research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of dimetal terephthalate di­hydroxides, M2(C8H4O4)(OH)2 (M = Co, Ni, Zn) from powder diffraction data and DFT calculations

crossmark logo

aDepartment of Chemistry, North Central College, 131 S. Loomis, St., Naperville IL, 60540 , USA
*Correspondence e-mail: kaduk@polycrystallography.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 6 May 2022; accepted 10 May 2022; online 13 May 2022)

The crystal structure of poly[di­hydroxido(μ6-terepthalato)dizinc], [Zn2(C8H4O4)(OH)2]n, was solved and refined using synchrotron powder data, and the structures of the isostructural Co and Ni analogues were refined using laboratory powder X-ray data. The structure of [Co2(C8H4O4)(OH)2]n has been reported previously in space group C2/m, which yields disordered terephthalate anions. Doubling the c-axis of that cell results in an ordered model in space group C2/c. The octa­hedral MO6 coordination polyhedra of the metal cations share edges, forming chains running parallel to the b-axis direction. These chains share corners (hydroxyl groups), forming layers lying perpendicular to the a-axis direction.

1. Chemical context

Dicobalt terephthalate di­hydroxide, Co2(C8H4O4)(OH)2, was first prepared by Sherif (1970[Sherif, F. (1970). Ind. Eng. Chem. Prod. Res. Develop. 9(3), 408-412.]). A powder pattern was reported, but no unit cell or crystal structure were determined. The powder pattern from this reference is included in the Powder Diffraction File (Gates-Rector & Blanton, 2019[Gates-Rector, S. & Blanton, T. (2019). Powder Diffr. 34, 352-360.]) as entry 00-034-1897. A search of the nine peaks of this entry against the PDF-4 Organics 2022 database yielded no additional terephthalate compounds.

[Scheme 1]

Approximately 20 years ago, one of us (JAK) solved and refined the structure of Zn2(C8H4O4)(OH)2 using synchrotron powder data, first in a C2/m cell with disordered terephthalate anions. It then became apparent that if the c-axis were doubled, the systematic absences corresponded to space group C2/c. This doubled unit cell removed the disorder and yielded a more satisfactory refinement. This structure was deposited in the Cambridge Structural Database (Kaduk, 2016[Kaduk, J. A. (2016). CSD Communication (refcode PUCYAO01). CCDC, Cambridge, England.]; refcode PUCYAO01), but never otherwise published or discussed. Since that time, another polymorph of Zn2(C8H4O4)(OH)2 (in space group P21/c) has been reported (Carton et al., 2009[Carton, A., Mesbah, A., Aranda, L., Rabu, P. & François, M. (2009). Solid State Sci. 11, 818-823.]; PUCYAO).

Some of our recent attempts to prepare Co and Ni porous metal–organic frameworks (MOFs) yielded instead cobalt and nickel terephthalate hydroxide. We took advantage of the opportunity to re-refine the structures (as well as that of Zn) in what we believe to be the correct space group, and to optimize the structures using density functional techniques.

2. Structural commentary

Doubling the c-axis of the previously reported disordered C2/m model for Co results in a chemically-reasonable ordered C2/c structure for these compounds. The X-ray powder diffraction patterns show that the three compounds are isostructural (Fig. 1[link]). The root-mean-square Cartesian displacements of the non-H atoms in the Rietveld-refined and DFT-optimized structures are 0.125, 0.143, and 0.339 Å for Co, Ni, and Zn, respectively (Figs. 2[link]–4[link][link]). The good agreement provides strong evidence that the structures are correct (van de Streek & Neumann, 2014[Streek, J. van de & Neumann, M. A. (2014). Acta Cryst. B70, 1020-1032.]). This discussion concentrates on the DFT-optimized structures. The asymmetric unit (with atom numbering) is illustrated in Fig. 5[link]. The best view of the crystal structure is down the b-axis (Fig. 6[link]). A view down the c-axis is shown in Fig. 7[link].

[Figure 1]
Figure 1
The X-ray powder diffraction patterns of Co2(C8H4O4)(OH)2 (black), Ni2(C8H4O4)(OH)2 (green), and Zn2(C8H4O4)(OH)2 (red). The Zn pattern (measured using Co radiation) and the Zn pattern (measured using synchrotron radiation) were converted to the Mo wavelength used to measure the Co pattern using JADE Pro (MDI, 2021[MDI (2021). JADE Pro 8.1. Materials Data, Livermore CA, USA.]).
[Figure 2]
Figure 2
Comparison of the Rietveld-refined (red) and VASP-optimized (blue) structures of Co2(C8H4O4)(OH)2. The r.m.s. Cartesian displacement is 0.125 Å.
[Figure 3]
Figure 3
Comparison of the Rietveld-refined (red) and VASP-optimized (blue) structures of Ni2(C8H4O4)(OH)2. The r.m.s. Cartesian displacement is 0.143 Å.
[Figure 4]
Figure 4
Comparison of the Rietveld-refined (red) and VASP-optimized (blue) structures of Zn2(C8H4O4)(OH)2. The r.m.s. Cartesian displacement is 0.339 Å.
[Figure 5]
Figure 5
The asymmetric unit of Co2(C8H4O4)(OH)2, with the atom numbering. The atoms are represented by 50% probability spheroids.
[Figure 6]
Figure 6
The crystal structure of Co2(C8H4O4)(OH)2, viewed down the b-axis direction.
[Figure 7]
Figure 7
The crystal structure of Co2(C8H4O4)(OH)2, viewed down the c-axis direction.

Almost all of the bond distances, angles, and torsion angles in the terephthalate anions fall within the normal ranges indicated by a Mercury Mogul Geometry check (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]). Only the Ni9—O11 bond distance of 2.187 Å [average = 2.007 (9) Å, Z-score = 20.4] and the Zn14—O16 bond of 1.970 Å [average = 2.122 (47) Å, Z-score = 3.2] are flagged as unusual. The carbox­yl–phenyl torsion angles of 7.5, 9.8, and 6.2° for Co, Ni, and Zn, respectively, correspond to a distortion energy of only ∼2 kJ mol−1 (Kaduk et al., 1999[Kaduk, J. A., Golab, J. T. & Leusen, F. J. J. (1999). Cryst. Eng. 1(3/4), 277-290.]). This energy penalty can easily be compensated for by coordination to the cations. The closest Miller plane of the phenyl ring is (85[\overline{1}]) for Co and Ni, and (530) for Zn. M9 lies on a center of symmetry, and M10 lies on a twofold axis. For M = Co, Co9 has two shorter Co—O distances of 2.000 Å, and four longer ones ∼2.19–2.20 Å. Co10 has four distances ∼2.11 Å, and two at 2.157 Å. For M = Ni, all six distances to Ni9 are 2.187–2.232 Å, and Ni10 has four shorter distances at 2.03–2.08 Å and two longer at 2.115 Å. For M = Zn, Zn9 has two short distances of 1.969 Å, and four long ones at ∼2.22 Å whereas Zn10 has two distances of 2.095 Å and four at 2.14–2.18 Å. Both Co9 and Co10 exhibit octa­hedral coordination. The coordination sphere of Co9 contains two trans O7 and four equatorial O11 (hydroxyl group), while Co10 has two trans O11 and four equatorial O8. The hydroxyl group bridges three cobalt atoms: one Co9 and two Co10. Atom O7 coordinates to Co10, and O8 bridges two Co9 atoms; as a result each carboxyl group bridges three metal atoms. The bond-valence sums (Brown, 2002[Brown, I. D. (2002). The Chemical Bond in Inorganic Chemistry. IUCr/Oxford University Press.]) are 1.90 and 1.84 for Co9 and Co10, respectively, 1.78 and 1.93 for Ni9 and Ni10, and 1.92 and 1.86 for Zn9 and Zn10. All cations are thus slightly under-bonded compared to their expected values of 2.00.

The peak profiles are dominated by microstrain broadening. The generalized microstrain model was used for Co and Zn, but the limited Ni data supported refinement of only an isotropic broadening coefficient. The average microstrain is similar for Co and Zn (21042 and 20094 ppm, respectively), while that for Ni is much larger, at 114830 ppm. Perhaps this greater microstrain indicates that some square-planar Ni coordination also occurs. Analysis of the contributions to the total crystal energy of the structure using the Forcite module of Materials Studio (Dassault Systèmes, 2021[Dassault Systèmes (2021). Materials Studio. BIOVIA, San Diego, CA, USA.]) suggests that for Co and Ni, the bond and angle distortion terms dominate intra­molecular deformation energy, but that torsion terms are also significant. For Zn, the angle distortion terms dominate the intra­molecular deformation energy. The inter­molecular energy in all three compounds is dominated by electrostatic attractions, which represent the M—O bonds.

The Bravais–Friedel–Donnay–Harker (Bravais, 1866[Bravais, A. (1866). Etudes Cristallographiques. Paris: Gauthier Villars.]; Friedel, 1907[Friedel, G. (1907). Bull. Soc. Fr. Mineral. 30, 326-455.]; Donnay & Harker, 1937[Donnay, J. D. H. & Harker, D. (1937). Am. Mineral. 22, 446-447.]) morphology suggests that we might expect elongated (with [010] as the long axis) or platy (with {200} as the major faces) morphology for these compounds. A 2nd order spherical harmonic model was included in the refinement. The texture indices were 1.003, 1.417, and 1.016 for Co, Ni, and Zn respectively, showing that preferred orientation was significant only for the flat-plate Ni specimen.

3. Supra­molecular features

The octa­hedral coordination spheres of Co9 share edges, forming chains running parallel to the b-axis direction; the shared edges are parallel the a-axis direction. The octa­hedral coordination spheres of Co10 share edges, forming chains propagating along the b-axis; in this case, the shared edges lie parallel to the c-axis direction. Co9 and Co10 share corners (via O11 = the hydroxyl group), forming layers lying perpendicular to the a-axis direction (Fig. 8[link]). The hydroxyl group does not participate in hydrogen bonds.

[Figure 8]
Figure 8
The layers in the crystal structure of Co2(C8H4O4)(OH)2, viewed down the a-axis direction.

4. Database survey

The crystal structure of the `new terephthalate-based cobalt hydroxide Co2(OH)2(C8H4O4)' was reported by Huang et al. (2000[Huang, Z.-L., Drillon, M., Masciocchi, N., Sironi, A., Zhao, J.-T., Rabu, P. & Panissod, P. (2000). Chem. Mater. 12, 2805-2812.]), and its crystal structure determined [Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) refcode QASLIF] by ab initio methods using X-ray powder diffraction data. The reported space group is C2/m with a = 19.943 (1), b = 3.2895 (1), c = 6.2896 (3) Å, β = 95.746 (3)°, V = 410.545 Å3, and Z = 2. The structure consists of alternating Co-hydroxide and terephthalate layers, and the terephthalate anions are disordered about an inversion center. Anti­ferromagnetic ordering in this compound was studied using neutron powder diffraction by Feyerherm et al. (2003[Feyerherm, R., Loose, A., Rabu, P. & Drillon, M. (2003). Solid State Sci. 5, 321-326.]), using the same unit cell (QASLIF02). The structure was also determined by Kurmoo et al. (2001[Kurmoo, M., Kumagai, H., Green, M. A., Lovett, B. W., Blundell, S. J., Ardavan, A. & Singleton, J. (2001). J. Solid State Chem. 159, 343-351.]; QASLIF01) in the same unit cell, as well as the structure of cobalt terephthalate dihydrate. The structures of a series of (Co,Fe)2(C8H4O4)(OH)2 solid solutions were refined in the same unit cell by Mesbah et al. (2010[Mesbah, A., Malaman, B., Mazet, T., Sibille, R. & François, M. (2010). CrystEngComm, 12, 3126-3131.]) (UJIMOQ, UJIMOQ01, UJINAD, UJINAD01) using synchrotron and neutron powder data. A reduced cell search in the Cambridge Structural Database yielded in addition the structures of Ni2(C8H4O4)(OH)2 (Mesbah et al., 2014[Mesbah, A., Rabu, P., Sibille, R., Lebègue, S., Mazet, T., Malaman, B. & François, M. (2014). Inorg. Chem. 53, 872-881.], NIWQOB; Han et al., 2018[Han, B., Ou, X., Deng, Z., Song, Y., Tian, C., Deng, H., Xu, Y.-J. & Lin, Z. (2018). Angew. Chem. Int. Ed. 57, 16811-16815.], NIWQOB01).

5. Synthesis and crystallization

Cobalt(II) nitrate hexa­hydrate (0.0364 g, 0.125 mmol) and terephthalic acid (0.0208 g, 0.125 mmol) were added to a flask followed by 0.125 ml of tri­ethyl­amine and approximately 5 ml of di­methyl­formamide. The reaction was stirred for 10 min until a homogenous mixture was obtained. The reaction was heated using a CEM Discover microwave with power set to 150 W using a ramp time of 2 min to reach 423 K with a hold time of 30 min and inter­nal stirring switched off. The vial remained in the microwave until it cooled to 323 K, and the reaction mixture was filtered using vacuum filtration, washed with DMF and deionized water (10 ml each). The remaining solid was dried in an oven at 343 K under vacuum.

Nickel(II) nitrate hexa­hydrate (0.1948 g, 0.67 mmol) and terephthalic acid (0.2492 g, 1.5 mmol) were dissolved in 10 ml of DMF in a microwave vial. The solution was stirred until homogenous. The solution was then heated using a CEM Mars 6 microwave reactor at 750 W for a total of 85 s, in increments of 25 and 60 s. The resulting green solid was isolated using vacuum filtration, washed with water, methanol, and acetone, and allowed to air dry.

Information on the synthesis of Zn2(C8H4O4)(OH)2 from prior to 1997 is no longer available.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

  [Co2(C8H4O4)(OH)2] [Ni2(C8H4O4)(OH)2] [Zn2(C8H4O4)(OH)2]
Crystal data
Mr 316 315.53 328.89
Crystal system, space group Monoclinic, C2/c Monoclinic, C2/c Monoclinic, C2/c
Temperature (K) 300 300 300
a, b, c (Å) 19.9554 (10), 3.2883 (2), 12.6139 (8) 20.35 (5), 3.364 (6), 12.19 (4) 20.165 (2), 3.3273 (5), 12.5956 (16)
β (°) 96.059 (5) 98.9 (2) 97.431 (10)
V3) 823.08 (6) 824.6 (15) 837.99 (14)
Z 4 4 4
Radiation type Mo Kα1,2, λ = 0.70932, 0.71361 Å Co Kα1,2, λ = 1.78892, 1.79278 Å Synchrotron, λ = 1.15008 Å
Specimen shape, size (mm) Cylinder, 12 × 0.7 Flat sheet, 16 × 16 Cylinder, ? × ?
 
Data collection
Diffractometer PANalytical Empyrean PANalytical X'Pert NSLS beamline X3B1
Specimen mounting Glass capillary Si zero-background plate with well Kapton capillary
Data collection mode Transmission Reflection Transmission
Scan method Step Step Step
2θ values (°) 2θmin = 1.002, 2θmax = 49.991, 2θstep = 0.008 2θmin = 4.007, 2θmax = 69.983, 2θstep = 0.017 2θmin = 6.0, 2θmax = 60.0, 2θstep = 0.01
 
Refinement
R factors and goodness of fit Rp = 0.045, Rwp = 0.063, Rexp = 0.020, R(F2) = 0.05751, χ2 = 10.414 Rp = 0.084, Rwp = 0.107, Rexp = 0.070, R(F2) = 0.14454, χ2 = 2.369 Rp = 0.092, Rwp = 0.121, Rexp = 0.097, R(F2) = 0.14121, χ2 = 1.573
No. of parameters 42 12 57
No. of restraints 15 0 14
(Δ/σ)max 0.025 97.398 1.459
The same symmetry and lattice parameters were used for the DFT calculations as for each powder diffraction study. Computer programs: GSAS-II (Toby & Von Dreele, 2013[Toby, B. H. & Von Dreele, R. B. (2013). J. Appl. Cryst. 46, 544-549.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), DIAMOND (Crystal Impact, 2015[Crystal Impact (2015). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Rietveld refinements (Figs. 9[link]–11[link][link]) were carried out using GSAS-II (Toby & Von Dreele, 2013[Toby, B. H. & Von Dreele, R. B. (2013). J. Appl. Cryst. 46, 544-549.]). All non-H bond distances and angles in the terephthalate anions were subjected to restraints, based on a Mercury Mogul Geometry Check (Sykes et al., 2011[Sykes, R. A., McCabe, P., Allen, F. H., Battle, G. M., Bruno, I. J. & Wood, P. A. (2011). J. Appl. Cryst. 44, 882-886.]; Bruno et al., 2004[Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133-2144.]). The Mogul average and standard deviation for each qu­antity were used as the restraint parameters. The restraints contributed 0–2.3% to the final χ2. The Uiso were grouped by chemical similarity. The Uiso values for the H atoms were fixed at 1.3 × the Uiso of the heavy atoms to which they are attached. The peak profiles were described using the generalized microstrain model. The background was modeled using a 3–12-term shifted Chebyshev polynomial.

[Figure 9]
Figure 9
The Rietveld plot for the refinement of Co2(C8H4O4)(OH)2. The blue crosses represent the observed data points, and the green line is the calculated pattern. The cyan curve is the normalized error plot. The row of tick marks indicates the calculated reflection positions. The vertical scale has been multiplied by a factor of 4× for 2θ > 5.0°, and by a factor of 20× for 2θ > 27.0°.
[Figure 10]
Figure 10
The Rietveld plot for the refinement of Ni2(C8H4O4)(OH)2. The blue crosses represent the observed data points, and the green line is the calculated pattern. The cyan curve is the normalized error plot. The row of tick marks indicates the calculated reflection positions.
[Figure 11]
Figure 11
The Rietveld plot for the refinement of Zn2(C8H4O4)(OH)2. The blue crosses represent the observed data points, and the green line is the calculated pattern. The cyan curve is the normalized error plot. The row of tick marks indicates the calculated reflection positions. The vertical scale has been multiplied by a factor of 5× for 2θ > 10.0°, and by a factor of 15× for 2θ > 18.0°.

The structures were optimized with density functional techniques using VASP (Kresse & Furthmüller, 1996[Kresse, G. & Furthmüller, J. (1996). Comput. Mater. Sci. 6, 15-50.]) (fixed experimental unit cells) through the MedeA graphical inter­face (Materials Design, 2016[Materials Design (2016). MedeA 2.20.4. Materials Design Inc., Angel Fire, NM, USA.]). The calculations were carried out on 16 2.4 GHz processors (each with 4 Gb RAM) of a 64-processor HP Proliant DL580 Generation 7 Linux cluster at North Central College. The calculations for Co and Ni were spin-polarized magnetic calculations, using the simplified LDSA + U approach, and Uj = 3.7 eV for Co and Ni. The calculations used the GGA-PBE functional, a plane wave cutoff energy of 400.0 eV, and a k-point spacing of 0.5 Å−1 leading to an 8 × 8 × 2 mesh.

Supporting information


Computing details top

Program(s) used to refine structure: GSAS-II (Toby & Von Dreele, 2013) for Co_Riet, Ni_Riet, Zn_Riet. Molecular graphics: Mercury (Macrae et al., 2020), DIAMOND (Crystal Impact, 2015) for Co_Riet. Software used to prepare material for publication: publCIF (Westrip, 2010) for Co_Riet.

Poly[dihydroxido(µ6-terepthalato)dicobalt] (Co_Riet) top
Crystal data top
[Co2(C8H4O4)(OH)2]V = 823.08 (6) Å3
Mr = 316Z = 4
Monoclinic, C2/cDx = 2.550 Mg m3
a = 19.9554 (10) ÅMo Kα1,2 radiation, λ = 0.70932, 0.71361 Å
b = 3.2883 (2) ÅT = 300 K
c = 12.6139 (8) Åpink
β = 96.059 (5)°cylinder, 12 × 0.7 mm
Data collection top
PANalytical Empyrean
diffractometer
Scan method: step
Specimen mounting: glass capillary2θmin = 1.002°, 2θmax = 49.991°, 2θstep = 0.008°
Data collection mode: transmission
Refinement top
Least-squares matrix: full42 parameters
Rp = 0.04515 restraints
Rwp = 0.063H-atom parameters not defined?
Rexp = 0.020Weighting scheme based on measured s.u.'s
R(F2) = 0.05751(Δ/σ)max = 0.025
5864 data pointsBackground function: Background function: "chebyschev-1" function with 4 terms: 1063(5), -577(6), 95(4), -25(3), Background peak parameters: pos, int, sig, gam: 11.866, 3892.401, 44425.907, 0.100,
Profile function: Finger-Cox-Jephcoat function parameters U, V, W, X, Y, SH/L: peak variance(Gauss) = Utan(Th)2+Vtan(Th)+W: peak HW(Lorentz) = X/cos(Th)+Ytan(Th); SH/L = S/L+H/L U, V, W in (centideg)2, X & Y in centideg 30.816, 10.768, 0.000, 1.935, 0.000, 0.033, Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 1.000, 1.000, Microstrain, "generalized" model (106 * delta Q/Q) parameters: S400, S040, S004, S220, S202, S022, S301, S103, S121, G/L mix 2180.060, 4.385767395e6, 5373.300, 103711.383, 724.789, 689333.161, -2196.502, 2609.389, 91248.973, 0.800,Preferred orientation correction: Simple spherical harmonic correction Order = 2 Coefficients: 0:0:C(2,-2) = -0.0542; 0:0:C(2,0) = -0.1055; 0:0:C(2,2) = -0.0207
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3140 (2)0.106 (3)0.0412 (4)0.018 (3)*
C20.2695 (3)0.269 (3)0.1093 (3)0.0184*
C30.2024 (3)0.368 (4)0.0686 (4)0.0184*
H40.288730.246180.198400.0220*
H50.171200.481250.131170.0220*
C60.3837 (3)0.024 (5)0.0845 (5)0.0200*
O70.3988 (3)0.007 (7)0.1799 (5)0.020000*
O80.4268 (3)0.031 (5)0.0168 (5)0.020000*
Co90.500000.500000.500000.0020 (5)*
Co100.000000.495 (3)0.250000.0020*
O110.0287 (3)0.030 (7)0.1569 (7)0.0200*
H120.069220.031140.166210.0260*
Geometric parameters (Å, º) top
C1—C21.406 (6)O8—C61.274 (4)
C1—C3i1.391 (3)O8—Co9ii2.151 (12)
C1—C61.501 (5)Co9—O8iii2.151 (12)
C2—C11.406 (6)Co9—O8iv2.151 (12)
C2—C31.421 (4)Co9—O11v2.004 (8)
C3—C1i1.391 (3)Co9—O11vi2.004 (8)
C3—C21.421 (4)Co10—O7i2.119 (5)
C6—C11.501 (5)Co10—O7vii2.119 (5)
C6—O71.211 (5)Co10—O11viii2.072 (16)
C6—O81.274 (4)Co10—O11ix2.072 (16)
O7—C61.211 (5)O11—Co9x2.004 (8)
O7—Co10i2.119 (5)O11—Co10viii2.072 (16)
C2—C1—C3i119.1 (3)C1i—C3—C2119.2 (3)
C2—C1—C6120.4 (2)C1—C6—O7118.2 (4)
C3i—C1—C6119.5 (3)C1—C6—O8115.2 (5)
C1—C2—C3119.9 (3)O7—C6—O8123.5 (6)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1, y1, z+1/2; (iii) x+1, y+1, z+1/2; (iv) x, y, z+1/2; (v) x+1/2, y+1/2, z+1/2; (vi) x+1/2, y+1/2, z+1/2; (vii) x1/2, y+1/2, z1/2; (viii) x, y+1, z; (ix) x, y+1, z1/2; (x) x+1/2, y1/2, z+1/2.
(Co_DFT) top
Crystal data top
C8H6Co2O6c = 12.59800 Å
Mr = 316β = 96.33°
Monoclinic, C2/cV = 828.49 Å3
a = 20.02520 ÅZ = 4
b = 3.30420 Å
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.315690.147580.040120.0184
C20.268060.238120.110060.0184
C30.202870.339550.070350.0184
H40.283290.230130.195780.022
H50.165650.412660.124360.022
C60.385620.037730.083520.020
O70.398610.986790.183010.020
O80.429600.001980.015830.020
Co90.000000.000000.000000.002
Co100.500000.972370.250000.002
O110.028380.979970.157140.020
H120.077260.974140.170880.026
Poly[dihydroxido(µ6-terepthalato)dinickel] (Ni_Riet) top
Crystal data top
[Ni2(C8H4O4)(OH)2]V = 824.6 (15) Å3
Mr = 315.53Z = 4
Monoclinic, C2/cDx = 2.542 Mg m3
a = 20.35 (5) ÅCo Kα1,2 radiation, λ = 1.78892, 1.79278 Å
b = 3.364 (6) ÅT = 300 K
c = 12.19 (4) Åpale green
β = 98.9 (2)°flat_sheet, 16 × 16 mm
Data collection top
PANalytical X'Pert
diffractometer
Scan method: step
Specimen mounting: Si zero-background plate with well2θmin = 4.007°, 2θmax = 69.983°, 2θstep = 0.017°
Data collection mode: reflection
Refinement top
Least-squares matrix: full12 parameters
Rp = 0.0840 restraints
Rwp = 0.107H-atom parameters not defined?
Rexp = 0.070(Δ/σ)max = 97.398
R(F2) = 0.14454Background function: Background function: "chebyschev-1" function with 3 terms: 139.3(6), -71.0(8), 7.7(7),
3949 data pointsPreferred orientation correction: Simple spherical harmonic correction Order = 2 Coefficients: 0:0:C(2,-2) = -0.91(8); 0:0:C(2,0) = 0.63(8); 0:0:C(2,2) = 0.93(13)
Profile function: Finger-Cox-Jephcoat function parameters U, V, W, X, Y, SH/L: peak variance(Gauss) = Utan(Th)2+Vtan(Th)+W: peak HW(Lorentz) = X/cos(Th)+Ytan(Th); SH/L = S/L+H/L U, V, W in (centideg)2, X & Y in centideg 2.761, 0.000, 1.090, 3.610, 0.000, 0.047,
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.315640.119990.034250.0100*
C20.274260.265560.107590.0100*
C30.209300.400080.073330.0100*
H40.288730.246180.198400.0130*
H50.171200.481250.131170.0130*
C60.386610.014970.076320.0100*
O70.399330.001100.178310.0100*
O80.433210.001730.013020.0100*
Ni90.500000.500000.500000.0387*
Ni100.000000.501450.250000.0387*
O110.027710.00070.158230.0063*
H120.069220.031140.166210.0082*
Geometric parameters (Å, º) top
C1—C21.4074O8—C61.3123
C1—C3i1.3331Ni9—O11ii1.9246
C1—C61.5251Ni9—O11iii1.9246
C2—C11.4074Ni10—O7i2.0995
C2—C31.3985Ni10—O7iv2.0995
C3—C1i1.3331Ni10—O11v2.149
C3—C21.3985Ni10—O11vi2.1377
H5—C31.1584Ni10—O11vii2.149
C6—C11.5251Ni10—O11viii2.1377
C6—O71.2313O11—Ni9ix1.9246
C6—O81.3123O11—Ni10v2.149
O7—C61.2313O11—Ni10vi2.1377
O7—Ni10i2.0995
C2—C1—C3i117.925C1i—C3—C2118.448
C2—C1—C6121.216C1—C6—O7111.649
C3i—C1—C6120.856C1—C6—O8121.645
C1—C2—C3123.601O7—C6—O8122.291
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x1/2, y+1/2, z1/2; (v) x, y, z; (vi) x, y+1, z; (vii) x, y, z1/2; (viii) x, y+1, z1/2; (ix) x+1/2, y1/2, z+1/2.
(Ni_DFT) top
Crystal data top
C8H6Ni2O6c = 12.22464 Å
Mr = 315.53β = 99.20°
Monoclinic, C2/cV = 805.74 Å3
a = 20.40719 ÅZ = 4
b = 3.27188 Å
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.316590.146710.035970.010
C20.274240.231780.112880.010
C30.208310.333160.077420.010
H40.294160.220050.200950.013
H50.175190.400450.136780.013
C60.386900.031430.075910.010
O70.902940.458910.178360.010
O80.427740.009360.004890.010
Ni90.000000.000000.000000.03866
Ni100.000000.452040.250000.03866
O110.527640.459600.160350.00631
H120.576070.454710.174940.00821
Poly[dihydroxido(µ6-terepthalato)dizinc] (Zn_Riet) top
Crystal data top
[Zn2(C8H4O4)(OH)2]V = 837.99 (14) Å3
Mr = 328.89Z = 4
Monoclinic, C2/cDx = 2.607 Mg m3
a = 20.165 (2) ÅSynchrotron radiation, λ = 1.15008 Å
b = 3.3273 (5) ÅT = 300 K
c = 12.5956 (16) Åwhite
β = 97.431 (10)°
Data collection top
NSLS beamline X3B1
diffractometer
Scan method: step
Specimen mounting: Kapton capillary2θmin = 6.0°, 2θmax = 60.0°, 2θstep = 0.01°
Data collection mode: transmission
Refinement top
Least-squares matrix: full57 parameters
Rp = 0.09214 restraints
Rwp = 0.121H-atom parameters not defined?
Rexp = 0.097(Δ/σ)max = 1.459
R(F2) = 0.14121Background function: Background function: "chebyschev-1" function with 12 terms: 28.78(11), -16.88(18), 8.18(16), 0.45(16), -2.60(15), -1.04(14), 3.60(13), -1.88(13), 0.46(12), 1.97(12), -1.94(11), 1.26(10),
5400 data pointsPreferred orientation correction: Simple spherical harmonic correction Order = 2 Coefficients: 0:0:C(2,-2) = -0.05(4); 0:0:C(2,0) = -0.18(6); 0:0:C(2,2) = -0.21(4)
Profile function: Finger-Cox-Jephcoat function parameters U, V, W, X, Y, SH/L: peak variance(Gauss) = Utan(Th)2+Vtan(Th)+W: peak HW(Lorentz) = X/cos(Th)+Ytan(Th); SH/L = S/L+H/L U, V, W in (centideg)2, X & Y in centideg 6.427, -1.067, 0.000, 0.000, 0.000, 0.022, Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 1.000, 1.000, Microstrain, "generalized" model (106 * delta Q/Q) parameters: S400, S040, S004, S220, S202, S022, S301, S103, S121, G/L mix 807.414, 6.074702219e6, 12850.425, 116093.843, 1080.871, 214564.056, 1450.184, -4276.159, -164837.348, 0.600,
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3153 (9)0.132 (11)0.038 (2)0.148 (18)*
C20.2801 (13)0.369 (13)0.1020 (17)0.148*
C30.2145 (14)0.477 (16)0.067 (2)0.148*
H70.298400.558000.172600.192*
H80.183200.737000.091500.192*
C110.3863 (5)0.016 (8)0.0750 (18)0.0500*
O120.4045 (9)0.025 (16)0.1743 (18)0.050000*
O130.4201 (7)0.156 (9)0.008 (2)0.050000*
Zn140.500000.500000.500000.078 (4)*
Zn150.000000.542000.250000.078*
O160.0318 (13)0.072 (14)0.161 (3)0.0500*
H170.069220.031140.166210.065000*
Geometric parameters (Å, º) top
C1—C21.3877 (16)O13—C111.284 (2)
C1—C3i1.43 (4)O13—Zn14ii1.989 (13)
C1—C111.498 (3)Zn14—O13iii1.989 (13)
C2—C11.3877 (16)Zn14—O13iv1.989 (13)
C2—C31.385 (2)Zn14—O16v2.06 (3)
C3—C1i1.43 (4)Zn14—O16vi2.06 (3)
C3—C21.385 (2)Zn15—O12i2.048 (17)
C11—C11.498 (3)Zn15—O12vii2.048 (17)
C11—O121.2573 (14)Zn15—O16viii1.87 (4)
C11—O131.284 (2)Zn15—O16ix1.87 (4)
O12—C111.2573 (14)O16—Zn14x2.06 (3)
O12—Zn15i2.048 (17)O16—Zn15viii1.87 (4)
C2—C1—C3i119.81 (12)C1—C11—O12116.6 (2)
C2—C1—C11120.4 (2)C1—C11—O13118.59 (19)
C3i—C1—C11119.6 (4)O12—C11—O13123.42 (15)
C1—C2—C3120.20 (17)O16viii—Zn15—O16xi93 (2)
C1i—C3—C2119.83 (12)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1, y1, z+1/2; (iii) x+1, y+1, z+1/2; (iv) x, y, z+1/2; (v) x+1/2, y+1/2, z+1/2; (vi) x+1/2, y+1/2, z+1/2; (vii) x1/2, y+1/2, z1/2; (viii) x, y+1, z; (ix) x, y+1, z1/2; (x) x+1/2, y1/2, z+1/2; (xi) x, y+1, z+1/2.
(Zn_DFT) top
Crystal data top
C8H6O6Zn2c = 12.59470 Å
Mr = 328.89β = 97.52°
Monoclinic, C2/cV = 837.00 Å3
a = 20.15960 ÅZ = 4
b = 3.32510 Å
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.315370.140520.039730.14798
C20.269000.224100.110360.14798
C30.203980.333200.070870.14798
H70.285040.204700.196240.19231
H80.167450.400760.125040.19231
C110.385290.027400.082470.050
O120.399380.974730.182470.050
O130.427450.993810.014340.050
O160.027780.973220.155700.050
H170.076520.964890.168860.065
Zn140.000000.000000.000000.07842
Zn150.500000.966900.250000.07842
 

Acknowledgements

We thank Professors Paul F. Brandt, Jeffrey A. Bjorklund, and Nicholas C. Boaz for their support, mentoring, and helpful discussions.

References

First citationBravais, A. (1866). Etudes Cristallographiques. Paris: Gauthier Villars.  Google Scholar
First citationBrown, I. D. (2002). The Chemical Bond in Inorganic Chemistry. IUCr/Oxford University Press.  Google Scholar
First citationBruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCarton, A., Mesbah, A., Aranda, L., Rabu, P. & François, M. (2009). Solid State Sci. 11, 818–823.  Web of Science CSD CrossRef CAS Google Scholar
First citationCrystal Impact (2015). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDassault Systèmes (2021). Materials Studio. BIOVIA, San Diego, CA, USA.  Google Scholar
First citationDonnay, J. D. H. & Harker, D. (1937). Am. Mineral. 22, 446–447.  CAS Google Scholar
First citationFeyerherm, R., Loose, A., Rabu, P. & Drillon, M. (2003). Solid State Sci. 5, 321–326.  Web of Science CSD CrossRef CAS Google Scholar
First citationFriedel, G. (1907). Bull. Soc. Fr. Mineral. 30, 326–455.  Google Scholar
First citationGates-Rector, S. & Blanton, T. (2019). Powder Diffr. 34, 352–360.  CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHan, B., Ou, X., Deng, Z., Song, Y., Tian, C., Deng, H., Xu, Y.-J. & Lin, Z. (2018). Angew. Chem. Int. Ed. 57, 16811–16815.  Web of Science CrossRef CAS Google Scholar
First citationHuang, Z.-L., Drillon, M., Masciocchi, N., Sironi, A., Zhao, J.-T., Rabu, P. & Panissod, P. (2000). Chem. Mater. 12, 2805–2812.  Web of Science CSD CrossRef CAS Google Scholar
First citationKaduk, J. A. (2016). CSD Communication (refcode PUCYAO01). CCDC, Cambridge, England.  Google Scholar
First citationKaduk, J. A., Golab, J. T. & Leusen, F. J. J. (1999). Cryst. Eng. 1(3/4), 277-290.  Google Scholar
First citationKresse, G. & Furthmüller, J. (1996). Comput. Mater. Sci. 6, 15–50.  CrossRef CAS Web of Science Google Scholar
First citationKurmoo, M., Kumagai, H., Green, M. A., Lovett, B. W., Blundell, S. J., Ardavan, A. & Singleton, J. (2001). J. Solid State Chem. 159, 343–351.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMaterials Design (2016). MedeA 2.20.4. Materials Design Inc., Angel Fire, NM, USA.  Google Scholar
First citationMDI (2021). JADE Pro 8.1. Materials Data, Livermore CA, USA.  Google Scholar
First citationMesbah, A., Malaman, B., Mazet, T., Sibille, R. & François, M. (2010). CrystEngComm, 12, 3126–3131.  Web of Science CSD CrossRef CAS Google Scholar
First citationMesbah, A., Rabu, P., Sibille, R., Lebègue, S., Mazet, T., Malaman, B. & François, M. (2014). Inorg. Chem. 53, 872–881.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSherif, F. (1970). Ind. Eng. Chem. Prod. Res. Develop. 9(3), 408–412.  Google Scholar
First citationStreek, J. van de & Neumann, M. A. (2014). Acta Cryst. B70, 1020–1032.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSykes, R. A., McCabe, P., Allen, F. H., Battle, G. M., Bruno, I. J. & Wood, P. A. (2011). J. Appl. Cryst. 44, 882–886.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationToby, B. H. & Von Dreele, R. B. (2013). J. Appl. Cryst. 46, 544–549.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds