52—H52B | 111.3 |
S2—Cu1—Cu2i | 56.80 (3) | H52A—C52—H52B | 109.2 |
S3—Cu1—Cu2i | 54.01 (3) | N52—C53—C52 | 103.9 (6) |
S4—Cu1—Cu2i | 91.89 (3) | N52—C53—H53A | 111.0 |
S5—Cu2—S1 | 122.65 (4) | C52—C53—H53A | 111.0 |
S5—Cu2—S3ii | 109.15 (4) | N52—C53—H53B | 111.0 |
S1—Cu2—S3ii | 102.24 (4) | C52—C53—H53B | 111.0 |
S5—Cu2—S2ii | 105.31 (4) | H53A—C53—H53B | 109.0 |
S1—Cu2—S2ii | 114.68 (4) | C51—N52—C54 | 127.5 (6) |
S3ii—Cu2—S2ii | 100.47 (4) | C51—N52—C53 | 110.9 (6) |
S5—Cu2—Cu1ii | 118.66 (3) | C54—N52—C53 | 121.6 (6) |
S1—Cu2—Cu1ii | 118.48 (3) | N52—C54—H54A | 109.5 |
S3ii—Cu2—Cu1ii | 51.07 (3) | N52—C54—H54B | 109.5 |
S2ii—Cu2—Cu1ii | 49.42 (3) | H54A—C54—H54B | 109.5 |
C11—S1—Cu1 | 111.11 (13) | N52—C54—H54C | 109.5 |
C11—S1—Cu2 | 97.47 (13) | H54A—C54—H54C | 109.5 |
Cu1—S1—Cu2 | 95.46 (4) | H54B—C54—H54C | 109.5 |
N12—C11—N11 | 110.7 (4) | N52A—C51A—N51A | 110.0 (9) |
N12—C11—S1 | 124.6 (3) | N52A—C51A—S5 | 126.0 (8) |
N11—C11—S1 | 124.7 (3) | N51A—C51A—S5 | 124.0 (8) |
C11—N11—C12 | 111.3 (4) | C51A—N51A—C52A | 111.7 (9) |
C11—N11—H11A | 124.4 | C51A—N51A—H51B | 124.2 |
C12—N11—H11A | 124.4 | C52A—N51A—H51B | 124.2 |
N11—C12—C13 | 101.8 (4) | N51A—C52A—C53A | 102.0 (9) |
N11—C12—H12A | 111.4 | N51A—C52A—H52C | 111.4 |
C13—C12—H12A | 111.4 | C53A—C52A—H52C | 111.4 |
N11—C12—H12B | 111.4 | N51A—C52A—H52D | 111.4 |
C13—C12—H12B | 111.4 | C53A—C52A—H52D | 111.4 |
H12A—C12—H12B | 109.3 | H52C—C52A—H52D | 109.2 |
N12—C13—C12 | 103.1 (4) | N52A—C53A—C52A | 103.9 (9) |
N12—C13—H13A | 111.1 | N52A—C53A—H53C | 111.0 |
C12—C13—H13A | 111.1 | C52A—C53A—H53C | 111.0 |
N12—C13—H13B | 111.1 | N52A—C53A—H53D | 111.0 |
C12—C13—H13B | 111.1 | C52A—C53A—H53D | 111.0 |
H13A—C13—H13B | 109.1 | H53C—C53A—H53D | 109.0 |
C11—N12—C14 | 126.9 (4) | C51A—N52A—C54A | 126.8 (10) |
C11—N12—C13 | 110.5 (4) | C51A—N52A—C53A | 111.4 (9) |
C14—N12—C13 | 121.0 (4) | C54A—N52A—C53A | 120.8 (10) |
N12—C14—H14A | 109.5 | N52A—C54A—H54D | 109.5 |
N12—C14—H14B | 109.5 | N52A—C54A—H54E | 109.5 |
H14A—C14—H14B | 109.5 | H54D—C54A—H54E | 109.5 |
N12—C14—H14C | 109.5 | N52A—C54A—H54F | 109.5 |
H14A—C14—H14C | 109.5 | H54D—C54A—H54F | 109.5 |
H14B—C14—H14C | 109.5 | H54E—C54A—H54F | 109.5 |
C21—S2—Cu1 | 99.67 (12) | F11A—B1—F12 | 118.7 (12) |
C21—S2—Cu2i | 95.24 (13) | F11A—B1—F13 | 117.0 (11) |
Cu1—S2—Cu2i | 73.78 (3) | F12—B1—F13 | 110.2 (8) |
N22—C21—N21 | 109.4 (3) | F11A—B1—F12A | 112.1 (13) |
N22—C21—S2 | 125.4 (3) | F12—B1—F12A | 13 (2) |
N21—C21—S2 | 125.2 (3) | F13—B1—F12A | 122.3 (16) |
C21—N21—C22 | 109.7 (3) | F11A—B1—F14 | 87.1 (8) |
C21—N21—S4 | 127.0 (3) | F12—B1—F14 | 111.5 (9) |
C22—N21—S4 | 122.9 (3) | F13—B1—F14 | 109.8 (6) |
N21—C22—C23 | 101.3 (3) | F12A—B1—F14 | 100.8 (15) |
N21—C22—H22A | 111.5 | F11A—B1—F13A | 113.2 (11) |
C23—C22—H22A | 111.5 | F12—B1—F13A | 97.0 (14) |
N21—C22—H22B | 111.5 | F13—B1—F13A | 21.6 (7) |
C23—C22—H22B | 111.5 | F12A—B1—F13A | 110.1 (13) |
H22A—C22—H22B | 109.3 | F14—B1—F13A | 131.3 (8) |
N22—C23—C22 | 102.1 (3) | F11A—B1—F11 | 21.3 (7) |
N22—C23—H23A | 111.4 | F12—B1—F11 | 110.4 (8) |
C22—C23—H23A | 111.4 | F13—B1—F11 | 106.5 (7) |
N22—C23—H23B | 111.4 | F12A—B1—F11 | 108.5 (15) |
C22—C23—H23B | 111.4 | F14—B1—F11 | 108.3 (5) |
H23A—C23—H23B | 109.2 | F13A—B1—F11 | 96.6 (10) |
C21—N22—C24 | 125.7 (4) | F11A—B1—F14A | 111.8 (9) |
C21—N22—C23 | 111.5 (3) | F12—B1—F14A | 112.1 (11) |
C24—N22—C23 | 120.6 (3) | F13—B1—F14A | 81.0 (8) |
N22—C24—H24A | 109.5 | F12A—B1—F14A | 107.1 (13) |
N22—C24—H24B | 109.5 | F14—B1—F14A | 31.4 (6) |
H24A—C24—H24B | 109.5 | F13A—B1—F14A | 101.9 (8) |
N22—C24—H24C | 109.5 | F11—B1—F14A | 130.7 (8) |
H24A—C24—H24C | 109.5 | F21A—B2—F24 | 106.4 (15) |
H24B—C24—H24C | 109.5 | F21A—B2—F21 | 5 (2) |
C31—S3—Cu1 | 99.03 (13) | F24—B2—F21 | 109.0 (7) |
C31—S3—Cu2i | 98.92 (12) | F21A—B2—F24A | 111.4 (14) |
Cu1—S3—Cu2i | 74.92 (3) | F24—B2—F24A | 23.9 (6) |
N32—C31—N31 | 110.6 (3) | F21—B2—F24A | 111.7 (12) |
N32—C31—S3 | 124.0 (3) | F21A—B2—F22 | 106.2 (16) |
N31—C31—S3 | 125.4 (3) | F24—B2—F22 | 109.4 (5) |
C31—N31—C32 | 110.0 (3) | F21—B2—F22 | 109.2 (8) |
C31—N31—S4 | 124.0 (3) | F24A—B2—F22 | 126.6 (8) |
C32—N31—S4 | 120.7 (3) | F21A—B2—F23A | 111.6 (13) |
N31—C32—C33 | 103.0 (3) | F24—B2—F23A | 131.2 (9) |
N31—C32—H32A | 111.2 | F21—B2—F23A | 106.9 (11) |
C33—C32—H32A | 111.2 | F24A—B2—F23A | 110.6 (9) |
N31—C32—H32B | 111.2 | F22—B2—F23A | 88.2 (8) |
C33—C32—H32B | 111.2 | F21A—B2—F22A | 111.1 (14) |
H32A—C32—H32B | 109.1 | F24—B2—F22A | 86.8 (8) |
N32—C33—C32 | 104.1 (3) | F21—B2—F22A | 115.7 (12) |
N32—C33—H33A | 110.9 | F24A—B2—F22A | 105.7 (9) |
C32—C33—H33A | 110.9 | F22—B2—F22A | 22.9 (6) |
N32—C33—H33B | 110.9 | F23A—B2—F22A | 106.1 (9) |
C32—C33—H33B | 110.9 | F21A—B2—F23 | 113.6 (15) |
H33A—C33—H33B | 109.0 | F24—B2—F23 | 109.8 (6) |
C31—N32—C34 | 125.9 (4) | F21—B2—F23 | 108.1 (7) |
C31—N32—C33 | 112.3 (3) | F24A—B2—F23 | 86.9 (8) |
C34—N32—C33 | 121.8 (4) | F22—B2—F23 | 111.3 (5) |
N32—C34—H34A | 109.5 | F23A—B2—F23 | 25.8 (6) |
N32—C34—H34B | 109.5 | F22A—B2—F23 | 124.5 (9) |
H34A—C34—H34B | 109.5 | F11A—F11—B1 | 69.6 (17) |
N32—C34—H34C | 109.5 | F13A—F13—B1 | 82 (2) |
H34A—C34—H34C | 109.5 | F14A—F14—B1 | 77.5 (11) |
H34B—C34—H34C | 109.5 | F11—F11A—B1 | 89.1 (19) |
N21—S4—N31 | 105.82 (16) | F13—F13A—B1 | 76.0 (19) |
N21—S4—Cu1 | 97.21 (12) | F14—F14A—B1 | 71.0 (10) |
N31—S4—Cu1 | 98.47 (11) | F22A—F22—B2 | 79.6 (16) |
C51—S5—Cu2 | 120.6 (2) | F23A—F23—B2 | 76.8 (13) |
C51A—S5—Cu2 | 101.0 (3) | F24A—F24—B2 | 79.4 (15) |
N52—C51—N51 | 110.3 (6) | F22—F22A—B2 | 77.5 (16) |
N52—C51—S5 | 130.6 (5) | F23—F23A—B2 | 77.3 (13) |
N51—C51—S5 | 119.1 (5) | F24—F24A—B2 | 76.7 (16) |
C51—N51—C52 | 112.0 (6) | ||
Cu1—S1—C11—N12 | −177.0 (3) | N51A—C51A—N52A—C53A | 0 (2) |
Cu2—S1—C11—N12 | −78.2 (4) | S5—C51A—N52A—C53A | −177.9 (16) |
Cu1—S1—C11—N11 | 1.3 (4) | C52A—C53A—N52A—C51A | 6 (2) |
Cu2—S1—C11—N11 | 100.1 (4) | C52A—C53A—N52A—C54A | 175.4 (15) |
N12—C11—N11—C12 | 6.4 (5) | F12—B1—F11—F11A | −117 (3) |
S1—C11—N11—C12 | −172.1 (3) | F13—B1—F11—F11A | 123 (3) |
C11—N11—C12—C13 | −14.2 (5) | F12A—B1—F11—F11A | −104 (3) |
N11—C12—C13—N12 | 15.6 (5) | F14—B1—F11—F11A | 5 (3) |
N11—C11—N12—C14 | 170.6 (5) | F13A—B1—F11—F11A | 143 (3) |
S1—C11—N12—C14 | −10.9 (7) | F14A—B1—F11—F11A | 31 (4) |
N11—C11—N12—C13 | 4.8 (5) | F11A—B1—F13—F13A | 85 (4) |
S1—C11—N12—C13 | −176.6 (3) | F12—B1—F13—F13A | −55 (4) |
C12—C13—N12—C11 | −13.4 (5) | F12A—B1—F13—F13A | −60 (4) |
C12—C13—N12—C14 | 179.9 (5) | F14—B1—F13—F13A | −178 (3) |
Cu1—S2—C21—N22 | −177.1 (3) | F11—B1—F13—F13A | 65 (4) |
Cu2i—S2—C21—N22 | 108.5 (3) | F14A—B1—F13—F13A | −165 (4) |
Cu1—S2—C21—N21 | 1.6 (3) | F11A—B1—F14—F14A | 142.8 (17) |
Cu2i—S2—C21—N21 | −72.8 (3) | F12—B1—F14—F14A | −97.4 (17) |
N22—C21—N21—C22 | −9.8 (4) | F13—B1—F14—F14A | 25.0 (17) |
S2—C21—N21—C22 | 171.3 (3) | F12A—B1—F14—F14A | −105.2 (19) |
N22—C21—N21—S4 | 177.5 (3) | F13A—B1—F14—F14A | 24 (2) |
S2—C21—N21—S4 | −1.5 (5) | F11—B1—F14—F14A | 141.0 (15) |
C21—N21—C22—C23 | 21.3 (4) | F12—B1—F11A—F11 | 72 (3) |
S4—N21—C22—C23 | −165.6 (3) | F13—B1—F11A—F11 | −64 (3) |
N21—C22—C23—N22 | −23.3 (4) | F12A—B1—F11A—F11 | 84 (3) |
N21—C21—N22—C24 | −169.8 (4) | F14—B1—F11A—F11 | −175 (3) |
S2—C21—N22—C24 | 9.2 (6) | F13A—B1—F11A—F11 | −41 (3) |
N21—C21—N22—C23 | −7.0 (5) | F14A—B1—F11A—F11 | −155 (3) |
S2—C21—N22—C23 | 171.9 (3) | F11A—B1—F13A—F13 | −105 (4) |
C22—C23—N22—C21 | 20.0 (5) | F12—B1—F13A—F13 | 129 (4) |
C22—C23—N22—C24 | −176.3 (4) | F12A—B1—F13A—F13 | 128 (4) |
Cu1—S3—C31—N32 | 164.1 (3) | F14—B1—F13A—F13 | 3 (4) |
Cu2i—S3—C31—N32 | −119.9 (3) | F11—B1—F13A—F13 | −119 (3) |
Cu1—S3—C31—N31 | −16.4 (3) | F14A—B1—F13A—F13 | 15 (4) |
Cu2i—S3—C31—N31 | 59.6 (3) | F11A—B1—F14A—F14 | −40.6 (18) |
N32—C31—N31—C32 | −1.5 (4) | F12—B1—F14A—F14 | 95.5 (16) |
S3—C31—N31—C32 | 178.9 (3) | F13—B1—F14A—F14 | −156.2 (16) |
N32—C31—N31—S4 | −155.7 (3) | F12A—B1—F14A—F14 | 83 (2) |
S3—C31—N31—S4 | 24.7 (4) | F13A—B1—F14A—F14 | −161.8 (16) |
C31—N31—C32—C33 | 1.9 (4) | F11—B1—F14A—F14 | −52.1 (19) |
S4—N31—C32—C33 | 157.0 (3) | F21A—B2—F22—F22A | 106 (3) |
N31—C32—C33—N32 | −1.5 (4) | F24—B2—F22—F22A | −8 (3) |
N31—C31—N32—C34 | 178.6 (4) | F21—B2—F22—F22A | 111 (3) |
S3—C31—N32—C34 | −1.8 (6) | F24A—B2—F22—F22A | −27 (3) |
N31—C31—N32—C33 | 0.5 (5) | F23A—B2—F22—F22A | −142 (2) |
S3—C31—N32—C33 | −180.0 (3) | F23—B2—F22—F22A | −130 (2) |
C32—C33—N32—C31 | 0.8 (5) | F21A—B2—F23—F23A | 91 (2) |
C32—C33—N32—C34 | −177.5 (4) | F24—B2—F23—F23A | −149.7 (19) |
C21—N21—S4—N31 | 101.3 (3) | F21—B2—F23—F23A | 91 (2) |
C22—N21—S4—N31 | −70.6 (3) | F24A—B2—F23—F23A | −156.7 (19) |
C21—N21—S4—Cu1 | 0.3 (3) | F22—B2—F23—F23A | −28 (2) |
C22—N21—S4—Cu1 | −171.6 (3) | F22A—B2—F23—F23A | −50 (2) |
C31—N31—S4—N21 | −115.8 (3) | F21A—B2—F24—F24A | 106 (3) |
C32—N31—S4—N21 | 92.7 (3) | F21—B2—F24—F24A | 101 (3) |
C31—N31—S4—Cu1 | −15.7 (3) | F22—B2—F24—F24A | −140 (2) |
C32—N31—S4—Cu1 | −167.3 (3) | F23A—B2—F24—F24A | −34 (3) |
Cu2—S5—C51—N52 | 17.6 (8) | F22A—B2—F24—F24A | −143 (2) |
Cu2—S5—C51—N51 | −160.5 (5) | F23—B2—F24—F24A | −17 (2) |
N52—C51—N51—C52 | 3.0 (10) | F21A—B2—F22A—F22 | −82 (3) |
S5—C51—N51—C52 | −178.5 (6) | F24—B2—F22A—F22 | 172 (2) |
C51—N51—C52—C53 | −6.1 (11) | F21—B2—F22A—F22 | −78 (3) |
N51—C52—C53—N52 | 6.5 (12) | F24A—B2—F22A—F22 | 157 (2) |
N51—C51—N52—C54 | −176.3 (7) | F23A—B2—F22A—F22 | 40 (3) |
S5—C51—N52—C54 | 5.5 (12) | F23—B2—F22A—F22 | 60 (3) |
N51—C51—N52—C53 | 1.7 (11) | F21A—B2—F23A—F23 | −100 (2) |
S5—C51—N52—C53 | −176.6 (9) | F24—B2—F23A—F23 | 39 (2) |
C52—C53—N52—C51 | −5.4 (13) | F21—B2—F23A—F23 | −96.8 (19) |
C52—C53—N52—C54 | 172.7 (8) | F24A—B2—F23A—F23 | 25 (2) |
Cu2—S5—C51A—N52A | −169.1 (11) | F22—B2—F23A—F23 | 153.6 (18) |
Cu2—S5—C51A—N51A | 13.0 (12) | F22A—B2—F23A—F23 | 139.1 (19) |
N52A—C51A—N51A—C52A | −6.4 (15) | F21A—B2—F24A—F24 | −82 (3) |
S5—C51A—N51A—C52A | 171.7 (9) | F21—B2—F24A—F24 | −88 (2) |
C51A—N51A—C52A—C53A | 9.5 (19) | F22—B2—F24A—F24 | 49 (3) |
N51A—C52A—C53A—N52A | −9 (2) | F23A—B2—F24A—F24 | 153 (2) |
N51A—C51A—N52A—C54A | −168.7 (13) | F22A—B2—F24A—F24 | 39 (2) |
S5—C51A—N52A—C54A | 13 (2) | F23—B2—F24A—F24 | 164 (2) |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x, −y+1/2, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N11—H11A···F12 | 0.88 | 2.12 | 2.764 (11) | 129 |
N11—H11A···F12A | 0.88 | 2.15 | 2.74 (2) | 124 |
N51—H51A···F23 | 0.88 | 2.20 | 2.995 (12) | 150 |
C13—H13B···F12iii | 0.99 | 2.63 | 3.329 (17) | 128 |
C13—H13B···F12Aiii | 0.99 | 2.59 | 3.22 (3) | 122 |
C14—H14B···F14Aiii | 0.98 | 2.59 | 3.331 (14) | 133 |
C14—H14C···F11Aiv | 0.98 | 2.64 | 3.119 (17) | 111 |
C22—H22B···F24v | 0.99 | 2.63 | 3.293 (8) | 125 |
C22—H22B···F24Av | 0.99 | 2.61 | 3.395 (17) | 136 |
C23—H23A···F24v | 0.99 | 2.56 | 3.164 (8) | 119 |
C23—H23B···F22vi | 0.99 | 2.63 | 3.453 (8) | 140 |
C24—H24C···F13 | 0.98 | 2.58 | 3.321 (11) | 133 |
C32—H32A···F21 | 0.99 | 2.33 | 3.259 (15) | 155 |
C32—H32A···F21A | 0.99 | 2.46 | 3.38 (3) | 155 |
C32—H32A···F23A | 0.99 | 2.61 | 3.287 (16) | 126 |
C32—H32B···F24i | 0.99 | 2.56 | 3.499 (9) | 158 |
C32—H32B···F24Ai | 0.99 | 2.59 | 3.569 (18) | 170 |
C33—H33A···F21i | 0.99 | 2.33 | 3.182 (12) | 144 |
C33—H33A···F21Ai | 0.99 | 2.31 | 3.16 (3) | 145 |
C34—H34A···F13Ai | 0.98 | 2.62 | 3.154 (18) | 114 |
C34—H34B···F22vii | 0.98 | 2.60 | 3.247 (8) | 123 |
C53—H53B···F13viii | 0.99 | 2.36 | 3.269 (16) | 152 |
C54—H54A···S1 | 0.98 | 2.89 | 3.835 (8) | 162 |
C54—H54C···F11i | 0.98 | 2.39 | 3.335 (10) | 162 |
C53A—H53D···F22vii | 0.99 | 2.52 | 3.49 (3) | 167 |
C54A—H54D···F23 | 0.98 | 2.09 | 2.933 (16) | 144 |
C54A—H54D···F23A | 0.98 | 2.60 | 3.43 (2) | 143 |
C54A—H54E···F23Avii | 0.98 | 2.47 | 3.36 (2) | 152 |
Symmetry codes: (i) x, −y+1/2, z−1/2; (iii) −x, −y+1, −z+1; (iv) −x, y−1/2, −z+3/2; (v) −x+1, y+1/2, −z+3/2; (vi) −x+1, −y+1, −z+1; (vii) −x+1, −y, −z+1; (viii) x, y−1, z. |
Footnotes
‡Deceased April 13, 2021.
Acknowledgements
TSL thanks both the Guru Nanak Dev University, for an Honorary Professorship, and Neetika Dogra, a post-graduate student, for preliminary assistance.
Funding information
JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.
References
Aulakh, J. K., Lobana, T. S., Sood, H., Arora, D. S., Garcia-Santos, I., Hundal, G., Kaur, M., Smolenski, V. A. & Jasinski, J. P. (2017). Dalton Trans. 46, 1324–1339. Web of Science CSD CrossRef CAS PubMed Google Scholar
Cox, P. J., Aslanidis, P. & Karagiannidis, P. (2000). Polyhedron, 19, 1615–1620. Web of Science CSD CrossRef CAS Google Scholar
Davies, S. C., Durrant, M. C., Hughes, D. L., Leidenberger, K., Stapper, C. & Richards, R. L. (1997). J. Chem. Soc. Dalton Trans. pp. 2409–2418. CSD CrossRef Web of Science Google Scholar
Ferrari, M. B., Fava, G. G. & Pelizzi, C. (1981). Inorg. Chim. Acta, 55, 167–169. CSD CrossRef CAS Web of Science Google Scholar
García-Vázquez, J. A., Romero, J. & Sousa, A. (1999). Coord. Chem. Rev. 193–195, 691–745. Google Scholar
García-Vázquez, J. A., Sousa-Pedrares, A., Carabel, M., Romero, J. & Sousa, A. (2005). Polyhedron, 24, 2043–2054. Google Scholar
Huheey, J. E., Keiter, E. A. & Keiter, R. L. (1993). Inorganic Chemistry: Principles of Structure And Reactivity, 4th ed. New York: Harper Collins College Publishers. Google Scholar
Jeannin, S., Jeannin, Y. & Lavigne, G. (1979). Inorg. Chem. 18, 3528–3535. CSD CrossRef CAS Web of Science Google Scholar
Kadooka, M. M., Warner, L. G. & Seff, K. (1976). J. Am. Chem. Soc. 98, 7569–7578. CSD CrossRef CAS PubMed Web of Science Google Scholar
Karagiannidis, P., Aslanidis, P., Kessissoglou, D. P., Krebs, B. & Dartmann, M. (1989). Inorg. Chim. Acta, 156, 47–56. CSD CrossRef CAS Web of Science Google Scholar
Li, D., Shi, W. & Hou, L. (2005). Inorg. Chem. 44, 3907–3913. Web of Science CSD CrossRef PubMed CAS Google Scholar
Lobana, T. S. (2021). Coord. Chem. Rev. 441, 213884. Web of Science CrossRef Google Scholar
Lobana, T. S., Bawa, G. & Butcher, R. J. (2008). Inorg. Chem. 47, 1488–1495. Web of Science CSD CrossRef PubMed CAS Google Scholar
Lobana, T. S., Bawa, G., Castineiras, A. & Butcher, R. J. (2007). Inorg. Chem. Commun. 10, 506–509. Web of Science CSD CrossRef CAS Google Scholar
Lobana, T. S., Bhatia, P. K. & Tiekink, E. R. T. (1989). J. Chem. Soc. Dalton Trans. pp. 749–751. CSD CrossRef Web of Science Google Scholar
Lobana, T. S. & Castineiras, A. (2002). Polyhedron, 21, 1603–1611. Web of Science CSD CrossRef CAS Google Scholar
Lobana, T. S., Kumari, P., Butcher, R. J., Akitsu, T., Aritake, Y., Perles, J., Fernandez, F. J. & Vega, M. C. (2012). J. Organomet. Chem. 701, 17–26. Web of Science CSD CrossRef CAS Google Scholar
Lobana, T. S., Sharma, R., Bermejo, E. & Castineiras, A. (2003). Inorg. Chem. 42, 7728–7730. Web of Science CSD CrossRef PubMed CAS Google Scholar
Lobana, T. S., Sharma, R., Hundal, G. & Butcher, R. J. (2006). Inorg. Chem. 45, 9402–9409. Web of Science CSD CrossRef PubMed CAS Google Scholar
Lobana, T. S., Sharma, R., Sharma, R., Mehra, S., Castineiras, A. & Turner, P. (2005). Inorg. Chem. 44, 1914–1921. Web of Science CSD CrossRef PubMed CAS Google Scholar
Lobana, T. S., Sultana, R., Castineiras, A. & Butcher, R. J. (2009). Inorg. Chim. Acta, 362, 5265–5270. Web of Science CSD CrossRef CAS Google Scholar
Lobana, T. S., Sultana, R., Hundal, G. & Butcher, R. J. (2010). Dalton Trans. 39, 7870–7872. Web of Science CSD CrossRef CAS PubMed Google Scholar
Mentzafos, D., Terzis, A., Karagiannidis, P. & Aslanidis, P. (1989). Acta Cryst. C45, 54–56. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Okuniewski, A., Rosiak, D., Chojnacki, J. & Becker, B. (2015). Polyhedron, 90, 47–57. Web of Science CSD CrossRef CAS Google Scholar
Raper, E. S. (1994). Coord. Chem. Rev. 129, 91–156. CrossRef CAS Web of Science Google Scholar
Raper, E. S. (1996). Coord. Chem. Rev. 153, 199–255. CrossRef CAS Web of Science Google Scholar
Raper, E. S. (1997). Coord. Chem. Rev. 165, 475–567. CrossRef CAS Web of Science Google Scholar
Rigaku (2019). CrysAlis PRO. Rigaku Americas Corporation, The Woodlands, TX, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Simmons, C. J., Lundeen, M. & Seff, K. (1979). Inorg. Chem. 18, 3444–3452. CSD CrossRef CAS Web of Science Google Scholar
Stergioudis, G. A., Kokkou, S. C., Rentzeperis, P. J. & Karagiannidis, P. (1987). Acta Cryst. C43, 1685–1688. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Sultana, R., Lobana, T. S., Sharma, R., Castineiras, A., Akitsu, T., Yahagi, K. & Aritake, Y. (2010). Inorg. Chim. Acta, 363, 3432–3441. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.