research communications
Mixed crystal of bis(ammonium/oxonium) tetraaqua-μ3-fluorido-dodecakis(μ2-trifluoroacetato)octahedro-hexaytterbiate(III) tetrahydrate, [(NH4)1–x(H3O)x]2[Yb6F8(O2CCF3)12(H2O)4]·4H2O (x = 1/4), containing a hexanuclear ytterbium(III) carboxylate complex with face-capping fluoride ligands and comprising an unusual kind of substitutional disorder
aInstitut für Anorganische Chemie und Strukturchemie, Lehrstuhl II: Material-, und Strukturforschung, Heinrich-Heine-Universität Düsseldorf, D-40225, Düsseldorf, Germany
*Correspondence e-mail: wfrank@hhu.de
The reaction of ytterbium metal with ammonium trifluoroacetate in liquid ammonia resulted in a green substance comprising a substantial amount of ytterbium(II) trifluoroacetate that is a useful precursor for the oxidative synthesis of the new ytterbium(III) compound, [(NH4)1–x(H3O)x]2[Yb6F8(O2CCF3)12(H2O)4]·4H2O (x = 1/4), in aqueous trifluoroacetic acid. This mixed ammonium/oxonium crystalline solid is the first example of a substance containing an octahedro-hexanuclear ytterbium(III) complex with μ3-face-capping fluorido ligands. The main structural features of its [Yb6F8] core are non-bonding Yb⋯Yb distances and Yb—F bond lengths of 3.7576 (3)–3.9413 (5) and 2.2375 (17)–2.3509 (17) Å, respectively. Yb—O bond lengths involving the O atoms of O,O′-bridging carboxylato ligands and vertex-substituting aqua ligands are in the ranges 2.23 (4)–2.329 (2) and 2.448 (2)–2.544 (3) Å, respectively. These bond lengths are in accordance with expectations, taking into account lanthanoid contraction. Interestingly, there is a significant ammonium versus oxonium ion site dependence, not only of the hydrate water molecule positions within the solid's hydrogen-bonding framework, but also of the coordination sites of one carboxylato and one aqua ligand in the hexanuclear complex.
Keywords: crystal structure; ytterbium; perfluorocarboxylates; octahedro-hexanuclear complex; face-capping fluorido ligands; mixed crystal.
CCDC reference: 2170493
1. Chemical context
The stabilizing influence of liquid ammonia as a reaction medium on LnII of certain lanthanoids (Ln) is well known (Warf & Korst, 1956; Warf, 1970). Selected ytterbium(II) compounds such as bis(cyclopentadienyl)ytterbium(II) (Fischer & Fischer, 1965; Hayes & Thomas, 1969), ytterbium(II) phosphide (Pytlewsky & Howell, 1967), ytterbium(II) amide (Hadenfeldt & Juza, 1969; Hadenfeldt et al., 1970; Görne et al., 2016) and ytterbium(II) halides (Howell & Pytlewski, 1969) can be obtained by precipitation reactions in liquid ammonia. Adapting this procedure in explorative attempts to synthesize ytterbium(II) trifluoroacetate, we obtained a green mixture of substances, the color of which indicating the presence of YbII ions. By dissolution experiments in trifluoroacetic acid and subsequent crystallization under non-inert conditions, we obtained colorless crystals of the title compound. The formation of this substance requires not only redox reactions with the change of the from 0 to +II and from +II to +III, but also an activation of the C—F bonds of the trifluoroacetate anion (Rillings & Roberts, 1974). This is evident not only from the presence of fluorido ligands as part of the octahedro-hexanuclear complex anion of the title compound, [(NH4)1–x(H3O)x]2[Yb6F8(O2CCF3)12(H2O)4]·4H2O (x = 0.25), but also from the presence of ammonium fluoride in the greenish precipitate from the reaction of ytterbium metal with ammonium trifluoroacetate in liquid ammonia.
2. Structural commentary
In the course of the crystal-structure 4+/H3O+ substitution. However, the structure model with disorder of the cation sites is much more complicated because the disorder not only affects the latter, but also other parts of the Fig. 1 shows the of the title compound, separated in terms of the NH4+-containing partial occupation site (part a) and in terms of the H3O+-containing partial occupation site (part b). Both partial occupation site units comprise three YbII ions, four fluoride anions, six trifluoroacetate anions and two water molecules, all in general position and establishing one half of a centrosymmetric octahedro-hexanuclear [Yb6F8(O2CCF3)12(H2O)4]2– complex. Also in general positions, one NH4+ or H3O+ cation and two water molecules complete the The charge balance of the double-negatively charged complex ion is ensured by two symmetry-related cations. The most prominent moiety in both cases is the octahedro-hexanuclear anionic complex, formed by six YbIII ions with non-bonding Yb⋯Yb distances of 3.7576 (3)–3.9413 (5) Å (mean 3.83 Å, see Table 1), the eight octahedral faces of which are capped by μ3-fluorido ligands. In the NH4+ case, all twelve octahedral edges of the central [Yb6F8] core are bridged by μ2-trifluoroacetato ligands. Yb1 is eightfold coordinated with a typical square-antiprismatic (Karraker, 1970). Water molecules additionally coordinate the octahedral vertices of the Yb2 and Yb3 sites and complete the coordination sphere of these YbIII ions, giving a ninefold coordination that results in monocapped square-antiprismatic coordination polyhedra (Fig. 2a). In the H3O+ case, one trifluoroacetato ligand binds to Yb2 monodentately only, while two water molecules coordinate to Yb3 in return (Fig. 1), giving an eightfold coordination of Yb1 and Yb2 and a ninefold coordination for Yb3 (Fig. 2b). At first view, the nature of the cation seems to influence the remaining parts of the structure and even to some extent the ligand substitution pattern of the hexanuclear complex. However, we cannot exclude the possibility that the presence of the two isomeric anions (related to hydration) is the origin of the cation substitution. The Yb—O bond lengths of 2.23 (4)–2.329 (2) Å (mean 2.30 Å), and the O—C—O′ bond angles of 129.6 (3)–132.2 (3)° (mean 129.9°) of the trifluoroacetato ligands are in typical ranges for the bidentately bridging coordination mode of carboxylate ligands (Rohde & Urland, 2006). Relevant Yb—F and Yb—O bond lengths are given in Table 1, along with the corresponding empirical bond valences for each bond, si. The Yb—F bond lengths and the bond-valence sums S of 3.01–3.13 valence units give striking structural evidence for the presence of fluorido ligands. Comparisons of the complex anion with the one in the very recent crystal-structure determination of an octahedro-hexanuclear terbium(III) complex containing a [Tb6F8] core (Ling et al., 2020) and with some europium(III) complexes containing [Eu6F8] cores (Morsbach et al., 2022) reveal that the non-bonding Ln⋯Ln distances [mean 3.97 Å (Ln = Tb) and 4.00 Å (Ln = Eu)] as well as the Ln—F (mean 2.38 and 2.38 Å) and Ln—O bond lengths (mean 2.34 and 2.40 Å) in complexes of this type are influenced by the lanthanoid contraction, with these structural parameters decreasing from Eu to Yb due to the smaller ionic radius of YbIII compared to TbIII and EuIII: 1.04 Å vs. 1.10 Å and 1.12 Å (all values for CN 9; Shannon, 1976).
the crystal under investigation turned out to be a mixed crystal characterized by NH3. Supramolecular features
Approximating the hexanuclear anionic complex as a bulky sphere, a distorted fcc packing of these voluminous anions can be recognized. As shown in Fig. 3 in more detail, in a strongly off-center mode the small cations occupy all tetrahedral interstices of this packing. The hexanuclear ytterbiate(III) anions as well as all other moieties are engaged in an extended hydrogen-bonded supramolecular network (Table 2). All hydrogen bonds have medium to weak strengths. A remarkable segment of this network is established by two symmetry-related pairs of water molecules around a center of inversion. Depending on the nature of the cation, the positions and orientations of these water molecules are significantly different, as shown in Fig. 4. Note, that the partial occupation sites occupied by O2 and O3 are related to NH4+ and those occupied by O2A and O3A are related to H3O+. In both cases, the graph set descriptor R44(8) can be assigned to the hydrogen-bond motif (Etter et al., 1990). However, a different orientation of the hydrogen-bond-donor direction is given within the ring-shaped system. In the NH4+ case, with the exception of four H atoms at the vertices (H5, H7, H5ii and H7ii), the (H2O)4 unit is almost planar (Fig. 4a), while in the H3O+ case, all H atoms are out-of-plane with the O atoms (Fig. 4b). In both cases, two further four-membered ring motifs are annealed to the (H2O)4 unit, assigned to the graph-set descriptor R44(8). In these motifs, two water molecules, a cation and, in the case of NH4+ occupying the cation position, an aqua ligand (including O17) from the [Yb6F8(O2CCF3)12(H2O)4]2– complex anion are involved. In the case of H3O+ occupying the cation position, O9A from the monodentately bonding trifluoroacetato ligand at Yb2 takes the role of O17 as a double acceptor. With further O—H⋯O′, O—H⋯F, and N—H⋯O hydrogen bonds, the entire tricyclic hydrogen-bonding motif connects in total four of the hexanuclear complexes, each of which gives further connections in three symmetry-related directions. As expected, due to the higher solvation free energy of H3O+ compared to NH4+ (Taft et al., 1978; Saielli, 2010), the primary hydrogen-bonding interaction of H3O+ is significantly stronger than that of NH4+ [O1⋯O2A = 2.619 (18) Å vs. N1⋯O17i = 2.766 (7) Å].
|
4. Database survey
A search of the Cambridge Structural Database (CSD; version 5.43, update of November 2021; Groom et al., 2016) resulted in 80 hits for isolated octahedro-hexanuclear lanthanoid complexes with eight μ3-face-capping ligands of any type, excluding a μ6-central atom. Only two of these contain eight μ3-halogenido ligands of any type, including the carboxylato fluorido complex with a [Tb6F8] core (KUWMOH, Ling et al., 2020) and a cyclopentadienyl iodido complex with a [Yb6I8] core (TUFWEW, Constantine et al., 1996). Six of the 80 complexes are ytterbium complexes, viz. the aforementioned iodido complex, three octa-μ3-hydroxido complexes (MINVAI, da Cunha et al., 2013; HELNAQ, Zhang et al., 2018; XUKCAK, Luo et al., 2020) and one tetra-μ3-oxidotetra-μ3-hydroxido complex (YINFEJ, Feng et al., 2019). The first, the second and the fourth of these are parts of metal–organic frameworks (MOFs). Furthermore, there is a hexa-μ3-oxidodi-μ3-hydroxido complex (KIFVAZ, Duan et al., 2018). A search in the ICSD (version 2021.2; Belsky et al., 2002) for structures containing both NH4+ and H3O+ ions, resulted in ten hits. Seven of these show NH4+/H3O+ substitutional disorder. Three of the seven disordered structures are mixed ammoniojarosite–hydroniumjarosite phases, (NH4)1–x(H3O)xFe3(SO4)2(OH)6 (#16020–16022, Basciano & Peterson, 2007). Furthermore, there are two phosphates (#73847–73848, Ferey et al., 1993), a molybdatophosphate (#212, Boeyens et al., 1976) and an oxide (#37066, Thomas & Farrington, 1983). However, for none of these structures cation-dependent further partial occupation sites are reported.
5. Synthesis and crystallization
All chemicals were obtained from commercial sources and used as purchased. In a representative experiment, 0.584 g (0.337 mmol) of ytterbium were dissolved in approximately 50 ml of liquid ammonia (dried over sodium) to which 0.903 g (0.675 mmol) of ammonium trifluoroacetate were added. The ammonia was evaporated, and the residue was dried in vacuo until a pressure of 10−3 hPa was reached. 0.816 g of a greenish powder were obtained. 100 mg of this powder were stirred in 2 ml of anhydrous trifluoroacetic acid, and the insoluble portions were allowed to settle overnight. The supernatant solution was transferred into an ampoule and stored open in air. Colorless crystals of the title compound grew within one week. A suitable single crystal for X-ray determination was selected directly from the mother liquor. An IR spectrum was recorded with a Spectrum Two FT–IR spectrometer (Perkin Elmer Inc., 2008), equipped with a LiTaO3 detector (4000–350 cm−1) and an ATR unit. Band assignments were made according to metal trifluoroacetate salts (Baillie et al., 1968; Faniran & Patel, 1976): ν(O—H): 3374, 3287 (w); νas(COO): 1665 (s); 1613 (m); 1569 (m); νs(COO): 1473 (m); 1342 (w); ν(C—F): 1204, 1142 (s); ν(C–C): 849 (m); δ(CF3): 798 (m); δ(O—C—O): 724 (s); 687 (w); δ(CF3): 613, 522, 452 (vw). A CHN analysis was performed with a vario MICRO cube (Elementar Analysensysteme GmbH, 2015). Analysis calculated for C24H23.50N1.50O32.50F44Yb6 (2727.15 g mol−1): C 10.57, H 0.87, N 0.77; found: C 10.7, H 0.8, N 1.0.
6. Refinement
Crystal data along with data collection and structure . After having completed the primary structural model, (a) physically non-meaningful anisotropic displacement parameters, (b) features appearing in the difference-electron density map in the course of further cycles and (c) analysis of potential hydrogen-bonding orientations clearly indicated disorder that refers to: (i) position and nature of the cation (NH4+ vs. H3O+), (ii) position and coordination mode of the complete carboxylato ligand with atoms O8 and O9, (iii) position (coordination site) of the aqua ligand with O17, (iv) orientation of the aqua ligand with O16, (v) rotational orientation of four of the six CF3 groups and (vi) position and orientation of the two hydrate water molecules. The of site-occupation factors finally proved the disorder according to (i), (ii), (iii), (iv), (vi) and the rotational orientations of three of the four CF3 groups addressed in (v) to be directly dependent. In the final stages of a converging for these dependent sites a common occupation factor was introduced and refined to 0.749 (4) for NH4+ and its related partial occupation site moieties, giving 0.251 (4) for H3O+ and its related moieties. When involved in disorder, NH4+ and H3O+ ions can hardly be distinguished in a structure based on X-ray diffraction data alone. All substances related to the class of the title compound showed somewhat too high proportions for N in the combustion analysis, and due to the complex vibration spectra, an identification of O—H or N—H stretching modes in the IR spectrum is not possible. In consequence, the nature of the cations could not be determined by chemical analysis or spectroscopic studies. Even though the model is therefore based only on the results of structure and comparative structural considerations, the final choice of occupation with NH4+ and H3O+ is unambiguous for the following reasons: the partial occupation site related to N1 with 75% occupation shows four tetrahedrally arranged residual electron-density maxima, which are identified as H atoms on the basis of their heights and spacings; at the site related to O1 with 25% occupation, clear electron-density maxima could not be identified, as expected. However, comparative refinements of the occupation factors showed in case of occupation of both partial occupation sites with O atoms clearly too small [Σs.o.f.(O,O) = 0.88 (3)], in case of occupation of both partial sites with N atoms a clearly too large value [Σs.o.f.(N,N) = 1.13 (3)] of the sum of the occupation factors. In the case of the occupation of the higher-populated site with N and the lower-populated site with O, a value close to one [Σs.o.f.(N,O) = 1.03 (3)] resulted. Within the network of hydrogen bonds, the N⋯O distance of the shortest N—H⋯O bond [2.766 (7) Å] fits well to the expectations taking into account the optimized calculated shape of the hydrated ammonium ion [NH4+—OH2 = 2.728 Å, NH4+—(OH2)2 = 2.784, 2.785 Å, NH4+—(OH2)3 = 2.832 Å (3×), at the B3LYP/6-31*G* level of theory; Jiang et al., 1999]. The much shorter O⋯O distance of 2.619 (18) Å from the lower-occupied site to the O atom of the next water molecule is typical for comparatively strong O—H⋯O hydrogen bonds, but out of the limits of expectation for N—H⋯O bonds to water molecules [Meot-Ner (Mautner), 2005]. Finally, if the lower-occupied site were assumed to be a NH4+ ion, no suitable hydrogen-bond acceptor could be identified for an additional, fourth hydrogen bond. All disordered parts of the structure were subjected to appropriate bond lengths and angles and anisotropic displacement restraints or constraints. The C—F bond lengths of the disordered CF3 groups related to C4, C10, C12, (C6) were restrained to 1.32 Å within a s. u. of 0.02 Å (0.002 Å), combined with default F⋯F same distance and with strongly restrictive isotropic displacement restraints for all F atoms. No restraints were needed for the two CF3 groups not suffering from disorder. For the CF3 group related to C6, which suffers from both dependent positional and independent rotational disorder, more restrictive C—F bond lengths restraints (see above) had to be used and the C—C bond length was restrained to 1.52 Å within a s. u. of 0.02 Å. For atoms at partial occupation sites in close proximity, in an approximative manner equivalent anisotropic displacement constraints have been applied, namely for the pairs N1/O1, O2/O2A, O3/O3A, O8/O8A, O9/O17A, C12/C12A. The NH4+ ion was treated in the as a rigid group with idealized tetrahedral shape and N—H bond lengths constrained to 0.91 Å. The H3O+ cation was included as a rigid flat pyramid with O—H bond lengths constrained to 0.84 Å and the pyramidalization defined by H⋯H distances constrained to 1.39 Å. The hydrate water molecules related to O2 and O2A were treated as rigid groups with O—H bond lengths of 0.83 Å and H—O—H angles adjusted to 105.4°. The O—H bond lengths of the aqua ligands including O16, O16A, O17, O17A and of the hydrate water molecules including O3 and O3A were restrained to 0.83 Å within an s.u. of 0.02 Å, the corresponding H⋯H distances to 1.32 Å within an s.u. of 0.04 Å defining H—O—H angles of 105 (4)–109 (4)°. Uiso(H) values of all H atoms were set to 1.5Ueq of the parent atoms.
details are summarized in Table 3
|
Supporting information
CCDC reference: 2170493
https://doi.org/10.1107/S2056989022004790/wm5637sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022004790/wm5637Isup2.hkl
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2020), SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).(NH4)1.5(H3O)0.5[Yb6(C2F3O2)12F8(H2O)4]·4H2O | F(000) = 2508 |
Mr = 2727.15 | Dx = 2.879 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 12.1449 (13) Å | Cell parameters from 9176 reflections |
b = 17.5051 (16) Å | θ = 2.3–30.6° |
c = 15.1885 (16) Å | µ = 9.04 mm−1 |
β = 102.999 (4)° | T = 120 K |
V = 3146.3 (6) Å3 | Block, colorless |
Z = 2 | 0.17 × 0.11 × 0.05 mm |
Bruker APEXII CCD diffractometer | 6768 reflections with I > 2σ(I) |
Radiation source: sealed tube | Rint = 0.035 |
φ and ω scans | θmax = 27.5°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −15→15 |
Tmin = 0.665, Tmax = 1.000 | k = −22→22 |
48765 measured reflections | l = −19→19 |
7213 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.019 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.044 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0153P)2 + 6.7213P] where P = (Fo2 + 2Fc2)/3 |
7213 reflections | (Δ/σ)max = 0.002 |
717 parameters | Δρmax = 0.96 e Å−3 |
268 restraints | Δρmin = −0.89 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Yb1 | 0.45797 (2) | 0.64420 (2) | 0.47775 (2) | 0.01292 (4) | |
Yb2 | 0.41912 (2) | 0.47533 (2) | 0.31832 (2) | 0.01477 (4) | |
Yb3 | 0.71762 (2) | 0.52450 (2) | 0.47250 (2) | 0.01390 (4) | |
F1 | 0.54171 (14) | 0.56846 (10) | 0.39369 (11) | 0.0148 (3) | |
F2 | 0.61494 (14) | 0.59078 (9) | 0.56047 (12) | 0.0150 (3) | |
F3 | 0.34576 (14) | 0.54633 (10) | 0.41953 (11) | 0.0144 (3) | |
F4 | 0.58154 (14) | 0.43124 (9) | 0.41390 (11) | 0.0145 (3) | |
F5 | 0.7250 (3) | 0.77519 (17) | 0.30917 (17) | 0.0626 (9) | |
F6 | 0.85133 (18) | 0.78640 (15) | 0.43135 (19) | 0.0484 (7) | |
F7 | 0.6979 (2) | 0.84737 (12) | 0.4135 (2) | 0.0457 (6) | |
F8 | 0.4230 (4) | 0.7285 (3) | 0.1531 (4) | 0.0512 (14) | 0.749 (4) |
F9 | 0.2777 (4) | 0.7738 (3) | 0.1940 (5) | 0.0304 (11) | 0.749 (4) |
F10 | 0.2603 (5) | 0.6762 (4) | 0.1066 (4) | 0.0437 (14) | 0.749 (4) |
F8A | 0.2313 (12) | 0.6858 (12) | 0.1283 (11) | 0.048 (5) | 0.251 (4) |
F9A | 0.4019 (14) | 0.7031 (10) | 0.1268 (11) | 0.056 (5) | 0.251 (4) |
F10A | 0.3186 (15) | 0.7817 (9) | 0.1959 (18) | 0.053 (6) | 0.251 (4) |
F11 | 0.7963 (4) | 0.5569 (5) | 0.1769 (4) | 0.079 (2) | 0.524 (2) |
F12 | 0.6733 (9) | 0.4814 (4) | 0.1043 (6) | 0.077 (3) | 0.524 (2) |
F13 | 0.6286 (6) | 0.5964 (4) | 0.1241 (5) | 0.069 (2) | 0.524 (2) |
O8 | 0.5527 (8) | 0.4900 (7) | 0.2337 (7) | 0.0203 (13) | 0.749 (4) |
O9 | 0.7214 (8) | 0.5232 (4) | 0.3210 (7) | 0.0178 (12) | 0.749 (4) |
C5 | 0.6511 (4) | 0.5141 (2) | 0.2478 (3) | 0.0176 (9) | 0.749 (4) |
C6 | 0.6887 (3) | 0.5381 (2) | 0.1630 (3) | 0.0293 (12) | 0.524 (2) |
F11A | 0.5725 (10) | 0.4478 (6) | 0.0149 (6) | 0.051 (3) | 0.251 (4) |
F12A | 0.5402 (13) | 0.5632 (6) | 0.0381 (10) | 0.081 (5) | 0.251 (4) |
F13A | 0.6809 (12) | 0.5075 (12) | 0.1199 (14) | 0.082 (6) | 0.251 (4) |
O8A | 0.532 (3) | 0.482 (2) | 0.222 (3) | 0.0203 (13) | 0.251 (4) |
O9A | 0.3984 (10) | 0.4521 (6) | 0.1033 (8) | 0.031 (3) | 0.251 (4) |
C5A | 0.4914 (10) | 0.4755 (7) | 0.1383 (8) | 0.017 (3) | 0.251 (4) |
C6A | 0.5735 (11) | 0.4983 (5) | 0.0796 (6) | 0.036 (4) | 0.251 (4) |
C6B | 0.6887 (3) | 0.5381 (2) | 0.1630 (3) | 0.0293 (12) | 0.2247 (11) |
F11B | 0.6105 (11) | 0.5475 (10) | 0.0931 (9) | 0.059 (4) | 0.2247 (11) |
F12B | 0.7644 (11) | 0.4909 (7) | 0.1435 (8) | 0.046 (3) | 0.2247 (11) |
F13B | 0.7478 (12) | 0.6044 (7) | 0.1744 (8) | 0.047 (3) | 0.2247 (11) |
F14 | 0.1535 (2) | 0.72832 (17) | 0.63021 (17) | 0.0524 (7) | |
F15 | 0.1150 (2) | 0.78175 (12) | 0.50072 (18) | 0.0403 (6) | |
F16 | 0.01836 (18) | 0.68636 (13) | 0.52708 (19) | 0.0430 (6) | |
F17 | 0.4294 (4) | 0.8118 (3) | 0.7341 (4) | 0.058 (2) | 0.608 (11) |
F18 | 0.5947 (6) | 0.8386 (3) | 0.7221 (4) | 0.053 (2) | 0.608 (11) |
F19 | 0.5704 (8) | 0.7692 (3) | 0.8300 (3) | 0.065 (3) | 0.608 (11) |
F17A | 0.6285 (6) | 0.7902 (5) | 0.8017 (6) | 0.045 (3) | 0.392 (11) |
F18A | 0.4547 (8) | 0.7724 (5) | 0.7927 (7) | 0.060 (3) | 0.392 (11) |
F19A | 0.5093 (10) | 0.8468 (3) | 0.7011 (4) | 0.050 (3) | 0.392 (11) |
C12 | 0.9654 (5) | 0.5666 (4) | 0.7508 (4) | 0.0251 (11) | 0.749 (4) |
F20 | 0.9848 (3) | 0.5158 (3) | 0.8172 (3) | 0.0571 (12) | 0.749 (4) |
F21 | 1.0494 (4) | 0.5633 (3) | 0.7093 (3) | 0.0490 (14) | 0.749 (4) |
F22 | 0.9698 (3) | 0.6338 (2) | 0.7904 (3) | 0.0528 (12) | 0.749 (4) |
C12A | 0.9711 (13) | 0.5553 (11) | 0.7414 (13) | 0.0251 (11) | 0.251 (4) |
F20A | 1.0361 (15) | 0.5984 (8) | 0.7057 (12) | 0.054 (5) | 0.251 (4) |
F21A | 0.9744 (10) | 0.5820 (11) | 0.8220 (8) | 0.066 (4) | 0.251 (4) |
F22A | 1.0184 (9) | 0.4883 (6) | 0.7513 (10) | 0.061 (4) | 0.251 (4) |
N1 | 0.2926 (7) | 0.8306 (4) | 0.3919 (6) | 0.0273 (12) | 0.749 (4) |
H12 | 0.301083 | 0.802939 | 0.343121 | 0.041* | 0.749 (4) |
H13 | 0.265981 | 0.799714 | 0.430668 | 0.041* | 0.749 (4) |
H14 | 0.360537 | 0.850338 | 0.420455 | 0.041* | 0.749 (4) |
H15 | 0.242715 | 0.869256 | 0.373385 | 0.041* | 0.749 (4) |
O1 | 0.2814 (19) | 0.8472 (13) | 0.4011 (18) | 0.0273 (12) | 0.251 (4) |
H1 | 0.264846 | 0.800676 | 0.402434 | 0.041* | 0.251 (4) |
H2 | 0.337858 | 0.858452 | 0.442138 | 0.041* | 0.251 (4) |
H3 | 0.225795 | 0.875305 | 0.402624 | 0.041* | 0.251 (4) |
O2 | 0.5001 (5) | 0.8750 (4) | 0.5075 (4) | 0.0683 (19) | 0.749 (4) |
H4 | 0.544 (5) | 0.911 (3) | 0.525 (4) | 0.102* | 0.749 (4) |
H5 | 0.496 (7) | 0.851 (3) | 0.554 (2) | 0.102* | 0.749 (4) |
O3 | 0.6573 (7) | 0.9867 (5) | 0.5240 (5) | 0.0665 (17) | 0.749 (4) |
H6 | 0.619 (6) | 1.027 (3) | 0.509 (6) | 0.100* | 0.749 (4) |
H7 | 0.711 (5) | 0.998 (4) | 0.569 (4) | 0.100* | 0.749 (4) |
O2A | 0.4546 (17) | 0.8903 (14) | 0.5274 (14) | 0.0683 (19) | 0.251 (4) |
H4A | 0.491 (13) | 0.879 (7) | 0.579 (4) | 0.102* | 0.251 (4) |
H5A | 0.46 (2) | 0.9376 (15) | 0.525 (9) | 0.102* | 0.251 (4) |
O3A | 0.668 (3) | 0.9730 (17) | 0.5589 (18) | 0.0665 (17) | 0.251 (4) |
H6A | 0.729 (11) | 0.956 (12) | 0.590 (16) | 0.100* | 0.251 (4) |
H7A | 0.628 (16) | 0.934 (8) | 0.543 (18) | 0.100* | 0.251 (4) |
O4 | 0.74437 (19) | 0.65322 (13) | 0.44643 (16) | 0.0212 (5) | |
O5 | 0.59075 (19) | 0.72520 (12) | 0.44714 (15) | 0.0194 (5) | |
O6 | 0.38017 (19) | 0.69039 (13) | 0.33511 (15) | 0.0198 (5) | |
O7 | 0.35962 (19) | 0.58759 (13) | 0.24358 (15) | 0.0203 (5) | |
O10 | 0.28607 (18) | 0.69187 (12) | 0.48928 (15) | 0.0183 (4) | |
O11 | 0.18769 (19) | 0.59112 (13) | 0.52273 (16) | 0.0214 (5) | |
O12 | 0.49566 (19) | 0.72565 (12) | 0.60049 (15) | 0.0185 (5) | |
O13 | 0.5663 (2) | 0.65211 (13) | 0.72162 (15) | 0.0208 (5) | |
O14 | 0.84720 (19) | 0.54572 (14) | 0.60512 (16) | 0.0226 (5) | |
O15 | 0.76951 (18) | 0.55146 (13) | 0.72604 (15) | 0.0204 (5) | |
O16 | 0.9075 (2) | 0.54443 (14) | 0.44699 (17) | 0.0219 (5) | |
H8 | 0.906 (5) | 0.538 (3) | 0.3925 (16) | 0.033* | 0.749 (4) |
H8A | 0.960 (8) | 0.519 (4) | 0.478 (9) | 0.033* | 0.251 (4) |
H9 | 0.928 (4) | 0.5886 (13) | 0.458 (3) | 0.033* | |
O17 | 0.3486 (3) | 0.4558 (2) | 0.1490 (2) | 0.0263 (8) | 0.749 (4) |
H10 | 0.358 (5) | 0.4098 (12) | 0.151 (4) | 0.039* | 0.749 (4) |
H11 | 0.396 (6) | 0.475 (3) | 0.123 (5) | 0.039* | 0.749 (4) |
O17A | 0.731 (3) | 0.5080 (16) | 0.327 (2) | 0.0178 (12) | 0.251 (4) |
H10A | 0.796 (3) | 0.525 (6) | 0.338 (3) | 0.027* | 0.251 (4) |
H11A | 0.692 (6) | 0.538 (4) | 0.290 (6) | 0.027* | 0.251 (4) |
C1 | 0.6872 (3) | 0.71285 (17) | 0.4349 (2) | 0.0168 (6) | |
C2 | 0.7424 (3) | 0.7812 (2) | 0.3970 (2) | 0.0237 (7) | |
C3 | 0.3584 (3) | 0.65671 (18) | 0.2611 (2) | 0.0170 (6) | |
C4 | 0.3288 (3) | 0.7092 (2) | 0.1773 (2) | 0.0280 (8) | |
C7 | 0.2064 (3) | 0.65978 (18) | 0.5141 (2) | 0.0176 (6) | |
C8 | 0.1216 (3) | 0.7149 (2) | 0.5428 (2) | 0.0241 (7) | |
C9 | 0.5313 (3) | 0.71245 (18) | 0.6826 (2) | 0.0181 (6) | |
C10 | 0.5304 (3) | 0.7826 (2) | 0.7442 (2) | 0.0258 (7) | |
C11 | 0.8490 (3) | 0.55266 (18) | 0.6861 (2) | 0.0209 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Yb1 | 0.01250 (6) | 0.01161 (6) | 0.01467 (7) | 0.00037 (4) | 0.00311 (5) | 0.00005 (4) |
Yb2 | 0.01271 (7) | 0.01391 (7) | 0.01816 (7) | −0.00026 (4) | 0.00445 (5) | −0.00032 (5) |
Yb3 | 0.01161 (7) | 0.01416 (7) | 0.01668 (7) | −0.00050 (4) | 0.00478 (5) | −0.00059 (5) |
F1 | 0.0149 (8) | 0.0153 (8) | 0.0143 (8) | −0.0003 (7) | 0.0037 (7) | 0.0003 (7) |
F2 | 0.0134 (8) | 0.0141 (8) | 0.0177 (9) | 0.0005 (7) | 0.0039 (7) | 0.0011 (7) |
F3 | 0.0131 (8) | 0.0143 (8) | 0.0161 (9) | 0.0005 (6) | 0.0039 (7) | 0.0006 (6) |
F4 | 0.0144 (8) | 0.0140 (8) | 0.0148 (8) | −0.0004 (7) | 0.0027 (7) | 0.0005 (7) |
F5 | 0.100 (2) | 0.0670 (19) | 0.0231 (13) | −0.0320 (17) | 0.0179 (14) | 0.0085 (12) |
F6 | 0.0210 (11) | 0.0392 (14) | 0.081 (2) | −0.0076 (10) | 0.0033 (12) | 0.0276 (13) |
F7 | 0.0431 (14) | 0.0205 (11) | 0.0783 (19) | −0.0005 (10) | 0.0238 (14) | 0.0125 (11) |
F8 | 0.051 (3) | 0.057 (3) | 0.056 (4) | 0.001 (2) | 0.034 (3) | 0.027 (3) |
F9 | 0.039 (2) | 0.023 (2) | 0.027 (2) | 0.0093 (17) | 0.005 (2) | 0.0089 (15) |
F10 | 0.072 (4) | 0.035 (2) | 0.016 (2) | 0.005 (2) | −0.006 (2) | 0.0019 (16) |
F8A | 0.051 (8) | 0.061 (9) | 0.022 (8) | 0.014 (7) | −0.013 (6) | 0.004 (6) |
F9A | 0.072 (8) | 0.067 (9) | 0.037 (7) | 0.005 (6) | 0.031 (6) | 0.022 (6) |
F10A | 0.094 (15) | 0.027 (7) | 0.040 (8) | 0.009 (8) | 0.017 (11) | 0.016 (5) |
F11 | 0.046 (3) | 0.134 (5) | 0.060 (3) | −0.020 (3) | 0.021 (3) | 0.031 (4) |
F12 | 0.132 (7) | 0.055 (4) | 0.065 (5) | −0.014 (4) | 0.069 (5) | −0.016 (3) |
F13 | 0.089 (4) | 0.062 (3) | 0.070 (4) | 0.027 (3) | 0.042 (3) | 0.045 (3) |
O8 | 0.018 (4) | 0.029 (3) | 0.014 (3) | −0.002 (3) | 0.003 (3) | −0.002 (2) |
O9 | 0.016 (2) | 0.021 (4) | 0.017 (2) | 0.003 (2) | 0.0043 (15) | 0.000 (2) |
C5 | 0.022 (2) | 0.0148 (19) | 0.018 (2) | 0.0031 (16) | 0.0091 (17) | 0.0011 (15) |
C6 | 0.023 (2) | 0.039 (3) | 0.029 (3) | 0.003 (2) | 0.014 (2) | 0.004 (2) |
F11A | 0.061 (7) | 0.059 (7) | 0.040 (6) | −0.001 (5) | 0.027 (5) | −0.012 (5) |
F12A | 0.119 (12) | 0.049 (7) | 0.097 (10) | 0.000 (7) | 0.073 (10) | 0.022 (7) |
F13A | 0.097 (10) | 0.098 (11) | 0.065 (9) | −0.032 (8) | 0.046 (8) | 0.009 (8) |
O8A | 0.018 (4) | 0.029 (3) | 0.014 (3) | −0.002 (3) | 0.003 (3) | −0.002 (2) |
O9A | 0.025 (5) | 0.035 (6) | 0.033 (6) | −0.013 (5) | 0.005 (5) | −0.006 (5) |
C5A | 0.017 (6) | 0.024 (7) | 0.012 (6) | −0.002 (5) | 0.004 (5) | 0.005 (5) |
C6A | 0.047 (8) | 0.044 (7) | 0.016 (6) | 0.000 (7) | 0.008 (6) | 0.001 (6) |
C6B | 0.023 (2) | 0.039 (3) | 0.029 (3) | 0.003 (2) | 0.014 (2) | 0.004 (2) |
F11B | 0.039 (7) | 0.107 (12) | 0.029 (7) | −0.004 (8) | 0.005 (5) | 0.044 (8) |
F12B | 0.048 (5) | 0.057 (5) | 0.045 (5) | 0.021 (4) | 0.034 (4) | 0.009 (4) |
F13B | 0.068 (6) | 0.040 (5) | 0.037 (5) | −0.020 (4) | 0.025 (4) | 0.004 (4) |
F14 | 0.0543 (16) | 0.0700 (19) | 0.0323 (13) | 0.0223 (14) | 0.0084 (12) | −0.0208 (13) |
F15 | 0.0373 (13) | 0.0237 (11) | 0.0648 (17) | 0.0139 (9) | 0.0218 (12) | 0.0038 (11) |
F16 | 0.0192 (11) | 0.0327 (12) | 0.0807 (19) | 0.0015 (9) | 0.0185 (11) | −0.0160 (12) |
F17 | 0.037 (2) | 0.064 (4) | 0.071 (4) | 0.017 (2) | 0.006 (2) | −0.039 (4) |
F18 | 0.066 (4) | 0.028 (2) | 0.072 (4) | −0.019 (3) | 0.028 (3) | −0.024 (2) |
F19 | 0.123 (7) | 0.039 (3) | 0.023 (2) | 0.019 (3) | −0.004 (3) | −0.0125 (19) |
F17A | 0.035 (4) | 0.044 (4) | 0.047 (5) | 0.005 (3) | −0.013 (3) | −0.031 (4) |
F18A | 0.063 (6) | 0.063 (5) | 0.068 (6) | −0.012 (4) | 0.049 (5) | −0.032 (5) |
F19A | 0.101 (10) | 0.022 (3) | 0.026 (3) | 0.015 (4) | 0.010 (4) | −0.004 (2) |
C12 | 0.0169 (18) | 0.034 (3) | 0.023 (2) | 0.0023 (17) | 0.0010 (15) | −0.003 (2) |
F20 | 0.0298 (19) | 0.077 (3) | 0.053 (3) | −0.001 (2) | −0.0149 (18) | 0.029 (2) |
F21 | 0.0161 (17) | 0.094 (4) | 0.037 (2) | −0.005 (3) | 0.0057 (16) | −0.024 (3) |
F22 | 0.0268 (18) | 0.058 (3) | 0.063 (3) | −0.0015 (18) | −0.0120 (18) | −0.037 (2) |
C12A | 0.0169 (18) | 0.034 (3) | 0.023 (2) | 0.0023 (17) | 0.0010 (15) | −0.003 (2) |
F20A | 0.030 (7) | 0.070 (8) | 0.056 (7) | −0.029 (7) | −0.001 (5) | 0.010 (7) |
F21A | 0.031 (6) | 0.138 (13) | 0.029 (6) | 0.001 (8) | 0.007 (5) | −0.030 (8) |
F22A | 0.034 (6) | 0.045 (6) | 0.089 (9) | 0.014 (5) | −0.019 (6) | 0.008 (6) |
N1 | 0.035 (2) | 0.014 (4) | 0.033 (3) | 0.002 (2) | 0.008 (2) | −0.002 (2) |
O1 | 0.035 (2) | 0.014 (4) | 0.033 (3) | 0.002 (2) | 0.008 (2) | −0.002 (2) |
O2 | 0.061 (4) | 0.082 (4) | 0.050 (3) | −0.013 (4) | −0.013 (3) | 0.018 (3) |
O3 | 0.057 (3) | 0.067 (4) | 0.067 (5) | 0.002 (3) | −0.003 (4) | 0.008 (4) |
O2A | 0.061 (4) | 0.082 (4) | 0.050 (3) | −0.013 (4) | −0.013 (3) | 0.018 (3) |
O3A | 0.057 (3) | 0.067 (4) | 0.067 (5) | 0.002 (3) | −0.003 (4) | 0.008 (4) |
O4 | 0.0186 (11) | 0.0205 (12) | 0.0256 (12) | −0.0030 (9) | 0.0070 (10) | 0.0004 (9) |
O5 | 0.0182 (11) | 0.0177 (11) | 0.0229 (12) | −0.0036 (9) | 0.0060 (9) | −0.0008 (9) |
O6 | 0.0212 (11) | 0.0203 (11) | 0.0174 (11) | 0.0005 (9) | 0.0029 (9) | 0.0028 (9) |
O7 | 0.0213 (11) | 0.0220 (12) | 0.0168 (11) | 0.0013 (9) | 0.0026 (9) | 0.0021 (9) |
O10 | 0.0173 (11) | 0.0177 (11) | 0.0199 (11) | 0.0038 (9) | 0.0042 (9) | 0.0008 (9) |
O11 | 0.0180 (11) | 0.0182 (11) | 0.0300 (13) | 0.0015 (9) | 0.0097 (10) | −0.0013 (9) |
O12 | 0.0192 (11) | 0.0175 (11) | 0.0184 (11) | −0.0010 (9) | 0.0033 (9) | −0.0021 (9) |
O13 | 0.0231 (12) | 0.0208 (12) | 0.0178 (11) | −0.0013 (9) | 0.0031 (9) | −0.0024 (9) |
O14 | 0.0181 (11) | 0.0262 (12) | 0.0227 (12) | −0.0018 (9) | 0.0030 (9) | −0.0039 (10) |
O15 | 0.0163 (11) | 0.0228 (12) | 0.0206 (12) | −0.0024 (9) | 0.0010 (9) | −0.0029 (9) |
O16 | 0.0165 (11) | 0.0257 (12) | 0.0236 (13) | −0.0030 (10) | 0.0043 (10) | −0.0022 (10) |
O17 | 0.0266 (18) | 0.0310 (18) | 0.0194 (17) | −0.0003 (15) | 0.0009 (15) | −0.0031 (14) |
O17A | 0.016 (2) | 0.021 (4) | 0.017 (2) | 0.003 (2) | 0.0043 (15) | 0.000 (2) |
C1 | 0.0202 (15) | 0.0158 (14) | 0.0131 (14) | −0.0061 (12) | 0.0013 (12) | −0.0008 (11) |
C2 | 0.0206 (16) | 0.0244 (17) | 0.0257 (18) | −0.0033 (13) | 0.0046 (14) | 0.0070 (13) |
C3 | 0.0121 (14) | 0.0215 (16) | 0.0171 (15) | 0.0013 (12) | 0.0031 (12) | 0.0047 (12) |
C4 | 0.037 (2) | 0.0267 (18) | 0.0210 (17) | 0.0025 (15) | 0.0070 (15) | 0.0056 (14) |
C7 | 0.0156 (15) | 0.0197 (15) | 0.0167 (15) | 0.0035 (12) | 0.0020 (12) | −0.0027 (12) |
C8 | 0.0190 (16) | 0.0241 (17) | 0.0289 (18) | 0.0024 (13) | 0.0048 (14) | −0.0065 (14) |
C9 | 0.0154 (14) | 0.0196 (15) | 0.0196 (16) | −0.0035 (12) | 0.0045 (12) | −0.0036 (12) |
C10 | 0.0313 (19) | 0.0241 (17) | 0.0215 (17) | 0.0025 (14) | 0.0046 (14) | −0.0034 (13) |
C11 | 0.0179 (16) | 0.0179 (15) | 0.0236 (17) | −0.0011 (12) | −0.0026 (13) | −0.0017 (13) |
Yb1—F1 | 2.2375 (17) | F14—C8 | 1.317 (4) |
Yb1—F2 | 2.2382 (17) | F15—C8 | 1.327 (4) |
Yb1—F3 | 2.2431 (17) | F16—C8 | 1.321 (4) |
Yb1—F4i | 2.2444 (17) | F17—C10 | 1.305 (5) |
Yb1—O5 | 2.273 (2) | F18—C10 | 1.342 (5) |
Yb1—O10 | 2.291 (2) | F19—C10 | 1.305 (6) |
Yb1—O6 | 2.306 (2) | F17A—C10 | 1.316 (7) |
Yb1—O12 | 2.309 (2) | F18A—C10 | 1.313 (7) |
Yb2—O8A | 2.23 (4) | F19A—C10 | 1.297 (7) |
Yb2—O15i | 2.286 (2) | C12—F21 | 1.315 (7) |
Yb2—F2i | 2.2895 (17) | C12—F22 | 1.316 (7) |
Yb2—O8 | 2.299 (13) | C12—F20 | 1.326 (8) |
Yb2—O7 | 2.303 (2) | C12—C11 | 1.549 (6) |
Yb2—F4 | 2.3035 (17) | C12A—F20A | 1.296 (18) |
Yb2—F3 | 2.3061 (17) | C12A—F22A | 1.301 (18) |
Yb2—F1 | 2.3276 (17) | C12A—F21A | 1.302 (18) |
Yb2—O13i | 2.329 (2) | C12A—C11 | 1.531 (15) |
Yb2—O17 | 2.544 (3) | N1—H12 | 0.9100 |
Yb2—C5A | 3.054 (11) | N1—H13 | 0.9100 |
Yb3—O17A | 2.27 (4) | N1—H14 | 0.9099 |
Yb3—O14 | 2.290 (2) | N1—H15 | 0.9099 |
Yb3—O9 | 2.312 (11) | O1—H1 | 0.8400 |
Yb3—O11i | 2.321 (2) | O1—H2 | 0.8401 |
Yb3—F3i | 2.3210 (17) | O1—H3 | 0.8401 |
Yb3—O4 | 2.323 (2) | O2—H4 | 0.830 (2) |
Yb3—F2 | 2.3316 (17) | O2—H5 | 0.830 (2) |
Yb3—F1 | 2.3321 (17) | O3—H6 | 0.852 (17) |
Yb3—F4 | 2.3509 (17) | O3—H7 | 0.849 (18) |
Yb3—O16 | 2.448 (2) | O2A—H4A | 0.830 (2) |
F5—C2 | 1.306 (4) | O2A—H5A | 0.830 (3) |
F6—C2 | 1.312 (4) | O3A—H6A | 0.83 (2) |
F7—C2 | 1.327 (4) | O3A—H7A | 0.84 (2) |
F8—C4 | 1.322 (6) | O4—C1 | 1.244 (4) |
F9—C4 | 1.341 (6) | O5—C1 | 1.246 (4) |
F10—C4 | 1.333 (6) | O6—C3 | 1.244 (4) |
F8A—C4 | 1.315 (14) | O7—C3 | 1.239 (4) |
F9A—C4 | 1.302 (14) | O10—C7 | 1.248 (4) |
F10A—C4 | 1.311 (15) | O11—C7 | 1.236 (4) |
F11—C6 | 1.317 (2) | O12—C9 | 1.246 (4) |
F12—C6 | 1.319 (2) | O13—C9 | 1.239 (4) |
F13—C6 | 1.315 (2) | O14—C11 | 1.231 (4) |
O8—C5 | 1.240 (10) | O15—C11 | 1.251 (4) |
O9—C5 | 1.250 (11) | O16—H8 | 0.831 (19) |
C5—C6 | 1.519 (6) | O16—H8A | 0.84 (2) |
F11A—C6A | 1.320 (2) | O16—H9 | 0.817 (19) |
F12A—C6A | 1.320 (2) | O17—H10 | 0.81 (2) |
F13A—C6A | 1.320 (2) | O17—H11 | 0.84 (2) |
O8A—C5A | 1.26 (4) | O17A—H10A | 0.830 (2) |
O9A—C5A | 1.207 (17) | O17A—H11A | 0.830 (2) |
C5A—C6A | 1.532 (14) | C1—C2 | 1.544 (4) |
C6B—F11B | 1.266 (14) | C3—C4 | 1.545 (5) |
C6B—F12B | 1.318 (11) | C7—C8 | 1.544 (4) |
C6B—F13B | 1.355 (12) | C9—C10 | 1.546 (4) |
F1—Yb1—F2 | 68.51 (6) | Yb1i—F4—Yb2 | 111.42 (7) |
F1—Yb1—F3 | 68.68 (6) | Yb1i—F4—Yb3 | 112.27 (7) |
F2—Yb1—F3 | 105.52 (6) | Yb2—F4—Yb3 | 115.81 (7) |
F1—Yb1—F4i | 105.62 (6) | C5—O8—Yb2 | 135.7 (7) |
F2—Yb1—F4i | 68.79 (6) | C5—O9—Yb3 | 136.4 (7) |
F3—Yb1—F4i | 68.20 (6) | O8—C5—O9 | 129.5 (8) |
F1—Yb1—O5 | 79.54 (7) | O8—C5—C6 | 114.2 (6) |
F2—Yb1—O5 | 79.72 (7) | O9—C5—C6 | 116.3 (6) |
F3—Yb1—O5 | 142.37 (7) | F13—C6—F11 | 107.9 (5) |
F4i—Yb1—O5 | 142.72 (7) | F13—C6—F12 | 107.5 (6) |
F1—Yb1—O10 | 142.97 (7) | F11—C6—F12 | 106.4 (6) |
F2—Yb1—O10 | 141.71 (7) | F13—C6—C5 | 110.7 (4) |
F3—Yb1—O10 | 79.93 (7) | F11—C6—C5 | 114.2 (4) |
F4i—Yb1—O10 | 79.02 (7) | F12—C6—C5 | 109.9 (6) |
O5—Yb1—O10 | 119.28 (8) | C5A—O8A—Yb2 | 120 (2) |
F1—Yb1—O6 | 79.31 (7) | O9A—C5A—O8A | 126 (2) |
F2—Yb1—O6 | 142.28 (7) | O9A—C5A—C6A | 120.0 (12) |
F3—Yb1—O6 | 79.24 (7) | O8A—C5A—C6A | 114 (2) |
F4i—Yb1—O6 | 141.72 (7) | O9A—C5A—Yb2 | 88.0 (8) |
O5—Yb1—O6 | 75.44 (8) | C6A—C5A—Yb2 | 151.3 (8) |
O10—Yb1—O6 | 75.89 (8) | F13A—C6A—F12A | 106.3 (11) |
F1—Yb1—O12 | 142.51 (7) | F13A—C6A—F11A | 105.6 (11) |
F2—Yb1—O12 | 79.38 (7) | F12A—C6A—F11A | 105.7 (9) |
F3—Yb1—O12 | 141.46 (7) | F13A—C6A—C5A | 117.8 (13) |
F4i—Yb1—O12 | 78.91 (7) | F12A—C6A—C5A | 109.5 (10) |
O5—Yb1—O12 | 76.05 (8) | F11A—C6A—C5A | 111.1 (10) |
O10—Yb1—O12 | 74.46 (8) | F11B—C6B—F12B | 108.8 (9) |
O6—Yb1—O12 | 120.44 (8) | F11B—C6B—F13B | 105.8 (8) |
O8A—Yb2—O15i | 122.8 (7) | F12B—C6B—F13B | 101.0 (8) |
O15i—Yb2—F2i | 77.47 (7) | F21—C12—F22 | 107.6 (6) |
O15i—Yb2—O8 | 130.11 (18) | F21—C12—F20 | 108.1 (5) |
F2i—Yb2—O8 | 141.6 (3) | F22—C12—F20 | 105.7 (5) |
O8A—Yb2—O7 | 78.4 (11) | F21—C12—C11 | 112.7 (5) |
O15i—Yb2—O7 | 81.21 (8) | F22—C12—C11 | 111.6 (5) |
F2i—Yb2—O7 | 137.25 (7) | F20—C12—C11 | 110.9 (5) |
O8—Yb2—O7 | 79.2 (3) | F20A—C12A—F22A | 106.1 (14) |
O8A—Yb2—F4 | 82.4 (9) | F20A—C12A—F21A | 107.0 (15) |
O15i—Yb2—F4 | 140.92 (7) | F22A—C12A—F21A | 107.2 (15) |
F2i—Yb2—F4 | 66.91 (6) | F20A—C12A—C11 | 113.2 (16) |
O8—Yb2—F4 | 77.2 (3) | F22A—C12A—C11 | 112.6 (13) |
O7—Yb2—F4 | 136.54 (7) | F21A—C12A—C11 | 110.4 (14) |
O8A—Yb2—F3 | 142.9 (10) | H12—N1—H13 | 109.5 |
O15i—Yb2—F3 | 78.19 (7) | H12—N1—H14 | 109.5 |
F2i—Yb2—F3 | 64.51 (6) | H13—N1—H14 | 109.5 |
O8—Yb2—F3 | 137.7 (3) | H12—N1—H15 | 109.5 |
O7—Yb2—F3 | 75.12 (7) | H13—N1—H15 | 109.5 |
F4—Yb2—F3 | 99.50 (6) | H14—N1—H15 | 109.5 |
O8A—Yb2—F1 | 82.3 (8) | H1—O1—H2 | 111.7 |
O15i—Yb2—F1 | 140.92 (7) | H1—O1—H3 | 111.7 |
F2i—Yb2—F1 | 99.78 (6) | H2—O1—H3 | 111.6 |
O8—Yb2—F1 | 75.12 (19) | H4—O2—H5 | 105.4 (6) |
O7—Yb2—F1 | 74.92 (7) | H6—O3—H7 | 107 (5) |
F4—Yb2—F1 | 64.05 (6) | H4A—O2A—H5A | 105.4 (6) |
F3—Yb2—F1 | 66.11 (6) | H6A—O3A—H7A | 106 (5) |
O15i—Yb2—O13i | 81.76 (8) | C1—O4—Yb3 | 138.0 (2) |
F2i—Yb2—O13i | 76.31 (7) | C1—O5—Yb1 | 131.0 (2) |
O8—Yb2—O13i | 81.8 (3) | C3—O6—Yb1 | 129.9 (2) |
O7—Yb2—O13i | 136.28 (8) | C3—O7—Yb2 | 138.1 (2) |
F4—Yb2—O13i | 74.85 (7) | C7—O10—Yb1 | 129.8 (2) |
F3—Yb2—O13i | 138.88 (7) | C7—O11—Yb3i | 138.6 (2) |
F1—Yb2—O13i | 136.15 (7) | C9—O12—Yb1 | 130.9 (2) |
O15i—Yb2—O17 | 65.63 (10) | C9—O13—Yb2i | 136.9 (2) |
F2i—Yb2—O17 | 131.62 (10) | C11—O14—Yb3 | 138.5 (2) |
O8—Yb2—O17 | 64.50 (19) | C11—O15—Yb2i | 133.8 (2) |
O7—Yb2—O17 | 67.64 (10) | Yb3—O16—H8 | 109 (4) |
F4—Yb2—O17 | 129.63 (9) | Yb3—O16—H8A | 118 (10) |
F3—Yb2—O17 | 130.81 (9) | Yb3—O16—H9 | 111 (3) |
F1—Yb2—O17 | 128.60 (9) | H8—O16—H9 | 105 (4) |
O13i—Yb2—O17 | 68.65 (10) | H8A—O16—H9 | 104 (5) |
O8A—Yb2—C5A | 20.9 (8) | Yb2—O17—H10 | 94 (4) |
O15i—Yb2—C5A | 101.9 (2) | Yb2—O17—H11 | 108 (6) |
F2i—Yb2—C5A | 149.4 (2) | H10—O17—H11 | 109 (4) |
O7—Yb2—C5A | 71.3 (2) | Yb3—O17A—H10A | 92 (5) |
F4—Yb2—C5A | 100.8 (2) | Yb3—O17A—H11A | 116 (10) |
F3—Yb2—C5A | 145.9 (2) | H10A—O17A—H11A | 106 (5) |
F1—Yb2—C5A | 99.1 (2) | O4—C1—O5 | 129.6 (3) |
O13i—Yb2—C5A | 73.4 (2) | O4—C1—C2 | 115.3 (3) |
O17A—Yb3—O14 | 133.8 (9) | O5—C1—C2 | 115.0 (3) |
O14—Yb3—O9 | 135.5 (3) | F5—C2—F6 | 109.2 (3) |
O14—Yb3—O11i | 82.90 (8) | F5—C2—F7 | 106.5 (3) |
O9—Yb3—O11i | 84.38 (16) | F6—C2—F7 | 106.3 (3) |
O14—Yb3—F3i | 74.74 (7) | F5—C2—C1 | 109.5 (3) |
O9—Yb3—F3i | 141.5 (2) | F6—C2—C1 | 112.9 (3) |
O11i—Yb3—F3i | 75.69 (7) | F7—C2—C1 | 112.1 (3) |
O17A—Yb3—O4 | 85.1 (7) | O7—C3—O6 | 130.2 (3) |
O14—Yb3—O4 | 84.13 (9) | O7—C3—C4 | 114.6 (3) |
O9—Yb3—O4 | 78.74 (19) | O6—C3—C4 | 115.1 (3) |
O11i—Yb3—O4 | 139.80 (8) | F9A—C4—F10A | 108.5 (11) |
F3i—Yb3—O4 | 136.04 (7) | F9A—C4—F8A | 106.7 (9) |
O17A—Yb3—F2 | 141.7 (7) | F10A—C4—F8A | 107.9 (11) |
O14—Yb3—F2 | 76.44 (7) | F8—C4—F10 | 108.0 (4) |
O9—Yb3—F2 | 135.08 (17) | F8—C4—F9 | 107.7 (4) |
O11i—Yb3—F2 | 137.83 (7) | F10—C4—F9 | 106.6 (5) |
F3i—Yb3—F2 | 63.63 (6) | F9A—C4—C3 | 111.9 (9) |
O4—Yb3—F2 | 74.24 (7) | F10A—C4—C3 | 114.5 (12) |
O17A—Yb3—F1 | 78.4 (8) | F8A—C4—C3 | 107.0 (10) |
O14—Yb3—F1 | 140.07 (7) | F8—C4—C3 | 109.0 (4) |
O9—Yb3—F1 | 73.3 (2) | F10—C4—C3 | 113.1 (4) |
O11i—Yb3—F1 | 133.95 (7) | F9—C4—C3 | 112.2 (4) |
F3i—Yb3—F1 | 97.34 (6) | O11—C7—O10 | 130.0 (3) |
O4—Yb3—F1 | 74.91 (7) | O11—C7—C8 | 115.3 (3) |
F2—Yb3—F1 | 65.39 (6) | O10—C7—C8 | 114.6 (3) |
O17A—Yb3—F4 | 74.9 (9) | F14—C8—F16 | 107.6 (3) |
O14—Yb3—F4 | 136.97 (7) | F14—C8—F15 | 107.5 (3) |
O9—Yb3—F4 | 77.7 (2) | F16—C8—F15 | 107.1 (3) |
O11i—Yb3—F4 | 72.99 (7) | F14—C8—C7 | 109.4 (3) |
F3i—Yb3—F4 | 65.16 (6) | F16—C8—C7 | 112.3 (3) |
O4—Yb3—F4 | 136.25 (7) | F15—C8—C7 | 112.8 (3) |
F2—Yb3—F4 | 98.13 (6) | O13—C9—O12 | 129.9 (3) |
F1—Yb3—F4 | 63.25 (6) | O13—C9—C10 | 115.8 (3) |
O17A—Yb3—O16 | 65.8 (9) | O12—C9—C10 | 114.3 (3) |
O14—Yb3—O16 | 68.32 (8) | F19—C10—F17 | 108.5 (5) |
O9—Yb3—O16 | 67.3 (3) | F19A—C10—F18A | 108.5 (6) |
O11i—Yb3—O16 | 69.60 (8) | F19A—C10—F17A | 107.1 (6) |
F3i—Yb3—O16 | 131.44 (7) | F18A—C10—F17A | 106.6 (6) |
O4—Yb3—O16 | 70.24 (8) | F19—C10—F18 | 105.9 (5) |
F2—Yb3—O16 | 131.62 (7) | F17—C10—F18 | 105.6 (4) |
F1—Yb3—O16 | 131.20 (7) | F19A—C10—C9 | 114.2 (4) |
F4—Yb3—O16 | 130.25 (7) | F19—C10—C9 | 114.2 (3) |
Yb1—F1—Yb2 | 111.91 (7) | F17—C10—C9 | 112.0 (3) |
Yb1—F1—Yb3 | 112.59 (7) | F18A—C10—C9 | 109.5 (4) |
Yb2—F1—Yb3 | 115.60 (7) | F17A—C10—C9 | 110.7 (4) |
Yb1—F2—Yb2i | 112.17 (7) | F18—C10—C9 | 110.2 (3) |
Yb1—F2—Yb3 | 112.58 (7) | O14—C11—O15 | 129.8 (3) |
Yb2i—F2—Yb3 | 115.21 (7) | O14—C11—C12A | 110.5 (8) |
Yb1—F3—Yb2 | 112.51 (7) | O15—C11—C12A | 119.4 (8) |
Yb1—F3—Yb3i | 113.46 (7) | O14—C11—C12 | 117.3 (4) |
Yb2—F3—Yb3i | 114.98 (7) | O15—C11—C12 | 112.9 (4) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H12···O6 | 0.91 | 2.21 | 2.883 (8) | 131 |
N1—H15···O17ii | 0.91 | 1.86 | 2.766 (7) | 172 |
N1—H13···O10 | 0.91 | 2.08 | 2.853 (10) | 142 |
N1—H14···O2 | 0.91 | 1.95 | 2.837 (9) | 165 |
O1—H2···O2A | 0.84 | 1.78 | 2.619 (18) | 175 |
O1—H3···O9Aii | 0.84 | 2.01 | 2.842 (16) | 173 |
O1—H1···O10 | 0.84 | 2.30 | 3.03 (3) | 145 |
O2—H4···O3 | 0.83 (1) | 1.91 (3) | 2.704 (11) | 159 (7) |
O2—H5···O12 | 0.83 (1) | 2.31 (5) | 2.978 (7) | 138 (6) |
O3—H6···O2iii | 0.85 (2) | 2.22 (2) | 3.055 (10) | 167 (8) |
O3—H7···O17iv | 0.85 (2) | 2.01 (2) | 2.835 (9) | 163 (8) |
O2A—H4A···F19A | 0.83 (1) | 1.90 (7) | 2.68 (2) | 156 (17) |
O2A—H5A···O3Aiii | 0.83 (1) | 2.35 (14) | 2.96 (3) | 131 (16) |
O3A—H7A···O2A | 0.84 (2) | 2.20 (15) | 2.91 (4) | 143 (23) |
O3A—H6A···O9Aiv | 0.83 (2) | 2.6 (2) | 3.03 (4) | 115 (19) |
O16—H8···O9 | 0.83 (2) | 2.28 (6) | 2.639 (10) | 107 (4) |
O16—H8A···O16v | 0.84 (2) | 2.07 (2) | 2.903 (5) | 179 (17) |
O16—H9···F16vi | 0.82 (2) | 2.17 (2) | 2.954 (3) | 160 (4) |
O17—H11···O8 | 0.84 (2) | 2.25 (8) | 2.593 (7) | 105 (7) |
O17—H10···O13i | 0.81 (2) | 2.22 (5) | 2.754 (4) | 123 (5) |
O17A—H10A···O16 | 0.83 (1) | 1.92 (2) | 2.56 (3) | 134 (5) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1/2, y+1/2, −z+1/2; (iii) −x+1, −y+2, −z+1; (iv) x+1/2, −y+3/2, z+1/2; (v) −x+2, −y+1, −z+1; (vi) x+1, y, z. |
Calculation of empirical bond valences according to: S = Σ si = Σ{exp[(d – d0) / B]} (Brown & Altermatt, 1985), with d0(YbIII—F) = 1.875 Å, B = 0.37 (Brese & O'Keeffe, 1991) and d0(YbIII—O) = 1.965 Å, B = 0.37 (Brown & Altermatt, 1985). |
X—Y | di | s.o.f. of atom Y | si |
Yb1—F1 | 2.2375 (17) | 1 | 0.38 |
Yb1—F2 | 2.2382 (17) | 1 | 0.37 |
Yb1—F3 | 2.2431 (17) | 1 | 0.37 |
Yb1—F4vi | 2.2444 (17) | 1 | 0.37 |
Yb1—O5 | 2.273 (2) | 1 | 0.43 |
Yb1—O10 | 2.291 (2) | 1 | 0.41 |
Yb1—O6 | 2.306 (2) | 1 | 0.40 |
Yb1—O12 | 2.309 (2) | 1 | 0.39 |
S = 3.13 | |||
Yb2—F2vi | 2.2895 (17) | 1 | 0.33 |
Yb2—F4 | 2.3035 (17) | 1 | 0.31 |
Yb2—F3 | 2.3061 (17) | 1 | 0.31 |
Yb2—F1 | 2.3276 (17) | 1 | 0.29 |
Yb2—O8A | 2.23 (4) | 0.251 (4) | 0.12 |
Yb2—O15vi | 2.286 (2) | 1 | 0.42 |
Yb2—O8 | 2.299 (13) | 0.749 (4) | 0.30 |
Yb2—O7 | 2.303 (2) | 1 | 0.40 |
Yb2—O13vi | 2.329 (2) | 1 | 0.37 |
Yb2—O17 | 2.544 (3) | 0.749 (4) | 0.16 |
S = 3.02 | |||
Yb3—F3vi | 2.3210 (17) | 1 | 0.30 |
Yb3—F2 | 2.3316 (17) | 1 | 0.29 |
Yb3—F1 | 2.3321 (17) | 1 | 0.29 |
Yb3—F4 | 2.3509 (17) | 1 | 0.28 |
Yb3—O17A | 2.27 (4) | 0.251 (4) | 0.11 |
Yb3—O14 | 2.290 (2) | 1 | 0.42 |
Yb3—O9 | 2.312 (11) | 0.749 (4) | 0.29 |
Yb3—O11vi | 2.321 (2) | 1 | 0.38 |
Yb3—O4 | 2.323 (2) | 1 | 0.38 |
Yb3—O16 | 2.448 (2) | 1 | 0.27 |
S = 3.01 | |||
Yb1···Yb2vi | 3.7576 (3) | Yb2···Yb3vi | 3.9020 (6) |
Yb1···Yb2 | 3.7828 (3) | Yb2···Yb3 | 3.9431 (5) |
Yb1···Yb3 | 3.8018 (3) | Yb3···Yb1 | 3.8018 (3) |
Yb1···Yb3vi | 3.8163 (3) | Yb3···Yb1vi | 3.8163 (3) |
Yb2···Yb1vi | 3.7576 (3) | Yb3···Yb2vi | 3.9020 (6) |
Yb2···Yb1 | 3.7828 (3) | Yb3···Yb2 | 3.9431 (5) |
Symmetry code: (vi) -x + 1, -y + 1, -z + 1. |
Acknowledgements
Technical support by E. Hammes and T. Herrmann is gratefully acknowledged.
Funding information
Financial support of this research was provided by: Jürgen Manchot Stiftung (scholarship to Florian Morsbach).
References
Baillie, M. J., Brown, D. H., Moss, K. C. & Sharp, D. W. A. (1968). J. Chem. Soc. A, pp. 3110–3114. CrossRef Web of Science Google Scholar
Basciano, L. C. & Peterson, R. C. (2007). Miner. Mag. 71, 427–441. Web of Science CrossRef ICSD CAS Google Scholar
Belsky, A., Hellenbrandt, M., Karen, V. L. & Luksch, P. (2002). Acta Cryst. B58, 364–369. Web of Science CrossRef CAS IUCr Journals Google Scholar
Boeyens, J. C. A., McDougal, G. J. & van Smit, J. (1976). J. Solid State Chem. 18, 191–199. CrossRef ICSD CAS Web of Science Google Scholar
Brandenburg, K. (2020). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197. CrossRef CAS Web of Science IUCr Journals Google Scholar
Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Constantine, S. P., De Lima, G. M., Hitchcock, P. B., Keates, J. M. & Lawless, G. A. (1996). Chem. Commun. pp. 2421–2422. CSD CrossRef Web of Science Google Scholar
Cunha, T. T. da, Pointillart, F., Le Guennic, B., Pereira, C. L. M., Golhen, S., Cador, O. & Ouahab, L. (2013). Inorg. Chem. 52, 9711–9713. Web of Science PubMed Google Scholar
Duan, G.-X., Xie, Y.-P., Jin, J.-L., Bao, L.-P., Lu, X. & Mak, T. C. W. (2018). Chem. Eur. J. 24, 6762–6768. Web of Science CSD CrossRef CAS PubMed Google Scholar
Elementar Analysensysteme GmbH (2015). vario MICRO cube. Elementar Analysensysteme GmbH, Langenselbold, Germany. Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Faniran, J. A. & Patel, K. S. (1976). Spectrochim. Acta A, 32, 1351–1354. CrossRef Web of Science Google Scholar
Feng, Y., Xin, X., Zhang, Y., Guo, B., Li, F., Kong, X., Wang, Y., Wang, X., Wang, Y., Zhang, L. & Sun, D. (2019). Cryst. Growth Des. 19, 1509–1513. Web of Science CSD CrossRef CAS Google Scholar
Férey, G., Loiseau, T., Lacorre, P. & Taulelle, F. (1993). J. Solid State Chem. 105, 179–190. Google Scholar
Fischer, E. O. & Fischer, H. (1965). J. Organomet. Chem. 3, 181–187. CrossRef CAS Web of Science Google Scholar
Görne, A. L., George, J., van Leusen, J., Dück, G., Jacobs, P., Muniraju, N. K. C. & Dronskowski, R. (2016). Inorg. Chem. 55, 6161–6168. Web of Science PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hadenfeldt, C., Jacobs, H. & Juza, R. (1970). Z. Anorg. Allg. Chem. 379, 144–156. CrossRef CAS Web of Science Google Scholar
Hadenfeldt, C. & Juza, R. (1969). Naturwissenschaften, 56, 282. CrossRef PubMed Web of Science Google Scholar
Hayes, R. G. & Thomas, J. L. (1969). Inorg. Chem. 8, 2521–2522. CrossRef CAS Web of Science Google Scholar
Howell, J. K. & Pytlewski, L. L. (1969). J. Less-Common Met. 18, 437–439. CrossRef CAS Web of Science Google Scholar
Jiang, J. C., Chang, H. C., Lee, Y. T. & Lin, S. H. (1999). J. Phys. Chem. A, 103, 3123–3135. Web of Science CrossRef CAS Google Scholar
Karraker, D. G. (1970). J. Chem. Educ. 47, 424–430. CrossRef CAS Web of Science Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Ling, B.-K., Li, J., Zhai, Y.-Q., Hsu, H.-K., Chan, Y.-T., Chen, W.-P., Han, T. & Zheng, Y.-Z. (2020). Chem. Commun. 56, 9130–9133. Web of Science CSD CrossRef CAS Google Scholar
Luo, T.-Y., Das, P., White, D. L., Liu, C., Star, A. & Rosi, N. L. (2020). J. Am. Chem. Soc. 142, 2897–2904. Web of Science CSD CrossRef CAS PubMed Google Scholar
Meot-Ner (Mautner), M. (2005). Chem. Rev. 105, 213–284. Google Scholar
Morsbach, F., Klenner, S., Pöttgen, R. & Frank, W. (2022). Dalton Trans. 51, 4814–4828. Web of Science CSD CrossRef CAS PubMed Google Scholar
Perkin Elmer (2008). SpectrumTM 10. Perkin Elmer Inc., Waltham, Massachusetts, USA. Google Scholar
Pytlewsky, L. L. & Howell, J. K. (1967). Chem. Commun. pp. 1280. Google Scholar
Rillings, K. W. & Roberts, J. E. (1974). Thermochim. Acta, 10, 269–277. CrossRef Google Scholar
Rohde, A. & Urland, W. (2006). Z. Anorg. Allg. Chem. 632, 1141–1144. Web of Science CSD CrossRef CAS Google Scholar
Saielli, G. (2010). J. Phys. Chem. A, 114, 7261–7265. Web of Science CrossRef CAS PubMed Google Scholar
Shannon, R. D. (1976). Acta Cryst. A32, 751–767. CrossRef CAS IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Taft, R. W., Wolf, J. F., Beauchamp, J. L., Scorrano, G. & Arnett, E. M. (1978). J. Am. Chem. Soc. 100, 1240–1249. CrossRef CAS Web of Science Google Scholar
Thomas, J. O. & Farrington, G. C. (1983). Acta Cryst. B39, 227–235. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Warf, J. C. (1970). Angew. Chem. Int. Ed. Engl. 9, 383. CrossRef Web of Science Google Scholar
Warf, J. C. & Korst, W. L. (1956). J. Phys. Chem. 60, 1590–1591. CrossRef CAS Web of Science Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, Y., Wang, Y., Liu, L., Wei, N., Gao, M.-L., Zhao, D. & Han, Z.-B. (2018). Inorg. Chem. 57, 2193–2198. Web of Science CSD CrossRef ICSD CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.