research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

LaTe1.9: a tenfold superstructure of the ZrSSi type

crossmark logo

aFaculty of Chemistry and Food Chemistry, TU Dresden, D-01062 Dresden, Germany
*Correspondence e-mail: thomas.doert@tu-dresden.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 12 April 2022; accepted 5 May 2022; online 13 May 2022)

Single crystals of LaTe1.9 (lanthanum telluride) have been obtained by chemical transport reactions with iodine as transport agent. LaTe1.9 adopts the CeSe1.9 structure type and crystallizes in the space group P42/n with lattice parameters a = 10.1072 (3) Å and c = 18.2874 (6) Å. The crystal structure comprises an alternating stacking of puckered [LaTe] slabs and planar [Te] layers along [001]. The planar [Te] layer is dominated by dumbbell-shaped Te22− anions along an isolated Te2− anion and a vacancy. The Te22− anions form an eight-membered ring enclosing the vacancy in the centre.

1. Chemical context

Chalcogenides REX2–δ (RE = Y, La–Nd, Sm, Gd–Lu; X = S, Se, Te) of trivalent rare-earth metals comprise a large structural variety in a small compositional range 0 ≤ δ ≤ 0.2. This variety can mainly be attributed to the amount of vacancies as this strongly affects the final structural motif (Doert & Müller, 2016[Doert, T. & Müller, C. J. (2016). Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Amsterdam: Elsevier.]). All crystal structures share a common motif of alternating [REX] and planar [X] layers, related to their common aristotype, the structure of ZrSSi. Here, the same stacking arrangement is observed with a puckered [ZrS] slab and a planar [Si] layer, where an idealized square-planar [Si] layer is realized (Onken et al., 1964[Onken, H., Vierheilig, K. & Hahn, H. (1964). Z. Anorg. Allg. Chem. 333, 267-279.]; Klein Haneveld & Jellinek, 1964[Klein Haneveld, A. & Jellinek, F. (1964). Recl Trav. Chim. Pays Bas, 83, 776-783.]). The chalcogenides, however, do not form a square-planar arrangement for electronic reasons, which can be understood by their charge-balanced formula: considering trivalent rare-earth metal cations only, the puckered [REX] slab bears a single positive charge per formula unit, which needs to be compensated by atoms of the planar [X] layer. This is achieved by forming dinuclear X22− anions in the stoichiometric dichacolgenides REX2. The formation of such dumbbell-shaped anions results in a distortion from the ideal square-planar layer. Reducing the chalcogenide content results in the formation of vacancies inside the planar [X] layer, which in turn forces a reaction of the remaining atoms to balance the missing charge. Consequently, an isolated X2− anion per vacancy is formed to maintain a charge-balanced motif, adding two new constituting fragments to the planar layer. As vacancies are not randomly distributed within the layer, commensurate and incommensurately modulated superstructures are found (Doert & Müller, 2016[Doert, T. & Müller, C. J. (2016). Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Amsterdam: Elsevier.]). The structural chemistry of the corresponding sulfides and selenides has been thoroughly investigated, revealing several crystal structures that are observed for both chalcogens. The tellurides, however, do not always match the structures of their sulfur and selenium congeners, as shown for LaTe2 (Stöwe, 2000a[Stöwe, K. (2000a). J. Solid State Chem. 149, 155-166.]), CeTe2 (Stöwe, 2000b[Stöwe, K. (2000b). J. Alloys Compd. 307, 101-110.]) and PrTe2 (Stöwe, 2000c[Stöwe, K. (2000c). Z. Anorg. Allg. Chem. 626, 803-811.]). Discrepancies are also observed for the Te-deficient compound NdTe1.89 (1) (Stöwe, 2001[Stöwe, K. (2001). Z. Kristallogr. Cryst. Mater. 216, 215-224.]). However, the CeSe1.9 type (Plambeck-Fischer et al., 1989[Plambeck-Fischer, P., Abriel, W. & Urland, W. (1989). J. Solid State Chem. 78, 164-169.]) with a [\sqrt5]×[\sqrt5]×2 supercell of the basic ZrSSi structure seems common to sulfides, selenides and tellurides. CeTe1.9 was found to adopt this superstructure in space group P42/n (No. 86) (Ijjaali & Ibers, 2006[Ijjaali, I. & Ibers, J. A. (2006). J. Solid State Chem. 179, 3456-3460.]). The general motif of alternating stacks of [RETe] slabs and planar [Te] layers is preserved in this structure, the planar [Te] layer comprise four Te22− anions surrounding a vacancy, resembling an eight-membered Te ring with alternating long and short distances. Four of these Te rings surround an isolated Te2− anion in a pinwheel-like arrangement. Rationalizing this motif yields ten negative charges due to four Te22− and a single Te2− anion, balancing ten positive charges of each [RETe] layer. Here we report on the isotypic compound LaTe1.9, for which no structural characterization has been published yet.

2. Structural commentary

LaTe1.9 crystallizes in space group P42/n (No. 86) in the CeSe1.9 structure type (Plambeck-Fischer et al., 1989[Plambeck-Fischer, P., Abriel, W. & Urland, W. (1989). J. Solid State Chem. 78, 164-169.]) with a = 10.1072 (3) Å and c = 18.2874 (6) Å, corresponding to a [\sqrt5]×[\sqrt5]×2 superstructure of the basic ZrSSi unit cell. As indicated above, two stacks of the basic arrangement are present in the structure of LaTe1.9 as the Te-deficient planar [Te] layers are shifted by an n-glide against each other (Fig. 1[link]). The La atoms are coordinated by eight Te atoms (La2), respectively nine Te atoms (La1, La3) forming a bicapped, respectively a tricapped trigonal prism. The La—Te distances within the slabs range from 3.2637 (2) to 3.3594 (2) Å and from 3.2944 (3) to 3.4480 (3) between the planar [Te] layer and La. Calculating the bond-valence sum bvs (Brese & O'Keeffe, 1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]) for each La site results in 2.99 valence units (v.u.) for La1, 3.06 v.u. for La2 and 2.94 v.u. for La3, which are all very close to the expected value of +3 considering the previously discussed charge-balancing situation. The tellurium layer exhibits a pinwheel-like arrangement of four eight-membered Te squares surrounding a single Te2− anion in its centre (Fig. 2[link]), common to all compounds of the CeSe1.9 type.

[Figure 1]
Figure 1
Crystal structure of LaTe1.9 with displacement ellipsoids drawn at the 99.95% probability level. The stacking arrangement of puckered [LaTe] slabs and planar [Te] layers along [001] is shown.
[Figure 2]
Figure 2
[Te] layer of LaTe1.9 with four Te22− anions enclosing a vacancy each and surrounding an isolated Te2− anion; displacement ellipsoids are drawn at the 99.95% probability level.

In view of the alternating short and long distances, the Te ring can be understood as being built up from four dinuclear Te22− anions enclosing a vacancy with alternating bonding and non-bonding distances of 2.9224 (3) and 3.1413 (3) Å, respectively.

In accordance with the charge balancing mentioned above and Z = 20, a structured formula of LaTe1.9 can be written as [(La3+)20(Te2−)20] [(Te22−)8(Te2−)2]. This easily explains the anionic motifs and their qu­antity in the planar [Te] layer: Te5 and Te6 (both on Wyckoff site 8g) form the dumbbell-shaped Te22− anions whereas Te4 (Wyckoff site 2b) represents the isolated Te2− (Fig. 2[link]).

3. Database survey

The CeSe1.9 structure type (Plambeck-Fischer et al., 1989[Plambeck-Fischer, P., Abriel, W. & Urland, W. (1989). J. Solid State Chem. 78, 164-169.]) is realized by several rare-earth metal sulfides and selenides but only by a few tellurides, CeTe1.9 being one prominent example (Ijjaali & Ibers, 2006[Ijjaali, I. & Ibers, J. A. (2006). J. Solid State Chem. 179, 3456-3460.]). The inter­atomic distances of LaTe1.9 match those observed for CeTe1.9 quite well, including the bonding and non-bonding distances in the planar [Te] layers [2.9224 (3) Å and 3.1413 (3) Å in LaTe1.9 vs 2.9194 (5) Å and 3.1204 (5) Å in CeTe1.9]. However, the bonding Te—Te distances in these two compounds are considerably longer compared to compounds featuring (largely) isolated Te22− anions as constituting fragments, e.g. in α-K2Te2 (2.86 Å), β-K2Te2 [2.790 (1) Å], Rb2Te2 (2.78 Å) or GdTe1.8 [2.868 (1) Å] (Böttcher et al., 1993[Böttcher, P., Getzschmann, J. & Keller, R. (1993). Z. Anorg. Allg. Chem. 619, 476-488.]; Poddig et al., 2018[Poddig, H., Donath, T., Gebauer, P., Finzel, K., Kohout, M., Wu, Y., Schmidt, P. & Doert, T. (2018). Z. Anorg. Allg. Chem. 644, 1886-1896.]).

4. Synthesis and crystallization

Crystals of LaTe1.9 were found as a byproduct during the investigation of the system La–Te in chemical transport experiments using iodine as transport agent. All preparation steps were carried out in an argon-filled (5.0, Praxair Deutschland GmbH, Düsseldorf, Germany) glove box (MBraun, Garching, Germany). Starting from the elements, 300 mg of a stoichiometric mixture of La (99.5%, MaTecK) and Te (Merck, > 99.9%, reduced in H2 stream at 670 K) were ground and loaded into a silica ampule. A small amount of I2 (Roth, > 99.8%, purified by sublimating twice prior to use) was added inside the glove box before flame-sealing the ampule under dynamic vacuum (p ≤ 1×10−3 mbar). The ampule was heated with a ramp of 2 K min−1 to 1173 K before applying a gradient from 1173 → 1073 K, where the actual transport took place. After seven days, the ampule was cooled down to room temperature. A synthesis resulting in a phase pure product of LaTe1.9 has not yet been successful. The reason is most probably that two other Te-deficient compounds also exist in the composition range LaTe2–δ (0 ≤ δ ≤ 0.2) along the stoichiometric ditelluride, namely LaTe1.94 (1) and LaTe1.82 (1) (Poddig & Doert, 2020[Poddig, H. & Doert, T. (2020). Acta Cryst. B76, 1092-1099.]; Poddig et al., 2020[Poddig, H., Finzel, K. & Doert, T. (2020). Acta Cryst. C76, 530-540.]). To address the stability ranges of the individual phases, the chalcogen vapor pressures and temperatures have to be evaluated and controlled precisely during synthesis (Müller et al., 2010[Müller, C. J., Schwarz, U., Schmidt, P., Schnelle, W. & Doert, T. (2010). Z. Anorg. Allg. Chem. 636, 947-953.]).

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. All investigated crystals of LaTe1.9 were found as reticular merohedric twins with a twin index n = 5. On a first glance, the diffraction patterns seem to suggest a large tetra­gonal unit cell with apparent lattice parameters of a = 22.6211 (6) Å and c = 18.3135 (5) Å, corresponding to a 50-fold superstructure of the basic ZrSSi structure (Fig. 3[link]). Similar apparent supercells have been reported for the sulfides SmS1.9 (Tamazyan et al., 2000[Tamazyan, R., Arnold, H., Molchanov, V., Kuzmicheva, G. & Vasileva, I. (2000). Z. Kristallogr. Cryst. Mater. 215, 346-351.]) or TmS1.9 (Müller et al., 2012[Müller, C. J., Schwarz, U. & Doert, T. (2012). Z. Anorg. Allg. Chem. 638, 2477-2484.]), and can be explained by twinning along the mirror planes in (100) and (110) of the twin lattice. A schematic scheme drawn along [001] is depicted in Fig. 3[link], illustrating the lattices of each domain. The corresponding twin law calculated by the diffractometer software (Bruker, 2016[Bruker (2016). APEX2 and SAINT. Bruker AXS, Madison, Wisconsin, USA.]) corresponds to the twin law derived for SmS1.9 (0.6 −0.8 0 −0.8 −0.6 0 0 0 −1). Both domains were handled during the process of integrating and correcting the data, and the refinements were performed on a HKLF5 format file. The twin ratio of the two domains calculated by SHELXL is 0.57 (1):43 (1).

Table 1
Experimental details

Crystal data
Chemical formula LaTe1.90
Mr 381.35
Crystal system, space group Tetragonal, P42/n
Temperature (K) 100
a, c (Å) 10.1072 (3), 18.2874 (6)
V3) 1868.16 (13)
Z 20
Radiation type Mo Kα
μ (mm−1) 25.70
Crystal size (mm) 0.11 × 0.08 × 0.04
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (TWINABS; Bruker, 2012[Bruker (2012). TWINABS. Bruker-AXS, Madison, WI, USA.])
Tmin, Tmax 0.399, 0.749
No. of measured, independent and observed [I > 2σ(I)] reflections 7850, 7850, 5970
Rint 0.055
(sin θ/λ)max−1) 1.000
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.061, 1.12
No. of reflections 7850
No. of parameters 69
Δρmax, Δρmin (e Å−3) 2.02, −3.08
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2 and SAINT. Bruker AXS, Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2018[Brandenburg, K. (2018). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).
[Figure 3]
Figure 3
Projection of the X-ray diffraction pattern of a twinned crystal of LaTe1.9 along [001]. The individual reflections of the two domains are indicated as green and blue dots, coinciding reflections are marked in black. The axes correspond to the basic structure.

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2018); software used to prepare material for publication: publCIF (Westrip, 2010).

Lanthanum telluride (1/1.9) top
Crystal data top
LaTe1.90Dx = 6.779 Mg m3
Mr = 381.35Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P42/nCell parameters from 9906 reflections
a = 10.1072 (3) Åθ = 3.6–46.4°
c = 18.2874 (6) ŵ = 25.70 mm1
V = 1868.16 (13) Å3T = 100 K
Z = 20Block, black
F(000) = 31160.11 × 0.08 × 0.04 mm
Data collection top
Bruker APEXII CCD
diffractometer
7850 independent reflections
Radiation source: sealed X-ray tube5970 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
φ and ω scansθmax = 45.3°, θmin = 2.9°
Absorption correction: multi-scan
(TWINABS; Bruker, 2012)
h = 1314
Tmin = 0.399, Tmax = 0.749k = 020
7850 measured reflectionsl = 036
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0122P)2 + 6.7117P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.061(Δ/σ)max = 0.002
S = 1.12Δρmax = 2.02 e Å3
7850 reflectionsΔρmin = 3.08 e Å3
69 parametersExtinction correction: SHELXL-2016/6 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.001129 (18)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
La10.2500000.2500000.38287 (2)0.00695 (4)
La20.14760 (2)0.05231 (2)0.10752 (2)0.00710 (3)
La30.15137 (2)0.04353 (2)0.38089 (2)0.00696 (3)
Te10.2500000.2500000.43532 (2)0.00722 (4)
Te20.14951 (2)0.05177 (2)0.43621 (2)0.00726 (3)
Te30.15255 (2)0.04952 (2)0.07093 (2)0.00722 (3)
Te40.2500000.2500000.2500000.00773 (5)
Te50.02702 (2)0.16873 (2)0.25027 (2)0.00992 (3)
Te60.06086 (2)0.12938 (2)0.24930 (2)0.00770 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.00683 (8)0.00672 (8)0.00729 (7)0.00054 (6)0.0000.000
La20.00723 (6)0.00691 (6)0.00715 (5)0.00000 (5)0.00005 (4)0.00083 (4)
La30.00657 (6)0.00689 (6)0.00744 (5)0.00015 (5)0.00001 (4)0.00070 (4)
Te10.00701 (9)0.00696 (9)0.00769 (8)0.00009 (7)0.0000.000
Te20.00684 (7)0.00726 (7)0.00767 (5)0.00005 (6)0.00002 (5)0.00037 (4)
Te30.00712 (7)0.00697 (7)0.00756 (5)0.00007 (6)0.00001 (5)0.00005 (5)
Te40.00815 (7)0.00815 (7)0.00690 (11)0.0000.0000.000
Te50.01106 (7)0.01167 (7)0.00702 (6)0.00045 (6)0.00031 (6)0.00005 (5)
Te60.00881 (7)0.00761 (6)0.00667 (5)0.00034 (5)0.00003 (5)0.00016 (5)
Geometric parameters (Å, º) top
La1—Te3i3.2938 (2)La2—Te63.2960 (2)
La1—Te3ii3.2938 (2)La2—Te1ii3.3198 (2)
La1—Te1iii3.3248 (3)La2—Te53.3637 (3)
La1—Te63.3329 (3)La3—Te13.2843 (2)
La1—Te6iv3.3329 (2)La3—Te43.3284 (2)
La1—Te2iv3.3593 (2)La3—Te3vii3.3361 (3)
La1—Te23.3594 (2)La3—Te63.3384 (2)
La1—Te5ii3.4179 (3)La3—Te2iii3.3460 (2)
La1—Te5i3.4179 (3)La3—Te23.3465 (3)
La2—Te3v3.2637 (2)La3—Te3ii3.3574 (3)
La2—Te2vi3.2649 (3)La3—Te6vii3.4194 (3)
La2—Te33.2726 (3)La3—Te53.4480 (3)
La2—Te2i3.2920 (3)Te5—Te6vi2.9224 (3)
La2—Te5i3.2944 (3)Te5—Te63.1413 (3)
Te3i—La1—Te3ii150.272 (10)Te2iii—La3—Te3ii73.330 (5)
Te3i—La1—Te1iii75.136 (5)Te2—La3—Te3ii84.571 (6)
Te3ii—La1—Te1iii75.136 (5)Te1—La3—Te6vii74.669 (6)
Te3i—La1—Te6127.287 (6)Te4—La3—Te6vii59.908 (4)
Te3ii—La1—Te676.715 (5)Te3vii—La3—Te6vii72.455 (5)
Te1iii—La1—Te6137.132 (4)Te6—La3—Te6vii89.696 (6)
Te3i—La1—Te6iv76.715 (5)Te2iii—La3—Te6vii135.020 (7)
Te3ii—La1—Te6iv127.288 (6)Te2—La3—Te6vii135.283 (7)
Te1iii—La1—Te6iv137.132 (4)Te3ii—La3—Te6vii131.586 (6)
Te6—La1—Te6iv85.735 (8)Te1—La3—Te576.027 (6)
Te3i—La1—Te2iv85.364 (5)Te4—La3—Te590.060 (6)
Te3ii—La1—Te2iv86.094 (5)Te3vii—La3—Te5135.955 (7)
Te1iii—La1—Te2iv73.124 (5)Te6—La3—Te555.118 (5)
Te6—La1—Te2iv135.915 (6)Te2iii—La3—Te5134.911 (7)
Te6iv—La1—Te2iv72.977 (5)Te2—La3—Te572.489 (5)
Te3i—La1—Te286.094 (5)Te3ii—La3—Te5129.745 (6)
Te3ii—La1—Te285.363 (5)Te6vii—La3—Te564.015 (6)
Te1iii—La1—Te273.123 (5)La3—Te1—La3viii144.714 (11)
Te6—La1—Te272.977 (5)La3—Te1—La2vii85.769 (5)
Te6iv—La1—Te2135.915 (6)La3viii—Te1—La2vii86.028 (4)
Te2iv—La1—Te2146.246 (10)La3—Te1—La2vi86.029 (4)
Te3i—La1—Te5ii126.928 (6)La3viii—Te1—La2vi85.769 (4)
Te3ii—La1—Te5ii76.389 (5)La2vii—Te1—La2vi152.703 (10)
Te1iii—La1—Te5ii135.428 (4)La3—Te1—La1iii107.643 (5)
Te6—La1—Te5ii65.244 (6)La3viii—Te1—La1iii107.643 (5)
Te6iv—La1—Te5ii51.284 (5)La2vii—Te1—La1iii103.648 (5)
Te2iv—La1—Te5ii71.386 (5)La2vi—Te1—La1iii103.648 (5)
Te2—La1—Te5ii137.123 (7)La2i—Te2—La2vi86.685 (6)
Te3i—La1—Te5i76.389 (5)La2i—Te2—La3iii104.300 (6)
Te3ii—La1—Te5i126.928 (6)La2vi—Te2—La3iii105.511 (6)
Te1iii—La1—Te5i135.428 (4)La2i—Te2—La3148.230 (7)
Te6—La1—Te5i51.283 (5)La2vi—Te2—La385.472 (6)
Te6iv—La1—Te5i65.243 (6)La3iii—Te2—La3107.465 (6)
Te2iv—La1—Te5i137.122 (7)La2i—Te2—La185.364 (5)
Te2—La1—Te5i71.387 (5)La2vi—Te2—La1149.063 (7)
Te5ii—La1—Te5i89.144 (9)La3iii—Te2—La1105.424 (7)
Te3v—La2—Te2vi76.566 (5)La3—Te2—La185.737 (5)
Te3v—La2—Te378.875 (7)La2v—Te3—La2101.125 (7)
Te2vi—La2—Te388.008 (6)La2v—Te3—La1vi105.604 (7)
Te3v—La2—Te2i75.263 (5)La2—Te3—La1vi86.313 (5)
Te2vi—La2—Te2i86.496 (6)La2v—Te3—La3ii104.549 (6)
Te3—La2—Te2i154.134 (7)La2—Te3—La3ii85.690 (6)
Te3v—La2—Te5i141.133 (7)La1vi—Te3—La3ii149.757 (7)
Te2vi—La2—Te5i125.814 (7)La2v—Te3—La3vii105.889 (6)
Te3—La2—Te5i127.388 (7)La2—Te3—La3vii152.986 (8)
Te2i—La2—Te5i75.182 (6)La1vi—Te3—La3vii86.610 (5)
Te3v—La2—Te6141.795 (7)La3ii—Te3—La3vii87.422 (6)
Te2vi—La2—Te6128.902 (6)La3vii—Te4—La3ii88.029 (7)
Te3—La2—Te674.873 (6)La3vii—Te4—La3ix121.144 (4)
Te2i—La2—Te6127.073 (7)La3ii—Te4—La3ix121.144 (4)
Te5i—La2—Te652.645 (6)La3vii—Te4—La3121.144 (4)
Te3v—La2—Te1ii75.603 (6)La3ii—Te4—La3121.145 (4)
Te2vi—La2—Te1ii152.164 (7)La3ix—Te4—La388.029 (7)
Te3—La2—Te1ii87.208 (5)Te6vi—Te5—Te6175.690 (9)
Te2i—La2—Te1ii85.964 (5)Te6vi—Te5—La2vi63.706 (6)
Te5i—La2—Te1ii77.677 (6)Te6—Te5—La2vi118.432 (7)
Te6—La2—Te1ii75.863 (6)Te6vi—Te5—La2120.999 (8)
Te3v—La2—Te5141.908 (8)Te6—Te5—La260.772 (5)
Te2vi—La2—Te573.230 (6)La2vi—Te5—La2133.008 (9)
Te3—La2—Te577.427 (6)Te6vi—Te5—La1vi62.856 (5)
Te2i—La2—Te5124.638 (7)Te6—Te5—La1vi114.389 (7)
Te5i—La2—Te576.593 (7)La2vi—Te5—La1vi125.977 (7)
Te6—La2—Te556.276 (6)La2—Te5—La1vi82.945 (6)
Te1ii—La2—Te5131.965 (7)Te6vi—Te5—La3116.808 (7)
Te1—La3—Te4133.902 (7)Te6—Te5—La360.669 (5)
Te1—La3—Te3vii86.745 (5)La2vi—Te5—La383.822 (6)
Te4—La3—Te3vii73.231 (5)La2—Te5—La3120.748 (7)
Te1—La3—Te6130.412 (7)La1vi—Te5—La3113.748 (7)
Te4—La3—Te660.731 (4)Te5i—Te6—Te585.692 (9)
Te3vii—La3—Te6133.378 (6)Te5i—Te6—La263.650 (6)
Te1—La3—Te2iii73.811 (6)Te5—Te6—La262.951 (6)
Te4—La3—Te2iii134.830 (7)Te5i—Te6—La165.861 (5)
Te3vii—La3—Te2iii74.503 (5)Te5—Te6—La1120.592 (7)
Te6—La3—Te2iii135.279 (7)La2—Te6—La1128.888 (7)
Te1—La3—Te285.654 (5)Te5i—Te6—La3120.461 (7)
Te4—La3—Te2132.068 (6)Te5—Te6—La364.213 (5)
Te3vii—La3—Te2147.001 (7)La2—Te6—La3126.382 (7)
Te6—La3—Te273.072 (6)La1—Te6—La386.290 (6)
Te2iii—La3—Te272.535 (6)Te5i—Te6—La3ii121.325 (7)
Te1—La3—Te3ii147.141 (7)Te5—Te6—La3ii122.568 (7)
Te4—La3—Te3ii72.959 (5)La2—Te6—La3ii83.998 (6)
Te3vii—La3—Te3ii84.626 (6)La1—Te6—La3ii116.758 (7)
Te6—La3—Te3ii75.783 (6)La3—Te6—La3ii118.169 (7)
Symmetry codes: (i) y+1/2, x, z+1/2; (ii) y, x1/2, z+1/2; (iii) x, y, z+1; (iv) x+1/2, y1/2, z; (v) x, y, z; (vi) y, x+1/2, z+1/2; (vii) y1/2, x, z+1/2; (viii) x1/2, y+1/2, z; (ix) x1/2, y1/2, z.
 

Funding information

Funding for this research was provided by: Deutsche Forschungsgemeinschaft (grant No. Do 560/1).

References

First citationBöttcher, P., Getzschmann, J. & Keller, R. (1993). Z. Anorg. Allg. Chem. 619, 476–488.  Google Scholar
First citationBrandenburg, K. (2018). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2012). TWINABS. Bruker-AXS, Madison, WI, USA.  Google Scholar
First citationBruker (2016). APEX2 and SAINT. Bruker AXS, Madison, Wisconsin, USA.  Google Scholar
First citationDoert, T. & Müller, C. J. (2016). Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Amsterdam: Elsevier.  Google Scholar
First citationIjjaali, I. & Ibers, J. A. (2006). J. Solid State Chem. 179, 3456–3460.  Web of Science CrossRef ICSD CAS Google Scholar
First citationKlein Haneveld, A. & Jellinek, F. (1964). Recl Trav. Chim. Pays Bas, 83, 776–783.  CrossRef ICSD CAS Google Scholar
First citationMüller, C. J., Schwarz, U. & Doert, T. (2012). Z. Anorg. Allg. Chem. 638, 2477–2484.  Google Scholar
First citationMüller, C. J., Schwarz, U., Schmidt, P., Schnelle, W. & Doert, T. (2010). Z. Anorg. Allg. Chem. 636, 947–953.  Google Scholar
First citationOnken, H., Vierheilig, K. & Hahn, H. (1964). Z. Anorg. Allg. Chem. 333, 267–279.  CrossRef ICSD CAS Web of Science Google Scholar
First citationPlambeck-Fischer, P., Abriel, W. & Urland, W. (1989). J. Solid State Chem. 78, 164–169.  CAS Google Scholar
First citationPoddig, H. & Doert, T. (2020). Acta Cryst. B76, 1092–1099.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationPoddig, H., Donath, T., Gebauer, P., Finzel, K., Kohout, M., Wu, Y., Schmidt, P. & Doert, T. (2018). Z. Anorg. Allg. Chem. 644, 1886–1896.  Web of Science CrossRef ICSD CAS Google Scholar
First citationPoddig, H., Finzel, K. & Doert, T. (2020). Acta Cryst. C76, 530–540.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStöwe, K. (2000a). J. Solid State Chem. 149, 155–166.  Google Scholar
First citationStöwe, K. (2000b). J. Alloys Compd. 307, 101–110.  Google Scholar
First citationStöwe, K. (2000c). Z. Anorg. Allg. Chem. 626, 803–811.  Google Scholar
First citationStöwe, K. (2001). Z. Kristallogr. Cryst. Mater. 216, 215–224.  Google Scholar
First citationTamazyan, R., Arnold, H., Molchanov, V., Kuzmicheva, G. & Vasileva, I. (2000). Z. Kristallogr. Cryst. Mater. 215, 346–351.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds