research communications
LaTe1.9: a tenfold of the ZrSSi type
aFaculty of Chemistry and Food Chemistry, TU Dresden, D-01062 Dresden, Germany
*Correspondence e-mail: thomas.doert@tu-dresden.de
Single crystals of LaTe1.9 (lanthanum telluride) have been obtained by chemical transport reactions with iodine as transport agent. LaTe1.9 adopts the CeSe1.9 structure type and crystallizes in the P42/n with lattice parameters a = 10.1072 (3) Å and c = 18.2874 (6) Å. The comprises an alternating stacking of puckered [LaTe] slabs and planar [Te] layers along [001]. The planar [Te] layer is dominated by dumbbell-shaped Te22− anions along an isolated Te2− anion and a vacancy. The Te22− anions form an eight-membered ring enclosing the vacancy in the centre.
Keywords: crystal structure; telluride; rare earth metal; superstructure; twinning.
CCDC reference: 2170854
1. Chemical context
Chalcogenides REX2–δ (RE = Y, La–Nd, Sm, Gd–Lu; X = S, Se, Te) of trivalent rare-earth metals comprise a large structural variety in a small compositional range 0 ≤ δ ≤ 0.2. This variety can mainly be attributed to the amount of vacancies as this strongly affects the final structural motif (Doert & Müller, 2016). All crystal structures share a common motif of alternating [REX] and planar [X] layers, related to their common the structure of ZrSSi. Here, the same stacking arrangement is observed with a puckered [ZrS] slab and a planar [Si] layer, where an idealized square-planar [Si] layer is realized (Onken et al., 1964; Klein Haneveld & Jellinek, 1964). The chalcogenides, however, do not form a square-planar arrangement for electronic reasons, which can be understood by their charge-balanced formula: considering trivalent rare-earth metal cations only, the puckered [REX] slab bears a single positive charge per formula unit, which needs to be compensated by atoms of the planar [X] layer. This is achieved by forming dinuclear X22− anions in the stoichiometric dichacolgenides REX2. The formation of such dumbbell-shaped anions results in a distortion from the ideal square-planar layer. Reducing the chalcogenide content results in the formation of vacancies inside the planar [X] layer, which in turn forces a reaction of the remaining atoms to balance the missing charge. Consequently, an isolated X2− anion per vacancy is formed to maintain a charge-balanced motif, adding two new constituting fragments to the planar layer. As vacancies are not randomly distributed within the layer, commensurate and incommensurately modulated superstructures are found (Doert & Müller, 2016). The structural chemistry of the corresponding and has been thoroughly investigated, revealing several crystal structures that are observed for both chalcogens. The however, do not always match the structures of their sulfur and selenium congeners, as shown for LaTe2 (Stöwe, 2000a), CeTe2 (Stöwe, 2000b) and PrTe2 (Stöwe, 2000c). Discrepancies are also observed for the Te-deficient compound NdTe1.89 (1) (Stöwe, 2001). However, the CeSe1.9 type (Plambeck-Fischer et al., 1989) with a ××2 of the basic ZrSSi structure seems common to and CeTe1.9 was found to adopt this in P42/n (No. 86) (Ijjaali & Ibers, 2006). The general motif of alternating stacks of [RETe] slabs and planar [Te] layers is preserved in this structure, the planar [Te] layer comprise four Te22− anions surrounding a vacancy, resembling an eight-membered Te ring with alternating long and short distances. Four of these Te rings surround an isolated Te2− anion in a pinwheel-like arrangement. Rationalizing this motif yields ten negative charges due to four Te22− and a single Te2− anion, balancing ten positive charges of each [RETe] layer. Here we report on the isotypic compound LaTe1.9, for which no structural characterization has been published yet.
2. Structural commentary
LaTe1.9 crystallizes in P42/n (No. 86) in the CeSe1.9 structure type (Plambeck-Fischer et al., 1989) with a = 10.1072 (3) Å and c = 18.2874 (6) Å, corresponding to a ××2 of the basic ZrSSi As indicated above, two stacks of the basic arrangement are present in the structure of LaTe1.9 as the Te-deficient planar [Te] layers are shifted by an n-glide against each other (Fig. 1). The La atoms are coordinated by eight Te atoms (La2), respectively nine Te atoms (La1, La3) forming a bicapped, respectively a tricapped trigonal prism. The La—Te distances within the slabs range from 3.2637 (2) to 3.3594 (2) Å and from 3.2944 (3) to 3.4480 (3) between the planar [Te] layer and La. Calculating the bond-valence sum bvs (Brese & O'Keeffe, 1991) for each La site results in 2.99 valence units (v.u.) for La1, 3.06 v.u. for La2 and 2.94 v.u. for La3, which are all very close to the expected value of +3 considering the previously discussed charge-balancing situation. The tellurium layer exhibits a pinwheel-like arrangement of four eight-membered Te squares surrounding a single Te2− anion in its centre (Fig. 2), common to all compounds of the CeSe1.9 type.
In view of the alternating short and long distances, the Te ring can be understood as being built up from four dinuclear Te22− anions enclosing a vacancy with alternating bonding and non-bonding distances of 2.9224 (3) and 3.1413 (3) Å, respectively.
In accordance with the charge balancing mentioned above and Z = 20, a structured formula of LaTe1.9 can be written as [(La3+)20(Te2−)20] [(Te22−)8(Te2−)2]. This easily explains the anionic motifs and their quantity in the planar [Te] layer: Te5 and Te6 (both on Wyckoff site 8g) form the dumbbell-shaped Te22− anions whereas Te4 (Wyckoff site 2b) represents the isolated Te2− (Fig. 2).
3. Database survey
The CeSe1.9 structure type (Plambeck-Fischer et al., 1989) is realized by several rare-earth metal and but only by a few CeTe1.9 being one prominent example (Ijjaali & Ibers, 2006). The interatomic distances of LaTe1.9 match those observed for CeTe1.9 quite well, including the bonding and non-bonding distances in the planar [Te] layers [2.9224 (3) Å and 3.1413 (3) Å in LaTe1.9 vs 2.9194 (5) Å and 3.1204 (5) Å in CeTe1.9]. However, the bonding Te—Te distances in these two compounds are considerably longer compared to compounds featuring (largely) isolated Te22− anions as constituting fragments, e.g. in α-K2Te2 (2.86 Å), β-K2Te2 [2.790 (1) Å], Rb2Te2 (2.78 Å) or GdTe1.8 [2.868 (1) Å] (Böttcher et al., 1993; Poddig et al., 2018).
4. Synthesis and crystallization
Crystals of LaTe1.9 were found as a byproduct during the investigation of the system La–Te in chemical transport experiments using iodine as transport agent. All preparation steps were carried out in an argon-filled (5.0, Praxair Deutschland GmbH, Düsseldorf, Germany) (MBraun, Garching, Germany). Starting from the elements, 300 mg of a stoichiometric mixture of La (99.5%, MaTecK) and Te (Merck, > 99.9%, reduced in H2 stream at 670 K) were ground and loaded into a silica ampule. A small amount of I2 (Roth, > 99.8%, purified by sublimating twice prior to use) was added inside the before flame-sealing the ampule under dynamic vacuum (p ≤ 1×10−3 mbar). The ampule was heated with a ramp of 2 K min−1 to 1173 K before applying a gradient from 1173 → 1073 K, where the actual transport took place. After seven days, the ampule was cooled down to room temperature. A synthesis resulting in a phase pure product of LaTe1.9 has not yet been successful. The reason is most probably that two other Te-deficient compounds also exist in the composition range LaTe2–δ (0 ≤ δ ≤ 0.2) along the stoichiometric ditelluride, namely LaTe1.94 (1) and LaTe1.82 (1) (Poddig & Doert, 2020; Poddig et al., 2020). To address the stability ranges of the individual phases, the chalcogen vapor pressures and temperatures have to be evaluated and controlled precisely during synthesis (Müller et al., 2010).
5. Refinement
Crystal data, data collection and structure . All investigated crystals of LaTe1.9 were found as reticular merohedric twins with a n = 5. On a first glance, the diffraction patterns seem to suggest a large tetragonal with apparent lattice parameters of a = 22.6211 (6) Å and c = 18.3135 (5) Å, corresponding to a 50-fold of the basic ZrSSi structure (Fig. 3). Similar apparent supercells have been reported for the SmS1.9 (Tamazyan et al., 2000) or TmS1.9 (Müller et al., 2012), and can be explained by along the mirror planes in (100) and (110) of the A schematic scheme drawn along [001] is depicted in Fig. 3, illustrating the lattices of each domain. The corresponding calculated by the diffractometer software (Bruker, 2016) corresponds to the derived for SmS1.9 (0.6 −0.8 0 −0.8 −0.6 0 0 0 −1). Both domains were handled during the process of integrating and correcting the data, and the refinements were performed on a HKLF5 format file. The twin ratio of the two domains calculated by SHELXL is 0.57 (1):43 (1).
details are summarized in Table 1Supporting information
CCDC reference: 2170854
https://doi.org/10.1107/S2056989022004844/wm5644sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022004844/wm5644Isup2.hkl
Data collection: APEX2 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2018); software used to prepare material for publication: publCIF (Westrip, 2010).LaTe1.90 | Dx = 6.779 Mg m−3 |
Mr = 381.35 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, P42/n | Cell parameters from 9906 reflections |
a = 10.1072 (3) Å | θ = 3.6–46.4° |
c = 18.2874 (6) Å | µ = 25.70 mm−1 |
V = 1868.16 (13) Å3 | T = 100 K |
Z = 20 | Block, black |
F(000) = 3116 | 0.11 × 0.08 × 0.04 mm |
Bruker APEXII CCD diffractometer | 7850 independent reflections |
Radiation source: sealed X-ray tube | 5970 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.055 |
φ and ω scans | θmax = 45.3°, θmin = 2.9° |
Absorption correction: multi-scan (TWINABS; Bruker, 2012) | h = −13→14 |
Tmin = 0.399, Tmax = 0.749 | k = 0→20 |
7850 measured reflections | l = 0→36 |
Refinement on F2 | Primary atom site location: iterative |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.027 | w = 1/[σ2(Fo2) + (0.0122P)2 + 6.7117P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.061 | (Δ/σ)max = 0.002 |
S = 1.12 | Δρmax = 2.02 e Å−3 |
7850 reflections | Δρmin = −3.08 e Å−3 |
69 parameters | Extinction correction: SHELXL-2016/6 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.001129 (18) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component twin. |
x | y | z | Uiso*/Ueq | ||
La1 | 0.250000 | −0.250000 | 0.38287 (2) | 0.00695 (4) | |
La2 | 0.14760 (2) | 0.05231 (2) | 0.10752 (2) | 0.00710 (3) | |
La3 | −0.15137 (2) | −0.04353 (2) | 0.38089 (2) | 0.00696 (3) | |
Te1 | −0.250000 | 0.250000 | 0.43532 (2) | 0.00722 (4) | |
Te2 | 0.14951 (2) | 0.05177 (2) | 0.43621 (2) | 0.00726 (3) | |
Te3 | −0.15255 (2) | −0.04952 (2) | 0.07093 (2) | 0.00722 (3) | |
Te4 | −0.250000 | −0.250000 | 0.250000 | 0.00773 (5) | |
Te5 | −0.02702 (2) | 0.16873 (2) | 0.25027 (2) | 0.00992 (3) | |
Te6 | 0.06086 (2) | −0.12938 (2) | 0.24930 (2) | 0.00770 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
La1 | 0.00683 (8) | 0.00672 (8) | 0.00729 (7) | 0.00054 (6) | 0.000 | 0.000 |
La2 | 0.00723 (6) | 0.00691 (6) | 0.00715 (5) | 0.00000 (5) | 0.00005 (4) | 0.00083 (4) |
La3 | 0.00657 (6) | 0.00689 (6) | 0.00744 (5) | 0.00015 (5) | −0.00001 (4) | −0.00070 (4) |
Te1 | 0.00701 (9) | 0.00696 (9) | 0.00769 (8) | 0.00009 (7) | 0.000 | 0.000 |
Te2 | 0.00684 (7) | 0.00726 (7) | 0.00767 (5) | −0.00005 (6) | 0.00002 (5) | −0.00037 (4) |
Te3 | 0.00712 (7) | 0.00697 (7) | 0.00756 (5) | 0.00007 (6) | 0.00001 (5) | 0.00005 (5) |
Te4 | 0.00815 (7) | 0.00815 (7) | 0.00690 (11) | 0.000 | 0.000 | 0.000 |
Te5 | 0.01106 (7) | 0.01167 (7) | 0.00702 (6) | 0.00045 (6) | 0.00031 (6) | −0.00005 (5) |
Te6 | 0.00881 (7) | 0.00761 (6) | 0.00667 (5) | 0.00034 (5) | −0.00003 (5) | −0.00016 (5) |
La1—Te3i | 3.2938 (2) | La2—Te6 | 3.2960 (2) |
La1—Te3ii | 3.2938 (2) | La2—Te1ii | 3.3198 (2) |
La1—Te1iii | 3.3248 (3) | La2—Te5 | 3.3637 (3) |
La1—Te6 | 3.3329 (3) | La3—Te1 | 3.2843 (2) |
La1—Te6iv | 3.3329 (2) | La3—Te4 | 3.3284 (2) |
La1—Te2iv | 3.3593 (2) | La3—Te3vii | 3.3361 (3) |
La1—Te2 | 3.3594 (2) | La3—Te6 | 3.3384 (2) |
La1—Te5ii | 3.4179 (3) | La3—Te2iii | 3.3460 (2) |
La1—Te5i | 3.4179 (3) | La3—Te2 | 3.3465 (3) |
La2—Te3v | 3.2637 (2) | La3—Te3ii | 3.3574 (3) |
La2—Te2vi | 3.2649 (3) | La3—Te6vii | 3.4194 (3) |
La2—Te3 | 3.2726 (3) | La3—Te5 | 3.4480 (3) |
La2—Te2i | 3.2920 (3) | Te5—Te6vi | 2.9224 (3) |
La2—Te5i | 3.2944 (3) | Te5—Te6 | 3.1413 (3) |
Te3i—La1—Te3ii | 150.272 (10) | Te2iii—La3—Te3ii | 73.330 (5) |
Te3i—La1—Te1iii | 75.136 (5) | Te2—La3—Te3ii | 84.571 (6) |
Te3ii—La1—Te1iii | 75.136 (5) | Te1—La3—Te6vii | 74.669 (6) |
Te3i—La1—Te6 | 127.287 (6) | Te4—La3—Te6vii | 59.908 (4) |
Te3ii—La1—Te6 | 76.715 (5) | Te3vii—La3—Te6vii | 72.455 (5) |
Te1iii—La1—Te6 | 137.132 (4) | Te6—La3—Te6vii | 89.696 (6) |
Te3i—La1—Te6iv | 76.715 (5) | Te2iii—La3—Te6vii | 135.020 (7) |
Te3ii—La1—Te6iv | 127.288 (6) | Te2—La3—Te6vii | 135.283 (7) |
Te1iii—La1—Te6iv | 137.132 (4) | Te3ii—La3—Te6vii | 131.586 (6) |
Te6—La1—Te6iv | 85.735 (8) | Te1—La3—Te5 | 76.027 (6) |
Te3i—La1—Te2iv | 85.364 (5) | Te4—La3—Te5 | 90.060 (6) |
Te3ii—La1—Te2iv | 86.094 (5) | Te3vii—La3—Te5 | 135.955 (7) |
Te1iii—La1—Te2iv | 73.124 (5) | Te6—La3—Te5 | 55.118 (5) |
Te6—La1—Te2iv | 135.915 (6) | Te2iii—La3—Te5 | 134.911 (7) |
Te6iv—La1—Te2iv | 72.977 (5) | Te2—La3—Te5 | 72.489 (5) |
Te3i—La1—Te2 | 86.094 (5) | Te3ii—La3—Te5 | 129.745 (6) |
Te3ii—La1—Te2 | 85.363 (5) | Te6vii—La3—Te5 | 64.015 (6) |
Te1iii—La1—Te2 | 73.123 (5) | La3—Te1—La3viii | 144.714 (11) |
Te6—La1—Te2 | 72.977 (5) | La3—Te1—La2vii | 85.769 (5) |
Te6iv—La1—Te2 | 135.915 (6) | La3viii—Te1—La2vii | 86.028 (4) |
Te2iv—La1—Te2 | 146.246 (10) | La3—Te1—La2vi | 86.029 (4) |
Te3i—La1—Te5ii | 126.928 (6) | La3viii—Te1—La2vi | 85.769 (4) |
Te3ii—La1—Te5ii | 76.389 (5) | La2vii—Te1—La2vi | 152.703 (10) |
Te1iii—La1—Te5ii | 135.428 (4) | La3—Te1—La1iii | 107.643 (5) |
Te6—La1—Te5ii | 65.244 (6) | La3viii—Te1—La1iii | 107.643 (5) |
Te6iv—La1—Te5ii | 51.284 (5) | La2vii—Te1—La1iii | 103.648 (5) |
Te2iv—La1—Te5ii | 71.386 (5) | La2vi—Te1—La1iii | 103.648 (5) |
Te2—La1—Te5ii | 137.123 (7) | La2i—Te2—La2vi | 86.685 (6) |
Te3i—La1—Te5i | 76.389 (5) | La2i—Te2—La3iii | 104.300 (6) |
Te3ii—La1—Te5i | 126.928 (6) | La2vi—Te2—La3iii | 105.511 (6) |
Te1iii—La1—Te5i | 135.428 (4) | La2i—Te2—La3 | 148.230 (7) |
Te6—La1—Te5i | 51.283 (5) | La2vi—Te2—La3 | 85.472 (6) |
Te6iv—La1—Te5i | 65.243 (6) | La3iii—Te2—La3 | 107.465 (6) |
Te2iv—La1—Te5i | 137.122 (7) | La2i—Te2—La1 | 85.364 (5) |
Te2—La1—Te5i | 71.387 (5) | La2vi—Te2—La1 | 149.063 (7) |
Te5ii—La1—Te5i | 89.144 (9) | La3iii—Te2—La1 | 105.424 (7) |
Te3v—La2—Te2vi | 76.566 (5) | La3—Te2—La1 | 85.737 (5) |
Te3v—La2—Te3 | 78.875 (7) | La2v—Te3—La2 | 101.125 (7) |
Te2vi—La2—Te3 | 88.008 (6) | La2v—Te3—La1vi | 105.604 (7) |
Te3v—La2—Te2i | 75.263 (5) | La2—Te3—La1vi | 86.313 (5) |
Te2vi—La2—Te2i | 86.496 (6) | La2v—Te3—La3ii | 104.549 (6) |
Te3—La2—Te2i | 154.134 (7) | La2—Te3—La3ii | 85.690 (6) |
Te3v—La2—Te5i | 141.133 (7) | La1vi—Te3—La3ii | 149.757 (7) |
Te2vi—La2—Te5i | 125.814 (7) | La2v—Te3—La3vii | 105.889 (6) |
Te3—La2—Te5i | 127.388 (7) | La2—Te3—La3vii | 152.986 (8) |
Te2i—La2—Te5i | 75.182 (6) | La1vi—Te3—La3vii | 86.610 (5) |
Te3v—La2—Te6 | 141.795 (7) | La3ii—Te3—La3vii | 87.422 (6) |
Te2vi—La2—Te6 | 128.902 (6) | La3vii—Te4—La3ii | 88.029 (7) |
Te3—La2—Te6 | 74.873 (6) | La3vii—Te4—La3ix | 121.144 (4) |
Te2i—La2—Te6 | 127.073 (7) | La3ii—Te4—La3ix | 121.144 (4) |
Te5i—La2—Te6 | 52.645 (6) | La3vii—Te4—La3 | 121.144 (4) |
Te3v—La2—Te1ii | 75.603 (6) | La3ii—Te4—La3 | 121.145 (4) |
Te2vi—La2—Te1ii | 152.164 (7) | La3ix—Te4—La3 | 88.029 (7) |
Te3—La2—Te1ii | 87.208 (5) | Te6vi—Te5—Te6 | 175.690 (9) |
Te2i—La2—Te1ii | 85.964 (5) | Te6vi—Te5—La2vi | 63.706 (6) |
Te5i—La2—Te1ii | 77.677 (6) | Te6—Te5—La2vi | 118.432 (7) |
Te6—La2—Te1ii | 75.863 (6) | Te6vi—Te5—La2 | 120.999 (8) |
Te3v—La2—Te5 | 141.908 (8) | Te6—Te5—La2 | 60.772 (5) |
Te2vi—La2—Te5 | 73.230 (6) | La2vi—Te5—La2 | 133.008 (9) |
Te3—La2—Te5 | 77.427 (6) | Te6vi—Te5—La1vi | 62.856 (5) |
Te2i—La2—Te5 | 124.638 (7) | Te6—Te5—La1vi | 114.389 (7) |
Te5i—La2—Te5 | 76.593 (7) | La2vi—Te5—La1vi | 125.977 (7) |
Te6—La2—Te5 | 56.276 (6) | La2—Te5—La1vi | 82.945 (6) |
Te1ii—La2—Te5 | 131.965 (7) | Te6vi—Te5—La3 | 116.808 (7) |
Te1—La3—Te4 | 133.902 (7) | Te6—Te5—La3 | 60.669 (5) |
Te1—La3—Te3vii | 86.745 (5) | La2vi—Te5—La3 | 83.822 (6) |
Te4—La3—Te3vii | 73.231 (5) | La2—Te5—La3 | 120.748 (7) |
Te1—La3—Te6 | 130.412 (7) | La1vi—Te5—La3 | 113.748 (7) |
Te4—La3—Te6 | 60.731 (4) | Te5i—Te6—Te5 | 85.692 (9) |
Te3vii—La3—Te6 | 133.378 (6) | Te5i—Te6—La2 | 63.650 (6) |
Te1—La3—Te2iii | 73.811 (6) | Te5—Te6—La2 | 62.951 (6) |
Te4—La3—Te2iii | 134.830 (7) | Te5i—Te6—La1 | 65.861 (5) |
Te3vii—La3—Te2iii | 74.503 (5) | Te5—Te6—La1 | 120.592 (7) |
Te6—La3—Te2iii | 135.279 (7) | La2—Te6—La1 | 128.888 (7) |
Te1—La3—Te2 | 85.654 (5) | Te5i—Te6—La3 | 120.461 (7) |
Te4—La3—Te2 | 132.068 (6) | Te5—Te6—La3 | 64.213 (5) |
Te3vii—La3—Te2 | 147.001 (7) | La2—Te6—La3 | 126.382 (7) |
Te6—La3—Te2 | 73.072 (6) | La1—Te6—La3 | 86.290 (6) |
Te2iii—La3—Te2 | 72.535 (6) | Te5i—Te6—La3ii | 121.325 (7) |
Te1—La3—Te3ii | 147.141 (7) | Te5—Te6—La3ii | 122.568 (7) |
Te4—La3—Te3ii | 72.959 (5) | La2—Te6—La3ii | 83.998 (6) |
Te3vii—La3—Te3ii | 84.626 (6) | La1—Te6—La3ii | 116.758 (7) |
Te6—La3—Te3ii | 75.783 (6) | La3—Te6—La3ii | 118.169 (7) |
Symmetry codes: (i) −y+1/2, x, −z+1/2; (ii) y, −x−1/2, −z+1/2; (iii) −x, −y, −z+1; (iv) −x+1/2, −y−1/2, z; (v) −x, −y, −z; (vi) y, −x+1/2, −z+1/2; (vii) −y−1/2, x, −z+1/2; (viii) −x−1/2, −y+1/2, z; (ix) −x−1/2, −y−1/2, z. |
Funding information
Funding for this research was provided by: Deutsche Forschungsgemeinschaft (grant No. Do 560/1).
References
Böttcher, P., Getzschmann, J. & Keller, R. (1993). Z. Anorg. Allg. Chem. 619, 476–488. Google Scholar
Brandenburg, K. (2018). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (2012). TWINABS. Bruker-AXS, Madison, WI, USA. Google Scholar
Bruker (2016). APEX2 and SAINT. Bruker AXS, Madison, Wisconsin, USA. Google Scholar
Doert, T. & Müller, C. J. (2016). Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Amsterdam: Elsevier. Google Scholar
Ijjaali, I. & Ibers, J. A. (2006). J. Solid State Chem. 179, 3456–3460. Web of Science CrossRef ICSD CAS Google Scholar
Klein Haneveld, A. & Jellinek, F. (1964). Recl Trav. Chim. Pays Bas, 83, 776–783. CrossRef ICSD CAS Google Scholar
Müller, C. J., Schwarz, U. & Doert, T. (2012). Z. Anorg. Allg. Chem. 638, 2477–2484. Google Scholar
Müller, C. J., Schwarz, U., Schmidt, P., Schnelle, W. & Doert, T. (2010). Z. Anorg. Allg. Chem. 636, 947–953. Google Scholar
Onken, H., Vierheilig, K. & Hahn, H. (1964). Z. Anorg. Allg. Chem. 333, 267–279. CrossRef ICSD CAS Web of Science Google Scholar
Plambeck-Fischer, P., Abriel, W. & Urland, W. (1989). J. Solid State Chem. 78, 164–169. CAS Google Scholar
Poddig, H. & Doert, T. (2020). Acta Cryst. B76, 1092–1099. Web of Science CrossRef ICSD IUCr Journals Google Scholar
Poddig, H., Donath, T., Gebauer, P., Finzel, K., Kohout, M., Wu, Y., Schmidt, P. & Doert, T. (2018). Z. Anorg. Allg. Chem. 644, 1886–1896. Web of Science CrossRef ICSD CAS Google Scholar
Poddig, H., Finzel, K. & Doert, T. (2020). Acta Cryst. C76, 530–540. Web of Science CrossRef ICSD IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stöwe, K. (2000a). J. Solid State Chem. 149, 155–166. Google Scholar
Stöwe, K. (2000b). J. Alloys Compd. 307, 101–110. Google Scholar
Stöwe, K. (2000c). Z. Anorg. Allg. Chem. 626, 803–811. Google Scholar
Stöwe, K. (2001). Z. Kristallogr. Cryst. Mater. 216, 215–224. Google Scholar
Tamazyan, R., Arnold, H., Molchanov, V., Kuzmicheva, G. & Vasileva, I. (2000). Z. Kristallogr. Cryst. Mater. 215, 346–351. Web of Science CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.