research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Isolation and structural comparison of RuII-dnp complexes [dnp = 2,6-bis­­(1,8-naphthyridin-2-yl)pyridine] with axially or equatorially coordinating NCS ligands

crossmark logo

aDepartment of Natural Sciences and Informatics, Fukushima University, 1, Kanayagawa, Fukushima 960-1296, Japan, and bGraduate School of Science and Engineering, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan
*Correspondence e-mail: ttakase@sss.fukushima-u.ac.jp

Edited by M. Weil, Vienna University of Technology, Austria (Received 28 March 2022; accepted 26 April 2022; online 6 May 2022)

The mol­ecular and crystal structures of two ruthenium(II) complexes, viz. cis-aqua­[2,6-bis­(1,8-naphthyridin-2-yl)pyridine-κ3N,N′,N′′](thio­cyanato-κN)(tri­phen­yl­phosphine-κP)ruthenium(II) hexa­fluorido­phosphate–acetone–water (1/0.5/1), [Ru(NCS)(C21H13N5)(C18H15P)(H2O)]PF6·0.5C3H6O·H2O (I) and trans-[2,6-bis­(1,8-naphthyridin-2-yl)pyridine-κ3'N,N′,N′′]bis­(pyridine-κN)(thiocyanato-κN)ruthenium(II) thio­cyanate, [Ru(NCS)(C21H13N5)(C5H5N)2]NCS (II), with an N-coordinating thio­cyanato group and a tridentate polypyridyl supporting ligand, are reported. The RuII atom in each of the cationic complexes adopts a distorted octa­hedral coordination sphere, defined by an N atom of the thio­cyanato ligand, three N atoms from the tridentate polypyridyl ligand, and an O and P atom in (I) or two pyridine-N atoms in (II) derived from monodentate ligands. The thio­cyanato ligand in (I) coordinates in an axial manner to the {Ru-dnp} unit [dnp = 2,6-bis­(1,8-naphthyridin-2-yl)pyridine], whereas it coordinates in an equatorial manner in (II). In the crystal structure of compound (I), intra­molecular C—H⋯O, C—H⋯N and O—H⋯N hydrogen bonds as well as ππ contacts are present, in addition to inter­molecular C—H⋯F, C—H⋯O and O—H⋯O hydrogen bonds. In the crystal structure of compound (II), intra­molecular C—H⋯N hydrogen bonds are observed along with inter­molecular C—H⋯N and C—H⋯S hydrogen bonds as well as a ππ inter­action.

1. Chemical context

Polypyridyl­ruthenium(II) complexes play essential roles in key technologies, such as solar energy conversion (Lewis, 2007[Lewis, N. S. (2007). Science, 315, 798-801.]). In particular, RuII complexes with thio­cyanate ion(s) are inter­esting as dye mol­ecules for dye-sensitized solar cells (Hagfeldt et al., 2010[Hagfeldt, A., Boschloo, G., Sun, L. C., Kloo, L. & Pettersson, H. (2010). Chem. Rev. 110, 6595-6663.]). As a ligand, the thio­cyanate group can bond to metals through the terminal nitro­gen or sulfur atoms since it is ambidentate. Linkage isomeric pairs can be distinguished using spectroscopic techniques when they exist as a mixture (Brewster et al., 2011[Brewster, T. P., Ding, W., Schley, N. D., Hazari, N., Batista, V. S. & Crabtree, R. H. (2011). Inorg. Chem. 50, 11938-11946.]; Vandenburgh et al., 2008[Vandenburgh, L., Buck, M. R. & Freedman, D. A. (2008). Inorg. Chem. 47, 9134-9136.]). However, identifying the coordinating atom (N or S) by structural analysis is more reliable when only one isomer exists.

A series of RuII complexes containing a supporting ligand, dnp [dnp = 2,6-bis­(1,8-naphthyridin-2-yl)pyridine], were synthesized to extend the π-conjugated system of the terpyridine framework (which is a typical tridentate polypyridyl ligand) and their properties and reactivities reported (Oyama et al., 2013[Oyama, D., Yamanaka, T., Fukuda, A. & Takase, T. (2013). Chem. Lett. 42, 1554-1555.], 2017[Oyama, D., Yamanaka, T., Abe, R. & Takase, T. (2017). J. Organomet. Chem. 830, 167-174.]). In particular, some reactivities such as ligand substitutions are significantly different in an identical coordination framework when the axial ligands are tri­phenyl­phosphine (PPh3) or pyridine (py) (Oyama et al., 2013[Oyama, D., Yamanaka, T., Fukuda, A. & Takase, T. (2013). Chem. Lett. 42, 1554-1555.], 2017[Oyama, D., Yamanaka, T., Abe, R. & Takase, T. (2017). J. Organomet. Chem. 830, 167-174.]).

[Scheme 1]

During the current study, the reaction of precursors with different axially bound ligands with the NCS ion resulted in the formation of the cationic complexes cis(PPh3,H2O)[Ru(dnp)(PPh3)(NCS-κN)(H2O)+ [(I) as the water/acetone (1/0.5) solvated PF6 salt] with an axially bound NCS ligand and trans(py)-[Ru(dnp)(py)2(NCS-κN)]+ [(II) as the NCS salt] with an equatorially bound NCS ligand. Their crystal structures are reported and compared in this communication.

2. Structural commentary

Figs. 1[link] and 2[link] present the mol­ecular structures of compounds (I)[link] and (II)[link], respectively. The RuII atoms in (I)[link] and (II)[link] exhibit distorted octa­hedral coordination environments, similar to those reported in other structurally related complexes containing the tridentate dnp ligand (Koizumi & Tanaka, 2005[Koizumi, T. & Tanaka, K. (2005). Inorg. Chim. Acta, 358, 1999-2004.]; Oyama et al., 2013[Oyama, D., Yamanaka, T., Fukuda, A. & Takase, T. (2013). Chem. Lett. 42, 1554-1555.], 2017[Oyama, D., Yamanaka, T., Abe, R. & Takase, T. (2017). J. Organomet. Chem. 830, 167-174.]). As listed in Tables 1[link] and 2[link], compounds (I)[link] and (II)[link] exhibit intra­molecular hydrogen bonds between aromatic C—H groups of PPh3 or pyridine and the non-coordinating N atoms in dnp or the monodentate ligands [OH2 in (I)[link] or NCS in (II)]. In (I)[link], the inter­atomic distances between O1 and N1 [2.678 (4) Å] and O1 and N5 [2.983 (4) Å] are considerably short. Although the H atoms of the coordinating water mol­ecule (O1) have not been localized, these short distances indicate that intra­molecular hydrogen bonds of medium strength are present between the aqua ligand and the N atoms of the dnp ligand. Furthermore, in (I)[link] intra­molecular ππ inter­actions [Cg1⋯Cg2 = 3.640 (4) Å and Cg3⋯Cg4 = 3.749 (3) Å where Cg1, Cg2, Cg3, and Cg4 are the centroids of the N1/C1–C5, C29–C34, N3/C9–C13, and C35–C40 rings, respectively] are present, with a slippage of 1.2 Å for Cg1⋯Cg2. It is inferred from these results that both ππ inter­actions are not exactly cofacial. The slippage angle β is 19.2° for Cg1⋯Cg2 and 16.2° for Cg3⋯Cg4.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H6⋯F5i 0.93 2.45 3.369 (6) 170
C15—H9⋯F2 0.93 2.45 3.345 (6) 162
C21—H13⋯O2 0.93 2.59 3.213 (14) 124
C24—H14⋯O1 0.93 2.43 3.210 (5) 141
C24—H14⋯N5 0.93 2.43 3.144 (6) 134
C25—H15⋯F4ii 0.93 2.54 3.347 (7) 145
C41—H30⋯F1ii 0.96 2.40 3.26 (3) 150
Symmetry codes: (i) [-x, -y, -z+2]; (ii) [-x+1, -y+1, -z+2].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H8⋯N9i 0.95 2.43 3.305 (5) 152
C20—H12⋯S2ii 0.95 2.73 3.629 (3) 159
C22—H14⋯N1 0.95 2.51 3.391 (3) 154
C27—H19⋯S2 0.95 2.76 3.479 (3) 133
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
Mol­ecular structure of the complex cation in (I)[link], with atom labels and displacement ellipsoids for non-H atoms drawn at the 50% probability level.
[Figure 2]
Figure 2
Mol­ecular structure of the complex cation in (II)[link], with atom labels and displacement ellipsoids for non-H atoms drawn at the 50% probability level.

As mentioned above, it is important to distinguish the coordination atom of the thio­cyanato ligand because of its ambidentate coordination mode. Both S- and N-coordinated RuII complexes containing polypyridines have been determined structurally, but the N-atom coordination is overwhelmingly dominant. These complexes can be distinguished crystallographically by the Ru—X—C bond angle (X = N or S) through the coordinating atom. For example, the Ru—S—C bond angles (for S-ligating examples) are 104–106° (Brewster et al., 2011[Brewster, T. P., Ding, W., Schley, N. D., Hazari, N., Batista, V. S. & Crabtree, R. H. (2011). Inorg. Chem. 50, 11938-11946.]; Homanen et al., 1996[Homanen, P., Haukka, M., Pakkanen, T. A., Pursiainen, J. & Laitinen, R. H. (1996). Organometallics, 15, 4081-4084.]; Vandenburgh et al., 2008[Vandenburgh, L., Buck, M. R. & Freedman, D. A. (2008). Inorg. Chem. 47, 9134-9136.]), whereas the Ru—N—C bond angles (for N-ligating examples) are in the range 159–179° (Brewster et al., 2011[Brewster, T. P., Ding, W., Schley, N. D., Hazari, N., Batista, V. S. & Crabtree, R. H. (2011). Inorg. Chem. 50, 11938-11946.]; Cadranel et al., 2012[Cadranel, A., Alborés, P., Yamazaki, S., Kleiman, V. D. & Baraldo, L. M. (2012). Dalton Trans. 41, 5343-5350.]; Shklover et al., 2002[Shklover, V., Nazeeruddin, Md. K., Grätzel, M. & Ovchinnikov, Yu. E. (2002). Appl. Organomet. Chem. 16, 635-642.]; Vandenburgh et al., 2008[Vandenburgh, L., Buck, M. R. & Freedman, D. A. (2008). Inorg. Chem. 47, 9134-9136.]; Zakeeruddin et al., 1997[Zakeeruddin, S. M., Nazeeruddin, M. K., Pechy, P., Rotzinger, F. P., Humphry-Baker, R., Kalyanasundaram, K., Grätzel, M., Shklover, V. & Haibach, T. (1997). Inorg. Chem. 36, 5937-5946.]). In the present cases, the Ru—X—C bond angles of compounds (I)[link] and (II)[link] are 175.6 (3) and 166.03 (19)°, respectively, indicating that the RuII atoms in both compounds exhibit an N-coordination.

The bond length between the RuII atom and the nitro­gen atom in (I)[link] [2.105 (3) Å] is slightly longer than that of (II)[link] [2.069 (2) Å]. In contrast, the N≡C bond length in (I)[link] [1.116 (5) Å] is shorter than that of (II)[link] [1.160 (3) Å]. The terminal C—S distance [(I): 1.637 (4) Å, (II)[link]: 1.647 (2) Å] and the N—C—S bond angle [(I): 178.2 (4)°, (II)[link]: 179.0 (2)°] are similar. These data are in agreement with those of the related polypyridyl complexes containing N-bound {RuII–NCS}+ moieties (Brewster et al., 2011[Brewster, T. P., Ding, W., Schley, N. D., Hazari, N., Batista, V. S. & Crabtree, R. H. (2011). Inorg. Chem. 50, 11938-11946.]; Cadranel et al., 2012[Cadranel, A., Alborés, P., Yamazaki, S., Kleiman, V. D. & Baraldo, L. M. (2012). Dalton Trans. 41, 5343-5350.]; Shklover et al., 2002[Shklover, V., Nazeeruddin, Md. K., Grätzel, M. & Ovchinnikov, Yu. E. (2002). Appl. Organomet. Chem. 16, 635-642.]; Vandenburgh et al., 2008[Vandenburgh, L., Buck, M. R. & Freedman, D. A. (2008). Inorg. Chem. 47, 9134-9136.]; Zakeeruddin et al., 1997[Zakeeruddin, S. M., Nazeeruddin, M. K., Pechy, P., Rotzinger, F. P., Humphry-Baker, R., Kalyanasundaram, K., Grätzel, M., Shklover, V. & Haibach, T. (1997). Inorg. Chem. 36, 5937-5946.]).

3. Supra­molecular features

Additional solvent mol­ecules are incorporated in the crystal structure of (I)[link], i.e., a water mol­ecule and a disordered acetone mol­ecule (occupancy 0.5) per formula unit. Apart from Coulombic forces, there are weak C—H⋯F hydrogen bonds between the complex cation and the PF6 anion (Table 1[link]) and the acetone mol­ecule [O1⋯O2 = 2.87 (1) Å]. These inter­actions contribute to the stabilization of the packing and formation of a three-dimensional supra­molecular structure (Fig. 3[link]).

[Figure 3]
Figure 3
The crystal packing of compound (I)[link] with hydrogen bonds (blue; for numerical details, see Table 1[link]) and ππ contacts (green) shown as dashed lines. Ring centroids are shown as red spheres.

In the crystal structure of (II)[link], weak C—H⋯X (X = N or S) hydrogen-bonding inter­actions exist between the complex cation and the NCS anion (Table 2[link]) along with the intra­molecular hydrogen bonds. Additional ππ inter­actions [Cg5⋯Cg5i = 4.0093 (15) Å; Cg5 is the centroid of the N5/C17–C21 ring; symmetry code: (i) 1 − x, 1 − y, 1 − z] with a centroid slippage of 1.263 Å for Cg5⋯Cg5i are present. The slippage angle β is 18.4° for Cg5⋯Cg5i. These inter­actions lead to the formation of a three-dimensional network structure (Fig. 4[link]).

[Figure 4]
Figure 4
The crystal packing of compound (II)[link] with hydrogen bonds (blue; for numerical details, see Table 2[link]) and ππ contacts (green) shown as dashed lines. Ring centroids are shown as red spheres.

4. Database survey

Some crystal structures of RuII complexes with both N-coordinating thio­cyanato and tridentate terpyridine derivative ligands (tpyR) of the form [Ru(tpyR)(NCS)L2]n (R = various substituents, L = pyridyl or NCS ligands) have been reported, as revealed by a search of the Cambridge Crystal Structure Database (CSD, version 5.42, update September 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), including refcodes NAMCEL (Brewster et al., 2011[Brewster, T. P., Ding, W., Schley, N. D., Hazari, N., Batista, V. S. & Crabtree, R. H. (2011). Inorg. Chem. 50, 11938-11946.]), CAQRAP (Cadranel et al., 2012[Cadranel, A., Alborés, P., Yamazaki, S., Kleiman, V. D. & Baraldo, L. M. (2012). Dalton Trans. 41, 5343-5350.]), MIXGOP01 (Shklover et al., 2002[Shklover, V., Nazeeruddin, Md. K., Grätzel, M. & Ovchinnikov, Yu. E. (2002). Appl. Organomet. Chem. 16, 635-642.]), and NUMBOM (Zakeeruddin et al., 1997[Zakeeruddin, S. M., Nazeeruddin, M. K., Pechy, P., Rotzinger, F. P., Humphry-Baker, R., Kalyanasundaram, K., Grätzel, M., Shklover, V. & Haibach, T. (1997). Inorg. Chem. 36, 5937-5946.]). In contrast, for NAMCIP (Brewster et al., 2011[Brewster, T. P., Ding, W., Schley, N. D., Hazari, N., Batista, V. S. & Crabtree, R. H. (2011). Inorg. Chem. 50, 11938-11946.]), TORMIW (Homanen et al., 1996[Homanen, P., Haukka, M., Pakkanen, T. A., Pursiainen, J. & Laitinen, R. H. (1996). Organometallics, 15, 4081-4084.]) and EGAYUH (Vandenburgh et al., 2008[Vandenburgh, L., Buck, M. R. & Freedman, D. A. (2008). Inorg. Chem. 47, 9134-9136.]) S-coordinating thio­cyanato ligands in polypyridyl­ruthenium(II) complexes were reported.

5. Synthesis and crystallization

A methano­lic solution (40 ml) containing [Ru(dnp)(PPh3)2(H2O)](PF6)2 (50 mg, 0.039 mmol) (Oyama et al., 2013[Oyama, D., Yamanaka, T., Fukuda, A. & Takase, T. (2013). Chem. Lett. 42, 1554-1555.]) and 1.1 eq. of NaSCN (10 mg) was heated under reflux for 30 min. The volume was reduced to 5 ml, and a saturated solution of KPF6 was added. The resulting solid was filtered and washed sequentially with water and diethyl ether. The yield was 32 mg (69%). Crystals suitable for use in X-ray diffraction (XRD) studies were grown by vapor diffusion of diethyl ether into an acetone solution of (I)[link]. Fourier transform infrared (FTIR) spectroscopy using a KBr pellet showed νCN at 2130 cm−1.

For the synthesis of compound (II)[link], a methano­lic solution (20 ml) containing [Ru(dnp)(py)2(H2O)](PF6)2 (25 mg, 0.028 mmol) (Oyama et al., 2013[Oyama, D., Yamanaka, T., Fukuda, A. & Takase, T. (2013). Chem. Lett. 42, 1554-1555.]) and 2.2 eq. of NaSCN (5 mg) was heated under reflux for 30 min. The reaction mixture was reduced to 3 ml. The addition of diethyl ether (5 ml) to the solution resulted in the formation of a precipitate of (II)[link]. The crude product was purified by column chromatography on Al2O3 (eluent: acetone). The yield was 9 mg (40%). Single crystals suitable for XRD studies were obtained by recrystallization from acetone. FTIR using a KBr pellet showed νCN at 2121 (ligand) and 2055 cm−1 (counter-ion).

6. Refinement

Table 3[link] lists the crystal data, data collection, and structure refinement details. All hydrogen atoms were placed at calculated positions [C—H = 0.93 or 0.96 Å in (I)[link], C—H = 0.95 Å in (II)] and refined using a riding model with Uiso(H) = 1.2Ueq(C). The acetone solvent mol­ecule in (I)[link] (C41–C43, O2) is disordered over an inversion center and was refined with an occupancy of 0.5. The oxygen atom of the solvent water mol­ecule (O3) was refined with an isotropic displacement parameter. H atoms of the coordinating and the solvate water mol­ecules could not be localized from difference-Fourier maps. Therefore, they are not part of the model but part of the formula.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula [Ru(NCS)(C21H13N5)(C18H15P)(H2O)]PF6·0.5C3H6O·H2O [Ru(NCS)(C21H13N5)(C5H5N)2]NCS
Mr 966.84 710.79
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/c
Temperature (K) 296 93
a, b, c (Å) 9.3699 (2), 15.3897 (4), 16.0267 (4) 12.6556 (10), 14.0986 (7), 17.4421 (14)
α, β, γ (°) 92.6869 (9), 105.1544 (8), 100.0149 (7) 90, 108.535 (3), 90
V3) 2186.29 (10) 2950.7 (4)
Z 2 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.55 0.72
Crystal size (mm) 0.20 × 0.15 × 0.10 0.25 × 0.15 × 0.05
 
Data collection
Diffractometer Rigaku R-AXIS RAPID Rigaku Saturn724
Absorption correction Multi-scan (ABSCOR; Rigaku, 1995[Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.750, 0.947 0.927, 0.965
No. of measured, independent and observed [F2 > 2.0σ(F2)] reflections 34567, 9994, 8406 30135, 6758, 6058
Rint 0.025 0.029
(sin θ/λ)max−1) 0.649 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.169, 1.08 0.036, 0.091, 1.10
No. of reflections 9994 6758
No. of parameters 554 406
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.93, −0.64 1.13, −0.81
Computer programs: RAPID-AUTO (Rigaku, 2006[Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]), CrystalClear (Rigaku, 2015[Rigaku (2015). CrystalClear. Rigaku Corporation, Tokyo, Japan.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), CrystalStructure (Rigaku, 2019[Rigaku (2019). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: RAPID-AUTO (Rigaku, 2006) for (I); CrystalClear (Rigaku, 2015) for (II). Cell refinement: RAPID-AUTO (Rigaku, 2006) for (I); CrystalClear (Rigaku, 2015) for (II). Data reduction: RAPID-AUTO (Rigaku, 2006) for (I); CrystalClear (Rigaku, 2015) for (II). Program(s) used to solve structure: SIR97 (Altomare et al., 1999) for (I); SIR92 (Altomare et al., 1993) for (II). For both structures, program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2020), ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: CrystalStructure (Rigaku, 2019), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

cis-Aqua[2,6-bis(1,8-naphthyridin-2-yl)pyridine-κ3N,N',N''](thiocyanato-κN)(triphenylphosphine-κP)ruthenium(II) hexafluoridophosphate–acetone–water (1/0.5/1) (I) top
Crystal data top
[Ru(NCS)(C21H13N5)(C18H15P)(H2O)]PF6·0.5C3H6O·H2OZ = 2
Mr = 966.84F(000) = 980.00
Triclinic, P1Dx = 1.469 Mg m3
a = 9.3699 (2) ÅMo Kα radiation, λ = 0.71075 Å
b = 15.3897 (4) ÅCell parameters from 29007 reflections
c = 16.0267 (4) Åθ = 3.0–27.5°
α = 92.6869 (9)°µ = 0.55 mm1
β = 105.1544 (8)°T = 296 K
γ = 100.0149 (7)°Block, purple
V = 2186.29 (10) Å30.20 × 0.15 × 0.10 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
8406 reflections with F2 > 2.0σ(F2)
Detector resolution: 10.000 pixels mm-1Rint = 0.025
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
h = 1112
Tmin = 0.750, Tmax = 0.947k = 1919
34567 measured reflectionsl = 2020
9994 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.1102P)2 + 1.1681P]
where P = (Fo2 + 2Fc2)/3
9994 reflections(Δ/σ)max = 0.001
554 parametersΔρmax = 1.93 e Å3
0 restraintsΔρmin = 0.64 e Å3
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ru10.20144 (3)0.23092 (2)0.71810 (2)0.03823 (11)
S10.54439 (14)0.03779 (10)0.68390 (13)0.0978 (5)
P10.02612 (10)0.31990 (6)0.72697 (6)0.0440 (2)
P20.28893 (14)0.24126 (7)1.22614 (7)0.0588 (3)
F10.3298 (6)0.3196 (2)1.3006 (2)0.1247 (15)
F20.2484 (4)0.16220 (19)1.15150 (19)0.0894 (9)
F30.2730 (5)0.3108 (2)1.1558 (2)0.1043 (11)
F40.4608 (4)0.2498 (3)1.2296 (3)0.1163 (13)
F50.3020 (4)0.1719 (2)1.2970 (2)0.0948 (10)
F60.1186 (4)0.2322 (3)1.2222 (3)0.1110 (12)
O10.2872 (3)0.31914 (19)0.63264 (18)0.0589 (7)
O30.4347 (17)0.0497 (10)0.1027 (10)0.344 (7)*
N10.0916 (4)0.2097 (2)0.5019 (2)0.0575 (8)
N20.0397 (3)0.14350 (19)0.62044 (18)0.0410 (6)
N30.1213 (3)0.14515 (18)0.78696 (18)0.0415 (6)
N40.3425 (3)0.27857 (19)0.84298 (19)0.0435 (6)
N50.4997 (4)0.3928 (2)0.8046 (2)0.0578 (8)
N60.3590 (3)0.1529 (2)0.7042 (2)0.0508 (7)
C10.0597 (6)0.2151 (3)0.4174 (3)0.0699 (13)
H10.1199320.2588750.3969050.084*
C20.0596 (6)0.1587 (3)0.3564 (3)0.0666 (11)
H20.0781080.1656300.2974220.080*
C30.1474 (5)0.0940 (3)0.3851 (3)0.0626 (10)
H30.2275180.0559660.3460820.075*
C40.1156 (4)0.0850 (3)0.4755 (2)0.0504 (8)
C50.0039 (4)0.1462 (2)0.5316 (2)0.0462 (7)
C60.1963 (4)0.0176 (3)0.5117 (3)0.0562 (9)
H40.2759440.0236860.4760100.067*
C70.1565 (4)0.0136 (2)0.5989 (3)0.0505 (8)
H50.2076020.0311130.6232940.061*
C80.0377 (4)0.0773 (2)0.6521 (2)0.0428 (7)
C90.0081 (4)0.0765 (2)0.7467 (2)0.0459 (7)
C100.0498 (5)0.0139 (3)0.7941 (3)0.0644 (11)
H60.1282170.0325990.7665390.077*
C110.0111 (6)0.0216 (3)0.8841 (3)0.0817 (16)
H70.0267230.0197900.9172680.098*
C120.1283 (6)0.0913 (3)0.9237 (3)0.0760 (14)
H80.1701090.0967730.9835150.091*
C130.1822 (4)0.1523 (3)0.8740 (2)0.0516 (8)
C140.3075 (4)0.2288 (3)0.9051 (2)0.0511 (8)
C150.3825 (5)0.2494 (3)0.9935 (3)0.0679 (12)
H90.3546400.2139871.0342530.081*
C160.4958 (6)0.3212 (3)1.0194 (3)0.0720 (13)
H100.5435410.3364581.0781270.086*
C170.5405 (5)0.3718 (3)0.9579 (3)0.0579 (10)
C180.4624 (4)0.3486 (2)0.8687 (2)0.0467 (7)
C190.6592 (6)0.4471 (3)0.9779 (3)0.0787 (14)
H110.7132600.4651861.0353440.094*
C200.6933 (6)0.4921 (3)0.9140 (4)0.0817 (15)
H120.7694600.5422620.9266040.098*
C210.6114 (5)0.4620 (3)0.8266 (4)0.0720 (13)
H130.6379330.4927360.7826420.086*
C220.4359 (4)0.1070 (3)0.6970 (3)0.0542 (9)
C230.0862 (5)0.4408 (2)0.7478 (3)0.0543 (9)
C240.2210 (5)0.4838 (3)0.7372 (3)0.0607 (10)
H140.2869080.4513520.7220330.073*
C250.2587 (7)0.5761 (3)0.7493 (4)0.0816 (15)
H150.3504390.6046670.7427000.098*
C260.1643 (9)0.6245 (3)0.7705 (4)0.099 (2)
H160.1896770.6860320.7772750.119*
C270.0335 (10)0.5829 (4)0.7817 (5)0.115 (2)
H170.0312130.6163750.7967920.137*
C280.0074 (8)0.4916 (4)0.7713 (5)0.0931 (18)
H180.0981550.4642520.7802300.112*
C290.1240 (5)0.3099 (3)0.6248 (3)0.0638 (11)
C300.2398 (7)0.2426 (5)0.5962 (5)0.105 (2)
H190.2539120.1984790.6325810.126*
C310.3409 (10)0.2352 (6)0.5141 (6)0.139 (3)
H200.4257290.1900550.4994320.167*
C320.3191 (12)0.2902 (7)0.4576 (5)0.151 (4)
H210.3872000.2850530.4029520.181*
C330.1974 (12)0.3538 (9)0.4799 (5)0.174 (5)
H220.1772570.3922070.4395000.209*
C340.0982 (8)0.3640 (7)0.5639 (4)0.135 (3)
H230.0129440.4089000.5779560.162*
C350.0579 (4)0.2952 (3)0.8167 (2)0.0499 (8)
C360.0264 (6)0.3277 (4)0.8996 (3)0.0752 (13)
H240.1181880.3660550.9075130.090*
C370.0212 (7)0.3050 (5)0.9710 (3)0.0932 (18)
H250.0388460.3281081.0260880.112*
C380.1535 (7)0.2498 (4)0.9626 (4)0.0909 (17)
H260.1846220.2335711.0111890.109*
C390.2415 (8)0.2180 (6)0.8801 (5)0.131 (3)
H270.3345390.1810650.8728390.158*
C400.1934 (7)0.2401 (5)0.8078 (4)0.111 (3)
H280.2539210.2173110.7526460.133*
O20.5573 (15)0.4320 (11)0.6201 (8)0.162 (6)0.5
C410.688 (3)0.5339 (16)0.5506 (16)0.156 (8)0.5
H290.6635650.5614160.4975450.187*0.5
H300.7230790.5786610.5989650.187*0.5
H310.7659160.5008220.5499280.187*0.5
C420.554 (2)0.4738 (11)0.5589 (12)0.124 (5)0.5
C430.414 (4)0.454 (3)0.480 (2)0.28 (3)0.5
H320.4292530.4933420.4369330.335*0.5
H330.3990370.3939420.4563800.335*0.5
H340.3275010.4634940.4980520.335*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.03849 (16)0.04036 (16)0.03340 (15)0.00234 (10)0.01317 (10)0.00263 (10)
S10.0506 (6)0.0878 (9)0.1451 (14)0.0143 (6)0.0182 (8)0.0414 (9)
P10.0419 (5)0.0462 (5)0.0400 (4)0.0036 (3)0.0091 (3)0.0047 (3)
P20.0728 (7)0.0505 (5)0.0496 (5)0.0018 (5)0.0197 (5)0.0032 (4)
F10.203 (5)0.074 (2)0.084 (2)0.002 (2)0.041 (3)0.0228 (17)
F20.124 (3)0.0687 (17)0.0681 (17)0.0153 (16)0.0381 (17)0.0117 (14)
F30.154 (3)0.077 (2)0.084 (2)0.015 (2)0.038 (2)0.0341 (17)
F40.070 (2)0.112 (3)0.161 (4)0.0060 (18)0.036 (2)0.012 (3)
F50.131 (3)0.0773 (19)0.0681 (18)0.0050 (18)0.0212 (18)0.0231 (15)
F60.085 (2)0.138 (3)0.128 (3)0.028 (2)0.052 (2)0.033 (3)
O10.0666 (17)0.0576 (16)0.0482 (15)0.0099 (13)0.0226 (13)0.0040 (12)
N10.072 (2)0.0569 (19)0.0380 (15)0.0108 (15)0.0213 (15)0.0055 (13)
N20.0405 (14)0.0444 (14)0.0352 (13)0.0002 (11)0.0125 (11)0.0058 (11)
N30.0465 (15)0.0401 (14)0.0353 (13)0.0000 (11)0.0129 (11)0.0014 (11)
N40.0427 (15)0.0453 (15)0.0388 (14)0.0008 (11)0.0108 (11)0.0025 (11)
N50.0460 (17)0.0592 (19)0.059 (2)0.0063 (14)0.0095 (14)0.0053 (15)
N60.0459 (16)0.0557 (17)0.0500 (17)0.0058 (13)0.0163 (13)0.0058 (14)
C10.089 (3)0.073 (3)0.040 (2)0.013 (2)0.024 (2)0.0009 (18)
C20.081 (3)0.076 (3)0.0365 (19)0.002 (2)0.0151 (19)0.0025 (18)
C30.061 (2)0.076 (3)0.0411 (19)0.001 (2)0.0089 (17)0.0093 (18)
C40.0473 (19)0.060 (2)0.0391 (17)0.0008 (16)0.0126 (15)0.0078 (15)
C50.0494 (19)0.0501 (18)0.0373 (16)0.0006 (14)0.0166 (14)0.0062 (14)
C60.049 (2)0.059 (2)0.051 (2)0.0070 (16)0.0116 (16)0.0128 (17)
C70.0495 (19)0.0469 (18)0.051 (2)0.0047 (15)0.0185 (16)0.0067 (15)
C80.0438 (17)0.0411 (16)0.0413 (17)0.0008 (13)0.0151 (14)0.0034 (13)
C90.0486 (18)0.0439 (17)0.0422 (17)0.0035 (14)0.0165 (14)0.0022 (14)
C100.075 (3)0.057 (2)0.051 (2)0.0184 (19)0.0198 (19)0.0019 (18)
C110.100 (4)0.079 (3)0.050 (2)0.032 (3)0.023 (2)0.012 (2)
C120.095 (3)0.079 (3)0.039 (2)0.024 (3)0.017 (2)0.0074 (19)
C130.059 (2)0.055 (2)0.0360 (17)0.0048 (16)0.0148 (15)0.0002 (14)
C140.059 (2)0.055 (2)0.0346 (16)0.0044 (16)0.0138 (15)0.0005 (14)
C150.072 (3)0.079 (3)0.0388 (19)0.012 (2)0.0099 (18)0.0017 (19)
C160.078 (3)0.080 (3)0.039 (2)0.007 (2)0.0000 (19)0.0096 (19)
C170.051 (2)0.059 (2)0.051 (2)0.0018 (17)0.0020 (16)0.0105 (17)
C180.0393 (17)0.0478 (18)0.0475 (19)0.0015 (13)0.0085 (14)0.0042 (14)
C190.073 (3)0.070 (3)0.067 (3)0.014 (2)0.006 (2)0.010 (2)
C200.064 (3)0.068 (3)0.086 (4)0.023 (2)0.001 (2)0.002 (3)
C210.056 (2)0.064 (3)0.083 (3)0.0117 (19)0.011 (2)0.011 (2)
C220.0392 (18)0.060 (2)0.057 (2)0.0043 (16)0.0135 (16)0.0141 (17)
C230.067 (2)0.0447 (19)0.049 (2)0.0117 (17)0.0121 (17)0.0022 (15)
C240.062 (2)0.050 (2)0.059 (2)0.0021 (17)0.0035 (19)0.0030 (17)
C250.093 (4)0.053 (3)0.076 (3)0.009 (2)0.001 (3)0.008 (2)
C260.156 (6)0.043 (2)0.083 (4)0.019 (3)0.006 (4)0.004 (2)
C270.155 (7)0.066 (4)0.138 (6)0.049 (4)0.050 (6)0.001 (4)
C280.104 (4)0.066 (3)0.128 (5)0.029 (3)0.058 (4)0.004 (3)
C290.060 (2)0.075 (3)0.048 (2)0.018 (2)0.0011 (18)0.0085 (19)
C300.086 (4)0.104 (5)0.091 (4)0.004 (3)0.019 (3)0.006 (3)
C310.107 (6)0.145 (7)0.109 (6)0.002 (5)0.044 (5)0.021 (5)
C320.164 (9)0.178 (9)0.077 (5)0.075 (7)0.047 (5)0.031 (5)
C330.148 (8)0.297 (15)0.056 (4)0.035 (9)0.007 (5)0.036 (6)
C340.092 (5)0.244 (10)0.055 (3)0.015 (5)0.003 (3)0.036 (5)
C350.0435 (18)0.055 (2)0.0495 (19)0.0011 (14)0.0166 (15)0.0077 (15)
C360.068 (3)0.095 (3)0.050 (2)0.015 (2)0.017 (2)0.008 (2)
C370.089 (4)0.129 (5)0.048 (3)0.010 (3)0.018 (2)0.010 (3)
C380.099 (4)0.107 (4)0.074 (3)0.005 (3)0.053 (3)0.001 (3)
C390.113 (5)0.165 (7)0.101 (5)0.066 (5)0.071 (4)0.037 (5)
C400.088 (4)0.151 (6)0.067 (3)0.060 (4)0.034 (3)0.032 (3)
O20.146 (10)0.222 (15)0.095 (8)0.035 (10)0.035 (7)0.026 (9)
C410.21 (3)0.121 (15)0.144 (19)0.027 (17)0.064 (18)0.014 (14)
C420.158 (16)0.094 (10)0.107 (12)0.008 (10)0.040 (11)0.005 (9)
C430.26 (5)0.30 (5)0.18 (3)0.06 (3)0.07 (3)0.11 (3)
Geometric parameters (Å, º) top
Ru1—N31.936 (3)C16—C171.388 (7)
Ru1—N22.100 (3)C16—H100.9300
Ru1—N42.105 (3)C17—C191.419 (6)
Ru1—N62.105 (3)C17—C181.421 (5)
Ru1—O12.176 (3)C19—C201.338 (8)
Ru1—P12.3409 (9)C19—H110.9300
S1—C221.637 (4)C20—C211.421 (7)
P1—C351.836 (4)C20—H120.9300
P1—C231.836 (4)C21—H130.9300
P1—C291.839 (4)C23—C241.377 (6)
P2—F61.562 (4)C23—C281.380 (7)
P2—F11.577 (3)C24—C251.393 (6)
P2—F41.579 (4)C24—H140.9300
P2—F21.588 (3)C25—C261.346 (9)
P2—F31.588 (3)C25—H150.9300
P2—F51.590 (3)C26—C271.340 (10)
N1—C11.319 (5)C26—H160.9300
N1—C51.350 (5)C27—C281.381 (8)
N2—C81.345 (4)C27—H170.9300
N2—C51.379 (4)C28—H180.9300
N3—C131.353 (4)C29—C301.328 (7)
N3—C91.359 (4)C29—C341.355 (9)
N4—C141.356 (5)C30—C311.392 (9)
N4—C181.374 (4)C30—H190.9300
N5—C211.318 (5)C31—C321.298 (13)
N5—C181.346 (5)C31—H200.9300
N6—C221.116 (5)C32—C331.324 (15)
C1—C21.403 (6)C32—H210.9300
C1—H10.9300C33—C341.406 (9)
C2—C31.355 (6)C33—H220.9300
C2—H20.9300C34—H230.9300
C3—C41.419 (5)C35—C401.368 (6)
C3—H30.9300C35—C361.376 (6)
C4—C51.407 (5)C36—C371.370 (7)
C4—C61.413 (6)C36—H240.9300
C6—C71.356 (6)C37—C381.346 (8)
C6—H40.9300C37—H250.9300
C7—C81.404 (5)C38—C391.377 (9)
C7—H50.9300C38—H260.9300
C8—C91.465 (5)C39—C401.385 (8)
C9—C101.379 (5)C39—H270.9300
C10—C111.397 (6)C40—H280.9300
C10—H60.9300O2—C421.19 (2)
C11—C121.386 (6)C41—C421.47 (3)
C11—H70.9300C41—H290.9600
C12—C131.374 (5)C41—H300.9600
C12—H80.9300C41—H310.9600
C13—C141.474 (5)C42—C431.53 (3)
C14—C151.400 (5)C43—H320.9600
C15—C161.356 (6)C43—H330.9600
C15—H90.9300C43—H340.9600
N3—Ru1—N279.15 (11)C16—C15—H9120.2
N3—Ru1—N479.47 (11)C14—C15—H9120.2
N2—Ru1—N4158.24 (12)C15—C16—C17119.8 (4)
N3—Ru1—N690.12 (13)C15—C16—H10120.1
N2—Ru1—N687.81 (11)C17—C16—H10120.1
N4—Ru1—N688.21 (12)C16—C17—C19124.3 (4)
N3—Ru1—O1175.58 (11)C16—C17—C18118.8 (4)
N2—Ru1—O196.97 (11)C19—C17—C18116.8 (4)
N4—Ru1—O1104.23 (11)N5—C18—N4115.9 (3)
N6—Ru1—O187.59 (13)N5—C18—C17122.9 (3)
N3—Ru1—P192.21 (9)N4—C18—C17121.2 (3)
N2—Ru1—P191.23 (8)C20—C19—C17119.9 (4)
N4—Ru1—P193.61 (8)C20—C19—H11120.0
N6—Ru1—P1177.27 (9)C17—C19—H11120.0
O1—Ru1—P189.98 (9)C19—C20—C21119.0 (4)
C35—P1—C23100.93 (18)C19—C20—H12120.5
C35—P1—C29109.5 (2)C21—C20—H12120.5
C23—P1—C29101.0 (2)N5—C21—C20123.5 (5)
C35—P1—Ru1112.05 (13)N5—C21—H13118.3
C23—P1—Ru1120.14 (14)C20—C21—H13118.3
C29—P1—Ru1112.01 (15)N6—C22—S1178.2 (4)
F6—P2—F189.9 (3)C24—C23—C28118.1 (4)
F6—P2—F4179.6 (3)C24—C23—P1121.8 (3)
F1—P2—F490.6 (3)C28—C23—P1120.1 (4)
F6—P2—F290.3 (2)C23—C24—C25119.9 (5)
F1—P2—F2179.7 (3)C23—C24—H14120.0
F4—P2—F289.3 (2)C25—C24—H14120.0
F6—P2—F390.5 (2)C26—C25—C24121.1 (6)
F1—P2—F389.7 (2)C26—C25—H15119.5
F4—P2—F389.5 (2)C24—C25—H15119.5
F2—P2—F390.49 (19)C27—C26—C25119.3 (5)
F6—P2—F588.4 (2)C27—C26—H16120.4
F1—P2—F589.9 (2)C25—C26—H16120.4
F4—P2—F591.5 (2)C26—C27—C28121.5 (6)
F2—P2—F589.90 (18)C26—C27—H17119.2
F3—P2—F5178.9 (2)C28—C27—H17119.2
C1—N1—C5118.0 (3)C23—C28—C27120.1 (6)
C8—N2—C5118.0 (3)C23—C28—H18119.9
C8—N2—Ru1112.9 (2)C27—C28—H18119.9
C5—N2—Ru1129.1 (2)C30—C29—C34114.8 (6)
C13—N3—C9120.8 (3)C30—C29—P1126.1 (5)
C13—N3—Ru1119.8 (2)C34—C29—P1117.3 (4)
C9—N3—Ru1119.4 (2)C29—C30—C31122.9 (7)
C14—N4—C18117.6 (3)C29—C30—H19118.6
C14—N4—Ru1112.3 (2)C31—C30—H19118.6
C18—N4—Ru1130.1 (2)C32—C31—C30121.3 (8)
C21—N5—C18117.8 (4)C32—C31—H20119.4
C22—N6—Ru1175.6 (3)C30—C31—H20119.4
N1—C1—C2123.9 (4)C31—C32—C33118.3 (7)
N1—C1—H1118.0C31—C32—H21120.9
C2—C1—H1118.0C33—C32—H21120.9
C3—C2—C1118.7 (4)C32—C33—C34120.8 (10)
C3—C2—H2120.6C32—C33—H22119.6
C1—C2—H2120.6C34—C33—H22119.6
C2—C3—C4119.2 (4)C29—C34—C33121.4 (9)
C2—C3—H3120.4C29—C34—H23119.3
C4—C3—H3120.4C33—C34—H23119.3
C5—C4—C6118.6 (3)C40—C35—C36117.2 (4)
C5—C4—C3117.8 (4)C40—C35—P1124.4 (3)
C6—C4—C3123.6 (4)C36—C35—P1118.0 (3)
N1—C5—N2116.2 (3)C37—C36—C35121.8 (4)
N1—C5—C4122.3 (3)C37—C36—H24119.1
N2—C5—C4121.5 (3)C35—C36—H24119.1
C7—C6—C4119.4 (3)C38—C37—C36121.1 (5)
C7—C6—H4120.3C38—C37—H25119.4
C4—C6—H4120.3C36—C37—H25119.4
C6—C7—C8119.7 (3)C37—C38—C39118.1 (5)
C6—C7—H5120.1C37—C38—H26120.9
C8—C7—H5120.1C39—C38—H26120.9
N2—C8—C7122.7 (3)C38—C39—C40121.0 (5)
N2—C8—C9115.5 (3)C38—C39—H27119.5
C7—C8—C9121.8 (3)C40—C39—H27119.5
N3—C9—C10120.6 (3)C35—C40—C39120.6 (5)
N3—C9—C8113.0 (3)C35—C40—H28119.7
C10—C9—C8126.4 (3)C39—C40—H28119.7
C9—C10—C11118.9 (4)C42—C41—H29109.5
C9—C10—H6120.5C42—C41—H30109.5
C11—C10—H6120.5H29—C41—H30109.5
C12—C11—C10119.5 (4)C42—C41—H31109.5
C12—C11—H7120.2H29—C41—H31109.5
C10—C11—H7120.2H30—C41—H31109.5
C13—C12—C11119.6 (4)O2—C42—C41121 (2)
C13—C12—H8120.2O2—C42—C43120 (2)
C11—C12—H8120.2C41—C42—C43118 (2)
N3—C13—C12120.6 (3)C42—C43—H32109.5
N3—C13—C14112.9 (3)C42—C43—H33109.5
C12—C13—C14126.6 (3)H32—C43—H33109.5
N4—C14—C15122.6 (3)C42—C43—H34109.5
N4—C14—C13115.7 (3)H32—C43—H34109.5
C15—C14—C13121.7 (3)H33—C43—H34109.5
C16—C15—C14119.7 (4)
C5—N1—C1—C20.1 (8)C21—N5—C18—C171.8 (6)
N1—C1—C2—C30.7 (8)C14—N4—C18—N5175.8 (3)
C1—C2—C3—C40.3 (7)Ru1—N4—C18—N52.1 (5)
C2—C3—C4—C52.0 (7)C14—N4—C18—C174.3 (5)
C2—C3—C4—C6177.3 (4)Ru1—N4—C18—C17177.8 (3)
C1—N1—C5—N2179.2 (4)C16—C17—C18—N5178.7 (4)
C1—N1—C5—C41.9 (6)C19—C17—C18—N52.1 (6)
C8—N2—C5—N1175.2 (3)C16—C17—C18—N41.5 (6)
Ru1—N2—C5—N15.5 (5)C19—C17—C18—N4177.8 (4)
C8—N2—C5—C43.6 (5)C16—C17—C19—C20179.6 (5)
Ru1—N2—C5—C4175.6 (3)C18—C17—C19—C200.4 (8)
C6—C4—C5—N1176.5 (4)C17—C19—C20—C211.4 (9)
C3—C4—C5—N12.9 (6)C18—N5—C21—C200.2 (8)
C6—C4—C5—N22.3 (6)C19—C20—C21—N51.8 (9)
C3—C4—C5—N2178.3 (4)C35—P1—C23—C24140.2 (4)
C5—C4—C6—C70.2 (6)C29—P1—C23—C24107.1 (4)
C3—C4—C6—C7179.2 (4)Ru1—P1—C23—C2416.6 (4)
C4—C6—C7—C81.2 (6)C35—P1—C23—C2842.5 (5)
C5—N2—C8—C72.6 (5)C29—P1—C23—C2870.1 (5)
Ru1—N2—C8—C7176.8 (3)Ru1—P1—C23—C28166.2 (4)
C5—N2—C8—C9178.4 (3)C28—C23—C24—C250.7 (7)
Ru1—N2—C8—C92.2 (4)P1—C23—C24—C25176.6 (4)
C6—C7—C8—N20.2 (6)C23—C24—C25—C260.7 (7)
C6—C7—C8—C9179.2 (4)C24—C25—C26—C271.3 (9)
C13—N3—C9—C101.8 (6)C25—C26—C27—C280.5 (12)
Ru1—N3—C9—C10179.3 (3)C24—C23—C28—C271.4 (9)
C13—N3—C9—C8176.9 (3)P1—C23—C28—C27175.9 (6)
Ru1—N3—C9—C80.5 (4)C26—C27—C28—C230.9 (12)
N2—C8—C9—N31.2 (5)C35—P1—C29—C3048.5 (6)
C7—C8—C9—N3177.8 (3)C23—P1—C29—C30154.4 (6)
N2—C8—C9—C10177.4 (4)Ru1—P1—C29—C3076.5 (6)
C7—C8—C9—C103.6 (6)C35—P1—C29—C34147.9 (5)
N3—C9—C10—C110.9 (7)C23—P1—C29—C3442.0 (6)
C8—C9—C10—C11177.7 (5)Ru1—P1—C29—C3487.1 (6)
C9—C10—C11—C120.3 (9)C34—C29—C30—C319.3 (11)
C10—C11—C12—C130.5 (9)P1—C29—C30—C31173.3 (7)
C9—N3—C13—C121.6 (6)C29—C30—C31—C326.4 (15)
Ru1—N3—C13—C12179.0 (4)C30—C31—C32—C330.2 (17)
C9—N3—C13—C14177.5 (3)C31—C32—C33—C342.9 (18)
Ru1—N3—C13—C140.1 (5)C30—C29—C34—C336.4 (12)
C11—C12—C13—N30.4 (8)P1—C29—C34—C33171.9 (8)
C11—C12—C13—C14178.6 (5)C32—C33—C34—C290.5 (17)
C18—N4—C14—C154.0 (6)C23—P1—C35—C40134.2 (5)
Ru1—N4—C14—C15177.8 (4)C29—P1—C35—C4028.2 (6)
C18—N4—C14—C13177.5 (3)Ru1—P1—C35—C4096.7 (5)
Ru1—N4—C14—C130.7 (4)C23—P1—C35—C3651.9 (4)
N3—C13—C14—N40.6 (5)C29—P1—C35—C36157.9 (4)
C12—C13—C14—N4178.5 (5)Ru1—P1—C35—C3677.2 (4)
N3—C13—C14—C15177.9 (4)C40—C35—C36—C371.1 (9)
C12—C13—C14—C153.0 (8)P1—C35—C36—C37173.2 (5)
N4—C14—C15—C160.6 (8)C35—C36—C37—C380.1 (10)
C13—C14—C15—C16179.1 (5)C36—C37—C38—C391.3 (11)
C14—C15—C16—C172.4 (8)C37—C38—C39—C401.8 (13)
C15—C16—C17—C19178.9 (5)C36—C35—C40—C390.6 (11)
C15—C16—C17—C182.0 (8)P1—C35—C40—C39173.4 (7)
C21—N5—C18—N4178.1 (4)C38—C39—C40—C350.9 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H6···F5i0.932.453.369 (6)170
C15—H9···F20.932.453.345 (6)162
C21—H13···O20.932.593.213 (14)124
C24—H14···O10.932.433.210 (5)141
C24—H14···N50.932.433.144 (6)134
C25—H15···F4ii0.932.543.347 (7)145
C41—H30···F1ii0.962.403.26 (3)150
Symmetry codes: (i) x, y, z+2; (ii) x+1, y+1, z+2.
trans-[2,6-Bis(1,8-naphthyridin-2-yl)pyridine-κ3'N,N',N'']bis(pyridine-κN)(thiocyanato-κN)ruthenium(II) thiocyanate (II) top
Crystal data top
[Ru(NCS)(C21H13N5)(C5H5N)2]NCSF(000) = 1440.00
Mr = 710.79Dx = 1.600 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
a = 12.6556 (10) ÅCell parameters from 7649 reflections
b = 14.0986 (7) Åθ = 3.1–27.6°
c = 17.4421 (14) ŵ = 0.72 mm1
β = 108.535 (3)°T = 93 K
V = 2950.7 (4) Å3Platelet, purple
Z = 40.25 × 0.15 × 0.05 mm
Data collection top
Rigaku Saturn724
diffractometer
6058 reflections with F2 > 2.0σ(F2)
Detector resolution: 28.626 pixels mm-1Rint = 0.029
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
h = 1616
Tmin = 0.927, Tmax = 0.965k = 1818
30135 measured reflectionsl = 2221
6758 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0451P)2 + 2.9803P]
where P = (Fo2 + 2Fc2)/3
6758 reflections(Δ/σ)max = 0.001
406 parametersΔρmax = 1.13 e Å3
0 restraintsΔρmin = 0.81 e Å3
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.73332 (2)0.38197 (2)0.79490 (2)0.01220 (7)
S10.39862 (5)0.39265 (5)0.87218 (4)0.02286 (14)
S21.08750 (7)0.12965 (7)0.89031 (6)0.0466 (2)
N10.70294 (18)0.38857 (15)0.98054 (13)0.0213 (4)
N20.83872 (16)0.38102 (13)0.91797 (12)0.0155 (4)
N30.88229 (16)0.37934 (13)0.78244 (13)0.0161 (4)
N40.69378 (17)0.37739 (13)0.66605 (12)0.0155 (4)
N50.50056 (17)0.38259 (15)0.62868 (13)0.0195 (4)
N60.73064 (15)0.52961 (14)0.79703 (11)0.0144 (4)
N70.71689 (16)0.23463 (14)0.79725 (11)0.0148 (4)
N80.57797 (16)0.38875 (13)0.81029 (12)0.0150 (4)
N91.1118 (3)0.1261 (2)1.0511 (3)0.0605 (10)
C10.6735 (2)0.38898 (19)1.04670 (16)0.0250 (6)
H10.5966450.3951571.0409370.030*
C20.7502 (2)0.38073 (18)1.12584 (16)0.0257 (6)
H20.7250460.3817451.1716720.031*
C30.8603 (2)0.37134 (19)1.13490 (16)0.0263 (6)
H30.9132180.3652041.1873110.032*
C40.8955 (2)0.37077 (18)1.06568 (16)0.0222 (5)
C50.8121 (2)0.37965 (16)0.98896 (15)0.0170 (5)
C61.0075 (2)0.3633 (2)1.06873 (17)0.0302 (6)
H41.0645160.3551981.1191230.036*
C71.0338 (2)0.3677 (2)0.99887 (17)0.0287 (6)
H51.1093740.3639611.0002890.034*
C80.9484 (2)0.37788 (17)0.92474 (16)0.0192 (5)
C90.9741 (2)0.38180 (16)0.84863 (16)0.0189 (5)
C101.0804 (2)0.38683 (18)0.84086 (17)0.0236 (5)
H61.1445890.3884800.8875330.028*
C111.0912 (2)0.38939 (18)0.76456 (18)0.0257 (6)
H71.1629860.3944040.7585360.031*
C120.9974 (2)0.38464 (18)0.69684 (17)0.0236 (5)
H81.0041510.3850250.6441160.028*
C130.8932 (2)0.37929 (16)0.70748 (15)0.0181 (5)
C140.7866 (2)0.37476 (16)0.64229 (16)0.0192 (5)
C150.7840 (2)0.3661 (2)0.56132 (16)0.0258 (6)
H90.8513510.3656710.5482240.031*
C160.6846 (2)0.3583 (2)0.50232 (16)0.0284 (6)
H100.6814920.3497250.4476300.034*
C170.5856 (2)0.36317 (19)0.52286 (15)0.0228 (5)
C180.5922 (2)0.37458 (16)0.60530 (15)0.0176 (5)
C190.4790 (2)0.3594 (2)0.46440 (16)0.0307 (6)
H110.4715740.3504380.4089440.037*
C200.3871 (2)0.3686 (2)0.48793 (16)0.0288 (6)
H120.3144520.3670600.4495430.035*
C210.4027 (2)0.38040 (18)0.57117 (16)0.0225 (5)
H130.3380130.3873310.5871330.027*
C220.69873 (19)0.57334 (17)0.85510 (15)0.0179 (5)
H140.6843410.5356240.8958190.022*
C230.6862 (2)0.67017 (18)0.85773 (16)0.0228 (5)
H150.6643580.6983500.8998170.027*
C240.7058 (2)0.72600 (18)0.79841 (16)0.0254 (6)
H160.6963200.7928390.7985360.030*
C250.7396 (2)0.68249 (18)0.73875 (16)0.0239 (5)
H170.7541580.7191080.6974970.029*
C260.7518 (2)0.58469 (18)0.74030 (15)0.0189 (5)
H180.7759970.5552690.6997980.023*
C270.8032 (2)0.17690 (17)0.83344 (14)0.0174 (5)
H190.8752930.2039650.8556700.021*
C280.7914 (2)0.07944 (18)0.83963 (15)0.0206 (5)
H200.8542090.0409940.8656680.025*
C290.6872 (2)0.03930 (18)0.80747 (16)0.0236 (5)
H210.6771550.0272080.8105020.028*
C300.5974 (2)0.09807 (18)0.77057 (16)0.0215 (5)
H220.5246010.0722330.7487260.026*
C310.6145 (2)0.19431 (17)0.76586 (15)0.0183 (5)
H230.5526400.2337470.7397810.022*
C320.50337 (19)0.38985 (16)0.83534 (14)0.0156 (4)
C331.1013 (3)0.1275 (2)0.9913 (3)0.0385 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.01117 (10)0.01297 (10)0.01255 (10)0.00016 (6)0.00390 (7)0.00024 (7)
S10.0170 (3)0.0297 (3)0.0251 (3)0.0005 (2)0.0111 (2)0.0020 (3)
S20.0280 (4)0.0616 (6)0.0502 (5)0.0079 (4)0.0122 (4)0.0023 (4)
N10.0198 (10)0.0278 (11)0.0160 (10)0.0031 (8)0.0055 (8)0.0019 (8)
N20.0145 (9)0.0156 (9)0.0144 (10)0.0001 (7)0.0020 (8)0.0011 (7)
N30.0155 (9)0.0147 (9)0.0196 (10)0.0002 (7)0.0076 (8)0.0009 (8)
N40.0182 (9)0.0157 (9)0.0139 (9)0.0003 (7)0.0069 (8)0.0010 (7)
N50.0183 (10)0.0246 (11)0.0153 (10)0.0000 (8)0.0049 (8)0.0010 (8)
N60.0131 (9)0.0137 (9)0.0141 (9)0.0001 (7)0.0012 (7)0.0013 (7)
N70.0168 (9)0.0139 (9)0.0149 (9)0.0010 (7)0.0069 (8)0.0012 (7)
N80.0143 (9)0.0163 (9)0.0138 (9)0.0001 (7)0.0036 (7)0.0001 (7)
N90.074 (2)0.0450 (19)0.092 (3)0.0064 (16)0.068 (2)0.0125 (19)
C10.0267 (13)0.0310 (14)0.0201 (13)0.0053 (11)0.0112 (11)0.0029 (10)
C20.0354 (15)0.0266 (14)0.0170 (12)0.0003 (11)0.0107 (11)0.0011 (10)
C30.0320 (14)0.0269 (14)0.0150 (12)0.0016 (11)0.0005 (11)0.0023 (10)
C40.0236 (12)0.0209 (12)0.0176 (12)0.0002 (10)0.0003 (10)0.0013 (10)
C50.0189 (11)0.0148 (11)0.0163 (11)0.0001 (9)0.0042 (9)0.0007 (9)
C60.0203 (13)0.0416 (16)0.0218 (13)0.0003 (11)0.0031 (11)0.0040 (12)
C70.0169 (12)0.0390 (16)0.0260 (14)0.0010 (11)0.0009 (11)0.0041 (12)
C80.0144 (11)0.0178 (11)0.0236 (13)0.0003 (9)0.0036 (10)0.0015 (9)
C90.0152 (11)0.0172 (11)0.0236 (13)0.0000 (9)0.0054 (10)0.0011 (9)
C100.0158 (11)0.0237 (13)0.0310 (14)0.0001 (9)0.0070 (10)0.0003 (11)
C110.0168 (12)0.0256 (13)0.0387 (16)0.0012 (10)0.0145 (11)0.0020 (11)
C120.0221 (12)0.0245 (13)0.0297 (14)0.0003 (10)0.0163 (11)0.0012 (11)
C130.0197 (12)0.0174 (11)0.0202 (12)0.0012 (9)0.0105 (10)0.0010 (9)
C140.0197 (12)0.0167 (11)0.0231 (13)0.0015 (9)0.0094 (10)0.0000 (9)
C150.0268 (13)0.0329 (15)0.0223 (13)0.0019 (11)0.0142 (11)0.0023 (11)
C160.0318 (14)0.0399 (16)0.0173 (13)0.0023 (12)0.0128 (11)0.0005 (11)
C170.0263 (13)0.0281 (13)0.0145 (12)0.0015 (10)0.0073 (10)0.0023 (10)
C180.0200 (11)0.0161 (11)0.0168 (12)0.0008 (9)0.0058 (9)0.0011 (9)
C190.0356 (15)0.0422 (16)0.0135 (12)0.0007 (13)0.0068 (11)0.0013 (11)
C200.0231 (13)0.0411 (16)0.0178 (13)0.0005 (11)0.0001 (10)0.0006 (11)
C210.0206 (12)0.0281 (14)0.0183 (12)0.0006 (10)0.0053 (10)0.0018 (10)
C220.0174 (11)0.0193 (12)0.0165 (11)0.0009 (9)0.0045 (9)0.0009 (9)
C230.0239 (12)0.0205 (12)0.0221 (13)0.0037 (10)0.0048 (10)0.0024 (10)
C240.0323 (14)0.0141 (12)0.0264 (14)0.0032 (10)0.0045 (11)0.0009 (10)
C250.0291 (13)0.0181 (12)0.0223 (13)0.0018 (10)0.0049 (11)0.0036 (10)
C260.0192 (11)0.0188 (11)0.0172 (12)0.0010 (9)0.0038 (9)0.0023 (9)
C270.0170 (11)0.0196 (12)0.0159 (11)0.0016 (9)0.0057 (9)0.0010 (9)
C280.0248 (12)0.0186 (12)0.0199 (12)0.0046 (10)0.0092 (10)0.0021 (10)
C290.0362 (14)0.0155 (12)0.0225 (13)0.0025 (10)0.0144 (11)0.0007 (10)
C300.0225 (12)0.0209 (12)0.0214 (13)0.0065 (10)0.0075 (10)0.0044 (10)
C310.0172 (11)0.0194 (12)0.0178 (12)0.0013 (9)0.0050 (9)0.0031 (9)
C320.0163 (11)0.0148 (11)0.0133 (11)0.0006 (8)0.0015 (9)0.0001 (8)
C330.0233 (14)0.0296 (16)0.056 (2)0.0018 (12)0.0027 (15)0.0152 (15)
Geometric parameters (Å, º) top
Ru1—N31.966 (2)C10—C111.381 (4)
Ru1—N82.069 (2)C10—H60.9500
Ru1—N62.0824 (19)C11—C121.384 (4)
Ru1—N72.0893 (19)C11—H70.9500
Ru1—N22.137 (2)C12—C131.391 (3)
Ru1—N42.142 (2)C12—H80.9500
S1—C321.647 (2)C13—C141.464 (4)
S2—C331.715 (4)C14—C151.407 (4)
N1—C11.320 (3)C15—C161.353 (4)
N1—C51.348 (3)C15—H90.9500
N2—C81.355 (3)C16—C171.410 (4)
N2—C51.383 (3)C16—H100.9500
N3—C91.353 (3)C17—C191.410 (4)
N3—C131.358 (3)C17—C181.423 (3)
N4—C141.365 (3)C19—C201.357 (4)
N4—C181.382 (3)C19—H110.9500
N5—C211.323 (3)C20—C211.412 (4)
N5—C181.351 (3)C20—H120.9500
N6—C261.350 (3)C21—H130.9500
N6—C221.352 (3)C22—C231.377 (4)
N7—C271.348 (3)C22—H140.9500
N7—C311.361 (3)C23—C241.384 (4)
N8—C321.160 (3)C23—H150.9500
N9—C331.009 (5)C24—C251.387 (4)
C1—C21.417 (4)C24—H160.9500
C1—H10.9500C25—C261.387 (4)
C2—C31.358 (4)C25—H170.9500
C2—H20.9500C26—H180.9500
C3—C41.413 (4)C27—C281.390 (3)
C3—H30.9500C27—H190.9500
C4—C61.407 (4)C28—C291.379 (4)
C4—C51.422 (3)C28—H200.9500
C6—C71.363 (4)C29—C301.389 (4)
C6—H40.9500C29—H210.9500
C7—C81.405 (4)C30—C311.381 (3)
C7—H50.9500C30—H220.9500
C8—C91.465 (4)C31—H230.9500
C9—C101.396 (3)
N3—Ru1—N8178.11 (8)C10—C11—H7120.0
N3—Ru1—N692.43 (7)C12—C11—H7120.0
N8—Ru1—N685.99 (7)C11—C12—C13118.7 (2)
N3—Ru1—N795.07 (7)C11—C12—H8120.6
N8—Ru1—N786.49 (7)C13—C12—H8120.6
N6—Ru1—N7172.39 (7)N3—C13—C12121.3 (2)
N3—Ru1—N278.26 (8)N3—C13—C14113.4 (2)
N8—Ru1—N2100.68 (8)C12—C13—C14125.3 (2)
N6—Ru1—N289.82 (7)N4—C14—C15124.0 (2)
N7—Ru1—N290.47 (7)N4—C14—C13115.6 (2)
N3—Ru1—N478.22 (8)C15—C14—C13120.3 (2)
N8—Ru1—N4102.88 (8)C16—C15—C14119.3 (2)
N6—Ru1—N492.82 (7)C16—C15—H9120.3
N7—Ru1—N489.95 (7)C14—C15—H9120.3
N2—Ru1—N4156.42 (8)C15—C16—C17119.3 (2)
C1—N1—C5118.0 (2)C15—C16—H10120.4
C8—N2—C5117.1 (2)C17—C16—H10120.4
C8—N2—Ru1112.50 (16)C16—C17—C19122.5 (2)
C5—N2—Ru1130.37 (16)C16—C17—C18119.4 (2)
C9—N3—C13119.9 (2)C19—C17—C18118.1 (2)
C9—N3—Ru1119.92 (17)N5—C18—N4116.4 (2)
C13—N3—Ru1120.09 (16)N5—C18—C17122.3 (2)
C14—N4—C18116.5 (2)N4—C18—C17121.3 (2)
C14—N4—Ru1112.51 (16)C20—C19—C17119.5 (2)
C18—N4—Ru1130.93 (16)C20—C19—H11120.2
C21—N5—C18117.1 (2)C17—C19—H11120.2
C26—N6—C22117.6 (2)C19—C20—C21118.0 (3)
C26—N6—Ru1123.63 (16)C19—C20—H12121.0
C22—N6—Ru1118.65 (16)C21—C20—H12121.0
C27—N7—C31117.6 (2)N5—C21—C20125.0 (2)
C27—N7—Ru1122.59 (16)N5—C21—H13117.5
C31—N7—Ru1119.71 (16)C20—C21—H13117.5
C32—N8—Ru1166.03 (19)N6—C22—C23122.8 (2)
N1—C1—C2123.7 (3)N6—C22—H14118.6
N1—C1—H1118.1C23—C22—H14118.6
C2—C1—H1118.1C22—C23—C24119.3 (2)
C3—C2—C1118.7 (3)C22—C23—H15120.3
C3—C2—H2120.6C24—C23—H15120.3
C1—C2—H2120.6C23—C24—C25118.7 (2)
C2—C3—C4119.4 (2)C23—C24—H16120.6
C2—C3—H3120.3C25—C24—H16120.6
C4—C3—H3120.3C26—C25—C24118.9 (2)
C6—C4—C3123.8 (2)C26—C25—H17120.5
C6—C4—C5118.7 (2)C24—C25—H17120.5
C3—C4—C5117.6 (2)N6—C26—C25122.6 (2)
N1—C5—N2115.7 (2)N6—C26—H18118.7
N1—C5—C4122.6 (2)C25—C26—H18118.7
N2—C5—C4121.7 (2)N7—C27—C28122.8 (2)
C7—C6—C4119.5 (2)N7—C27—H19118.6
C7—C6—H4120.2C28—C27—H19118.6
C4—C6—H4120.2C29—C28—C27119.1 (2)
C6—C7—C8119.5 (2)C29—C28—H20120.4
C6—C7—H5120.3C27—C28—H20120.4
C8—C7—H5120.3C28—C29—C30118.7 (2)
N2—C8—C7123.4 (2)C28—C29—H21120.7
N2—C8—C9115.9 (2)C30—C29—H21120.7
C7—C8—C9120.7 (2)C31—C30—C29119.5 (2)
N3—C9—C10120.7 (2)C31—C30—H22120.2
N3—C9—C8113.2 (2)C29—C30—H22120.2
C10—C9—C8126.1 (2)N7—C31—C30122.3 (2)
C11—C10—C9119.2 (2)N7—C31—H23118.9
C11—C10—H6120.4C30—C31—H23118.9
C9—C10—H6120.4N8—C32—S1179.0 (2)
C10—C11—C12120.1 (2)N9—C33—S2178.4 (4)
C5—N1—C1—C20.1 (4)Ru1—N4—C14—C15176.3 (2)
N1—C1—C2—C30.4 (4)C18—N4—C14—C13179.1 (2)
C1—C2—C3—C40.5 (4)Ru1—N4—C14—C132.3 (2)
C2—C3—C4—C6178.7 (3)N3—C13—C14—N44.0 (3)
C2—C3—C4—C50.4 (4)C12—C13—C14—N4175.0 (2)
C1—N1—C5—N2179.1 (2)N3—C13—C14—C15174.6 (2)
C1—N1—C5—C40.0 (4)C12—C13—C14—C156.4 (4)
C8—N2—C5—N1176.2 (2)N4—C14—C15—C161.0 (4)
Ru1—N2—C5—N16.5 (3)C13—C14—C15—C16177.5 (2)
C8—N2—C5—C42.9 (3)C14—C15—C16—C172.7 (4)
Ru1—N2—C5—C4174.35 (17)C15—C16—C17—C19177.5 (3)
C6—C4—C5—N1179.0 (2)C15—C16—C17—C181.0 (4)
C3—C4—C5—N10.1 (4)C21—N5—C18—N4179.7 (2)
C6—C4—C5—N20.0 (4)C21—N5—C18—C170.7 (3)
C3—C4—C5—N2179.2 (2)C14—N4—C18—N5176.4 (2)
C3—C4—C6—C7177.0 (3)Ru1—N4—C18—N55.3 (3)
C5—C4—C6—C72.1 (4)C14—N4—C18—C174.0 (3)
C4—C6—C7—C81.2 (4)Ru1—N4—C18—C17174.26 (18)
C5—N2—C8—C73.9 (3)C16—C17—C18—N5177.9 (2)
Ru1—N2—C8—C7173.8 (2)C19—C17—C18—N50.6 (4)
C5—N2—C8—C9178.5 (2)C16—C17—C18—N42.5 (4)
Ru1—N2—C8—C93.7 (2)C19—C17—C18—N4179.0 (2)
C6—C7—C8—N21.9 (4)C16—C17—C19—C20177.1 (3)
C6—C7—C8—C9179.3 (3)C18—C17—C19—C201.3 (4)
C13—N3—C9—C101.7 (3)C17—C19—C20—C210.8 (4)
Ru1—N3—C9—C10175.39 (18)C18—N5—C21—C201.3 (4)
C13—N3—C9—C8177.8 (2)C19—C20—C21—N50.5 (4)
Ru1—N3—C9—C85.1 (3)C26—N6—C22—C230.7 (3)
N2—C8—C9—N35.7 (3)Ru1—N6—C22—C23174.93 (18)
C7—C8—C9—N3171.9 (2)N6—C22—C23—C240.6 (4)
N2—C8—C9—C10174.8 (2)C22—C23—C24—C251.2 (4)
C7—C8—C9—C107.5 (4)C23—C24—C25—C260.4 (4)
N3—C9—C10—C110.1 (4)C22—N6—C26—C251.5 (3)
C8—C9—C10—C11179.5 (2)Ru1—N6—C26—C25173.92 (18)
C9—C10—C11—C121.6 (4)C24—C25—C26—N60.9 (4)
C10—C11—C12—C131.3 (4)C31—N7—C27—C280.0 (3)
C9—N3—C13—C122.0 (3)Ru1—N7—C27—C28175.82 (17)
Ru1—N3—C13—C12175.11 (18)N7—C27—C28—C290.1 (4)
C9—N3—C13—C14179.0 (2)C27—C28—C29—C300.6 (4)
Ru1—N3—C13—C143.9 (3)C28—C29—C30—C311.0 (4)
C11—C12—C13—N30.5 (4)C27—N7—C31—C300.4 (3)
C11—C12—C13—C14179.4 (2)Ru1—N7—C31—C30175.53 (18)
C18—N4—C14—C152.3 (3)C29—C30—C31—N70.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H8···N9i0.952.433.305 (5)152
C20—H12···S2ii0.952.733.629 (3)159
C22—H14···N10.952.513.391 (3)154
C27—H19···S20.952.763.479 (3)133
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x1, y+1/2, z1/2.
 

Acknowledgements

The authors would like to thank Mr Yuki Watanabe at Fukushima University for his technical assistance.

Funding information

Funding for this research was provided by: Japan Society for the Promotion of Science (grant No. JP20K05536).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBrewster, T. P., Ding, W., Schley, N. D., Hazari, N., Batista, V. S. & Crabtree, R. H. (2011). Inorg. Chem. 50, 11938–11946.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationCadranel, A., Alborés, P., Yamazaki, S., Kleiman, V. D. & Baraldo, L. M. (2012). Dalton Trans. 41, 5343–5350.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHagfeldt, A., Boschloo, G., Sun, L. C., Kloo, L. & Pettersson, H. (2010). Chem. Rev. 110, 6595–6663.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHomanen, P., Haukka, M., Pakkanen, T. A., Pursiainen, J. & Laitinen, R. H. (1996). Organometallics, 15, 4081–4084.  CSD CrossRef CAS Web of Science Google Scholar
First citationKoizumi, T. & Tanaka, K. (2005). Inorg. Chim. Acta, 358, 1999–2004.  Web of Science CSD CrossRef CAS Google Scholar
First citationLewis, N. S. (2007). Science, 315, 798–801.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOyama, D., Yamanaka, T., Abe, R. & Takase, T. (2017). J. Organomet. Chem. 830, 167–174.  Web of Science CSD CrossRef CAS Google Scholar
First citationOyama, D., Yamanaka, T., Fukuda, A. & Takase, T. (2013). Chem. Lett. 42, 1554–1555.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2015). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2019). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShklover, V., Nazeeruddin, Md. K., Grätzel, M. & Ovchinnikov, Yu. E. (2002). Appl. Organomet. Chem. 16, 635–642.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVandenburgh, L., Buck, M. R. & Freedman, D. A. (2008). Inorg. Chem. 47, 9134–9136.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZakeeruddin, S. M., Nazeeruddin, M. K., Pechy, P., Rotzinger, F. P., Humphry-Baker, R., Kalyanasundaram, K., Grätzel, M., Shklover, V. & Haibach, T. (1997). Inorg. Chem. 36, 5937–5946.  CSD CrossRef PubMed CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds