research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal growth, structure elucidation and CHARDI/BVS investigations of β-KCoFe(PO4)2

crossmark logo

aLaboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Science, Mohammed V University in Rabat, Avenue Ibn Batouta, BP 1014, Rabat, Morocco, and bLaboratoire de Chimie des Matériaux Inorganiques, Faculté des Sciences, Département de Chimie, Université des Sciences et Techniques de Masuku, BP 943, Franceville, Gabon
*Correspondence e-mail: bouraima_adam@yahoo.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 2 May 2022; accepted 23 June 2022; online 28 June 2022)

Single crystals of β-KCoFe(PO4)2, potassium cobalt(II) iron(III) bis­(ortho­phosphate), were grown from the melt under atmospheric conditions. This phosphate crystallizes isotypically with KZnFe(PO4)2 in space group C2/c, adopting a zeolite-ABW type of structure. The structure of the present phosphate is distinguished by an occupational disorder of the two transition-metal sites with ratios Fe:Co of 0.5725:0.4275 for the first and 0.4275:0.5725 for the second site. In the crystal structure, PO4 and (Co,Fe)O4 tetra­hedra are linked through vertices to form elliptical rings with the sequence DDDDUUUU of up (U) and down (D) pointing vertices. Each eight-membered ring is surrounded by four other rings of the same type, delimiting inter­stices with rectangular shape. This arrangement leads to the formation of [(Co/Fe)(PO4)] sheets parallel to (001). Stacking of the sheets into a three-dimensional framework results in the formation of two types of channels. The first one is occupied by potassium cations, whereas the second one remains vacant. Calculations of bond-valence sums and charge distribution were used to confirm the structure model.

1. Chemical context

Transition-metal (TM) phosphates have been widely studied as potential candidates for various applications such as catal­ysis (Bautista et al., 2007[Bautista, F. M., Campelo, J. M., Luna, D., Marinas, J. M., Quirós, R. A. & Romero, A. A. (2007). Appl. Catal. Environ. 70, 611-620.]), ion exchange (Szirtes et al., 2007[Szirtes, L., Riess, L., Megyeri, J. & Kuzmann, E. (2007). Cent. Eur. J. Chem. 5, 516-535.]), electrochemistry (Trad et al., 2010[Trad, K., Carlier, D., Croguennec, L., Wattiaux, A., Ben Amara, M. & Delmas, C. (2010). Chem. Mater. 22, 5554-5562.]) or as magnetic materials (Ofer et al., 2012[Ofer, O., Sugiyama, J., Brewer, J. H., Månsson, M., Prša, K., Ansaldo, E. J., Kobayashi, G. & Kanno, R. (2012). Phys. Procedia, 30, 160-163.]). In this context, zinc phosphates are of inter­est because the Zn2+ cation with its d10 electronic configuration is susceptible to strong polarization and thus can be used to design new non-linear optical (NLO) materials (Shen et al., 2016[Shen, Y., Zhao, S., Zhao, B., Ji, C., Li, L., Sun, Z., Hong, M. & Luo, J. (2016). Inorg. Chem. 55, 11626-11629.]). In the family of transition-metal phosphate compounds, the anionic network is formed from PO4 tetra­hedra bonded to different types of coordination polyhedra of the form [TMOn] (n = 4, 5 and 6), leading to a wide variety of crystal structure types such as NaZnAl(PO4)2 (Yakubovich et al., 2019[Yakubovich, O., Kiriukhina, G., Volkov, A. & Dimitrova, O. (2019). Acta Cryst. C75, 514-522.]). The structural diversity is mainly associated with the ability of TM cations to adopt different oxidation states with various types of coordination polyhedra (Moore & Ito, 1979[Moore, P. B. & Ito, J. (1979). Miner. Mag. 43, 227-235.]; Hatert et al., 2004[Hatert, F., Long, G. J., Hautot, D., Fransolet, A.-M., Delwiche, J., Hubin-Franskin, M. J. & Grandjean, F. (2004). Phys. Chem. Miner. 31, 487-506.]).

It is in this context that our research team was involved with investigations of new phosphates with AI, MII and MIII cations where A is an alkali metal, and MII and MIII are bivalent and trivalent cations, respectively. For example, Na2Co2Fe(PO4)3 (Bouraima et al., 2015[Bouraima, A., Assani, A., Saadi, M., Makani, T. & El Ammari, L. (2015). Acta Cryst. E71, 558-560.]) and NaCuIn(PO4)2 (Benhsina et al., 2020[Benhsina, E., Khmiyas, J., Ouaatta, S., Assani, A., Saadi, M. & El Ammari, L. (2020). Acta Cryst. E76, 366-369.]) are among the recently studied compounds. The present work is devoted to synthesis and crystal structure analysis of β-KCoFe(PO4)2, a new compound in the family of transition-metal phosphates.

2. Structural commentary

The title compound crystallizes isotypically with KZnFe(PO4)2 (Badri et al., 2015[Badri, A., Hidouri, M., López, M. L., Veiga, M. L., Pico, C., Darriet, J. & Ben Amara, M. (2015). J. Struct. Chem. 56, 714-722.]). The principal building units of β-KCoFe(PO4)2 are shown in Fig. 1[link], revealing that three types of more or less distorted tetra­hedra build up the framework structure. The two TM sites are characterized by partial disorder (see Refinement) with (Fe/Co)1—O distances varying between 1.877 (2) and 1.900 (2) Å and (Co/Fe)2—O distances between 1.881 (2) and 1.927 (2) Å. The two PO4 tetra­hedra are more regular with the P—O bonds lengths between 1.5172 (19) and 1.5306 (19) Å for P1O4 and 1.509 (2) and 1.533 (2) Å for P2O4.

[Figure 1]
Figure 1
The principal building units in the crystal structure of β-KCoFe(PO4)2. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) x, y, z + 1; (ii) x, −y, z + [{1\over 2}]; (iii) −x + 1, y, −z + [{1\over 2}]; (iv) −x, y, −z + [{1\over 2}]; (v) −x + [{1\over 2}], −y + [{1\over 2}], −z; (vi) x, −y, z − [{1\over 2}]; (vii) −x + [{1\over 2}], −y + [{1\over 2}], −z + 1; (viii) −x + [{1\over 2}], y + [{1\over 2}], −z + [{1\over 2}].]

The three different types of tetra­hedra are linked through vertices to form ellipse-shaped rings with the sequence DDDDUUUU of up (U) and down (D) pointing vertices, as shown in Fig. 2[link]. Each eight-membered ring is surrounded by four other rings of the same type, delimiting two inter­stices with rectangular shape constituted by two PO4 and two (Fe/Co)1O4 tetra­hedra or two PO4 and two (Co/Fe)2O4 tetra­hedra. This assembly leads to the formation of [(Co/Fe)(PO4)] sheets extending parallel to (001) at z = 0, ½. Stacking of these sheets along [001] leads to the formation of a three-dimensional framework structure with two types of channels. The first one is occupied by potassium cations, whereas the second one remains vacant, as shown in Fig. 3[link]. The K+ cation is surrounded by nine oxygen atoms with bond lengths between 2.694 (2) and 3.172 (2) Å.

[Figure 2]
Figure 2
(a) A (001) layer at z ≃ 0 and (b) at z ≃ 0.5, resulting from vertex-sharing between TMO4 and PO4 tetra­hedra. Rings formed by eight corner-sharing tetra­hedra according to the sequence DDDDUUUU are shown on the left.
[Figure 3]
Figure 3
Perspective view of the crystal structure of β-KCoFe(PO4)2 approximately along [010], showing the channels in which the K+ cations are located.

Bond-valence sum (BVS) calculations (Brown, 1977[Brown, I. D. (1977). Acta Cryst. B33, 1305-1310.],1978[Brown, I. D. (1978). Chem. Soc. Rev. 7, 359-376.]; Brown & Altermatt, 1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]) and charge distribution (CHARDI) (Hoppe et al., 1989[Hoppe, R., Voigt, S., Glaum, H., Kissel, J., Müller, H. P. & Bernet, K. (1989). J. Less-Common Met. 156, 105-122.]) were used to confirm the structure model of β-KCoFe(PO4)2. BVS and CHARDI computations were carried out with EXPO2014 (Altomare et al., 2013[Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N. & Falcicchio, A. (2013). J. Appl. Cryst. 46, 1231-1235.]) and CHARDI2015 (Nespolo & Guillot, 2016[Nespolo, M. & Guillot, B. (2016). J. Appl. Cryst. 49, 317-321.]), respectively. Table 1[link] compiles the valences V(i) of cations determined with the BVS approach, as well as their corres­ponding charges Q(i) calculated with the CHARDI concept. The data reveal that the values Q(i) and V(i) are all very close to the corresponding charges q(i)×sof(i) (formal oxidation numbers q(i) weighted by site occupation factors (sof(i)). For all cations, the inter­nal criterion q(i)/Q(i) is very close to 1, and the mean absolute percentage deviation (MAPD) that evaluates the agreement between the q(i) and Q(i) charges is 0.3%, confirming the validity of the structural model (Eon & Nespolo, 2015[Eon, J.-G. & Nespolo, M. (2015). Acta Cryst. B71, 34-47.]). The global instability index (GII) was also used to check the plausibility of the crystal-structure model (Salinas-Sanchez et al., 1992[Salinas-Sanchez, A., Garcia-Muñoz, J. L., Rodriguez-Carvajal, J., Saez-Puche, R. & Martinez, J. L. (1992). J. Solid State Chem. 100, 201-211.]). The GII index evaluates the deviation of BVS parameters from the theoretical valence V(i) averaged across all the constitutive atoms of the asymmetric unit. In an unstrained structure, GII is less than 0.1 and reaches 0.2 for those with lattice-induced deformations (Adams et al., 2004[Adams, S., Moretzki, O. & Canadell, E. (2004). Solid State Ionics, 168, 281-290.]). For the current crystal structure GII amounts to 0.1, indicating its stability.

Table 1
CHARDI and BVS analysis for the cations in the title compound

q(i) = formal oxidation number; sof(i) = site occupation factor; CN(i) = classical coordination number; Q(i) = calculated charge; V(i) = calculated valence; ECoN(i) = effective coordination number.

Cation q(i)×sof(i) CN(i) ECoN(i) V(i) Q(i) q(i)/Q(i)
(Fe/Co)1 2.57 4 4.00 2.48 2.57 1.00
(Fe/Co)2 2.43 4 3.99 2.27 2.43 1.00
K1 1.00 9 8.71 0.94 0.99 1.00
P1 5.00 4 4.00 5.14 5.00 1.00
P2 5.00 4 3.99 5.15 5.01 1.01

3. Database survey

The phosphate KCoFe(PO4)2 crystallizes in two polymorphs in the same crystal system but with different unit-cell parameters and space groups. The α-form of KCoFe(PO4)2 reported by Badri et al. (2019[Badri, A., Jabli, M., López, M. L. & Ben Amara, M. (2019). Inorg. Chem. Commun. 110, 107609.]) crystallizes in space group P21/c with unit-cell parameters a = 5.148 (1), b = 14.403 (2), c = 9.256 (1) Å, β = 104.87 (2)°. The title compound crystallizes in space group C2/c. Whereas the environments around the two TM sites are tetra­hedral in the title compound, an octa­hedral coordination is found for one site (Co) in the α-form. The crystal structure of β-KCoFe(PO4)2 is isotypic with that of KZnFePO4)2 (Badri et al., 2014[Badri, A., Hidouri, M., Wattiaux, A., López, M. L., Veiga, M. L. & Ben Amara, M. (2014). Mater. Res. Bull. 55, 61-66.]), while that of α-KCoFe(PO4)2 is isotypic with those of KNiFe(PO4)2 and KMgFe(PO4)2 (Badri et al., 2015[Badri, A., Hidouri, M., López, M. L., Veiga, M. L., Pico, C., Darriet, J. & Ben Amara, M. (2015). J. Struct. Chem. 56, 714-722.]).

4. Synthesis and crystallization

The phosphate β-KCoFe(PO4)2 was synthesized by mixing cobalt nitrate (Co(NO3)2·6H2O), iron nitrate [Fe(NO3)3·9H2O] ortho­phospho­ric acid (H3PO4) and potassium nitrate (KNO3) in molar ratios of 1:1:1:2. The mixture was placed in a small beaker containing distilled water and homogenized for 24 h. After evaporation to dryness, the reaction mixture underwent heat treatments at 573 and 773 K before being brought to fusion for crystal growth at 1223 K, followed by slow cooling. Crystals of purple color and of sufficient size for the analysis by X-ray diffraction were obtained from the final product.

A Quattro ESEM scanning electron microscope (SEM) equipped with an energy dispersive X-ray spectrometer (EDS), operating under 20 kV accelerating voltage, was used for chemical analysis and photographs of the obtained crystals (Fig. 4[link]). Determined mass percentage (+/-3%), calculated mass percentage: K (10.7, 11.4) Fe (12.4, 16.2), Co (13.4, 17.1), P (20.2, 18.0), O (43.3, 37.3)

[Figure 4]
Figure 4
(a) EDS spectrum and (b) SEM micrographs of the title compound.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. During the refinement, several models were tested, with the best result for a model with occupational disorder of the two TM sites. Since the Co:Fe ratio determined from EDS measurements is almost 1:1, this ratio was constrained for the refinement of the individual site occupation, also taking into account full occupancy of both TM sites. For the TM1 site a ratio of Fe:Co = 0.5725:0.4275 was obtained, for the TM2 site a ratio of Co:Fe = 0.5725/0.4275. The maximum and minimum remaining electron density are located at 0.69 Å and 0.31 Å, respectively, from O8.

Table 2
Experimental details

Crystal data
Chemical formula KCoFe(PO4)2
Mr 343.82
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c (Å) 13.5860 (6), 13.2320 (6), 8.7316 (4)
β (°) 100.335 (2)
V3) 1544.21 (12)
Z 8
Radiation type Mo Kα
μ (mm−1) 4.99
Crystal size (mm) 0.36 × 0.27 × 0.15
 
Data collection
Diffractometer Bruker D8 VENTURE Super DUO
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.391, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 30042, 3574, 2633
Rint 0.068
(sin θ/λ)max−1) 0.820
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.088, 1.04
No. of reflections 3574
No. of parameters 118
Δρmax, Δρmin (e Å−3) 0.98, −0.91
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/7 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014/7 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Potassium cobalt(II) iron(III) bis(orthophosphate) top
Crystal data top
KCoFe(PO4)2F(000) = 1328
Mr = 343.82Dx = 2.958 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 13.5860 (6) ÅCell parameters from 3574 reflections
b = 13.2320 (6) Åθ = 2.2–35.6°
c = 8.7316 (4) ŵ = 4.99 mm1
β = 100.335 (2)°T = 296 K
V = 1544.21 (12) Å3Parallelepiped, purple
Z = 80.36 × 0.27 × 0.15 mm
Data collection top
Bruker D8 VENTURE Super DUO
diffractometer
3574 independent reflections
Radiation source: INCOATEC IµS micro-focus source2633 reflections with I > 2σ(I)
HELIOS mirror optics monochromatorRint = 0.068
Detector resolution: 10.4167 pixels mm-1θmax = 35.6°, θmin = 2.2°
φ and ω scansh = 1322
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 2121
Tmin = 0.391, Tmax = 0.747l = 1414
30042 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.036Secondary atom site location: difference Fourier map
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0363P)2 + 2.2954P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3574 reflectionsΔρmax = 0.98 e Å3
118 parametersΔρmin = 0.91 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.37263 (3)0.06558 (3)0.61452 (4)0.01728 (8)0.5725
Co10.37263 (3)0.06558 (3)0.61452 (4)0.01728 (8)0.4275
Co20.07555 (3)0.11785 (3)0.04344 (4)0.01854 (8)0.5725
Fe20.07555 (3)0.11785 (3)0.04344 (4)0.01854 (8)0.4275
P10.42702 (5)0.14198 (5)0.01872 (7)0.01656 (12)
P20.14880 (5)0.06783 (5)0.41434 (7)0.01769 (12)
K10.31255 (6)0.25345 (6)0.27514 (8)0.03896 (17)
O10.39529 (17)0.07417 (15)0.1059 (2)0.0288 (4)
O20.54020 (16)0.13970 (16)0.0087 (2)0.0313 (4)
O30.39339 (19)0.24769 (14)0.0152 (3)0.0338 (5)
O40.37488 (19)0.1089 (2)0.1801 (2)0.0411 (6)
O50.14870 (17)0.04718 (15)0.4068 (2)0.0312 (4)
O60.1372 (2)0.11411 (18)0.2542 (2)0.0431 (6)
O70.24615 (14)0.11037 (15)0.5076 (2)0.0262 (4)
O80.06510 (17)0.1025 (2)0.4989 (3)0.0475 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01435 (16)0.02100 (16)0.01659 (14)0.00191 (12)0.00307 (11)0.00249 (11)
Co10.01435 (16)0.02100 (16)0.01659 (14)0.00191 (12)0.00307 (11)0.00249 (11)
Co20.01525 (16)0.02218 (16)0.01902 (15)0.00088 (12)0.00533 (11)0.00266 (11)
Fe20.01525 (16)0.02218 (16)0.01902 (15)0.00088 (12)0.00533 (11)0.00266 (11)
P10.0185 (3)0.0157 (2)0.0169 (2)0.0005 (2)0.0071 (2)0.00144 (19)
P20.0128 (3)0.0229 (3)0.0171 (2)0.0018 (2)0.0021 (2)0.0034 (2)
K10.0399 (4)0.0476 (4)0.0342 (3)0.0028 (3)0.0197 (3)0.0083 (3)
O10.0370 (12)0.0246 (9)0.0273 (9)0.0062 (8)0.0130 (8)0.0033 (7)
O20.0196 (10)0.0354 (11)0.0416 (11)0.0015 (8)0.0129 (8)0.0039 (9)
O30.0478 (14)0.0212 (9)0.0388 (11)0.0109 (8)0.0254 (10)0.0033 (8)
O40.0407 (14)0.0625 (16)0.0201 (9)0.0067 (11)0.0057 (9)0.0133 (9)
O50.0352 (12)0.0231 (9)0.0373 (11)0.0083 (8)0.0116 (9)0.0011 (8)
O60.0560 (16)0.0449 (13)0.0247 (10)0.0090 (11)0.0027 (10)0.0135 (9)
O70.0160 (9)0.0289 (10)0.0314 (10)0.0003 (7)0.0019 (7)0.0038 (7)
O80.0173 (11)0.0795 (19)0.0482 (14)0.0017 (11)0.0124 (10)0.0163 (13)
Geometric parameters (Å, º) top
Fe1/Co1—O4i1.877 (2)P2—O51.523 (2)
Fe1/Co1—O1ii1.8783 (19)P2—O71.5308 (19)
Fe1/Co1—O71.8972 (19)P2—O81.533 (2)
Fe1/Co1—O2iii1.900 (2)K1—O32.694 (2)
Co2/Fe2—O61.881 (2)K1—O7vii2.832 (2)
Co2/Fe2—O8iv1.891 (2)K1—O62.991 (3)
Co2/Fe2—O3v1.9191 (19)K1—O2iii2.994 (2)
Co2/Fe2—O5vi1.927 (2)K1—O8vii3.019 (3)
P1—O31.5172 (19)K1—O73.029 (2)
P1—O41.524 (2)K1—O13.110 (2)
P1—O21.525 (2)K1—O4v3.120 (3)
P1—O11.5306 (19)K1—O5viii3.172 (2)
P2—O61.509 (2)
O4i—Fe1/Co1—O1ii111.34 (10)O7vii—K1—O778.19 (6)
O4i—Fe1/Co1—O7103.45 (10)O6—K1—O747.65 (5)
O1ii—Fe1/Co1—O7115.36 (9)O2iii—K1—O758.15 (5)
O4i—Fe1/Co1—O2iii113.73 (10)O8vii—K1—O798.73 (7)
O1ii—Fe1/Co1—O2iii111.57 (9)O3—K1—O148.80 (5)
O7—Fe1/Co1—O2iii100.83 (9)O7vii—K1—O1166.58 (6)
O6—Co2/Fe2—O8iv116.47 (11)O6—K1—O181.51 (7)
O6—Co2/Fe2—O3v101.81 (11)O2iii—K1—O171.69 (6)
O8iv—Co2/Fe2—O3v108.09 (12)O8vii—K1—O1126.06 (7)
O6—Co2/Fe2—O5vi113.85 (11)O7—K1—O191.04 (5)
O8iv—Co2/Fe2—O5vi116.25 (11)O3—K1—O4v103.24 (7)
O3v—Co2/Fe2—O5vi97.02 (9)O7vii—K1—O4v59.48 (5)
O3—P1—O4109.84 (14)O6—K1—O4v74.98 (7)
O3—P1—O2110.05 (13)O2iii—K1—O4v152.69 (6)
O4—P1—O2110.14 (13)O8vii—K1—O4v97.61 (7)
O3—P1—O1105.59 (12)O7—K1—O4v102.49 (6)
O4—P1—O1110.20 (13)O1—K1—O4v131.79 (6)
O2—P1—O1110.93 (12)O3—K1—O5viii58.15 (5)
O6—P2—O5111.47 (13)O7vii—K1—O5viii84.15 (6)
O6—P2—O7106.28 (13)O6—K1—O5viii133.14 (6)
O5—P2—O7112.60 (12)O2iii—K1—O5viii127.49 (6)
O6—P2—O8111.23 (16)O8vii—K1—O5viii71.38 (7)
O5—P2—O8108.96 (14)O7—K1—O5viii162.10 (6)
O7—P2—O8106.18 (13)O1—K1—O5viii106.85 (5)
O3—K1—O7vii142.04 (6)O4v—K1—O5viii65.29 (6)
O3—K1—O6111.80 (7)O3—K1—O3v77.20 (8)
O7vii—K1—O696.69 (7)O7vii—K1—O3v102.00 (5)
O3—K1—O2iii103.65 (7)O6—K1—O3v54.25 (5)
O7vii—K1—O2iii95.61 (6)O2iii—K1—O3v149.32 (6)
O6—K1—O2iii99.16 (6)O8vii—K1—O3v140.19 (7)
O3—K1—O8vii107.98 (8)O7—K1—O3v101.04 (5)
O7vii—K1—O8vii49.37 (6)O1—K1—O3v87.81 (5)
O6—K1—O8vii140.19 (7)O4v—K1—O3v44.42 (5)
O2iii—K1—O8vii69.51 (7)O5viii—K1—O3v79.62 (6)
O3—K1—O7139.67 (6)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z+1/2; (iii) x+1, y, z+1/2; (iv) x, y, z+1/2; (v) x+1/2, y+1/2, z; (vi) x, y, z1/2; (vii) x+1/2, y+1/2, z+1; (viii) x+1/2, y+1/2, z+1/2.
CHARDI and BVS analysis for the cations in the title compound top
q(i) = formal oxidation number; sof(i) = site occupation factor; CN(i) = classical coordination number; Q(i) = calculated charge; V(i) = calculated valence; ECoN(i) = effective coordination number.
Cationq(i)×sof(i)CN(i)ECoN(i)V(i)Q(i)q(i)/Q(i)
(Fe/Co)12.5744.002.482.571.00
(Fe/Co)22.4343.992.272.431.00
K11.0098.710.940.991.00
P15.0044.005.145.001.00
P25.0043.995.155.011.01
 

Acknowledgements

The authors thank the Faculty of Science, Mohammed V University in Rabat, Morocco for the X-ray measurements and the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the SEM and EDX analysis.

References

First citationAdams, S., Moretzki, O. & Canadell, E. (2004). Solid State Ionics, 168, 281–290.  Web of Science CrossRef ICSD CAS Google Scholar
First citationAltomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N. & Falcicchio, A. (2013). J. Appl. Cryst. 46, 1231–1235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBadri, A., Hidouri, M., López, M. L., Veiga, M. L., Pico, C., Darriet, J. & Ben Amara, M. (2015). J. Struct. Chem. 56, 714–722.  Web of Science CrossRef ICSD CAS Google Scholar
First citationBadri, A., Hidouri, M., Wattiaux, A., López, M. L., Veiga, M. L. & Ben Amara, M. (2014). Mater. Res. Bull. 55, 61–66.  Web of Science CrossRef ICSD CAS Google Scholar
First citationBadri, A., Jabli, M., López, M. L. & Ben Amara, M. (2019). Inorg. Chem. Commun. 110, 107609.  CrossRef ICSD Google Scholar
First citationBautista, F. M., Campelo, J. M., Luna, D., Marinas, J. M., Quirós, R. A. & Romero, A. A. (2007). Appl. Catal. Environ. 70, 611–620.  CrossRef CAS Google Scholar
First citationBenhsina, E., Khmiyas, J., Ouaatta, S., Assani, A., Saadi, M. & El Ammari, L. (2020). Acta Cryst. E76, 366–369.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationBouraima, A., Assani, A., Saadi, M., Makani, T. & El Ammari, L. (2015). Acta Cryst. E71, 558–560.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, I. D. (1977). Acta Cryst. B33, 1305–1310.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBrown, I. D. (1978). Chem. Soc. Rev. 7, 359–376.  CrossRef CAS Web of Science Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEon, J.-G. & Nespolo, M. (2015). Acta Cryst. B71, 34–47.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHatert, F., Long, G. J., Hautot, D., Fransolet, A.-M., Delwiche, J., Hubin-Franskin, M. J. & Grandjean, F. (2004). Phys. Chem. Miner. 31, 487–506.  Web of Science CrossRef ICSD CAS Google Scholar
First citationHoppe, R., Voigt, S., Glaum, H., Kissel, J., Müller, H. P. & Bernet, K. (1989). J. Less-Common Met. 156, 105–122.  CrossRef CAS Web of Science Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMoore, P. B. & Ito, J. (1979). Miner. Mag. 43, 227–235.  CrossRef CAS Web of Science Google Scholar
First citationNespolo, M. & Guillot, B. (2016). J. Appl. Cryst. 49, 317–321.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOfer, O., Sugiyama, J., Brewer, J. H., Månsson, M., Prša, K., Ansaldo, E. J., Kobayashi, G. & Kanno, R. (2012). Phys. Procedia, 30, 160–163.  CrossRef CAS Google Scholar
First citationSalinas-Sanchez, A., Garcia-Muñoz, J. L., Rodriguez-Carvajal, J., Saez-Puche, R. & Martinez, J. L. (1992). J. Solid State Chem. 100, 201–211.  CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShen, Y., Zhao, S., Zhao, B., Ji, C., Li, L., Sun, Z., Hong, M. & Luo, J. (2016). Inorg. Chem. 55, 11626–11629.  CrossRef ICSD CAS PubMed Google Scholar
First citationSzirtes, L., Riess, L., Megyeri, J. & Kuzmann, E. (2007). Cent. Eur. J. Chem. 5, 516–535.  CAS Google Scholar
First citationTrad, K., Carlier, D., Croguennec, L., Wattiaux, A., Ben Amara, M. & Delmas, C. (2010). Chem. Mater. 22, 5554–5562.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYakubovich, O., Kiriukhina, G., Volkov, A. & Dimitrova, O. (2019). Acta Cryst. C75, 514–522.  Web of Science CrossRef ICSD IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds