research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Different conformations and packing motifs in the crystal structures of four thio­phene–carbohydrazide–pyridine derivatives

crossmark logo

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, bFundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos-Far, Manguinhos, 21041-250, Rio de Janeiro, RJ, Brazil, and cCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk

Edited by M. Zeller, Purdue University, USA (Received 11 May 2022; accepted 12 May 2022; online 17 May 2022)

The crystal structures of four thio­phene–carbohydrazide–pyridine derivatives, viz. N′-[(E)-pyridin-3-yl­methyl­idene]thio­phene-2-carbohydrazide, C11H9N3OS, (I), N′-[(E)-pyridin-2-yl­methyl­idene]thio­phene-2-carbohydrazide, C11H9N3OS, (II), N-methyl-N′-[(E)-pyridin-2-yl­methyl­idene]thio­phene-2-carbohydrazide, C12H11N3OS, (III) and N′-[(E)-pyridin-2-yl­methyl­idene]-2-(thio­phen-2-yl)ethano­hydrazide, C12H11N3OS, (IV) are described. The dihedral angles between the thio­phene ring and the pyridine ring are 21.4 (2), 15.42 (14), 4.97 (8) and 83.52 (13)° for (I)–(IV), respectively. The thio­phene ring in (IV) is disordered over two orientations in a 0.851 (2):0.149 (2) ratio. Key features of the packing include N—H⋯Np (p = pyridine) hydrogen bonds in (I), which generate C(7) chains propagating in the [001] direction; N—H⋯Np links also feature in (II), but in this case they lead to C(6) [001] chains; in (IV), classical amide (C4) N—H⋯O links result in [010] chains; in every case adjacent mol­ecules in the chains are related by 21 screw axes. There are no classical hydrogen bonds in the extended structure of (III). Various weak C—H⋯X (X = O, N, S) inter­actions occur in each structure, but no aromatic ππ stacking is evident. The Hirshfeld surfaces and fingerprint plots for (I)–(IV) are compared.

1. Chemical context

Various thio­phene–carbohydrazide derivatives containing a T—C(=O)—NH—N=CH—R (T = thio­phene ring) building unit have been previously investigated by some of us for their anti-cancer (Cardoso et al., 2017[Cardoso, L. N. F., Nogueira, T. C. M., Rodrigues, F. A. R., Oliveira, A. C. A., Luciano, S., Pessoa, C. & de Souza, M. V. N. (2017). Med. Chem. Res. 26, 1605-1608.]) and anti-tuberculosis (Cardoso et al., 2014[Cardoso, L. N. F., Bispo, M. L. F., Kaiser, C. R., Wardell, J. L., Wardell, S. M. S. V., Lourenço, M. C. S., Bezerra, F. A. F., Soares, R. P. P., Rocha, M. N. & de Souza, M. V. N. (2014). Arch. Pharm. Chem. Life Sci. 347, 432-448.], 2016a[Cardoso, L. N. F., Nogueira, T. C. M., Kaiser, C. R., Wardell, J. L., Wardell, S. M. S. V. & de Souza, M. V. N. (2016a). Mediterr. J. Chem. 5, 356-366.]) properties. Other workers have reported their analgesic activities (Lima et al., 2000[Lima, P. C., Lima, L. M., da Silva, K. C. M., Léda, P. H. O., de Miranda, A. L. P., Fraga, C. A. M. & Barreiro, E. J. (2000). Eur. J. Med. Chem. 35, 187-203.]) and their potential uses as tunable photo switches (van Dijken et al., 2015[Dijken, D. J. van, Kovaříček, P., Ihrig, S. P. & Hecht, S. (2015). J. Am. Chem. Soc. 137, 14982-14991.]). The use of these compounds as multi-dentate chelating ligands has been described by Gholivand et al. (2016[Gholivand, K., Farshadfer, K., Roe, M., Gholami, A. & Esrafili, M. D. (2016). CrystEngComm, 18, 2873-2884.]) and Abbas et al. (2021[Abbas, S., Imtiaz-ud-din, Mehmood, M., Rauf, M. K., Azam, S. S., Ihsan-ul Haq, Tahir, M. N. & Parvaiz, N. (2021). J. Mol. Struct. 1230 article No. 129870.]).

In a continuation of our earlier work on this family of compounds (Cardoso et al., 2016b[Cardoso, L. N. F., Noguiera, T. C. M., Kaiser, C. R., Wardell, J. L., Wardell, S. M. S. V. & de Souza, M. V. N. (2016b). Z. Kristallogr. 231, 167-178.],c[Cardoso, L. N. F., Nogueira, T. C. M., Wardell, J. L., Wardell, S. M. S. V., Souza, M. V. N. de, Jotani, M. M. & Tiekink, E. R. T. (2016c). Acta Cryst. E72, 1025-1031.]), we now describe the crystal structures and Hirshfeld surfaces of N′-[(E)-pyridin-3-yl­methyl­idene]thio­phene-2-carbohydrazide, C11H9N3OS (I)[link], N′-[(E)-pyridin-2-yl­methyl­idene]thio­phene-2-carbohydrazide, C11H9N3OS (II)[link], N-methyl-N′-[(E)-pyridin-2-yl­methyl­idene]thio­phene-2-carbohydrazide, C12H11N3OS (III)[link] and N′-[(E)-pyridin-2-yl­methyl­idene]-2-(thio­phen-2-yl)ethano­hydrazide, C12H11N3OS (IV)[link]. Compounds (I)[link] and (II)[link] are positional isomers, differing in the location of the N atom of the pyridine ring, (III)[link] is a methyl­ated derivative of (II)[link] and (IV)[link] has a methyl­ene group inserted between the thio­phene ring and the carboyhdrazide grouping compared to (I)[link].

[Scheme 1]

2. Structural commentary

The mol­ecular structures of (I)–(IV) are shown in Figs. 1[link]–4[link][link][link], respectively and they all confirm the structures (atomic connectivities) postulated in the previous studies noted in the synthesis section: each compound crystallizes with one mol­ecule in the asymmetric unit and there is no suggestion that any of these compounds exist in the `enol' —C(OH)=N— tautomer in the solid state.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link] showing 50% displacement ellipsoids.
[Figure 2]
Figure 2
The mol­ecular structure of (II)[link] showing 50% displacement ellipsoids.
[Figure 3]
Figure 3
The mol­ecular structure of (III)[link] showing 50% displacement ellipsoids. The short C—H⋯S contact is indicated by a double-dashed line.
[Figure 4]
Figure 4
The mol­ecular structure of (IV)[link] showing 50% displacement ellipsoids. The minor disorder component of the thio­phene ring is shown with pink bonds.

In (I)[link] (Fig. 1[link]), the conformation about the N2=C6 bond [1.280 (5) Å] is E and the C5—N1—N2—C6 torsion angle is 175.1 (4)°. The oxygen atom of the carbonyl group and the sulfur atom of the thio­phene ring lie on the same side of the mol­ecule [S1—C4—C5—O1 = −4.9 (6)°] whereas atom N3 of the pyridine ring lies on the opposite side. The dihedral angle between the thio­phene and pyridine rings is 21.4 (2)° and the largest twist in the mol­ecule occurs about the C6—C7 bond [N2—C6—C7—C8 = −11.8 (7)°]. The N1—N2 bond length of 1.384 (5) Å in (I)[link] is significantly shorter than a typical N—N single bond (∼1.44 Å), which suggests substantial delocalization of electrons with the adjacent C5=O1 carbonyl group and the N2=C6 double bond, as observed previously for related compounds (Cardoso et al., 2016c[Cardoso, L. N. F., Nogueira, T. C. M., Wardell, J. L., Wardell, S. M. S. V., Souza, M. V. N. de, Jotani, M. M. & Tiekink, E. R. T. (2016c). Acta Cryst. E72, 1025-1031.]). Otherwise, the bond lengths and angles in (I)[link] may be regarded as unexceptional.

In (II)[link] (Fig. 2[link]), the N2=C6 double bond [1.284 (3) Å] is also in an E configuration and C5—N1—N2—C6 = 173.74 (19)° but unlike (I)[link], atoms O1 and S1 lie on opposite sides of the mol­ecule [S1—C4—C5—O1 = −170.67 (17)°] and N3 lies on the same side as O1. The dihedral angle between the aromatic rings is 15.42 (14)° and the most significant twist occurs about the C5—N1 bond [C4—C5—N1—N2 = 12.0 (3)°]. The C8—H8 bond of the pyridine ring points towards S1 but with H⋯S = 3.22 Å (sum of van der Waals radii = 3.00 Å) we consider it to be too long to be regarded as an intra­molecular hydrogen bond.

Compound (III)[link] (Fig. 3[link]) is the N-methyl­ated derivative of (II)[link]: the N2=C7 bond [1.2815 (17) Å] has an E configuration and C5—N1—N2—C7 = 179.40 (12)°. As with (II)[link], O1 and S1 lie on opposite sides of the mol­ecule [S1—C4—C5—O1 = 178.88 (10)° and N3 lies on the same side as O1. The dihedral angle between the C1–C4/S1 and C8–C12/N3 rings is 4.97 (8)°: most of this twist appear to be about the C7—C8 bond [N2—C7—C8—C9 = −4.8 (2)°] although the whole mol­ecule is close to flat [r.m.s. deviation for the 17 non-H atoms = 0.065 Å]. In this case, the short intra­molecular H⋯S contact between C9—H9 and S1 is 2.84 Å (C—H⋯S = 155°), considerably shorter than the equivalent contact in (II)[link], and reasonable for this type of weak inter­action (Ghosh et al., 2020[Ghosh, S., Chopra, P. & Wategaonkar, S. (2020). Phys. Chem. Chem. Phys. 22, 17482-17493.]).

In (IV)[link] (Fig. 4[link]), the thio­phene ring was modelled with `flip' disorder (∼180° rotation about the C4—C5 bond) in a 0.851 (2): 0.149 (2) ratio, which is a common structural feature for this moiety (Cardoso et al., 2016c[Cardoso, L. N. F., Nogueira, T. C. M., Wardell, J. L., Wardell, S. M. S. V., Souza, M. V. N. de, Jotani, M. M. & Tiekink, E. R. T. (2016c). Acta Cryst. E72, 1025-1031.]). Once again, the configuration of the N2=C7 double bond [1.281 (2) Å] is E and C6 and C7 are close to anti about the N—N bond [C6—N1—N2—C7 = −177.90 (14)°]. The dihedral angle between the aromatic rings (major disorder conformation for the thio­phene moiety) in (IV)[link] of 83.52 (13)° indicates near perpendicularity, which is quite different to the other compounds described here, presumably because the mol­ecule has additional conformational flexibility about the C—C single bonds associated with the C5 methyl­ene group [C3—C4—C5—C6 = 93.8 (6)°; C4—C5—C6—N1 = 144.72 (14)°].

3. Supra­molecular features

Geometrical data for the directional inter­molecular inter­actions in (I)–(IV) are listed in Tables 1[link]–4[link][link][link], respectively. The most significant features in the packing of (I)[link] and (II)[link] are N—H⋯Np (p = pyridine) hydrogen bonds: in the former, these links generate [001] C(7) chains (Fig. 5[link]), with adjacent mol­ecules in the chain related by the 21 screw axis. In (II)[link], the equivalent inter­action also leads to [001] chains (Fig. 6[link]) generated by the 21 screw axis but here the graph-set motif is C(6). The packing for (IV)[link] features classical C(4) amide N—H⋯O hydrogen bonds (Fig. 7[link]) leading to [010] chains generated once again by a 21 screw axis. There are obviously no classical hydrogen bonds in the extended structure of (III)[link] and the only possible directional inter­molecular contact identified is a very weak C—H⋯Np link arising from the N-methyl group. The structures of (I)[link], (II)[link] and (IV)[link] also feature various C—H⋯X (X = N, O, S) inter­actions although these are presumably very weak, given their H⋯X lengths.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯N3i 0.87 (5) 2.14 (5) 2.995 (5) 166 (4)
C1—H1⋯O1ii 0.95 2.53 3.471 (6) 171
C3—H3⋯N3i 0.95 2.61 3.479 (6) 152
C6—H6⋯N3i 0.95 2.59 3.410 (6) 145
C9—H9⋯O1iii 0.95 2.66 3.397 (5) 135
C11—H11⋯N2iv 0.95 2.57 3.481 (6) 160
Symmetry codes: (i) [-x, -y, z-{\script{1\over 2}}]; (ii) [-x+1, -y+1, z-{\script{1\over 2}}]; (iii) [-x+1, -y, z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y, z].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯N3i 0.98 (3) 2.03 (3) 3.013 (3) 177 (3)
C1—H1⋯O1ii 0.95 2.48 3.101 (3) 123
C2—H2⋯O1iii 0.95 2.64 3.410 (3) 139
Symmetry codes: (i) [-x+1, -y+1, z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z+{\script{1\over 2}}].

Table 3
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯S1 0.95 2.84 3.7217 (13) 155
C6—H6C⋯N3i 0.98 2.61 3.3499 (18) 132
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 4
Hydrogen-bond geometry (Å, °) for (IV)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.88 (2) 2.00 (2) 2.8628 (18) 164.9 (18)
C3—H3⋯N1ii 0.95 2.78 3.718 (7) 172
C5—H5B⋯O1i 0.99 2.64 3.307 (2) 125
C7—H7⋯S1Bi 0.95 2.65 3.534 (16) 155
C12—H12⋯S1iii 0.95 2.98 3.6624 (19) 129
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+1, -y+2, -z+1].
[Figure 5]
Figure 5
Fragment of the crystal structure of (I)[link] showing part of an [001] C(7) chain linked by N—H⋯N hydrogen bonds (double dashed lines). Symmetry codes: (i) −x, −y, z − [{1\over 2}]; (ii) −x, −y, z + [{1\over 2}].
[Figure 6]
Figure 6
Fragment of the crystal structure of (II)[link] showing part of an [001] C(6) chain linked by N—H⋯N hydrogen bonds (double-dashed lines). Symmetry code: (i) 1 − x, 1 − y, z + [{1\over 2}].
[Figure 7]
Figure 7
Fragment of the crystal structure of (IV)[link] showing part of an [010] C(4) chain linked by N—H⋯O hydrogen bonds (double-dashed lines). Symmetry codes: (i) 1 − x, [{1\over 2}] + y, [{1\over 2}] − z; (ii) 1 − x, y − [{1\over 2}], [{1\over 2}] − z.

The shortest aromatic ring centroid–centroid separations in these structures are πtπp (t = thio­phene, p = pyridine) = 4.046 (2) Å (slippage = 1.546 Å) for (I)[link], πtπp = 4.0509 (12) Å (slippage = 1.929 Å) for (II)[link], πtπp = 4.7831 (9) Å for (III)[link] and πtπp = 4.643 (2) Å for (IV)[link]. Given these distances, any aromatic ring-stacking effects that contribute to the cohesion and stability of the crystal must be weak to non-existent.

In order to gain more insight into these different packing motifs, the Hirshfeld surfaces and fingerprint plots for (I)–(IV) were calculated using CrystalExplorer (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia, Nedlands, Western Australia; https://hirshfeldsurface.net.]) following the approach recently described by Tan et al. (2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]). The Hirshfeld surfaces (see supporting information) show the expected red spots (close contacts) in the vicinities of the various donor and acceptor atoms.

The fingerprint plots for (I)–(IV) decomposed into the different percentage contact types (Table 5[link]) show that the different contributions are broadly similar, with H⋯H (van der Waals) contacts the most significant for each structure, followed by C⋯H/H⋯C. The O⋯H/H⋯O and N⋯H/H⋯N contributions are almost the same for the four structures, despite the lack of classical hydrogen bonds in (III)[link]. The S⋯H/H⋯S percentage contributions for (I)[link] and (IV)[link] are notably greater than those for (II)[link] and (III)[link], possibly because the S atom is `facing outwards' in the former structures but is associated with an intra­molecular C—H⋯S close contact arising from the pyridine ring in the latter structures. It is notable that the percentage of O⋯O contacts is zero in all structures, presumably reflecting the fact that `bare' O atoms avoid each other in the solid state for electrostatic reasons.

Table 5
Hirshfeld fingerprint contact percentages for (I)–(IV)

Contact type (I) (II) (III) (IV)a
H⋯H 30.1 32.8 36.5 34.5
C⋯H/H⋯C 15.1 23.3 28.2 22.6
O⋯H/H⋯O 13.1 12.8 10.4 11.2
N⋯H/H⋯N 13.7 12.2 11.5 13.8
S⋯H/H⋯S 12.1 7.0 5.8 10.7
C⋯C 6.2 4.5 1.8 1.2
C⋯O/O⋯C 1.3 0.8 0.7 1.0
O⋯O 0.0 0.0 0.0 0.0
Note: (a) Major disorder component.

4. Database survey

A survey of the Cambridge Structural Database (CSD Core 2012.3 version of March 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed nine structures incorporating the T—C(=O)—NH—N=CH—Q (T = thio­phene ring; Q = thio­phene or furan or pyrrole ring or derivatives) grouping and two with the T—CH2—C(=O)—NH—N=CH—Q sequence. None of these structures features a pyridine ring in the `Q' position.

5. Synthesis and crystallization

Compounds (I)[link] and (II)[link] were prepared by a literature procedure (Lima et al., 2000[Lima, P. C., Lima, L. M., da Silva, K. C. M., Léda, P. H. O., de Miranda, A. L. P., Fraga, C. A. M. & Barreiro, E. J. (2000). Eur. J. Med. Chem. 35, 187-203.]) and single crystals suitable for data collection were recrystallized from ethanol solution at room temperature. For the syntheses and spectroscopic characterizations of (III)[link] and (IV)[link], see Cardoso et al. (2016a[Cardoso, L. N. F., Nogueira, T. C. M., Kaiser, C. R., Wardell, J. L., Wardell, S. M. S. V. & de Souza, M. V. N. (2016a). Mediterr. J. Chem. 5, 356-366.]) and Cardoso et al. (2014[Cardoso, L. N. F., Bispo, M. L. F., Kaiser, C. R., Wardell, J. L., Wardell, S. M. S. V., Lourenço, M. C. S., Bezerra, F. A. F., Soares, R. P. P., Rocha, M. N. & de Souza, M. V. N. (2014). Arch. Pharm. Chem. Life Sci. 347, 432-448.]), respectively: in each case, colourless blocks suitable for X-ray data collections were recrystallized from ethanol solution at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 6[link]. The thio­phene ring in (IV)[link] was modelled as disordered over two sets of sites related by an approximate rotation of 180° about the C4—C5 bond in a 0.851 (2): 0.149 (2) ratio. EADP cards in SHELXL were used for the Uij values of equivalent atom pairs (e.g., C1 and C1B) and a SAME card was used to restrain the nearest-neighbour and next-nearest-neighbour bond distances in the two disorder components to be equal with standard deviations of 0.02 and 0.04 Å, respectively. The N-bound H atoms in (I)[link], (II)[link] and (IV)[link] were located in difference maps and their positions were freely refined with Uiso(H) = 1.2Ueq(N). All C-bound H atoms were located geometrically (C—H = 0.95–0.99 Å) and refined as riding atoms with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The methyl group in (III)[link] was allowed to rotate, but not to tip, to best fit the electron density.

Table 6
Experimental details

  (I) (II) (III) (IV)
Crystal data
Chemical formula C11H9N3OS C11H9N3OS C12H11N3OS C12H11N3OS
Mr 231.27 231.27 245.30 245.30
Crystal system, space group Orthorhombic, Pca21 Orthorhombic, Pna21 Monoclinic, C2/c Monoclinic, P21/c
Temperature (K) 100 100 100 100
a, b, c (Å) 10.6845 (9), 9.4974 (9), 10.0917 (10) 18.4056 (13), 9.5255 (7), 6.0300 (4) 21.0690 (15), 5.1085 (4), 21.1531 (15) 11.3963 (8), 9.2782 (7), 11.8178 (8)
α, β, γ (°) 90, 90, 90 90, 90, 90 90, 95.265 (2), 90 90, 112.761 (2), 90
V3) 1024.05 (16) 1057.19 (13) 2267.1 (3) 1152.27 (14)
Z 4 4 8 4
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.30 0.29 0.27 0.27
Crystal size (mm) 0.05 × 0.04 × 0.01 0.15 × 0.06 × 0.04 0.42 × 0.12 × 0.03 0.10 × 0.09 × 0.06
 
Data collection
Diffractometer Rigaku Saturn724+ CCD Rigaku Saturn724+ CCD Rigaku Saturn724+ CCD Rigaku AFC12 CCD
Absorption correction Multi-scan (CrystalClear; Rigaku, 2012[Rigaku (2012). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Multi-scan (CrystalClear; Rigaku, 2012[Rigaku (2012). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Multi-scan (CrystalClear; Rigaku, 2012[Rigaku (2012). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Multi-scan (CrystalClear; Rigaku, 2012[Rigaku (2012). CrystalClear. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.484, 1.000 0.756, 1.000 0.780, 1.000 0.723, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 6740, 1822, 1559 7314, 1979, 1930 8717, 2563, 2307 8155, 2593, 2138
Rint 0.058 0.026 0.022 0.031
(sin θ/λ)max−1) 0.649 0.649 0.650 0.670
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.112, 1.08 0.029, 0.083, 1.08 0.031, 0.087, 1.07 0.041, 0.112, 1.10
No. of reflections 1822 1979 2563 2593
No. of parameters 148 148 155 170
No. of restraints 1 1 0 10
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.27, −0.43 0.33, −0.24 0.33, −0.29 0.32, −0.30
Absolute structure Parsons et al. (2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Parsons et al. (2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.02 (13) 0.04 (4)
Computer programs: CrystalClear (Rigaku, 2012[Rigaku (2012). CrystalClear. Rigaku Corporation, Tokyo, Japan.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For all structures, data collection: CrystalClear (Rigaku, 2012); cell refinement: CrystalClear (Rigaku, 2012); data reduction: CrystalClear (Rigaku, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

N'-[(E)-Pyridin-3-ylmethylidene]thiophene-2-carbohydrazide (I) top
Crystal data top
C11H9N3OSDx = 1.500 Mg m3
Mr = 231.27Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 5861 reflections
a = 10.6845 (9) Åθ = 3.5–27.5°
b = 9.4974 (9) ŵ = 0.30 mm1
c = 10.0917 (10) ÅT = 100 K
V = 1024.05 (16) Å3Chip, colourless
Z = 40.05 × 0.04 × 0.01 mm
F(000) = 480
Data collection top
Rigaku Saturn724+ CCD
diffractometer
1559 reflections with I > 2σ(I)
ω scansRint = 0.058
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2012)
θmax = 27.5°, θmin = 3.5°
Tmin = 0.484, Tmax = 1.000h = 1213
6740 measured reflectionsk = 1212
1822 independent reflectionsl = 713
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.046 w = 1/[σ2(Fo2) + (0.0492P)2 + 0.5837P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.112(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.27 e Å3
1822 reflectionsΔρmin = 0.43 e Å3
148 parametersAbsolute structure: Parsons et al. (2013)
1 restraintAbsolute structure parameter: 0.02 (13)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4074 (4)0.5100 (5)0.3833 (5)0.0253 (10)
H10.4449150.5797910.4378080.030*
C20.2866 (4)0.4653 (4)0.3959 (5)0.0239 (10)
H20.2302940.5003930.4607760.029*
C30.2544 (4)0.3608 (4)0.3018 (5)0.0236 (10)
H30.1739240.3186960.2966560.028*
C40.3510 (4)0.3271 (4)0.2195 (4)0.0199 (10)
C50.3644 (4)0.2257 (4)0.1092 (4)0.0194 (9)
C60.1581 (4)0.0118 (5)0.0671 (5)0.0215 (9)
H60.0849110.0355300.0184110.026*
C70.1483 (4)0.0844 (4)0.1798 (4)0.0188 (9)
C80.2501 (3)0.1470 (4)0.2449 (6)0.0215 (9)
H80.3331330.1322480.2141450.026*
C90.2277 (4)0.2306 (4)0.3544 (5)0.0208 (9)
H90.2951990.2737120.4002840.025*
C100.1052 (4)0.2507 (5)0.3966 (5)0.0228 (10)
H100.0911130.3063830.4734190.027*
C110.0286 (3)0.1154 (4)0.2275 (5)0.0196 (9)
H110.0411920.0775060.1812720.023*
N10.2581 (3)0.1569 (4)0.0731 (4)0.0196 (8)
H1N0.186 (4)0.181 (5)0.107 (5)0.023*
N20.2634 (3)0.0646 (4)0.0328 (4)0.0211 (8)
N30.0061 (3)0.1955 (4)0.3344 (4)0.0217 (8)
O10.4666 (3)0.2073 (3)0.0557 (4)0.0278 (8)
S10.48271 (9)0.42487 (11)0.25732 (14)0.0248 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.030 (2)0.024 (2)0.022 (3)0.0009 (18)0.009 (2)0.002 (2)
C20.030 (2)0.026 (2)0.016 (3)0.0038 (18)0.000 (2)0.006 (2)
C30.026 (2)0.022 (2)0.022 (3)0.0033 (16)0.0001 (18)0.0045 (19)
C40.025 (2)0.0204 (19)0.015 (2)0.0014 (16)0.0012 (18)0.0021 (17)
C50.020 (2)0.022 (2)0.017 (2)0.0029 (16)0.0016 (18)0.0019 (19)
C60.0196 (19)0.025 (2)0.019 (2)0.0002 (17)0.004 (2)0.0007 (19)
C70.018 (2)0.0216 (19)0.017 (2)0.0014 (15)0.0001 (18)0.0027 (18)
C80.0177 (18)0.0242 (19)0.023 (2)0.0026 (13)0.002 (3)0.005 (2)
C90.020 (2)0.026 (2)0.017 (2)0.0002 (16)0.006 (2)0.001 (2)
C100.025 (2)0.027 (2)0.017 (2)0.0016 (17)0.001 (2)0.0001 (19)
C110.0169 (17)0.0238 (18)0.018 (2)0.0012 (14)0.001 (2)0.002 (2)
N10.0164 (17)0.0258 (18)0.016 (2)0.0001 (14)0.0040 (16)0.0038 (16)
N20.0247 (19)0.0223 (18)0.016 (2)0.0014 (14)0.0010 (18)0.0000 (16)
N30.0250 (18)0.0222 (16)0.018 (2)0.0005 (15)0.0031 (17)0.0009 (16)
O10.0179 (15)0.0385 (18)0.0270 (19)0.0039 (12)0.0050 (15)0.0063 (17)
S10.0222 (5)0.0301 (5)0.0221 (6)0.0036 (4)0.0015 (6)0.0037 (6)
Geometric parameters (Å, º) top
C1—C21.364 (6)C6—H60.9500
C1—S11.708 (5)C7—C111.398 (5)
C1—H10.9500C7—C81.403 (6)
C2—C31.415 (6)C8—C91.381 (7)
C2—H20.9500C8—H80.9500
C3—C41.363 (6)C9—C101.390 (6)
C3—H30.9500C9—H90.9500
C4—C51.479 (6)C10—N31.338 (5)
C4—S11.729 (4)C10—H100.9500
C5—O11.230 (5)C11—N31.342 (6)
C5—N11.360 (5)C11—H110.9500
C6—N21.280 (5)N1—N21.384 (5)
C6—C71.463 (6)N1—H1N0.87 (5)
C2—C1—S1111.6 (3)C8—C7—C6125.0 (4)
C2—C1—H1124.2C9—C8—C7118.9 (4)
S1—C1—H1124.2C9—C8—H8120.5
C1—C2—C3112.7 (4)C7—C8—H8120.5
C1—C2—H2123.7C8—C9—C10119.2 (4)
C3—C2—H2123.7C8—C9—H9120.4
C4—C3—C2112.9 (4)C10—C9—H9120.4
C4—C3—H3123.5N3—C10—C9123.2 (4)
C2—C3—H3123.5N3—C10—H10118.4
C3—C4—C5133.3 (4)C9—C10—H10118.4
C3—C4—S1110.8 (3)N3—C11—C7124.1 (4)
C5—C4—S1115.9 (3)N3—C11—H11118.0
O1—C5—N1123.7 (4)C7—C11—H11118.0
O1—C5—C4120.6 (4)C5—N1—N2118.5 (4)
N1—C5—C4115.7 (4)C5—N1—H1N120 (3)
N2—C6—C7121.1 (4)N2—N1—H1N120 (3)
N2—C6—H6119.4C6—N2—N1114.8 (4)
C7—C6—H6119.4C10—N3—C11117.3 (4)
C11—C7—C8117.3 (4)C1—S1—C492.0 (2)
C11—C7—C6117.7 (4)
S1—C1—C2—C30.2 (5)C8—C9—C10—N31.6 (7)
C1—C2—C3—C40.3 (6)C8—C7—C11—N33.2 (6)
C2—C3—C4—C5179.1 (5)C6—C7—C11—N3176.2 (4)
C2—C3—C4—S10.2 (5)O1—C5—N1—N22.4 (6)
C3—C4—C5—O1174.4 (5)C4—C5—N1—N2177.6 (3)
S1—C4—C5—O14.9 (6)C7—C6—N2—N1178.2 (4)
C3—C4—C5—N15.6 (7)C5—N1—N2—C6175.1 (4)
S1—C4—C5—N1175.1 (3)C9—C10—N3—C111.0 (6)
N2—C6—C7—C11167.6 (4)C7—C11—N3—C101.5 (6)
N2—C6—C7—C811.8 (7)C2—C1—S1—C40.1 (4)
C11—C7—C8—C92.5 (6)C3—C4—S1—C10.1 (4)
C6—C7—C8—C9176.9 (4)C5—C4—S1—C1179.4 (3)
C7—C8—C9—C100.3 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N3i0.87 (5)2.14 (5)2.995 (5)166 (4)
C1—H1···O1ii0.952.533.471 (6)171
C3—H3···N3i0.952.613.479 (6)152
C6—H6···N3i0.952.593.410 (6)145
C9—H9···O1iii0.952.663.397 (5)135
C11—H11···N2iv0.952.573.481 (6)160
Symmetry codes: (i) x, y, z1/2; (ii) x+1, y+1, z1/2; (iii) x+1, y, z+1/2; (iv) x1/2, y, z.
N'-[(E)-Pyridin-2-ylmethylidene]thiophene-2-carbohydrazide (II) top
Crystal data top
C11H9N3OSDx = 1.453 Mg m3
Mr = 231.27Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 6000 reflections
a = 18.4056 (13) Åθ = 2.4–27.5°
b = 9.5255 (7) ŵ = 0.29 mm1
c = 6.0300 (4) ÅT = 100 K
V = 1057.19 (13) Å3Blade, dark orange
Z = 40.15 × 0.06 × 0.04 mm
F(000) = 480
Data collection top
Rigaku Saturn724+ CCD
diffractometer
1930 reflections with I > 2σ(I)
ω scansRint = 0.026
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2012)
θmax = 27.5°, θmin = 3.1°
Tmin = 0.756, Tmax = 1.000h = 2323
7314 measured reflectionsk = 912
1979 independent reflectionsl = 57
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.0573P)2 + 0.2224P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.083(Δ/σ)max = 0.001
S = 1.08Δρmax = 0.33 e Å3
1979 reflectionsΔρmin = 0.24 e Å3
148 parametersAbsolute structure: Parsons et al. (2013)
1 restraintAbsolute structure parameter: 0.04 (4)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.80728 (12)0.2567 (2)0.9079 (4)0.0243 (5)
H10.8445070.1905180.8768060.029*
C20.80182 (12)0.3272 (2)1.1043 (4)0.0240 (5)
H20.8341120.3129801.2251010.029*
C30.74255 (10)0.4248 (2)1.1102 (5)0.0225 (5)
H30.7309330.4838151.2321380.027*
C40.70395 (11)0.4200 (2)0.9075 (4)0.0198 (4)
C50.64198 (11)0.5159 (2)0.8639 (4)0.0201 (4)
C60.56443 (11)0.3875 (2)0.3737 (4)0.0214 (4)
H60.5303550.4618140.3586270.026*
C70.56402 (10)0.2730 (2)0.2119 (5)0.0207 (4)
C80.61299 (11)0.1601 (2)0.2192 (5)0.0248 (4)
H80.6478380.1527500.3348140.030*
C90.60922 (12)0.0599 (2)0.0540 (5)0.0282 (5)
H90.6420080.0171450.0531440.034*
C100.55693 (12)0.0730 (2)0.1110 (5)0.0276 (5)
H100.5533930.0052740.2261270.033*
C110.51001 (12)0.1869 (2)0.1042 (5)0.0252 (5)
H110.4743760.1955590.2174000.030*
N10.60295 (9)0.50362 (19)0.6733 (3)0.0207 (4)
H1N0.5663 (14)0.573 (3)0.629 (5)0.025*
N20.60975 (9)0.38992 (19)0.5354 (3)0.0200 (4)
N30.51261 (10)0.2853 (2)0.0546 (4)0.0222 (4)
O10.62639 (9)0.60967 (18)0.9963 (3)0.0263 (4)
S10.74058 (3)0.29964 (5)0.72453 (13)0.02379 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0204 (9)0.0272 (11)0.0252 (13)0.0009 (8)0.0035 (9)0.0004 (11)
C20.0236 (10)0.0273 (10)0.0209 (12)0.0006 (9)0.0040 (9)0.0004 (10)
C30.0180 (9)0.0194 (9)0.0302 (14)0.0013 (7)0.0020 (9)0.0050 (10)
C40.0203 (8)0.0214 (9)0.0177 (11)0.0019 (7)0.0025 (8)0.0003 (9)
C50.0201 (9)0.0217 (9)0.0184 (11)0.0016 (7)0.0022 (8)0.0005 (9)
C60.0180 (8)0.0250 (10)0.0213 (11)0.0017 (7)0.0001 (9)0.0007 (9)
C70.0177 (8)0.0244 (10)0.0200 (11)0.0014 (7)0.0005 (10)0.0021 (11)
C80.0205 (9)0.0279 (10)0.0258 (12)0.0017 (7)0.0027 (10)0.0002 (12)
C90.0268 (10)0.0272 (11)0.0307 (14)0.0061 (9)0.0010 (10)0.0019 (11)
C100.0275 (10)0.0281 (11)0.0271 (14)0.0002 (9)0.0022 (10)0.0066 (10)
C110.0221 (9)0.0306 (11)0.0229 (13)0.0000 (8)0.0032 (10)0.0009 (10)
N10.0199 (8)0.0231 (8)0.0189 (11)0.0017 (7)0.0003 (7)0.0012 (8)
N20.0181 (7)0.0239 (8)0.0178 (9)0.0005 (6)0.0010 (7)0.0006 (8)
N30.0202 (8)0.0262 (9)0.0203 (11)0.0011 (6)0.0014 (8)0.0003 (8)
O10.0283 (8)0.0284 (8)0.0222 (10)0.0038 (6)0.0002 (7)0.0046 (7)
S10.0226 (2)0.0288 (3)0.0200 (3)0.00348 (18)0.0016 (3)0.0026 (3)
Geometric parameters (Å, º) top
C1—C21.365 (4)C6—H60.9500
C1—S11.702 (2)C7—N31.345 (3)
C1—H10.9500C7—C81.404 (3)
C2—C31.434 (3)C8—C91.381 (4)
C2—H20.9500C8—H80.9500
C3—C41.415 (3)C9—C101.390 (4)
C3—H30.9500C9—H90.9500
C4—C51.485 (3)C10—C111.387 (3)
C4—S11.728 (2)C10—H100.9500
C5—O11.232 (3)C11—N31.341 (3)
C5—N11.361 (3)C11—H110.9500
C6—N21.284 (3)N1—N21.371 (3)
C6—C71.463 (3)N1—H1N0.98 (3)
C2—C1—S1113.11 (17)C8—C7—C6123.1 (2)
C2—C1—H1123.4C9—C8—C7118.3 (2)
S1—C1—H1123.4C9—C8—H8120.8
C1—C2—C3113.4 (2)C7—C8—H8120.8
C1—C2—H2123.3C8—C9—C10119.3 (2)
C3—C2—H2123.3C8—C9—H9120.4
C4—C3—C2109.9 (2)C10—C9—H9120.4
C4—C3—H3125.1C11—C10—C9118.7 (2)
C2—C3—H3125.1C11—C10—H10120.6
C3—C4—C5121.3 (2)C9—C10—H10120.6
C3—C4—S1112.16 (16)N3—C11—C10123.0 (2)
C5—C4—S1126.50 (18)N3—C11—H11118.5
O1—C5—N1119.15 (19)C10—C11—H11118.5
O1—C5—C4120.7 (2)C5—N1—N2122.15 (18)
N1—C5—C4120.1 (2)C5—N1—H1N122.2 (17)
N2—C6—C7121.55 (19)N2—N1—H1N115.5 (17)
N2—C6—H6119.2C6—N2—N1114.55 (19)
C7—C6—H6119.2C11—N3—C7117.90 (19)
N3—C7—C8122.7 (2)C1—S1—C491.48 (12)
N3—C7—C6114.14 (18)
S1—C1—C2—C31.8 (3)C8—C9—C10—C110.0 (4)
C1—C2—C3—C41.0 (3)C9—C10—C11—N30.1 (4)
C2—C3—C4—C5176.80 (19)O1—C5—N1—N2169.81 (19)
C2—C3—C4—S10.2 (2)C4—C5—N1—N212.0 (3)
C3—C4—C5—O15.8 (3)C7—C6—N2—N1179.61 (19)
S1—C4—C5—O1170.67 (17)C5—N1—N2—C6173.74 (19)
C3—C4—C5—N1176.02 (19)C10—C11—N3—C71.0 (3)
S1—C4—C5—N17.5 (3)C8—C7—N3—C111.9 (3)
N2—C6—C7—N3179.2 (2)C6—C7—N3—C11178.0 (2)
N2—C6—C7—C81.0 (4)C2—C1—S1—C41.60 (19)
N3—C7—C8—C91.8 (4)C3—C4—S1—C10.99 (17)
C6—C7—C8—C9178.0 (2)C5—C4—S1—C1175.80 (19)
C7—C8—C9—C100.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N3i0.98 (3)2.03 (3)3.013 (3)177 (3)
C1—H1···O1ii0.952.483.101 (3)123
C2—H2···O1iii0.952.643.410 (3)139
Symmetry codes: (i) x+1, y+1, z+1/2; (ii) x+3/2, y1/2, z1/2; (iii) x+3/2, y1/2, z+1/2.
N-Methyl-N'-[(E)-pyridin-2-ylmethylidene]thiophene-2-carbohydrazide (III) top
Crystal data top
C12H11N3OSF(000) = 1024
Mr = 245.30Dx = 1.437 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 21.0690 (15) ÅCell parameters from 7400 reflections
b = 5.1085 (4) Åθ = 2.9–27.5°
c = 21.1531 (15) ŵ = 0.27 mm1
β = 95.265 (2)°T = 100 K
V = 2267.1 (3) Å3Lath, colourless
Z = 80.42 × 0.12 × 0.03 mm
Data collection top
Rigaku Saturn724+ CCD
diffractometer
2307 reflections with I > 2σ(I)
ω scansRint = 0.022
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2012)
θmax = 27.5°, θmin = 2.9°
Tmin = 0.780, Tmax = 1.000h = 2727
8717 measured reflectionsk = 66
2563 independent reflectionsl = 2721
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0408P)2 + 2.1991P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
2563 reflectionsΔρmax = 0.33 e Å3
155 parametersΔρmin = 0.29 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.50199 (7)0.8774 (3)0.34463 (7)0.0262 (3)
H10.5258900.9888710.3197950.031*
C20.50475 (7)0.8871 (3)0.40904 (7)0.0283 (3)
H20.5308391.0060880.4342660.034*
C30.46445 (6)0.7003 (3)0.43432 (6)0.0243 (3)
H30.4604590.6800140.4784200.029*
C40.43135 (6)0.5499 (3)0.38752 (6)0.0196 (3)
C50.38600 (6)0.3464 (3)0.40503 (6)0.0206 (3)
C60.30541 (6)0.0098 (3)0.37672 (6)0.0229 (3)
H6A0.3066760.0013790.4231040.034*
H6B0.3164150.1617760.3601360.034*
H6C0.2624630.0591150.3590100.034*
C70.32615 (6)0.1249 (3)0.25363 (6)0.0190 (3)
H70.2980980.0077690.2657920.023*
C80.33189 (6)0.1729 (2)0.18583 (6)0.0178 (3)
C90.36845 (6)0.3762 (3)0.16384 (6)0.0197 (3)
H90.3920550.4899700.1927200.024*
C100.36941 (6)0.4078 (3)0.09876 (6)0.0222 (3)
H100.3934400.5450170.0822200.027*
C110.33481 (7)0.2364 (3)0.05837 (6)0.0247 (3)
H110.3347170.2534700.0136420.030*
C120.30036 (7)0.0398 (3)0.08438 (6)0.0266 (3)
H120.2771100.0781890.0563150.032*
N10.35096 (5)0.2040 (2)0.35878 (5)0.0194 (2)
N20.35836 (5)0.2591 (2)0.29655 (5)0.0176 (2)
N30.29791 (6)0.0063 (2)0.14694 (5)0.0234 (3)
O10.37945 (5)0.3068 (2)0.46105 (4)0.0291 (2)
S10.45075 (2)0.64215 (7)0.31337 (2)0.02308 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0201 (7)0.0236 (7)0.0350 (8)0.0028 (6)0.0027 (5)0.0049 (6)
C20.0219 (7)0.0273 (7)0.0349 (8)0.0015 (6)0.0020 (6)0.0129 (6)
C30.0227 (7)0.0279 (7)0.0223 (6)0.0052 (6)0.0015 (5)0.0055 (5)
C40.0183 (6)0.0220 (6)0.0185 (6)0.0042 (5)0.0015 (5)0.0022 (5)
C50.0210 (6)0.0229 (6)0.0180 (6)0.0061 (5)0.0026 (5)0.0006 (5)
C60.0203 (6)0.0253 (7)0.0234 (6)0.0005 (6)0.0038 (5)0.0070 (5)
C70.0185 (6)0.0182 (6)0.0204 (6)0.0001 (5)0.0031 (5)0.0018 (5)
C80.0167 (6)0.0178 (6)0.0188 (6)0.0023 (5)0.0010 (4)0.0002 (5)
C90.0181 (6)0.0218 (6)0.0191 (6)0.0008 (5)0.0010 (5)0.0009 (5)
C100.0216 (6)0.0239 (7)0.0218 (6)0.0010 (5)0.0049 (5)0.0010 (5)
C110.0293 (7)0.0281 (7)0.0171 (6)0.0017 (6)0.0042 (5)0.0019 (5)
C120.0335 (8)0.0240 (7)0.0218 (6)0.0036 (6)0.0006 (5)0.0061 (5)
N10.0189 (5)0.0237 (6)0.0158 (5)0.0006 (4)0.0024 (4)0.0035 (4)
N20.0175 (5)0.0200 (5)0.0155 (5)0.0018 (4)0.0024 (4)0.0020 (4)
N30.0281 (6)0.0200 (6)0.0218 (5)0.0030 (5)0.0008 (4)0.0022 (4)
O10.0378 (6)0.0339 (6)0.0161 (4)0.0009 (5)0.0051 (4)0.0002 (4)
S10.02249 (19)0.02627 (19)0.02056 (18)0.00532 (13)0.00245 (12)0.00153 (12)
Geometric parameters (Å, º) top
C1—C21.359 (2)C7—N21.2815 (17)
C1—S11.7075 (14)C7—C81.4709 (17)
C1—H10.9500C7—H70.9500
C2—C31.414 (2)C8—N31.3436 (17)
C2—H20.9500C8—C91.3981 (18)
C3—C41.3894 (19)C9—C101.3879 (18)
C3—H30.9500C9—H90.9500
C4—C51.4817 (19)C10—C111.3835 (19)
C4—S11.7223 (13)C10—H100.9500
C5—O11.2225 (16)C11—C121.382 (2)
C5—N11.3780 (17)C11—H110.9500
C6—N11.4545 (17)C12—N31.3400 (17)
C6—H6A0.9800C12—H120.9500
C6—H6B0.9800N1—N21.3690 (14)
C6—H6C0.9800
C2—C1—S1112.41 (11)C8—C7—H7119.5
C2—C1—H1123.8N3—C8—C9123.07 (11)
S1—C1—H1123.8N3—C8—C7113.86 (11)
C1—C2—C3112.48 (13)C9—C8—C7123.06 (11)
C1—C2—H2123.8C10—C9—C8118.36 (12)
C3—C2—H2123.8C10—C9—H9120.8
C4—C3—C2112.53 (12)C8—C9—H9120.8
C4—C3—H3123.7C11—C10—C9118.95 (13)
C2—C3—H3123.7C11—C10—H10120.5
C3—C4—C5120.19 (12)C9—C10—H10120.5
C3—C4—S1110.61 (10)C12—C11—C10118.69 (12)
C5—C4—S1129.19 (10)C12—C11—H11120.7
O1—C5—N1120.00 (13)C10—C11—H11120.7
O1—C5—C4119.42 (12)N3—C12—C11123.71 (13)
N1—C5—C4120.58 (11)N3—C12—H12118.1
N1—C6—H6A109.5C11—C12—H12118.1
N1—C6—H6B109.5N2—N1—C5118.24 (11)
H6A—C6—H6B109.5N2—N1—C6121.81 (11)
N1—C6—H6C109.5C5—N1—C6119.89 (11)
H6A—C6—H6C109.5C7—N2—N1118.14 (11)
H6B—C6—H6C109.5C12—N3—C8117.20 (12)
N2—C7—C8121.06 (12)C1—S1—C491.97 (7)
N2—C7—H7119.5
S1—C1—C2—C30.08 (16)C10—C11—C12—N30.7 (2)
C1—C2—C3—C40.02 (18)O1—C5—N1—N2178.23 (11)
C2—C3—C4—C5179.06 (12)C4—C5—N1—N21.19 (18)
C2—C3—C4—S10.04 (15)O1—C5—N1—C61.06 (19)
C3—C4—C5—O12.21 (19)C4—C5—N1—C6178.37 (11)
S1—C4—C5—O1178.88 (10)C8—C7—N2—N1179.79 (11)
C3—C4—C5—N1177.22 (12)C5—N1—N2—C7179.40 (12)
S1—C4—C5—N11.69 (19)C6—N1—N2—C73.49 (18)
N2—C7—C8—N3176.35 (12)C11—C12—N3—C81.0 (2)
N2—C7—C8—C94.8 (2)C9—C8—N3—C120.5 (2)
N3—C8—C9—C100.3 (2)C7—C8—N3—C12179.38 (12)
C7—C8—C9—C10178.51 (12)C2—C1—S1—C40.09 (12)
C8—C9—C10—C110.6 (2)C3—C4—S1—C10.07 (11)
C9—C10—C11—C120.1 (2)C5—C4—S1—C1178.92 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···S10.952.843.7217 (13)155
C6—H6C···N3i0.982.613.3499 (18)132
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
N'-[(E)-Pyridin-2-ylmethylidene]-2-(thiophen-2-yl)ethanohydrazide (IV) top
Crystal data top
C12H11N3OSF(000) = 512
Mr = 245.30Dx = 1.414 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.3963 (8) ÅCell parameters from 43879 reflections
b = 9.2782 (7) Åθ = 2.9–27.5°
c = 11.8178 (8) ŵ = 0.27 mm1
β = 112.761 (2)°T = 100 K
V = 1152.27 (14) Å3Block, colourless
Z = 40.10 × 0.09 × 0.06 mm
Data collection top
Rigaku AFC12 CCD
diffractometer
2138 reflections with I > 2σ(I)
ω scansRint = 0.031
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2012)
θmax = 28.4°, θmin = 2.9°
Tmin = 0.723, Tmax = 1.000h = 1514
8155 measured reflectionsk = 1211
2593 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0505P)2 + 0.7045P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
2593 reflectionsΔρmax = 0.32 e Å3
170 parametersΔρmin = 0.30 e Å3
10 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.9466 (2)0.7136 (3)0.2749 (2)0.0222 (5)0.851 (2)
H11.0336880.6894830.3179200.027*0.851 (2)
C20.8750 (2)0.6617 (3)0.1571 (2)0.0203 (5)0.851 (2)
H20.9059460.5983070.1118060.024*0.851 (2)
C30.7527 (8)0.7158 (11)0.1161 (7)0.0246 (10)0.851 (2)
H30.6898010.6958350.0370870.029*0.851 (2)
C40.73066 (15)0.80326 (17)0.20255 (15)0.0211 (3)0.851 (2)
S10.86521 (5)0.82422 (7)0.33564 (5)0.02360 (18)0.851 (2)
C1B0.8982 (14)0.684 (2)0.1833 (17)0.0203 (5)0.149 (2)
H1B0.9565890.6320550.1589770.024*0.149 (2)
C2B0.9327 (13)0.7537 (17)0.2944 (14)0.0222 (5)0.149 (2)
H2B1.0158190.7504080.3568060.027*0.149 (2)
C3B0.8327 (13)0.829 (2)0.3049 (14)0.02360 (18)0.149 (2)
H3B0.8360350.8883450.3718210.028*0.149 (2)
C4B0.73066 (15)0.80326 (17)0.20255 (15)0.0211 (3)0.149 (2)
S1B0.7385 (12)0.6996 (17)0.0929 (12)0.0246 (10)0.149 (2)
C50.61018 (15)0.86577 (18)0.19459 (16)0.0231 (3)
H5A0.5532070.8789200.1074250.028*
H5B0.6255730.9614170.2348610.028*
C60.54702 (14)0.76587 (17)0.25759 (15)0.0206 (3)
C70.35889 (15)0.83579 (18)0.42527 (15)0.0223 (3)
H70.3593840.9379620.4202230.027*
C80.28771 (14)0.76417 (18)0.49016 (15)0.0207 (3)
C90.27577 (15)0.61405 (19)0.49162 (16)0.0243 (4)
H90.3147730.5543430.4508320.029*
C100.20629 (15)0.55382 (19)0.55336 (16)0.0271 (4)
H100.1971740.4522510.5561460.033*
C110.14999 (16)0.64555 (19)0.61139 (16)0.0260 (4)
H110.1010070.6078620.6538530.031*
C120.16714 (16)0.79323 (19)0.60568 (17)0.0267 (4)
H120.1292550.8548100.6462260.032*
N10.48282 (13)0.83765 (15)0.31638 (13)0.0211 (3)
H1N0.4714 (18)0.932 (2)0.3080 (18)0.025*
N20.42014 (12)0.76009 (15)0.37563 (13)0.0213 (3)
N30.23384 (13)0.85429 (16)0.54651 (13)0.0247 (3)
O10.55355 (11)0.63460 (13)0.25449 (13)0.0280 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0172 (8)0.0271 (13)0.0254 (12)0.0030 (8)0.0118 (7)0.0006 (9)
C20.0203 (11)0.0209 (13)0.0221 (14)0.0002 (9)0.0109 (10)0.0036 (8)
C30.0205 (18)0.024 (2)0.028 (3)0.0032 (14)0.0080 (19)0.0029 (17)
C40.0196 (7)0.0194 (7)0.0245 (8)0.0023 (6)0.0088 (6)0.0032 (6)
S10.0191 (3)0.0280 (3)0.0230 (3)0.0014 (2)0.0073 (2)0.0037 (2)
C1B0.0203 (11)0.0209 (13)0.0221 (14)0.0002 (9)0.0109 (10)0.0036 (8)
C2B0.0172 (8)0.0271 (13)0.0254 (12)0.0030 (8)0.0118 (7)0.0006 (9)
C3B0.0191 (3)0.0280 (3)0.0230 (3)0.0014 (2)0.0073 (2)0.0037 (2)
C4B0.0196 (7)0.0194 (7)0.0245 (8)0.0023 (6)0.0088 (6)0.0032 (6)
S1B0.0205 (18)0.024 (2)0.028 (3)0.0032 (14)0.0080 (19)0.0029 (17)
C50.0204 (7)0.0176 (7)0.0319 (9)0.0002 (6)0.0108 (6)0.0024 (7)
C60.0164 (6)0.0194 (8)0.0244 (8)0.0001 (6)0.0061 (6)0.0011 (6)
C70.0219 (7)0.0192 (8)0.0251 (8)0.0000 (6)0.0083 (6)0.0006 (6)
C80.0181 (7)0.0218 (8)0.0211 (8)0.0005 (6)0.0064 (6)0.0013 (6)
C90.0212 (7)0.0231 (8)0.0298 (9)0.0009 (6)0.0112 (6)0.0033 (7)
C100.0224 (7)0.0222 (8)0.0354 (10)0.0002 (6)0.0098 (7)0.0021 (7)
C110.0239 (7)0.0267 (9)0.0286 (9)0.0009 (6)0.0114 (7)0.0032 (7)
C120.0273 (8)0.0277 (9)0.0300 (9)0.0014 (7)0.0163 (7)0.0025 (7)
N10.0213 (6)0.0168 (6)0.0271 (7)0.0006 (5)0.0114 (6)0.0015 (5)
N20.0183 (6)0.0211 (7)0.0244 (7)0.0007 (5)0.0081 (5)0.0013 (5)
N30.0247 (6)0.0225 (7)0.0290 (8)0.0012 (5)0.0128 (6)0.0003 (6)
O10.0267 (6)0.0161 (6)0.0475 (8)0.0002 (5)0.0214 (6)0.0000 (5)
Geometric parameters (Å, º) top
C1—C21.399 (3)C5—H5A0.9900
C1—S11.716 (2)C5—H5B0.9900
C1—H10.9500C6—O11.222 (2)
C2—C31.380 (8)C6—N11.362 (2)
C2—H20.9500C7—N21.281 (2)
C3—C41.401 (7)C7—C81.473 (2)
C3—H30.9500C7—H70.9500
C4—C51.460 (2)C8—N31.355 (2)
C4—S11.7311 (16)C8—C91.400 (2)
C1B—C2B1.379 (15)C9—C101.385 (2)
C1B—S1B1.723 (16)C9—H90.9500
C1B—H1B0.9500C10—C111.395 (2)
C2B—C3B1.384 (15)C10—H100.9500
C2B—H2B0.9500C11—C121.389 (2)
C3B—C4B1.337 (13)C11—H110.9500
C3B—H3B0.9500C12—N31.341 (2)
C4B—C51.460 (2)C12—H120.9500
C4B—S1B1.643 (11)N1—N21.3804 (19)
C5—C61.532 (2)N1—H1N0.88 (2)
C2—C1—S1114.85 (18)C4—C5—H5B109.8
C2—C1—H1122.6C6—C5—H5B109.8
S1—C1—H1122.6H5A—C5—H5B108.2
C3—C2—C1110.2 (3)O1—C6—N1123.63 (15)
C3—C2—H2124.9O1—C6—C5122.90 (15)
C1—C2—H2124.9N1—C6—C5113.47 (14)
C2—C3—C4113.4 (5)N2—C7—C8119.90 (15)
C2—C3—H3123.3N2—C7—H7120.1
C4—C3—H3123.3C8—C7—H7120.1
C3—C4—C5127.8 (3)N3—C8—C9122.90 (15)
C3—C4—S1112.4 (3)N3—C8—C7115.03 (15)
C5—C4—S1119.63 (13)C9—C8—C7122.07 (15)
C1—S1—C489.14 (10)C10—C9—C8119.07 (16)
C2B—C1B—S1B113.1 (12)C10—C9—H9120.5
C2B—C1B—H1B123.4C8—C9—H9120.5
S1B—C1B—H1B123.4C9—C10—C11118.56 (16)
C1B—C2B—C3B112.6 (13)C9—C10—H10120.7
C1B—C2B—H2B123.7C11—C10—H10120.7
C3B—C2B—H2B123.7C12—C11—C10118.53 (16)
C4B—C3B—C2B106.5 (12)C12—C11—H11120.7
C4B—C3B—H3B126.7C10—C11—H11120.7
C2B—C3B—H3B126.7N3—C12—C11124.09 (16)
C3B—C4B—C5117.0 (7)N3—C12—H12118.0
C3B—C4B—S1B121.7 (7)C11—C12—H12118.0
C5—C4B—S1B121.2 (4)C6—N1—N2119.30 (13)
C4B—S1B—C1B85.9 (8)C6—N1—H1N120.7 (13)
C4B—C5—C6109.60 (13)N2—N1—H1N119.4 (13)
C4—C5—C6109.60 (13)C7—N2—N1115.27 (14)
C4—C5—H5A109.8C12—N3—C8116.84 (15)
C6—C5—H5A109.8
S1—C1—C2—C31.1 (6)C4B—C5—C6—O135.6 (2)
C1—C2—C3—C42.0 (9)C4—C5—C6—O135.6 (2)
C2—C3—C4—C5173.4 (4)C4B—C5—C6—N1144.72 (14)
C2—C3—C4—S12.1 (9)C4—C5—C6—N1144.72 (14)
C2—C1—S1—C40.1 (2)N2—C7—C8—N3175.58 (14)
C3—C4—S1—C11.2 (5)N2—C7—C8—C95.2 (2)
C5—C4—S1—C1174.74 (15)N3—C8—C9—C100.2 (2)
S1B—C1B—C2B—C3B4 (2)C7—C8—C9—C10179.31 (15)
C1B—C2B—C3B—C4B3 (2)C8—C9—C10—C110.4 (2)
C2B—C3B—C4B—C5176.8 (10)C9—C10—C11—C120.6 (2)
C2B—C3B—C4B—S1B0.5 (19)C10—C11—C12—N30.7 (3)
C3B—C4B—S1B—C1B1.5 (16)O1—C6—N1—N20.5 (2)
C5—C4B—S1B—C1B178.7 (8)C5—C6—N1—N2179.18 (13)
C2B—C1B—S1B—C4B3.1 (18)C8—C7—N2—N1179.54 (13)
C3B—C4B—C5—C684.9 (10)C6—N1—N2—C7177.90 (14)
S1B—C4B—C5—C692.4 (7)C11—C12—N3—C80.5 (3)
C3—C4—C5—C693.8 (6)C9—C8—N3—C120.2 (2)
S1—C4—C5—C681.44 (16)C7—C8—N3—C12179.39 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.88 (2)2.00 (2)2.8628 (18)164.9 (18)
C3—H3···N1ii0.952.783.718 (7)172
C5—H5B···O1i0.992.643.307 (2)125
C7—H7···S1Bi0.952.653.534 (16)155
C12—H12···S1iii0.952.983.6624 (19)129
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+3/2, z1/2; (iii) x+1, y+2, z+1.
Hirshfeld fingerprint contact percentages for (I)–(IV) top
Contact type(I)(II)(III)(IV)a
H···H30.132.836.534.5
C···H/H···C15.123.328.222.6
O···H/H···O13.112.810.411.2
N···H/H···N13.712.211.513.8
S···H/H···S12.17.05.810.7
C···C6.24.51.81.2
C···O/O···C1.30.80.71.0
O···O0.00.00.00.0
Note: (a) Major disorder component.
 

Acknowledgements

We thank the EPSRC National Crystallography Service (University of Southampton) for the X-ray data collections.

References

First citationAbbas, S., Imtiaz-ud-din, Mehmood, M., Rauf, M. K., Azam, S. S., Ihsan-ul Haq, Tahir, M. N. & Parvaiz, N. (2021). J. Mol. Struct. 1230 article No. 129870.  Google Scholar
First citationCardoso, L. N. F., Bispo, M. L. F., Kaiser, C. R., Wardell, J. L., Wardell, S. M. S. V., Lourenço, M. C. S., Bezerra, F. A. F., Soares, R. P. P., Rocha, M. N. & de Souza, M. V. N. (2014). Arch. Pharm. Chem. Life Sci. 347, 432–448.  Web of Science CSD CrossRef CAS Google Scholar
First citationCardoso, L. N. F., Nogueira, T. C. M., Kaiser, C. R., Wardell, J. L., Wardell, S. M. S. V. & de Souza, M. V. N. (2016a). Mediterr. J. Chem. 5, 356–366.  CrossRef CAS Google Scholar
First citationCardoso, L. N. F., Nogueira, T. C. M., Rodrigues, F. A. R., Oliveira, A. C. A., Luciano, S., Pessoa, C. & de Souza, M. V. N. (2017). Med. Chem. Res. 26, 1605–1608.  Web of Science CrossRef CAS Google Scholar
First citationCardoso, L. N. F., Nogueira, T. C. M., Wardell, J. L., Wardell, S. M. S. V., Souza, M. V. N. de, Jotani, M. M. & Tiekink, E. R. T. (2016c). Acta Cryst. E72, 1025–1031.  CSD CrossRef IUCr Journals Google Scholar
First citationCardoso, L. N. F., Noguiera, T. C. M., Kaiser, C. R., Wardell, J. L., Wardell, S. M. S. V. & de Souza, M. V. N. (2016b). Z. Kristallogr. 231, 167–178.  Web of Science CSD CrossRef CAS Google Scholar
First citationDijken, D. J. van, Kovaříček, P., Ihrig, S. P. & Hecht, S. (2015). J. Am. Chem. Soc. 137, 14982–14991.  Web of Science PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGholivand, K., Farshadfer, K., Roe, M., Gholami, A. & Esrafili, M. D. (2016). CrystEngComm, 18, 2873–2884.  Web of Science CSD CrossRef CAS Google Scholar
First citationGhosh, S., Chopra, P. & Wategaonkar, S. (2020). Phys. Chem. Chem. Phys. 22, 17482–17493.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLima, P. C., Lima, L. M., da Silva, K. C. M., Léda, P. H. O., de Miranda, A. L. P., Fraga, C. A. M. & Barreiro, E. J. (2000). Eur. J. Med. Chem. 35, 187–203.  Web of Science CrossRef PubMed CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (2012). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia, Nedlands, Western Australia; https://hirshfeldsurface.net.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds