Jerry P. Jasinski tribute\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Incorporation of in situ generated 3,3′-(sulfane­diyl)bis­­(1-methyl-1,3-imidazolidine-2-thione) into a one-dimensional CuI coordination polymer with sulfur-bridged {CuI4S10}n central cores

crossmark logo

aDepartment of Chemistry, Guru Nanak Dev University, Amritsar 143 005, India, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA, and cDepartment of Chemistry, Keene State College, Keene NH 03435-2001, USA
*Correspondence e-mail: tarlokslobana@yahoo.co.in

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 10 March 2022; accepted 6 May 2022; online 17 May 2022)

The reaction of [Cu(CH3CN)4](BF4) with 1-methyl-1,3-imidazolidine-2-thione {SC3H4(NMe)NH}, under aerobic conditions at room temperature, yielded an unusual one-dimensional coordination polymer, namely, catena-poly[[[(1-meth­yl-1,3-imidazolidine-2-thione-κS)copper(I)]-μ-(1-methyl-1,3-imidazolidine-2-thione)-κ2S:S-copper(I)-μ-[3,3′-(sulfanedi­yl)bis­(1-methyl-1,3-imidazolidine-2-thione)]-κ5S,S′,S′′:S,S′′] bis­(tetra­fluorido­borate)], {[Cu2(C4H8N2S)2(C8H14N4S3)](BF4)2}n or [Cu4(κ5:L1—N—S—N—L1)2(κ1:L1—NH)2(κ2:L1—NH)2]n(BF4)4n 1 [L1 = SC3 H4(NMe)NH] with sulfur-bridged {CuI4S10}n central cores. The in situ generated bis­(1-methyl-1,3-imidazolidinyl-2-thione) sulfide [{SC3H4(NMe)NSN(NMe)C3H4S; abbrev. L1—N—S—N—L1] ligand, in combin­ation with 1-methyl-1,3-imidazolidine-2-thione (L1—NH) ligands, construct this coordination polymer. Each CuI ion is bonded to four sulfur donor atoms in a distorted tetra­hedral geometry and the formation of this polymer solely by sulfur donor atoms with {CuI4S10}n central cores, is the first such example in copper–heterocyclic-2-thione chemistry.

1. Chemical context

The coordination chemistry of the coinage metals (Cu–Au) with heterocyclic-2-thione ligands (Fig. 1[link]) is of considerable inter­est as these metals exhibit a wide range of coordination geometries, giving rise to coordination compounds of differing nuclearity, namely, mononuclear, homo- and hetero-bridged di-nuclear, clusters and coordination polymers (Lobana, 2021[Lobana, T. S. (2021). Coord. Chem. Rev. 441, 213884.]; Raper, 1994[Raper, E. S. (1994). Coord. Chem. Rev. 129, 91-156.], 1996[Raper, E. S. (1996). Coord. Chem. Rev. 153, 199-255.], 1997[Raper, E. S. (1997). Coord. Chem. Rev. 165, 475-567.]; García-Vázquez et al., 1999[García-Vázquez, J. A., Romero, J. & Sousa, A. (1999). Coord. Chem. Rev. 193-195, 691-745.]). It has been noted that coordination compounds of these metals have displayed promising bio-activity and, in addition, several copper-based reactions are involved in the activation of C=S (thione) bonds (Lobana, 2021[Lobana, T. S. (2021). Coord. Chem. Rev. 441, 213884.]).

[Scheme 1]
[Figure 1]
Figure 1
A selected list of heterocyclic-2-thio­nes.

As part of out ongoing studies in this area, we now describe the synthesis and structure of the title coordination polymer, 1.

2. Structural commentary

The analytical data of the colourless crystals (see Synthesis and crystallization) correspond to the empirical composition C16H30B2Cu2F8N8S5 and its crystal structure revealed the formation of an unusual coordination polymer, {Cu4(κ5:L1—N—S—N—L1)2(κ1:L1—NH)2(κ2:L1—NH)2}n(BF4)4n(1) [L1= SC3H4(NMe)]. There is in situ generation of a new thio-ligand, namely, bis­(1-methyl-1,3-imidazolidinyl-2-thione) sulfide [SC3H4(NMe)N—S—NSC3H4(NMe); abbrev. L1—N—S—N—L1] in which a sulfur atom connects two —NH groups of two imidazolidine rings. Fig. 2[link] shows the bonding patterns of L1—NH, and the new thio-ligand, in the polymer 1.

[Figure 2]
Figure 2
Bonding pattern of 1-methyl-1,3-imidazodine-2-thione and its in situ generated bis­(1-methyl-1,3-imidazolidinyl-2-thione)sulfide.

The construction of the polymer 1 is believed to occur as represented in Fig. 3[link]. Here the basic repeat unit is A, which is shown in a simplified way as unit B (omitting the imidazolidine rings). Two such B units combine to form a tetra­nuclear unit C, a basic building block, to construct the polymer 1. The building block C exhibits all three patterns of ligand bonding as represented in Fig. 2[link]. The crystals of the polymer are monoclinic in the space group P21/c. Geometric parameters are given in Table 1[link] Fig. 4[link] shows the basic dinuclear unit, in which there are three bonding patterns: bridging bidentate sulfur (κ2-L1—NH), monodentate sulfur (κ1-L1—NH), and in situ generated penta­dentate sulfur ligand (κ5-L1—N—S—N—L1) (Fig. 2[link]). The combining of two dinuclear moieties gives rise to a tetra­nuclear moiety as shown in Figs. 2[link] and 5[link]. The chains of the polymer are hydrogen bonded to BF4 ions lying between the chains by multiple weak C—H⋯F inter­actions as shown in Fig. 6[link] and listed in Table 2[link].

Table 1
Selected geometric parameters (Å, °)

Cu1—S1 2.2590 (10) Cu2—S5 2.2696 (11)
Cu1—S2 2.2997 (10) Cu2—S1 2.3179 (11)
Cu1—S3 2.3423 (10) Cu2—S3ii 2.4364 (11)
Cu1—S4 2.4162 (10) Cu2—S2ii 2.5338 (11)
Cu1—Cu2i 2.9074 (8)    
       
S1—Cu1—S2 131.86 (4) S5—Cu2—S1 122.65 (4)
S1—Cu1—S3 105.12 (4) S5—Cu2—S3ii 109.15 (4)
S2—Cu1—S3 110.79 (4) S1—Cu2—S3ii 102.24 (4)
S1—Cu1—S4 120.66 (4) S5—Cu2—S2ii 105.31 (4)
S2—Cu1—S4 90.89 (4) S1—Cu2—S2ii 114.68 (4)
S3—Cu1—S4 89.72 (4) S3ii—Cu2—S2ii 100.47 (4)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11A⋯F12 0.88 2.12 2.764 (11) 129
N11—H11A⋯F12A 0.88 2.15 2.74 (2) 124
N51—H51A⋯F23 0.88 2.20 2.995 (12) 150
C13—H13B⋯F12iii 0.99 2.63 3.329 (17) 128
C13—H13B⋯F12Aiii 0.99 2.59 3.22 (3) 122
C14—H14B⋯F14Aiii 0.98 2.59 3.331 (14) 133
C14—H14C⋯F11Aiv 0.98 2.64 3.119 (17) 111
C22—H22B⋯F24v 0.99 2.63 3.293 (8) 125
C22—H22B⋯F24Av 0.99 2.61 3.395 (17) 136
C23—H23A⋯F24v 0.99 2.56 3.164 (8) 119
C23—H23B⋯F22vi 0.99 2.63 3.453 (8) 140
C24—H24C⋯F13 0.98 2.58 3.321 (11) 133
C32—H32A⋯F21 0.99 2.33 3.259 (15) 155
C32—H32A⋯F21A 0.99 2.46 3.38 (3) 155
C32—H32A⋯F23A 0.99 2.61 3.287 (16) 126
C32—H32B⋯F24i 0.99 2.56 3.499 (9) 158
C32—H32B⋯F24Ai 0.99 2.59 3.569 (18) 170
C33—H33A⋯F21i 0.99 2.33 3.182 (12) 144
C33—H33A⋯F21Ai 0.99 2.31 3.16 (3) 145
C34—H34A⋯F13Ai 0.98 2.62 3.154 (18) 114
C34—H34B⋯F22vii 0.98 2.60 3.247 (8) 123
C53—H53B⋯F13viii 0.99 2.36 3.269 (16) 152
C54—H54A⋯S1 0.98 2.89 3.835 (8) 162
C54—H54C⋯F11i 0.98 2.39 3.335 (10) 162
C53A—H53D⋯F22vii 0.99 2.52 3.49 (3) 167
C54A—H54D⋯F23 0.98 2.09 2.933 (16) 144
C54A—H54D⋯F23A 0.98 2.60 3.43 (2) 143
C54A—H54E⋯F23Avii 0.98 2.47 3.36 (2) 152
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x, -y+1, -z+1]; (iv) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) [-x+1, -y+1, -z+1]; (vii) [-x+1, -y, -z+1]; (viii) [x, y-1, z].
[Figure 3]
Figure 3
The basic repeating unit, A; the basic repeating unit with imidazolidine rings omitted, B; the tetra­nuclear unit, C; a part of the polymer, D.
[Figure 4]
Figure 4
The contents of the asymmetric unit. N—H⋯F hydrogen bonds are shown as dashed lines. Atomic displacement parameters are drawn at the 30% probability level.
[Figure 5]
Figure 5
The tetra­nuclear repeating unit. H atoms and BF4 anions are omitted for clarity.
[Figure 6]
Figure 6
Packing viewed along the b-axis direction. N—H⋯F hydrogen bonds and C—H⋯F inter­actions shown as dashed lines.

Cu1 is bonded to four sulfur donor atoms (S1–S4) (Table 1[link]). Here the thione (C=S) sulfur donor atoms are more strongly bonded relative to the sulfur atom of the —N—S—N— moiety. The Cu2—S2 and Cu2—S3 bond distances are the longest, while the other two Cu2—S1 and Cu2—S5 distances are short, and comparable to the Cu1—sulfur (S1–S3) bond distances, as noted above. The Cu⋯Cu separation of 2.9074 (8) Å, does not reveal any metal–metal inter­action (the sum of the van der Waals radii of the Cu atoms is 2.80 Å; Huheey et al., 1993[Huheey, J. E., Keiter, E. A. & Keiter, R. L. (1993). Inorganic Chemistry: Principles of Structure And Reactivity, 4th ed. New York: Harper Collins College Publishers.]). The C—S bond distances fall in the range 1.699 (4) to 1.723 (4) Å, and lie between a typical double- and single-bond distance (C=S ≃ 1.68 Å; C—S ≃ 1.81 Å; Huheey et al., 1993[Huheey, J. E., Keiter, E. A. & Keiter, R. L. (1993). Inorganic Chemistry: Principles of Structure And Reactivity, 4th ed. New York: Harper Collins College Publishers.]). Finally, the geometry about Cu1 is significantly distorted from a regular tetra­hedron, as revealed by the S—Cu1—S bond angles, which fall in the range 89.72 (4) to 131.86 (4)° and this is illustrated by the τ4' parameter of 0.725 (Okuniewski et al., 2015[Okuniewski, A., Rosiak, D., Chojnacki, J. & Becker, B. (2015). Polyhedron, 90, 47-57.]); in comparison, the geometry of Cu2 is less distorted, with S—Cu2—S bond angles in the range 100.47 (4)–122.65 (4)° and a τ4' parameter of 0.842.

The in situ formation of the new thio-ligand appears in line with the metal-mediated variable chemical activity of N,S-donor thio-ligands, such as the activation of C=S (thione) bonds (Lobana, 2021[Lobana, T. S. (2021). Coord. Chem. Rev. 441, 213884.]; Lobana et al., 2010[Lobana, T. S., Sultana, R., Hundal, G. & Butcher, R. J. (2010). Dalton Trans. 39, 7870-7872.]), as well as the activation of C—H and N—H bonds (Lobana et al., 2012[Lobana, T. S., Kumari, P., Butcher, R. J., Akitsu, T., Aritake, Y., Perles, J., Fernandez, F. J. & Vega, M. C. (2012). J. Organomet. Chem. 701, 17-26.], 2007[Lobana, T. S., Bawa, G., Castineiras, A. & Butcher, R. J. (2007). Inorg. Chem. Commun. 10, 506-509.], 2008[Lobana, T. S., Bawa, G. & Butcher, R. J. (2008). Inorg. Chem. 47, 1488-1495.]). The oxidation of heterocyclic-2-thio­nes such as benzo-1,3-thia­zoline-2-thione, pyridine-2-thione, pyrimidine-2-thione, 1,3-imidazolidine-2-thione, quinoline-2-thione, 1,3,4-thia­diazole-2,5-di­thia­zone and benzo-1,3-thia­zoline-2-thione to their di­sulfides/tris­ulfides, followed by coordination to the metal ions, has been reported previously (Raper, 1994[Raper, E. S. (1994). Coord. Chem. Rev. 129, 91-156.]; Lobana, 2021[Lobana, T. S. (2021). Coord. Chem. Rev. 441, 213884.]). In the present case, in relation to the activation of C=S (thione) bonds, in situ generated thio-ligands, A–F, have been reported (Lobana, 2021[Lobana, T. S. (2021). Coord. Chem. Rev. 441, 213884.]; Raper, 1994[Raper, E. S. (1994). Coord. Chem. Rev. 129, 91-156.]; Ferrari et al., 1981[Ferrari, M. B., Fava, G. G. & Pelizzi, C. (1981). Inorg. Chim. Acta, 55, 167-169.]; Kadooka et al., 1976[Kadooka, M. M., Warner, L. G. & Seff, K. (1976). J. Am. Chem. Soc. 98, 7569-7578.]; Simmons et al., 1979[Simmons, C. J., Lundeen, M. & Seff, K. (1979). Inorg. Chem. 18, 3444-3452.]; Jeannin et al., 1979[Jeannin, S., Jeannin, Y. & Lavigne, G. (1979). Inorg. Chem. 18, 3528-3535.]) (Fig. 7[link]). In the E and F ligands, R is 2-pyridyl-, 2-pyrimidyl-, etc. and these have C—(S)n—C (n = 2, 3) groups, connecting the heterocyclic rings. In the ligand G, there is one N—S—N connecting group, two thione groups, and thus it is a new and different ligand.

[Figure 7]
Figure 7
In situ generated thio-ligands, AG in heterocyclic-2-thione chemistry.

3. Supra­molecular features

The BF4 anions lying between the chains are involved in inter­actions with various N—H and C—H hydrogen atoms of the thio-ligands (Figs. 4[link] and 6[link]). Consider the dimeric unit shown in Fig. 4[link]. Here the N11—H hydrogen atom inter­acts with the F12 and F12A fluorine atoms of one BF4 anion while the N51—H hydrogen atom inter­acts with the F23 fluorine atom of the second BF4 ion. Various other F atoms of both BF4 ions accept C—H⋯F inter­actions from the imidazolidine ring and the N-methyl group. The distances and angles involving hydrogen-bond inter­actions are shown in Table 2[link]. In summary, the distances and angles are given as follows: N⋯F = 2.74 (2)–2.764 (11) Å, H⋯F = 2.12–2.15 Å and N—H⋯F = 124–129°; C⋯F = 2.93 (2)–3.57 (2)Å; H⋯F = 2.09–2.64 Å; C—H⋯F = 111–170°. The N⋯F distances are less than the sum of van der Waals radii of N and F, namely, 3.05 to 3.15 Å, and likewise the C⋯F distances are either less than or comparable to the sum of van der Waals radii of C and F, namely, 3.15 to 3.30 Å (Huheey et al., 1993[Huheey, J. E., Keiter, E. A. & Keiter, R. L. (1993). Inorganic Chemistry: Principles of Structure And Reactivity, 4th ed. New York: Harper Collins College Publishers.]).

4. Database survey

In the light of the novelty of thio-ligands under discussion, a few examples of coordination compounds of pyridine-2-thione, pyrimidine-2-thione, di­thio­uracil and 1,3-imidazolidine-2-thio­nes, are delineated here (Fig. 1[link]). For example, pyridine-2-thione (pytH) in combination with copper(I) halides has formed a variety of coordination compounds: namely, mononuclear [CuX(κ1S-pytH)(PPh3)2] (X = Cl, Br), dinuclear, [Cu2Br2(μ-S-pytH)2(PPh3)2], [Cu2Br2(μ-P, P-dppe)2(κ1S-pytH)2] (dppe = Ph2P-CH2-CH2-PPh2), [Cu2(μ-S-pytH)2(κ1S-pytH)4]X2 (X = Cl, Br), [Cu2I2(μ-pytH)2(κ1S-pytH)2] and trinuclear, [Cu3I3(μ-P,P-dppe)3(κ1S-pytH)] (Lobana et al., 1989[Lobana, T. S., Bhatia, P. K. & Tiekink, E. R. T. (1989). J. Chem. Soc. Dalton Trans. pp. 749-751.], 2002[Lobana, T. S. & Castineiras, A. (2002). Polyhedron, 21, 1603-1611.]; Karagiannidis et al., 1989[Karagiannidis, P., Aslanidis, P., Kessissoglou, D. P., Krebs, B. & Dartmann, M. (1989). Inorg. Chim. Acta, 156, 47-56.]; Cox et al., 2000[Cox, P. J., Aslanidis, P. & Karagiannidis, P. (2000). Polyhedron, 19, 1615-1620.]; Stergioudis et al., 1987[Stergioudis, G. A., Kokkou, S. C., Rentzeperis, P. J. & Karagiannidis, P. (1987). Acta Cryst. C43, 1685-1688.]; Mentzafos et al., 1989[Mentzafos, D., Terzis, A., Karagiannidis, P. & Aslanidis, P. (1989). Acta Cryst. C45, 54-56.]; Davies et al., 1997[Davies, S. C., Durrant, M. C., Hughes, D. L., Leidenberger, K., Stapper, C. & Richards, R. L. (1997). J. Chem. Soc. Dalton Trans. pp. 2409-2418.]; Lobana et al., 2003[Lobana, T. S., Sharma, R., Bermejo, E. & Castineiras, A. (2003). Inorg. Chem. 42, 7728-7730.], 2005[Lobana, T. S., Sharma, R., Sharma, R., Mehra, S., Castineiras, A. & Turner, P. (2005). Inorg. Chem. 44, 1914-1921.]).

The examples of coordination polymers include a hexa­nuclear linear polymer, {Cu6(μ3-S-pytH)4(μ-S-pytH)2(I4)(μ-I)2-}n·2nCH3CN, pyrimidine-2-thione (pymtH) and 2,4-di­thio­uracil (dtucH2) based linear CuI chain polymers, [Cu(μ-N,S-pymtH)X]n (X = Cl, Br),{Cu(μ-S,S-dtucH2)(PPh3)X}n (X = Cl, Br, I), imidazolidine-2-thione (imdtH2) based polymers, [{Cu6(μ3-S-imdtH2)2(μ-S-imdtH2)4X2(μ-X)4}n] (X = Cl, Br, I-halogen bridged), {Cu6(μ3-S-imdtH2)4(μ-imdtH2)2(μ-I)2I4}n (sulfur-bridged), and an octa­nuclear polymer, {Cu8(μ3-S-imdtH2)4(μ-S-imdtH2)4(κ1-Cl)8}n. N-Phenyl-1,3-imidazolidine-2-thione also forms a linear chain polymer, {Cu3I3(imdtH-Ph)3}n, with alternate Cu2I2 and Cu2S2 dimeric units forming the chains (Lobana et al., 2003[Lobana, T. S., Sharma, R., Bermejo, E. & Castineiras, A. (2003). Inorg. Chem. 42, 7728-7730.], 2005[Lobana, T. S., Sharma, R., Sharma, R., Mehra, S., Castineiras, A. & Turner, P. (2005). Inorg. Chem. 44, 1914-1921.], 2006[Lobana, T. S., Sharma, R., Hundal, G. & Butcher, R. J. (2006). Inorg. Chem. 45, 9402-9409.], 2009[Lobana, T. S., Sultana, R., Castineiras, A. & Butcher, R. J. (2009). Inorg. Chim. Acta, 362, 5265-5270.]; Li et al., 2005[Li, D., Shi, W. & Hou, L. (2005). Inorg. Chem. 44, 3907-3913.]; Sultana et al., 2010[Sultana, R., Lobana, T. S., Sharma, R., Castineiras, A., Akitsu, T., Yahagi, K. & Aritake, Y. (2010). Inorg. Chim. Acta, 363, 3432-3441.]; Aulakh et al., 2017[Aulakh, J. K., Lobana, T. S., Sood, H., Arora, D. S., Garcia-Santos, I., Hundal, G., Kaur, M., Smolenski, V. A. & Jasinski, J. P. (2017). Dalton Trans. 46, 1324-1339.]).

In the literature, there are limited reports of complexes with ionic copper(I) salts, and the reported mono-, or di-nuclear ionic complexes have BF4, ClO4, PF6 etc., outside the metal coordination sphere (Lobana, 2021[Lobana, T. S. (2021). Coord. Chem. Rev. 441, 213884.]). The present study provides a basic background to develop a new class of polymers using copper(I) ionic salts with heterocyclic-2-thio­nes. The resulting polymeric materials with a central metal atom linked only to sulfur donor atoms may have inter­esting conductivity properties.

5. Synthesis and crystallization

All solvents were of HPLC grade and were stored over mol­ecular sieves. The precursor, tetra­kis­(aceto­nitrile)­copper(I) tetra­fluoro­borate, [Cu(CH3CN)4](BF4), was prepared by the slow addition of HBF4 acid (from boric acid H3BO3 + HF acid in a plastic beaker) to a solution of Cu2O (0.200 g; 1.4 mmol) in dry aceto­nitrile (25 ml) in a round-bottom flask. The mixture slowly became colourless and a white salt settled in the flask. The mother liquor was removed and the salt was extracted with diethyl ether, followed by evaporation, which gave solid [Cu(CH3CN)4](BF4).

Synthesis of 1-methyl-1,3-imidazolidine-2-thione

Carbon di­sulfide (4.1 ml, 76 mmol) was added to a cooled solution of 1-methyl-ethyl­enedi­amine (CH3-NH-CH2-CH2-NH2) dissolved in ethanol (10 ml) followed by the addition of 10 ml of water (García-Vázquez et al., 2005[García-Vázquez, J. A., Sousa-Pedrares, A., Carabel, M., Romero, J. & Sousa, A. (2005). Polyhedron, 24, 2043-2054.]). A white precipitate formed, and the contents were heated at 333 K, followed by the further addition of CS2. The precipitate initially dissolved, but shortly thereafter, a large amount of precipitate was deposited. The reaction mixture was heated under reflux for 1h, followed by the addition of conc. HCl (0.5 mL). It was further refluxed for one h, and placed for cooling, and precipitate formed was filtered and washed with cold acetone. Colour: white. Yield: 1.15 g, 50%; m.p. 351–354 K.

Synthesis of 1

To a solution of [Cu(CH3CN)4](BF4) (0.050 g, 0.15 mmol) in methanol (10 mL) was added a solution of the thio-ligand, SC3H4(NMe)NH (0.036 g, 0.31 mmol) in methanol. The mixture was stirred for about half an hour, giving rise to the formation of a clear pale-yellow solution. It was kept undisturbed for evaporation at room temperature. The colour of the solution turned green and a colourless crystalline compound was formed at the bottom, which was separated and dried at room temperature. Yield: 0.025 g; 40%; m.p. 450–452 K. Analysis found: C 24.52; H 3.69; N 13.87; S 20.50; C16H30B2Cu2F8N8S5 requires: C 24.14; H 3.77; N 14.08; S 20.11%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All hydrogen atoms were placed geometrically and refined as riding atoms with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). Both BF4 anions and one imidazoline ring are disordered over two sets of sites with occupancy ratios of 0.66 (2)/0.34 (2), 0.72 (2)/0.28 (2), and 0.622 (6)/0.378 (6), respectively.

Table 3
Experimental details

Crystal data
Chemical formula [Cu2(C4H8N2S)2(C8H14N4S3)](BF4)2
Mr 795.48
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 19.0636 (7), 13.6989 (3), 11.5770 (4)
β (°) 101.734 (3)
V3) 2960.16 (17)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.87
Crystal size (mm) 0.32 × 0.24 × 0.16
 
Data collection
Diffractometer Xcalibur, Eos, Gemini
Absorption correction Multi-scan (CrysAlis PRO; Rigaku, 2019[Rigaku (2019). CrysAlis PRO. Rigaku Americas Corporation, The Woodlands, TX, USA.])
Tmin, Tmax 0.673, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 33195, 8277, 7139
Rint 0.032
(sin θ/λ)max−1) 0.694
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.138, 1.09
No. of reflections 8277
No. of parameters 506
No. of restraints 497
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.91, −1.29
Computer programs: CrysAlis PRO and CrysAlis RED (Rigaku, 2019[Rigaku (2019). CrysAlis PRO. Rigaku Americas Corporation, The Woodlands, TX, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku, 2019); cell refinement: CrysAlis PRO (Rigaku, 2019); data reduction: CrysAlis RED (Rigaku, 2019); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

catena-Poly[[[(1-methyl-1,3-imidazolidine-2-thione-κS)copper(I)]-µ-(1-methyl-1,3-imidazolidine-2-thione)-κ2S:S-copper(I)-µ-[3,3'-(sulfanediyl)bis(1-methyl-1,3-imidazolidine-2-thione)]-κ5S,S',S'':S,S''] bis(tetrafluoridoborate)] top
Crystal data top
[Cu2(C4H8N2S)2(C8H14N4S3)](BF4)2F(000) = 1608
Mr = 795.48Dx = 1.785 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 19.0636 (7) ÅCell parameters from 11503 reflections
b = 13.6989 (3) Åθ = 3.1–32.3°
c = 11.5770 (4) ŵ = 1.87 mm1
β = 101.734 (3)°T = 100 K
V = 2960.16 (17) Å3Chunk, colorless
Z = 40.32 × 0.24 × 0.16 mm
Data collection top
Xcalibur, Eos, Gemini
diffractometer
7139 reflections with I > 2σ(I)
Detector resolution: 16.1500 pixels mm-1Rint = 0.032
ω scansθmax = 29.6°, θmin = 3.1°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku, 2019)
h = 2626
Tmin = 0.673, Tmax = 1.000k = 1719
33195 measured reflectionsl = 1616
8277 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.039P)2 + 14.326P]
where P = (Fo2 + 2Fc2)/3
8277 reflections(Δ/σ)max < 0.001
506 parametersΔρmax = 1.91 e Å3
497 restraintsΔρmin = 1.29 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.17200 (3)0.29294 (3)0.41072 (4)0.02467 (12)
Cu20.19437 (3)0.17473 (4)0.67264 (5)0.03398 (14)
S10.10220 (5)0.21261 (7)0.51531 (8)0.02188 (18)
C110.05713 (19)0.2930 (3)0.5887 (3)0.0239 (7)
N110.0615 (2)0.3899 (3)0.5829 (4)0.0330 (8)
H11A0.0835320.4214520.5344040.040*
C120.0247 (3)0.4373 (4)0.6680 (5)0.0490 (13)
H12A0.0066370.4910000.6308460.059*
H12B0.0593620.4629560.7367850.059*
C130.0185 (3)0.3537 (4)0.7028 (5)0.0476 (13)
H13A0.0145590.3513790.7893360.057*
H13B0.0696030.3591600.6639050.057*
N120.01487 (19)0.2670 (3)0.6605 (3)0.0339 (8)
C140.0110 (3)0.1701 (4)0.6768 (6)0.0540 (15)
H14A0.0217270.1217830.6543440.081*
H14B0.0588440.1617260.6272170.081*
H14C0.0135550.1607930.7597550.081*
S20.16050 (5)0.44336 (7)0.32065 (8)0.02344 (18)
C210.2452 (2)0.4870 (3)0.3691 (3)0.0220 (7)
N210.30019 (17)0.4367 (2)0.4393 (3)0.0230 (6)
C220.3681 (2)0.4915 (3)0.4478 (4)0.0295 (8)
H22A0.3964660.4662870.3914630.035*
H22B0.3976110.4890610.5287300.035*
C230.3406 (2)0.5937 (3)0.4154 (4)0.0335 (9)
H23A0.3391740.6330960.4865650.040*
H23B0.3703300.6276240.3670870.040*
N220.26779 (19)0.5744 (2)0.3468 (3)0.0265 (7)
C240.2230 (3)0.6540 (3)0.2916 (4)0.0328 (9)
H24A0.1831000.6275980.2328450.049*
H24B0.2514510.6980810.2528490.049*
H24C0.2040670.6899340.3517820.049*
S30.20669 (5)0.17479 (7)0.28720 (9)0.02339 (18)
C310.29663 (18)0.1774 (3)0.3396 (3)0.0196 (6)
N310.33350 (16)0.2506 (2)0.4087 (3)0.0208 (6)
C320.4110 (2)0.2266 (4)0.4393 (4)0.0351 (9)
H32A0.4274370.2187520.5255300.042*
H32B0.4400170.2778000.4109170.042*
C330.4152 (2)0.1304 (3)0.3749 (4)0.0353 (10)
H33A0.4454750.1371490.3152610.042*
H33B0.4352000.0780910.4310560.042*
N320.34084 (19)0.1094 (3)0.3188 (3)0.0296 (7)
C340.3211 (3)0.0212 (3)0.2520 (4)0.0391 (11)
H34A0.2725000.0279720.2047940.059*
H34B0.3227770.0341050.3061430.059*
H34C0.3547250.0098270.1995670.059*
S40.29655 (5)0.32490 (6)0.49486 (8)0.02048 (17)
S50.30419 (5)0.12584 (7)0.64829 (8)0.02327 (18)
C510.3161 (4)0.0135 (4)0.5964 (6)0.0248 (12)0.622 (6)
N510.3829 (4)0.0246 (5)0.6150 (7)0.0386 (14)0.622 (6)
H51A0.4212770.0052320.6545370.046*0.622 (6)
C520.3839 (4)0.1209 (5)0.5618 (8)0.0435 (16)0.622 (6)
H52A0.4063440.1698660.6207140.052*0.622 (6)
H52B0.4097460.1197770.4958170.052*0.622 (6)
C530.3053 (6)0.1418 (8)0.5183 (14)0.0364 (17)0.622 (6)
H53A0.2950080.1584210.4333180.044*0.622 (6)
H53B0.2894070.1963570.5629120.044*0.622 (6)
N520.2695 (3)0.0493 (4)0.5398 (5)0.0325 (12)0.622 (6)
C540.1936 (4)0.0347 (6)0.4976 (7)0.0364 (16)0.622 (6)
H54A0.1811130.0328940.5122840.055*0.622 (6)
H54B0.1668730.0791610.5391450.055*0.622 (6)
H54C0.1812050.0481040.4127040.055*0.622 (6)
C51A0.2840 (6)0.0129 (8)0.5822 (11)0.0267 (18)0.378 (6)
N51A0.2168 (6)0.0181 (7)0.5374 (10)0.0333 (19)0.378 (6)
H51B0.1778380.0129960.5460840.040*0.378 (6)
C52A0.2167 (7)0.1106 (8)0.4719 (12)0.041 (2)0.378 (6)
H52C0.2004680.1005620.3858860.049*0.378 (6)
H52D0.1858840.1601750.4989670.049*0.378 (6)
C53A0.2945 (9)0.1396 (13)0.502 (3)0.038 (2)0.378 (6)
H53C0.3013240.1980200.5538060.046*0.378 (6)
H53D0.3130590.1536260.4302080.046*0.378 (6)
N52A0.3305 (5)0.0534 (7)0.5651 (9)0.0344 (16)0.378 (6)
C54A0.4056 (6)0.0555 (11)0.6164 (15)0.044 (3)0.378 (6)
H54D0.4238380.0115070.6273460.066*0.378 (6)
H54E0.4311800.0907330.5639810.066*0.378 (6)
H54F0.4130720.0885210.6930070.066*0.378 (6)
B10.1527 (3)0.6462 (4)0.6039 (5)0.0388 (12)
B20.5451 (3)0.1715 (4)0.7345 (5)0.0456 (14)
F110.1661 (5)0.6294 (6)0.7267 (5)0.0572 (16)0.662 (12)
F120.1231 (8)0.5666 (8)0.5451 (12)0.094 (3)0.662 (12)
F130.2172 (5)0.6656 (7)0.5761 (9)0.0743 (18)0.662 (12)
F140.1088 (5)0.7262 (5)0.5796 (7)0.0744 (18)0.662 (12)
F11A0.1480 (10)0.6571 (13)0.7155 (12)0.062 (2)0.338 (12)
F12A0.1085 (16)0.5744 (17)0.549 (3)0.098 (5)0.338 (12)
F13A0.2223 (8)0.6300 (14)0.5893 (19)0.076 (3)0.338 (12)
F14A0.1344 (9)0.7331 (9)0.5380 (14)0.078 (2)0.338 (12)
F210.4996 (7)0.2511 (8)0.7097 (12)0.065 (2)0.699 (14)
F220.6131 (3)0.1982 (5)0.7198 (8)0.0571 (14)0.699 (14)
F230.5171 (4)0.0954 (5)0.6579 (7)0.0553 (15)0.699 (14)
F240.5484 (5)0.1432 (6)0.8493 (5)0.0664 (16)0.699 (14)
F21A0.5052 (15)0.2535 (16)0.718 (3)0.064 (4)0.301 (14)
F22A0.6182 (7)0.1936 (13)0.7683 (16)0.063 (2)0.301 (14)
F23A0.5376 (9)0.1170 (12)0.6304 (11)0.056 (2)0.301 (14)
F24A0.5289 (10)0.1148 (13)0.8249 (14)0.065 (2)0.301 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0257 (2)0.0236 (2)0.0267 (2)0.00048 (17)0.01001 (18)0.00126 (18)
Cu20.0295 (3)0.0422 (3)0.0289 (3)0.0125 (2)0.0030 (2)0.0037 (2)
S10.0228 (4)0.0213 (4)0.0222 (4)0.0001 (3)0.0059 (3)0.0007 (3)
C110.0178 (16)0.0312 (19)0.0220 (17)0.0025 (14)0.0022 (13)0.0023 (14)
N110.0318 (18)0.0260 (17)0.043 (2)0.0039 (14)0.0112 (16)0.0041 (15)
C120.044 (3)0.052 (3)0.048 (3)0.014 (2)0.005 (2)0.020 (3)
C130.043 (3)0.068 (4)0.037 (2)0.025 (3)0.019 (2)0.004 (2)
N120.0274 (17)0.047 (2)0.0311 (18)0.0093 (16)0.0150 (14)0.0086 (16)
C140.039 (3)0.059 (3)0.069 (4)0.000 (2)0.024 (3)0.028 (3)
S20.0247 (4)0.0210 (4)0.0253 (4)0.0036 (3)0.0067 (3)0.0002 (3)
C210.0309 (19)0.0174 (15)0.0181 (15)0.0016 (13)0.0060 (13)0.0008 (13)
N210.0261 (15)0.0173 (13)0.0251 (15)0.0037 (11)0.0043 (12)0.0003 (12)
C220.030 (2)0.0273 (19)0.030 (2)0.0064 (15)0.0027 (16)0.0010 (16)
C230.041 (2)0.0226 (18)0.035 (2)0.0088 (17)0.0040 (18)0.0011 (16)
N220.0377 (19)0.0178 (14)0.0245 (16)0.0016 (13)0.0071 (14)0.0009 (12)
C240.048 (3)0.0207 (18)0.031 (2)0.0043 (17)0.0121 (19)0.0037 (15)
S30.0260 (4)0.0188 (4)0.0248 (4)0.0012 (3)0.0036 (3)0.0024 (3)
C310.0221 (16)0.0192 (15)0.0183 (15)0.0023 (12)0.0059 (13)0.0053 (12)
N310.0217 (14)0.0207 (14)0.0205 (14)0.0014 (11)0.0053 (11)0.0020 (11)
C320.0212 (19)0.044 (2)0.040 (2)0.0056 (17)0.0049 (17)0.001 (2)
C330.031 (2)0.034 (2)0.044 (2)0.0103 (17)0.0145 (19)0.0108 (19)
N320.0371 (19)0.0249 (16)0.0289 (17)0.0091 (14)0.0119 (14)0.0014 (13)
C340.063 (3)0.0231 (19)0.035 (2)0.0112 (19)0.019 (2)0.0022 (17)
S40.0255 (4)0.0190 (4)0.0172 (4)0.0005 (3)0.0049 (3)0.0012 (3)
S50.0251 (4)0.0208 (4)0.0252 (4)0.0006 (3)0.0082 (3)0.0019 (3)
C510.037 (3)0.018 (2)0.024 (3)0.002 (2)0.018 (3)0.003 (2)
N510.039 (3)0.027 (3)0.054 (3)0.008 (2)0.018 (3)0.004 (3)
C520.055 (3)0.030 (3)0.048 (3)0.013 (3)0.017 (3)0.003 (3)
C530.059 (4)0.020 (3)0.034 (4)0.003 (3)0.020 (3)0.003 (3)
N520.048 (3)0.019 (2)0.032 (2)0.005 (2)0.011 (2)0.0053 (19)
C540.048 (4)0.034 (4)0.026 (4)0.006 (3)0.005 (3)0.004 (3)
C51A0.039 (4)0.019 (3)0.026 (3)0.001 (3)0.016 (4)0.004 (3)
N51A0.044 (4)0.024 (4)0.032 (4)0.002 (3)0.007 (4)0.003 (3)
C52A0.057 (4)0.028 (4)0.038 (4)0.005 (4)0.008 (4)0.006 (3)
C53A0.058 (4)0.023 (4)0.037 (5)0.002 (3)0.018 (4)0.004 (4)
N52A0.046 (3)0.024 (3)0.038 (3)0.004 (3)0.019 (3)0.002 (3)
C54A0.045 (5)0.031 (6)0.061 (7)0.011 (5)0.022 (5)0.001 (6)
B10.048 (3)0.035 (3)0.035 (3)0.009 (2)0.012 (2)0.008 (2)
B20.048 (3)0.047 (3)0.038 (3)0.020 (3)0.000 (2)0.008 (2)
F110.088 (5)0.055 (4)0.036 (2)0.014 (3)0.028 (3)0.001 (2)
F120.156 (8)0.055 (4)0.076 (4)0.055 (5)0.031 (5)0.030 (3)
F130.086 (3)0.069 (5)0.080 (4)0.019 (3)0.047 (3)0.007 (4)
F140.092 (4)0.062 (3)0.069 (3)0.012 (3)0.018 (3)0.005 (3)
F11A0.089 (5)0.057 (4)0.048 (3)0.009 (4)0.029 (3)0.005 (3)
F12A0.136 (10)0.067 (8)0.085 (8)0.051 (8)0.008 (8)0.020 (7)
F13A0.082 (5)0.074 (6)0.084 (5)0.010 (5)0.048 (4)0.015 (6)
F14A0.096 (4)0.063 (4)0.077 (4)0.004 (4)0.024 (3)0.009 (4)
F210.074 (4)0.061 (4)0.048 (4)0.041 (3)0.012 (3)0.016 (3)
F220.061 (3)0.055 (2)0.059 (3)0.008 (2)0.020 (3)0.004 (3)
F230.056 (3)0.048 (3)0.060 (3)0.007 (2)0.007 (2)0.015 (2)
F240.074 (3)0.072 (4)0.048 (3)0.007 (3)0.000 (3)0.000 (3)
F21A0.071 (7)0.059 (7)0.052 (8)0.038 (7)0.010 (7)0.018 (7)
F22A0.066 (4)0.065 (4)0.054 (4)0.012 (3)0.003 (4)0.007 (4)
F23A0.061 (4)0.050 (4)0.056 (4)0.011 (3)0.009 (3)0.011 (3)
F24A0.070 (4)0.063 (4)0.058 (4)0.006 (3)0.004 (3)0.003 (3)
Geometric parameters (Å, º) top
Cu1—S12.2590 (10)C34—H34C0.9800
Cu1—S22.2997 (10)S5—C511.684 (6)
Cu1—S32.3423 (10)S5—C51A1.735 (10)
Cu1—S42.4162 (10)C51—N521.312 (8)
Cu1—Cu2i2.9074 (8)C51—N511.352 (8)
Cu2—S52.2696 (11)N51—C521.458 (8)
Cu2—S12.3179 (11)N51—H51A0.8800
Cu2—S3ii2.4364 (11)C52—C531.507 (11)
Cu2—S2ii2.5338 (11)C52—H52A0.9900
S1—C111.723 (4)C52—H52B0.9900
C11—N121.319 (5)C53—N521.484 (9)
C11—N111.333 (5)C53—H53A0.9900
N11—C121.471 (6)C53—H53B0.9900
N11—H11A0.8800N52—C541.445 (9)
C12—C131.512 (8)C54—H54A0.9800
C12—H12A0.9900C54—H54B0.9800
C12—H12B0.9900C54—H54C0.9800
C13—N121.477 (6)C51A—N52A1.312 (11)
C13—H13A0.9900C51A—N51A1.348 (12)
C13—H13B0.9900N51A—C52A1.477 (11)
N12—C141.442 (6)N51A—H51B0.8800
C14—H14A0.9800C52A—C53A1.505 (14)
C14—H14B0.9800C52A—H52C0.9900
C14—H14C0.9800C52A—H52D0.9900
S2—C211.706 (4)C53A—N52A1.481 (12)
C21—N221.317 (5)C53A—H53C0.9900
C21—N211.373 (5)C53A—H53D0.9900
N21—C221.482 (5)N52A—C54A1.434 (12)
N21—S41.669 (3)C54A—H54D0.9800
C22—C231.516 (6)C54A—H54E0.9800
C22—H22A0.9900C54A—H54F0.9800
C22—H22B0.9900B1—F11A1.323 (12)
C23—N221.475 (5)B1—F121.347 (9)
C23—H23A0.9900B1—F131.358 (9)
C23—H23B0.9900B1—F12A1.365 (13)
N22—C241.450 (5)B1—F141.374 (8)
C24—H24A0.9800B1—F13A1.387 (13)
C24—H24B0.9800B1—F111.411 (8)
C24—H24C0.9800B1—F14A1.419 (12)
S3—C311.699 (4)B2—F21A1.349 (13)
C31—N321.312 (5)B2—F241.374 (8)
C31—N311.381 (5)B2—F211.387 (8)
N31—C321.484 (5)B2—F24A1.388 (13)
N31—S41.678 (3)B2—F221.390 (8)
C32—C331.524 (6)B2—F23A1.400 (12)
C32—H32A0.9900B2—F22A1.400 (13)
C32—H32B0.9900B2—F231.403 (8)
C33—N321.464 (6)F11—F11A0.512 (15)
C33—H33A0.9900F13—F13A0.514 (17)
C33—H33B0.9900F14—F14A0.758 (14)
N32—C341.442 (5)F22—F22A0.554 (15)
C34—H34A0.9800F23—F23A0.626 (15)
C34—H34B0.9800F24—F24A0.571 (15)
S1—Cu1—S2131.86 (4)C51—N51—H51A124.0
S1—Cu1—S3105.12 (4)C52—N51—H51A124.0
S2—Cu1—S3110.79 (4)N51—C52—C53102.5 (6)
S1—Cu1—S4120.66 (4)N51—C52—H52A111.3
S2—Cu1—S490.89 (4)C53—C52—H52A111.3
S3—Cu1—S489.72 (4)N51—C52—H52B111.3
S1—Cu1—Cu2i142.97 (3)C53—C52—H52B111.3
S2—Cu1—Cu2i56.80 (3)H52A—C52—H52B109.2
S3—Cu1—Cu2i54.01 (3)N52—C53—C52103.9 (6)
S4—Cu1—Cu2i91.89 (3)N52—C53—H53A111.0
S5—Cu2—S1122.65 (4)C52—C53—H53A111.0
S5—Cu2—S3ii109.15 (4)N52—C53—H53B111.0
S1—Cu2—S3ii102.24 (4)C52—C53—H53B111.0
S5—Cu2—S2ii105.31 (4)H53A—C53—H53B109.0
S1—Cu2—S2ii114.68 (4)C51—N52—C54127.5 (6)
S3ii—Cu2—S2ii100.47 (4)C51—N52—C53110.9 (6)
S5—Cu2—Cu1ii118.66 (3)C54—N52—C53121.6 (6)
S1—Cu2—Cu1ii118.48 (3)N52—C54—H54A109.5
S3ii—Cu2—Cu1ii51.07 (3)N52—C54—H54B109.5
S2ii—Cu2—Cu1ii49.42 (3)H54A—C54—H54B109.5
C11—S1—Cu1111.11 (13)N52—C54—H54C109.5
C11—S1—Cu297.47 (13)H54A—C54—H54C109.5
Cu1—S1—Cu295.46 (4)H54B—C54—H54C109.5
N12—C11—N11110.7 (4)N52A—C51A—N51A110.0 (9)
N12—C11—S1124.6 (3)N52A—C51A—S5126.0 (8)
N11—C11—S1124.7 (3)N51A—C51A—S5124.0 (8)
C11—N11—C12111.3 (4)C51A—N51A—C52A111.7 (9)
C11—N11—H11A124.4C51A—N51A—H51B124.2
C12—N11—H11A124.4C52A—N51A—H51B124.2
N11—C12—C13101.8 (4)N51A—C52A—C53A102.0 (9)
N11—C12—H12A111.4N51A—C52A—H52C111.4
C13—C12—H12A111.4C53A—C52A—H52C111.4
N11—C12—H12B111.4N51A—C52A—H52D111.4
C13—C12—H12B111.4C53A—C52A—H52D111.4
H12A—C12—H12B109.3H52C—C52A—H52D109.2
N12—C13—C12103.1 (4)N52A—C53A—C52A103.9 (9)
N12—C13—H13A111.1N52A—C53A—H53C111.0
C12—C13—H13A111.1C52A—C53A—H53C111.0
N12—C13—H13B111.1N52A—C53A—H53D111.0
C12—C13—H13B111.1C52A—C53A—H53D111.0
H13A—C13—H13B109.1H53C—C53A—H53D109.0
C11—N12—C14126.9 (4)C51A—N52A—C54A126.8 (10)
C11—N12—C13110.5 (4)C51A—N52A—C53A111.4 (9)
C14—N12—C13121.0 (4)C54A—N52A—C53A120.8 (10)
N12—C14—H14A109.5N52A—C54A—H54D109.5
N12—C14—H14B109.5N52A—C54A—H54E109.5
H14A—C14—H14B109.5H54D—C54A—H54E109.5
N12—C14—H14C109.5N52A—C54A—H54F109.5
H14A—C14—H14C109.5H54D—C54A—H54F109.5
H14B—C14—H14C109.5H54E—C54A—H54F109.5
C21—S2—Cu199.67 (12)F11A—B1—F12118.7 (12)
C21—S2—Cu2i95.24 (13)F11A—B1—F13117.0 (11)
Cu1—S2—Cu2i73.78 (3)F12—B1—F13110.2 (8)
N22—C21—N21109.4 (3)F11A—B1—F12A112.1 (13)
N22—C21—S2125.4 (3)F12—B1—F12A13 (2)
N21—C21—S2125.2 (3)F13—B1—F12A122.3 (16)
C21—N21—C22109.7 (3)F11A—B1—F1487.1 (8)
C21—N21—S4127.0 (3)F12—B1—F14111.5 (9)
C22—N21—S4122.9 (3)F13—B1—F14109.8 (6)
N21—C22—C23101.3 (3)F12A—B1—F14100.8 (15)
N21—C22—H22A111.5F11A—B1—F13A113.2 (11)
C23—C22—H22A111.5F12—B1—F13A97.0 (14)
N21—C22—H22B111.5F13—B1—F13A21.6 (7)
C23—C22—H22B111.5F12A—B1—F13A110.1 (13)
H22A—C22—H22B109.3F14—B1—F13A131.3 (8)
N22—C23—C22102.1 (3)F11A—B1—F1121.3 (7)
N22—C23—H23A111.4F12—B1—F11110.4 (8)
C22—C23—H23A111.4F13—B1—F11106.5 (7)
N22—C23—H23B111.4F12A—B1—F11108.5 (15)
C22—C23—H23B111.4F14—B1—F11108.3 (5)
H23A—C23—H23B109.2F13A—B1—F1196.6 (10)
C21—N22—C24125.7 (4)F11A—B1—F14A111.8 (9)
C21—N22—C23111.5 (3)F12—B1—F14A112.1 (11)
C24—N22—C23120.6 (3)F13—B1—F14A81.0 (8)
N22—C24—H24A109.5F12A—B1—F14A107.1 (13)
N22—C24—H24B109.5F14—B1—F14A31.4 (6)
H24A—C24—H24B109.5F13A—B1—F14A101.9 (8)
N22—C24—H24C109.5F11—B1—F14A130.7 (8)
H24A—C24—H24C109.5F21A—B2—F24106.4 (15)
H24B—C24—H24C109.5F21A—B2—F215 (2)
C31—S3—Cu199.03 (13)F24—B2—F21109.0 (7)
C31—S3—Cu2i98.92 (12)F21A—B2—F24A111.4 (14)
Cu1—S3—Cu2i74.92 (3)F24—B2—F24A23.9 (6)
N32—C31—N31110.6 (3)F21—B2—F24A111.7 (12)
N32—C31—S3124.0 (3)F21A—B2—F22106.2 (16)
N31—C31—S3125.4 (3)F24—B2—F22109.4 (5)
C31—N31—C32110.0 (3)F21—B2—F22109.2 (8)
C31—N31—S4124.0 (3)F24A—B2—F22126.6 (8)
C32—N31—S4120.7 (3)F21A—B2—F23A111.6 (13)
N31—C32—C33103.0 (3)F24—B2—F23A131.2 (9)
N31—C32—H32A111.2F21—B2—F23A106.9 (11)
C33—C32—H32A111.2F24A—B2—F23A110.6 (9)
N31—C32—H32B111.2F22—B2—F23A88.2 (8)
C33—C32—H32B111.2F21A—B2—F22A111.1 (14)
H32A—C32—H32B109.1F24—B2—F22A86.8 (8)
N32—C33—C32104.1 (3)F21—B2—F22A115.7 (12)
N32—C33—H33A110.9F24A—B2—F22A105.7 (9)
C32—C33—H33A110.9F22—B2—F22A22.9 (6)
N32—C33—H33B110.9F23A—B2—F22A106.1 (9)
C32—C33—H33B110.9F21A—B2—F23113.6 (15)
H33A—C33—H33B109.0F24—B2—F23109.8 (6)
C31—N32—C34125.9 (4)F21—B2—F23108.1 (7)
C31—N32—C33112.3 (3)F24A—B2—F2386.9 (8)
C34—N32—C33121.8 (4)F22—B2—F23111.3 (5)
N32—C34—H34A109.5F23A—B2—F2325.8 (6)
N32—C34—H34B109.5F22A—B2—F23124.5 (9)
H34A—C34—H34B109.5F11A—F11—B169.6 (17)
N32—C34—H34C109.5F13A—F13—B182 (2)
H34A—C34—H34C109.5F14A—F14—B177.5 (11)
H34B—C34—H34C109.5F11—F11A—B189.1 (19)
N21—S4—N31105.82 (16)F13—F13A—B176.0 (19)
N21—S4—Cu197.21 (12)F14—F14A—B171.0 (10)
N31—S4—Cu198.47 (11)F22A—F22—B279.6 (16)
C51—S5—Cu2120.6 (2)F23A—F23—B276.8 (13)
C51A—S5—Cu2101.0 (3)F24A—F24—B279.4 (15)
N52—C51—N51110.3 (6)F22—F22A—B277.5 (16)
N52—C51—S5130.6 (5)F23—F23A—B277.3 (13)
N51—C51—S5119.1 (5)F24—F24A—B276.7 (16)
C51—N51—C52112.0 (6)
Cu1—S1—C11—N12177.0 (3)N51A—C51A—N52A—C53A0 (2)
Cu2—S1—C11—N1278.2 (4)S5—C51A—N52A—C53A177.9 (16)
Cu1—S1—C11—N111.3 (4)C52A—C53A—N52A—C51A6 (2)
Cu2—S1—C11—N11100.1 (4)C52A—C53A—N52A—C54A175.4 (15)
N12—C11—N11—C126.4 (5)F12—B1—F11—F11A117 (3)
S1—C11—N11—C12172.1 (3)F13—B1—F11—F11A123 (3)
C11—N11—C12—C1314.2 (5)F12A—B1—F11—F11A104 (3)
N11—C12—C13—N1215.6 (5)F14—B1—F11—F11A5 (3)
N11—C11—N12—C14170.6 (5)F13A—B1—F11—F11A143 (3)
S1—C11—N12—C1410.9 (7)F14A—B1—F11—F11A31 (4)
N11—C11—N12—C134.8 (5)F11A—B1—F13—F13A85 (4)
S1—C11—N12—C13176.6 (3)F12—B1—F13—F13A55 (4)
C12—C13—N12—C1113.4 (5)F12A—B1—F13—F13A60 (4)
C12—C13—N12—C14179.9 (5)F14—B1—F13—F13A178 (3)
Cu1—S2—C21—N22177.1 (3)F11—B1—F13—F13A65 (4)
Cu2i—S2—C21—N22108.5 (3)F14A—B1—F13—F13A165 (4)
Cu1—S2—C21—N211.6 (3)F11A—B1—F14—F14A142.8 (17)
Cu2i—S2—C21—N2172.8 (3)F12—B1—F14—F14A97.4 (17)
N22—C21—N21—C229.8 (4)F13—B1—F14—F14A25.0 (17)
S2—C21—N21—C22171.3 (3)F12A—B1—F14—F14A105.2 (19)
N22—C21—N21—S4177.5 (3)F13A—B1—F14—F14A24 (2)
S2—C21—N21—S41.5 (5)F11—B1—F14—F14A141.0 (15)
C21—N21—C22—C2321.3 (4)F12—B1—F11A—F1172 (3)
S4—N21—C22—C23165.6 (3)F13—B1—F11A—F1164 (3)
N21—C22—C23—N2223.3 (4)F12A—B1—F11A—F1184 (3)
N21—C21—N22—C24169.8 (4)F14—B1—F11A—F11175 (3)
S2—C21—N22—C249.2 (6)F13A—B1—F11A—F1141 (3)
N21—C21—N22—C237.0 (5)F14A—B1—F11A—F11155 (3)
S2—C21—N22—C23171.9 (3)F11A—B1—F13A—F13105 (4)
C22—C23—N22—C2120.0 (5)F12—B1—F13A—F13129 (4)
C22—C23—N22—C24176.3 (4)F12A—B1—F13A—F13128 (4)
Cu1—S3—C31—N32164.1 (3)F14—B1—F13A—F133 (4)
Cu2i—S3—C31—N32119.9 (3)F11—B1—F13A—F13119 (3)
Cu1—S3—C31—N3116.4 (3)F14A—B1—F13A—F1315 (4)
Cu2i—S3—C31—N3159.6 (3)F11A—B1—F14A—F1440.6 (18)
N32—C31—N31—C321.5 (4)F12—B1—F14A—F1495.5 (16)
S3—C31—N31—C32178.9 (3)F13—B1—F14A—F14156.2 (16)
N32—C31—N31—S4155.7 (3)F12A—B1—F14A—F1483 (2)
S3—C31—N31—S424.7 (4)F13A—B1—F14A—F14161.8 (16)
C31—N31—C32—C331.9 (4)F11—B1—F14A—F1452.1 (19)
S4—N31—C32—C33157.0 (3)F21A—B2—F22—F22A106 (3)
N31—C32—C33—N321.5 (4)F24—B2—F22—F22A8 (3)
N31—C31—N32—C34178.6 (4)F21—B2—F22—F22A111 (3)
S3—C31—N32—C341.8 (6)F24A—B2—F22—F22A27 (3)
N31—C31—N32—C330.5 (5)F23A—B2—F22—F22A142 (2)
S3—C31—N32—C33180.0 (3)F23—B2—F22—F22A130 (2)
C32—C33—N32—C310.8 (5)F21A—B2—F23—F23A91 (2)
C32—C33—N32—C34177.5 (4)F24—B2—F23—F23A149.7 (19)
C21—N21—S4—N31101.3 (3)F21—B2—F23—F23A91 (2)
C22—N21—S4—N3170.6 (3)F24A—B2—F23—F23A156.7 (19)
C21—N21—S4—Cu10.3 (3)F22—B2—F23—F23A28 (2)
C22—N21—S4—Cu1171.6 (3)F22A—B2—F23—F23A50 (2)
C31—N31—S4—N21115.8 (3)F21A—B2—F24—F24A106 (3)
C32—N31—S4—N2192.7 (3)F21—B2—F24—F24A101 (3)
C31—N31—S4—Cu115.7 (3)F22—B2—F24—F24A140 (2)
C32—N31—S4—Cu1167.3 (3)F23A—B2—F24—F24A34 (3)
Cu2—S5—C51—N5217.6 (8)F22A—B2—F24—F24A143 (2)
Cu2—S5—C51—N51160.5 (5)F23—B2—F24—F24A17 (2)
N52—C51—N51—C523.0 (10)F21A—B2—F22A—F2282 (3)
S5—C51—N51—C52178.5 (6)F24—B2—F22A—F22172 (2)
C51—N51—C52—C536.1 (11)F21—B2—F22A—F2278 (3)
N51—C52—C53—N526.5 (12)F24A—B2—F22A—F22157 (2)
N51—C51—N52—C54176.3 (7)F23A—B2—F22A—F2240 (3)
S5—C51—N52—C545.5 (12)F23—B2—F22A—F2260 (3)
N51—C51—N52—C531.7 (11)F21A—B2—F23A—F23100 (2)
S5—C51—N52—C53176.6 (9)F24—B2—F23A—F2339 (2)
C52—C53—N52—C515.4 (13)F21—B2—F23A—F2396.8 (19)
C52—C53—N52—C54172.7 (8)F24A—B2—F23A—F2325 (2)
Cu2—S5—C51A—N52A169.1 (11)F22—B2—F23A—F23153.6 (18)
Cu2—S5—C51A—N51A13.0 (12)F22A—B2—F23A—F23139.1 (19)
N52A—C51A—N51A—C52A6.4 (15)F21A—B2—F24A—F2482 (3)
S5—C51A—N51A—C52A171.7 (9)F21—B2—F24A—F2488 (2)
C51A—N51A—C52A—C53A9.5 (19)F22—B2—F24A—F2449 (3)
N51A—C52A—C53A—N52A9 (2)F23A—B2—F24A—F24153 (2)
N51A—C51A—N52A—C54A168.7 (13)F22A—B2—F24A—F2439 (2)
S5—C51A—N52A—C54A13 (2)F23—B2—F24A—F24164 (2)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11A···F120.882.122.764 (11)129
N11—H11A···F12A0.882.152.74 (2)124
N51—H51A···F230.882.202.995 (12)150
C13—H13B···F12iii0.992.633.329 (17)128
C13—H13B···F12Aiii0.992.593.22 (3)122
C14—H14B···F14Aiii0.982.593.331 (14)133
C14—H14C···F11Aiv0.982.643.119 (17)111
C22—H22B···F24v0.992.633.293 (8)125
C22—H22B···F24Av0.992.613.395 (17)136
C23—H23A···F24v0.992.563.164 (8)119
C23—H23B···F22vi0.992.633.453 (8)140
C24—H24C···F130.982.583.321 (11)133
C32—H32A···F210.992.333.259 (15)155
C32—H32A···F21A0.992.463.38 (3)155
C32—H32A···F23A0.992.613.287 (16)126
C32—H32B···F24i0.992.563.499 (9)158
C32—H32B···F24Ai0.992.593.569 (18)170
C33—H33A···F21i0.992.333.182 (12)144
C33—H33A···F21Ai0.992.313.16 (3)145
C34—H34A···F13Ai0.982.623.154 (18)114
C34—H34B···F22vii0.982.603.247 (8)123
C53—H53B···F13viii0.992.363.269 (16)152
C54—H54A···S10.982.893.835 (8)162
C54—H54C···F11i0.982.393.335 (10)162
C53A—H53D···F22vii0.992.523.49 (3)167
C54A—H54D···F230.982.092.933 (16)144
C54A—H54D···F23A0.982.603.43 (2)143
C54A—H54E···F23Avii0.982.473.36 (2)152
Symmetry codes: (i) x, y+1/2, z1/2; (iii) x, y+1, z+1; (iv) x, y1/2, z+3/2; (v) x+1, y+1/2, z+3/2; (vi) x+1, y+1, z+1; (vii) x+1, y, z+1; (viii) x, y1, z.
 

Footnotes

Deceased April 13, 2021.

Acknowledgements

TSL thanks both the Guru Nanak Dev University, for an Honorary Professorship, and Neetika Dogra, a post-graduate student, for preliminary assistance.

Funding information

JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAulakh, J. K., Lobana, T. S., Sood, H., Arora, D. S., Garcia-Santos, I., Hundal, G., Kaur, M., Smolenski, V. A. & Jasinski, J. P. (2017). Dalton Trans. 46, 1324–1339.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationCox, P. J., Aslanidis, P. & Karagiannidis, P. (2000). Polyhedron, 19, 1615–1620.  Web of Science CSD CrossRef CAS Google Scholar
First citationDavies, S. C., Durrant, M. C., Hughes, D. L., Leidenberger, K., Stapper, C. & Richards, R. L. (1997). J. Chem. Soc. Dalton Trans. pp. 2409–2418.  CSD CrossRef Web of Science Google Scholar
First citationFerrari, M. B., Fava, G. G. & Pelizzi, C. (1981). Inorg. Chim. Acta, 55, 167–169.  CSD CrossRef CAS Web of Science Google Scholar
First citationGarcía-Vázquez, J. A., Romero, J. & Sousa, A. (1999). Coord. Chem. Rev. 193–195, 691–745.  Google Scholar
First citationGarcía-Vázquez, J. A., Sousa-Pedrares, A., Carabel, M., Romero, J. & Sousa, A. (2005). Polyhedron, 24, 2043–2054.  Google Scholar
First citationHuheey, J. E., Keiter, E. A. & Keiter, R. L. (1993). Inorganic Chemistry: Principles of Structure And Reactivity, 4th ed. New York: Harper Collins College Publishers.  Google Scholar
First citationJeannin, S., Jeannin, Y. & Lavigne, G. (1979). Inorg. Chem. 18, 3528–3535.  CSD CrossRef CAS Web of Science Google Scholar
First citationKadooka, M. M., Warner, L. G. & Seff, K. (1976). J. Am. Chem. Soc. 98, 7569–7578.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationKaragiannidis, P., Aslanidis, P., Kessissoglou, D. P., Krebs, B. & Dartmann, M. (1989). Inorg. Chim. Acta, 156, 47–56.  CSD CrossRef CAS Web of Science Google Scholar
First citationLi, D., Shi, W. & Hou, L. (2005). Inorg. Chem. 44, 3907–3913.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLobana, T. S. (2021). Coord. Chem. Rev. 441, 213884.  Web of Science CrossRef Google Scholar
First citationLobana, T. S., Bawa, G. & Butcher, R. J. (2008). Inorg. Chem. 47, 1488–1495.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLobana, T. S., Bawa, G., Castineiras, A. & Butcher, R. J. (2007). Inorg. Chem. Commun. 10, 506–509.  Web of Science CSD CrossRef CAS Google Scholar
First citationLobana, T. S., Bhatia, P. K. & Tiekink, E. R. T. (1989). J. Chem. Soc. Dalton Trans. pp. 749–751.  CSD CrossRef Web of Science Google Scholar
First citationLobana, T. S. & Castineiras, A. (2002). Polyhedron, 21, 1603–1611.  Web of Science CSD CrossRef CAS Google Scholar
First citationLobana, T. S., Kumari, P., Butcher, R. J., Akitsu, T., Aritake, Y., Perles, J., Fernandez, F. J. & Vega, M. C. (2012). J. Organomet. Chem. 701, 17–26.  Web of Science CSD CrossRef CAS Google Scholar
First citationLobana, T. S., Sharma, R., Bermejo, E. & Castineiras, A. (2003). Inorg. Chem. 42, 7728–7730.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLobana, T. S., Sharma, R., Hundal, G. & Butcher, R. J. (2006). Inorg. Chem. 45, 9402–9409.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLobana, T. S., Sharma, R., Sharma, R., Mehra, S., Castineiras, A. & Turner, P. (2005). Inorg. Chem. 44, 1914–1921.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLobana, T. S., Sultana, R., Castineiras, A. & Butcher, R. J. (2009). Inorg. Chim. Acta, 362, 5265–5270.  Web of Science CSD CrossRef CAS Google Scholar
First citationLobana, T. S., Sultana, R., Hundal, G. & Butcher, R. J. (2010). Dalton Trans. 39, 7870–7872.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMentzafos, D., Terzis, A., Karagiannidis, P. & Aslanidis, P. (1989). Acta Cryst. C45, 54–56.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOkuniewski, A., Rosiak, D., Chojnacki, J. & Becker, B. (2015). Polyhedron, 90, 47–57.  Web of Science CSD CrossRef CAS Google Scholar
First citationRaper, E. S. (1994). Coord. Chem. Rev. 129, 91–156.  CrossRef CAS Web of Science Google Scholar
First citationRaper, E. S. (1996). Coord. Chem. Rev. 153, 199–255.  CrossRef CAS Web of Science Google Scholar
First citationRaper, E. S. (1997). Coord. Chem. Rev. 165, 475–567.  CrossRef CAS Web of Science Google Scholar
First citationRigaku (2019). CrysAlis PRO. Rigaku Americas Corporation, The Woodlands, TX, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSimmons, C. J., Lundeen, M. & Seff, K. (1979). Inorg. Chem. 18, 3444–3452.  CSD CrossRef CAS Web of Science Google Scholar
First citationStergioudis, G. A., Kokkou, S. C., Rentzeperis, P. J. & Karagiannidis, P. (1987). Acta Cryst. C43, 1685–1688.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSultana, R., Lobana, T. S., Sharma, R., Castineiras, A., Akitsu, T., Yahagi, K. & Aritake, Y. (2010). Inorg. Chim. Acta, 363, 3432–3441.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds