research communications
E)-2-(4-bromophenyl)-1-[2,2-dibromo-1-(4-nitrophenyl)ethenyl]diazene
and Hirshfeld surface analysis of (aDepartment of Physics, Faculty of Science, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Physics, Faculty of Science, Eskisehir Technical University, Yunus Emre Campus 26470 Eskisehir, Turkey, cOrganic Chemistry Department, Baku State University, Z. Khalilov str. 23, AZ 1148 Baku, Azerbaijan, dAzerbaijan State University of Economics (UNEC), Istiglaliyyat str., Baku, Azerbaijan, ePeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow, 117198, Russian Federation, fN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, and gDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np
The molecule of the title compound, C14H8Br3N3O2, consists of three almost planar groups: the central dibromoethenyldiazene fragment and two attached aromatic rings. The mean planes of these rings form dihedral angles with the plane of the central fragment of 26.35 (15) and 72.57 (14)° for bromine- and nitro-substituted rings, respectively. In the crystal, C—H⋯Br interactions connect molecules, generating zigzag C(8) chains along the [100] direction. These chains are linked by C—Br⋯π interactions into layers parallel to (001). van der Waals interactions between the layers aid in the cohesion of the crystal packing. The most substantial contributions to crystal packing, according to a Hirshfeld surface analysis, are from Br⋯H/H⋯Br (20.9%), C⋯H/H⋯C (15.2%), O⋯H/H⋯O (12.6%) and H⋯H (11.7%) contacts.
Keywords: crystal structure; non-covalent interactions; C—H⋯Br interactions; C(8) chains; Hirshfeld surface analysis.
CCDC reference: 2178832
1. Chemical context
Azo dyes constitute the largest production volume (ca 70%) of the dye industry today, and their relative importance may increase further in the future (Lipskikh et al., 2018). They play a crucial role in the printing market, the design of functional materials attributed to smart hydrogen bonding, photo-triggered structural switching, self-assembled layers, ionophores, liquid crystals, semiconductors, indicators, spectrophotometric reagents for determination of metal ions, photoluminescent materials, catalysts, antimicrobial agents, optical recording media, spin-coating films, etc (Zollinger, 1994, 1995; Gurbanov et al., 2020a,b; Mahmudov et al., 2010, 2013). Depending on the attached substituents, the functional properties of and their metal complexes can be improved/controlled (Ma et al., 2020, 2021). Both E/Z and azo–hydrazo properties of azo dyes are key phenomena in the synthesis and development of new functional materials (Shixaliyev et al., 2018, 2019). The attachment of non-covalent bond acceptor or donor centres to the azo dyes can be used as a synthetic strategy for the improvement of the functional properties of their metal complexes (Mahmudov et al., 2020, 2021, 2022). Thus, we have attached bromine atoms and a nitro group together with aryl rings to the –N=N– linkage leading to a new azo compound, (E)-2-(4-bromophenyl)-1-[2,2-dibromo-1-(4-nitrophenyl)ethenyl]diazene, which can provide intermolecular halogen and hydrogen bonds as well as π-interactions.
2. Structural commentary
The molecule of the title compound (Fig. 1) consists of three almost planar groups: the central dibromoethenyldiazene fragment [largest deviation from the l.s. plane is 0.039 (3) Å for N2] and two attached aromatic rings. The mean planes of these rings form dihedral angles with the plane of the central fragment of 26.35 (15) and 72.57 (14)° for the bromine- and nitro-substituted rings, respectively. The nitro group is twisted by 8.1 (2)° with respect to the C3–C8 aromatic ring. The C2—N2 bond distance of 1.406 (4) Å indicates π-conjugation between ethene and diazo groups. All other bond lengths and angles in the title compound are similar to those reported for the related discussed in the Database survey section.
3. Supramolecular features and Hirshfeld surface analysis
In the crystal, C—H⋯Br interactions connect the molecules, generating zigzag C(8) chains (Bernstein et al., 1995) along the [100] direction (Table 1, Figs. 2 and 3). These chains are linked by C—Br⋯π interactions [C1—Br1⋯Cg1ii; C1—Br1 = 1.864 (3) Å, Br1⋯Cg1ii = 3.5803 (16) Å, C1⋯Cg1ii = 4.722 (3) Å, C1—Br1⋯Cg1ii = 116.77 (9)°; Cg1 is the centroid of the C3–C8 ring; symmetry code (ii): x + , −y + , z] into layers parallel to (001) (Fig. 4). van der Waals interactions between the layers help to keep the crystal packing together.
Crystal Explorer 17.5 (Turner et al., 2017) was used to perform a Hirshfeld surface analysis and to generate the corresponding two-dimensional fingerprint plots, with a standard resolution of the three-dimensional dnorm surfaces plotted over a fixed color scale of −0.1401 (red) to 1.1158 (blue) a.u. (Fig. 5). The red patches represent short contacts and negative dnorm values on the surface, which correspond to the C—H⋯Br hydrogen bonds discussed above (Table 1). The C10—H10⋯Br1 interactions, which are important for molecular packing of the title compound, are responsible for the red patch that appears around Br1.
The overall two-dimensional fingerprint plot for the title compound and those delineated into Br⋯H / H⋯Br (20.9%), C⋯H/H⋯C (15.2%), O⋯H/H⋯O (12.6%) and H⋯H (11.7%) contacts are shown in Fig. 6, while numerical details for short intermolecular contacts are given in Table 2. Br⋯C/C⋯Br (8.8%), Br⋯Br (6.7%), N⋯H/H⋯N (6.5%), Br⋯O/O⋯Br (5.6%), O⋯C/C⋯O (4.1%), Br⋯N/N⋯Br (3.9%), C⋯C (2.5%), O⋯N/N⋯O (1.3%) and N⋯C/C⋯N (0.1%) contacts have little directional influence on the molecular packing.
|
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016) for similar structures with the (E)-1-(2,2-dibromo-1-phenylethenyl)-2-phenyldiazene fragment showed that the nine closest are those of CSD refcodes TAZDIL [(I); Atioğlu et al., 2022], PAXDOL [(II); Çelikesir et al., 2022], GUPHIL [(III); Özkaraca et al., 2020b], HONBUK [(IV); Akkurt et al., 2019], HONBOE [(V); Akkurt et al., 2019], HODQAV [(VI); Shikhaliyev et al., 2019], XIZREG [(VII); Atioğlu et al., 2019], LEQXOX [(VIII); Shikhaliyev et al., 2018] and LEQXIR [(IX); Shikhaliyev et al., 2018].
In (I), the molecules are connected by C—H⋯O and C—H⋯F hydrogen bonds into layers parallel to (011). The crystal packing is consolidated by C—Br⋯π and C—F⋯π contacts, as well as by π–π stacking interactions. In the crystal of (II), the molecules are linked into chains running parallel to [001] by C—H⋯O hydrogen bonds. The crystal packing is consolidated by C—F⋯π contacts and π–π stacking interactions, and short Br⋯O [2.9828 (13) Å] distances are also observed. In the crystal of (III), the molecules are linked into inversion dimers via short halogen–halogen contacts [Cl1⋯Cl1 = 3.3763 (9) Å, C16—Cl1⋯Cl1 = 141.47 (7)°] compared to the van der Waals radius sum of 3.50 Å for two chlorine atoms. No other directional contacts could be identified, and the shortest aromatic ring centroid separation is greater than 5.25 Å. In the crystals of (IV) and (V), the molecules are linked through weak X⋯Cl contacts [X = Cl for (IV) and Br for (V)], C—H⋯Cl and C—Cl⋯π interactions into sheets lying parallel to (001). In the crystal of (VI), the molecules are stacked in columns parallel to [100] via weak C—H⋯Cl hydrogen bonds and face-to-face π–π stacking interactions. The crystal packing is further consolidated by short Cl⋯Cl contacts. In (VII), molecules are linked by C—H⋯O hydrogen bonds into zigzag chains running parallel to [001]. The crystal packing also features C—Cl⋯π, C—F⋯π and N—O⋯π interactions. In (VIII), C—H⋯N and short Cl⋯Cl contacts are observed, and in (IX), C—H⋯N and C—H⋯O hydrogen bonds and short Cl⋯O contacts occur.
5. Synthesis and crystallization
This dye was synthesized according to the reported method (Akkurt et al., 2019; Atioğlu et al., 2019; Maharramov et al., 2018; Özkaraca et al., 2020a,b). A 20 mL screw neck vial was charged with DMSO (10 mL), (E)-1-(4-bromophenyl)-2-(4-nitrobenzylidene)hydrazine (1 mmol), tetramethylethylenediamine (TMEDA; 295 mg, 2.5 mmol), CuCl (2 mg, 0.02 mmol) and CBr4 (4.5 mmol). After 1-3 h (until TLC analysis showed complete consumption of corresponding Schiff base), the reaction mixture was poured into 0.01 M solution of HCl (100 mL, pH = 2–3), and extracted with dichloromethane (3 × 20 mL). The combined organic phase was washed with water (3 × 50 mL), brine (30 mL), dried over anhydrous Na2SO4 and concentrated in vacuo using a rotary evaporator. The residue was purified by on silica gel using appropriate mixtures of hexane and dichloromethane (3/1–1/1). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution. Red solid (58%); m.p. 398 K. Analysis calculated for C14H8Br3N3O2 (M = 489.95): C 34.32, H 1.65, N 8.58; found: C 34.27, H 1.70, N 8.56%. 1H NMR (300 MHz, CDCl3) δ 8.16–7.41 (8H, Ar–H). 13C NMR (75MHz, CDCl3) δ 150.89, 149.62, 148.26, 136.43, 132.25, 127.77, 125.57, 124.53, 123.57, 93.24. ESI–MS: m/z: 490.96 [M + H]+.
6. Refinement
Crystal data, data collection and structure . All H atoms were positioned geometrically and constrained to ride on their parent atoms (C—H = 0.95 Å) with Uiso(H) = 1.2Ueq(C). One reflection (110), affected by the beam stop, was omitted in the final cycles of refinement.
details are summarized in Table 3Supporting information
CCDC reference: 2178832
https://doi.org/10.1107/S205698902200620X/yk2170sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698902200620X/yk2170Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S205698902200620X/yk2170Isup3.cml
Data collection: APEX3 (Bruker, 2018); cell
SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).C14H8Br3N3O2 | Dx = 2.087 Mg m−3 |
Mr = 489.96 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pna21 | Cell parameters from 9976 reflections |
a = 13.8678 (5) Å | θ = 2.9–34.8° |
b = 13.5442 (5) Å | µ = 7.77 mm−1 |
c = 8.3017 (3) Å | T = 100 K |
V = 1559.29 (10) Å3 | Block, red |
Z = 4 | 0.31 × 0.14 × 0.08 mm |
F(000) = 936 |
Bruker D8 QUEST, Photon III detector diffractometer | 7370 independent reflections |
Radiation source: fine-focus sealed X-Ray tube | 5962 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.057 |
Detector resolution: 7.31 pixels mm-1 | θmax = 36.0°, θmin = 2.9° |
φ and ω shutterless scans | h = −22→22 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −22→22 |
Tmin = 0.044, Tmax = 0.110 | l = −13→13 |
75835 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.033 | H-atom parameters constrained |
wR(F2) = 0.085 | w = 1/[σ2(Fo2) + (0.0438P)2 + 0.8309P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.002 |
7370 reflections | Δρmax = 1.41 e Å−3 |
199 parameters | Δρmin = −0.97 e Å−3 |
1 restraint | Absolute structure: Flack parameter determined using 2437 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013). |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.003 (5) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.49964 (2) | 0.72932 (3) | 0.49158 (6) | 0.02765 (8) | |
Br2 | 0.44572 (2) | 0.50470 (2) | 0.51189 (7) | 0.02906 (8) | |
Br3 | −0.10955 (3) | 0.24165 (3) | 0.55241 (7) | 0.03182 (9) | |
O1 | 0.1810 (2) | 1.1045 (2) | 0.3729 (4) | 0.0333 (6) | |
O2 | 0.1662 (3) | 1.1002 (2) | 0.6323 (4) | 0.0326 (6) | |
N1 | 0.18506 (19) | 1.0613 (2) | 0.5020 (5) | 0.0231 (5) | |
N2 | 0.24431 (19) | 0.57755 (19) | 0.5188 (4) | 0.0207 (5) | |
N3 | 0.15599 (19) | 0.5982 (2) | 0.5376 (4) | 0.0228 (6) | |
C1 | 0.4020 (2) | 0.6350 (2) | 0.5012 (6) | 0.0222 (6) | |
C2 | 0.3073 (2) | 0.6586 (2) | 0.5080 (5) | 0.0205 (5) | |
C3 | 0.2727 (2) | 0.7629 (2) | 0.5040 (5) | 0.0196 (5) | |
C4 | 0.2373 (3) | 0.8055 (3) | 0.6449 (5) | 0.0221 (6) | |
H4 | 0.233234 | 0.767615 | 0.741062 | 0.027* | |
C5 | 0.2076 (3) | 0.9043 (3) | 0.6441 (5) | 0.0222 (6) | |
H5 | 0.184039 | 0.934772 | 0.739348 | 0.027* | |
C6 | 0.2136 (2) | 0.9563 (2) | 0.5016 (5) | 0.0212 (5) | |
C7 | 0.2468 (3) | 0.9148 (3) | 0.3596 (5) | 0.0249 (7) | |
H7 | 0.248972 | 0.952162 | 0.262834 | 0.030* | |
C8 | 0.2769 (3) | 0.8171 (3) | 0.3629 (5) | 0.0235 (6) | |
H8 | 0.300598 | 0.787169 | 0.267351 | 0.028* | |
C9 | 0.0971 (2) | 0.5110 (2) | 0.5422 (5) | 0.0208 (6) | |
C10 | 0.0066 (3) | 0.5207 (3) | 0.6113 (5) | 0.0251 (7) | |
H10 | −0.013356 | 0.582330 | 0.654399 | 0.030* | |
C11 | −0.0553 (3) | 0.4391 (3) | 0.6172 (5) | 0.0262 (7) | |
H11 | −0.117165 | 0.444374 | 0.665505 | 0.031* | |
C12 | −0.0249 (3) | 0.3509 (2) | 0.5516 (5) | 0.0243 (6) | |
C13 | 0.0662 (2) | 0.3397 (2) | 0.4837 (5) | 0.0246 (7) | |
H13 | 0.085933 | 0.277960 | 0.440465 | 0.030* | |
C14 | 0.1275 (2) | 0.4203 (2) | 0.4803 (5) | 0.0236 (6) | |
H14 | 0.190380 | 0.413915 | 0.435972 | 0.028* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.01833 (12) | 0.02119 (13) | 0.0434 (2) | −0.00217 (10) | 0.00069 (14) | 0.00037 (16) |
Br2 | 0.02025 (12) | 0.01897 (13) | 0.0480 (2) | 0.00223 (10) | −0.00256 (15) | −0.00061 (14) |
Br3 | 0.02917 (16) | 0.02402 (15) | 0.0423 (2) | −0.00937 (12) | −0.00254 (18) | 0.00189 (17) |
O1 | 0.0460 (17) | 0.0222 (13) | 0.0317 (15) | 0.0060 (12) | 0.0009 (13) | 0.0062 (11) |
O2 | 0.0450 (16) | 0.0217 (13) | 0.0310 (16) | 0.0042 (12) | 0.0006 (13) | −0.0038 (11) |
N1 | 0.0211 (10) | 0.0185 (11) | 0.0296 (15) | 0.0000 (8) | 0.0007 (13) | −0.0001 (12) |
N2 | 0.0179 (10) | 0.0190 (10) | 0.0251 (15) | −0.0007 (8) | −0.0006 (10) | 0.0012 (11) |
N3 | 0.0184 (11) | 0.0192 (11) | 0.0306 (17) | −0.0012 (8) | 0.0016 (10) | 0.0014 (11) |
C1 | 0.0181 (11) | 0.0170 (11) | 0.0315 (16) | 0.0001 (9) | −0.0020 (13) | −0.0003 (13) |
C2 | 0.0182 (11) | 0.0171 (11) | 0.0263 (15) | 0.0002 (9) | −0.0010 (12) | 0.0015 (12) |
C3 | 0.0164 (10) | 0.0167 (11) | 0.0257 (15) | −0.0004 (8) | −0.0012 (13) | 0.0022 (12) |
C4 | 0.0237 (14) | 0.0183 (13) | 0.0243 (16) | 0.0015 (11) | 0.0002 (12) | 0.0010 (12) |
C5 | 0.0215 (14) | 0.0211 (14) | 0.0241 (16) | 0.0024 (11) | 0.0005 (12) | −0.0010 (12) |
C6 | 0.0194 (11) | 0.0166 (11) | 0.0275 (15) | 0.0000 (9) | −0.0004 (13) | −0.0007 (13) |
C7 | 0.0262 (15) | 0.0209 (14) | 0.0276 (18) | 0.0018 (12) | 0.0018 (13) | 0.0031 (12) |
C8 | 0.0238 (14) | 0.0202 (14) | 0.0265 (17) | 0.0003 (11) | 0.0022 (13) | 0.0003 (12) |
C9 | 0.0189 (12) | 0.0167 (11) | 0.0269 (17) | −0.0010 (9) | −0.0007 (11) | 0.0000 (12) |
C10 | 0.0230 (14) | 0.0182 (13) | 0.0342 (19) | 0.0003 (11) | 0.0021 (13) | −0.0015 (13) |
C11 | 0.0203 (13) | 0.0209 (14) | 0.037 (2) | −0.0021 (11) | 0.0034 (13) | −0.0005 (13) |
C12 | 0.0238 (13) | 0.0185 (12) | 0.0305 (17) | −0.0061 (10) | −0.0016 (13) | 0.0016 (14) |
C13 | 0.0246 (13) | 0.0182 (12) | 0.0312 (19) | −0.0007 (10) | 0.0009 (14) | −0.0027 (13) |
C14 | 0.0205 (12) | 0.0208 (13) | 0.0295 (19) | −0.0005 (10) | 0.0035 (13) | −0.0024 (13) |
Br1—C1 | 1.864 (3) | C5—H5 | 0.9500 |
Br2—C1 | 1.868 (3) | C6—C7 | 1.384 (6) |
Br3—C12 | 1.888 (3) | C7—C8 | 1.388 (5) |
O1—N1 | 1.223 (5) | C7—H7 | 0.9500 |
O2—N1 | 1.231 (5) | C8—H8 | 0.9500 |
N1—C6 | 1.477 (4) | C9—C10 | 1.386 (5) |
N2—N3 | 1.266 (4) | C9—C14 | 1.397 (5) |
N2—C2 | 1.406 (4) | C10—C11 | 1.400 (5) |
N3—C9 | 1.437 (4) | C10—H10 | 0.9500 |
C1—C2 | 1.352 (4) | C11—C12 | 1.378 (5) |
C2—C3 | 1.492 (4) | C11—H11 | 0.9500 |
C3—C8 | 1.384 (5) | C12—C13 | 1.392 (5) |
C3—C4 | 1.394 (5) | C13—C14 | 1.384 (5) |
C4—C5 | 1.400 (5) | C13—H13 | 0.9500 |
C4—H4 | 0.9500 | C14—H14 | 0.9500 |
C5—C6 | 1.379 (5) | ||
O1—N1—O2 | 123.8 (3) | C6—C7—H7 | 121.0 |
O1—N1—C6 | 118.1 (3) | C8—C7—H7 | 121.0 |
O2—N1—C6 | 118.1 (3) | C3—C8—C7 | 120.7 (3) |
N3—N2—C2 | 115.9 (3) | C3—C8—H8 | 119.6 |
N2—N3—C9 | 111.8 (3) | C7—C8—H8 | 119.6 |
C2—C1—Br1 | 123.1 (2) | C10—C9—C14 | 120.6 (3) |
C2—C1—Br2 | 122.4 (2) | C10—C9—N3 | 116.6 (3) |
Br1—C1—Br2 | 114.43 (15) | C14—C9—N3 | 122.8 (3) |
C1—C2—N2 | 115.0 (3) | C9—C10—C11 | 119.7 (3) |
C1—C2—C3 | 122.3 (3) | C9—C10—H10 | 120.2 |
N2—C2—C3 | 122.7 (3) | C11—C10—H10 | 120.2 |
C8—C3—C4 | 120.3 (3) | C12—C11—C10 | 118.9 (3) |
C8—C3—C2 | 120.5 (3) | C12—C11—H11 | 120.6 |
C4—C3—C2 | 119.1 (3) | C10—C11—H11 | 120.6 |
C3—C4—C5 | 119.7 (3) | C11—C12—C13 | 122.1 (3) |
C3—C4—H4 | 120.2 | C11—C12—Br3 | 119.2 (3) |
C5—C4—H4 | 120.2 | C13—C12—Br3 | 118.7 (3) |
C6—C5—C4 | 118.3 (3) | C14—C13—C12 | 118.7 (3) |
C6—C5—H5 | 120.8 | C14—C13—H13 | 120.7 |
C4—C5—H5 | 120.8 | C12—C13—H13 | 120.7 |
C5—C6—C7 | 122.9 (3) | C13—C14—C9 | 120.0 (3) |
C5—C6—N1 | 118.3 (3) | C13—C14—H14 | 120.0 |
C7—C6—N1 | 118.8 (3) | C9—C14—H14 | 120.0 |
C6—C7—C8 | 118.0 (3) | ||
C2—N2—N3—C9 | 178.1 (3) | O2—N1—C6—C7 | −171.8 (3) |
Br1—C1—C2—N2 | −178.4 (3) | C5—C6—C7—C8 | −1.2 (5) |
Br2—C1—C2—N2 | −1.8 (6) | N1—C6—C7—C8 | 177.5 (3) |
Br1—C1—C2—C3 | 1.6 (6) | C4—C3—C8—C7 | 0.6 (5) |
Br2—C1—C2—C3 | 178.2 (3) | C2—C3—C8—C7 | −178.5 (3) |
N3—N2—C2—C1 | 174.8 (4) | C6—C7—C8—C3 | 0.6 (5) |
N3—N2—C2—C3 | −5.2 (5) | N2—N3—C9—C10 | 160.3 (4) |
C1—C2—C3—C8 | 72.2 (5) | N2—N3—C9—C14 | −20.0 (5) |
N2—C2—C3—C8 | −107.7 (4) | C14—C9—C10—C11 | −0.9 (6) |
C1—C2—C3—C4 | −106.9 (5) | N3—C9—C10—C11 | 178.9 (4) |
N2—C2—C3—C4 | 73.1 (5) | C9—C10—C11—C12 | −0.9 (6) |
C8—C3—C4—C5 | −1.3 (5) | C10—C11—C12—C13 | 1.7 (7) |
C2—C3—C4—C5 | 177.8 (3) | C10—C11—C12—Br3 | −177.8 (3) |
C3—C4—C5—C6 | 0.8 (5) | C11—C12—C13—C14 | −0.8 (6) |
C4—C5—C6—C7 | 0.5 (5) | Br3—C12—C13—C14 | 178.8 (3) |
C4—C5—C6—N1 | −178.2 (3) | C12—C13—C14—C9 | −1.0 (6) |
O1—N1—C6—C5 | −172.7 (3) | C10—C9—C14—C13 | 1.8 (6) |
O2—N1—C6—C5 | 6.9 (4) | N3—C9—C14—C13 | −177.9 (4) |
O1—N1—C6—C7 | 8.6 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10···Br1i | 0.95 | 2.89 | 3.530 (4) | 126 |
Symmetry code: (i) x−1/2, −y+3/2, z. |
Br1···H10 | 2.89 | 1/2 + x, 3/2 - y, z |
H14···H5 | 2.40 | 1/2 - x, -1/2 + y, -1/2 + z |
Br2···Br3 | 3.44 | 1/2 + x, 1/2 - y, z |
H10···C13 | 3.02 | -x, 1 - y, 1/2 + z |
O1···H13 | 2.75 | x, 1 + y, z |
H7···N2 | 2.65 | 1/2 - x, 1/2 + y, -1/2 + z |
Acknowledgements
The authors' contributions are as follows. Conceptualization, NQS, MA and AB; synthesis, NAM and GTS; X-ray analysis, SÖY, VNK and MA; writing (review and editing of the manuscript) SÖY, MA and AB; funding acquisition, NQS, NAM and GTS; supervision, NQS, MA and AB.
Funding information
This work was performed under the support of the Science Development Foundation under the President of the Republic of Azerbaijan (grant No. EIF-BGM-4- RFTF-1/2017–21/13/4).
References
Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199–1204. Web of Science CSD CrossRef IUCr Journals Google Scholar
Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Mammadova, N. A., Babayeva, G. V., Khrustalev, V. N. & Bhattarai, A. (2022). Acta Cryst. E78, 530–535. Web of Science CSD CrossRef IUCr Journals Google Scholar
Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237–241. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Çelikesir, S. T., Akkurt, M., Shikhaliyev, N. Q., Mammadova, N. A., Suleymanova, G. T., Khrustalev, V. N. & Bhattarai, A. (2022). Acta Cryst. E78, 404–408. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633. Web of Science CSD CrossRef CAS Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837. Web of Science CSD CrossRef CAS PubMed Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Lipskikh, O. I., Korotkova, E. I., Khristunova, Y. P., Barek, J. & Kratochvil, B. (2018). Electrochim. Acta, 260, 974–985. Web of Science CrossRef CAS Google Scholar
Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859. Web of Science CrossRef Google Scholar
Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482. Web of Science CrossRef Google Scholar
Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141. Web of Science CrossRef CAS Google Scholar
Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Guedes da Silva, M. F. C., Resnati, G. & Pombeiro, A. J. L. (2022). Coord. Chem. Rev. 464, 214556. Web of Science CrossRef Google Scholar
Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381. Web of Science CrossRef Google Scholar
Mahmudov, K. T., Huseynov, F. E., Aliyeva, V. A., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Chem. Eur. J. 27, 14370–14389. Web of Science CrossRef CAS PubMed Google Scholar
Mahmudov, K. T., Kopylovich, M. N. & Pombeiro, A. J. L. (2013). Coord. Chem. Rev. 257, 1244–1281. Web of Science CrossRef CAS Google Scholar
Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Kopylovich, M. N. & Pombeiro, A. J. L. (2010). Anal. Lett. 43, 2923–2938. Web of Science CrossRef CAS Google Scholar
Özkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Mammadova, G. Z. & Shadrack, D. M. (2020a). Acta Cryst. E76, 1251–1254. Web of Science CSD CrossRef IUCr Journals Google Scholar
Özkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Shikhaliyeva, I. M. & Bhattarai, A. (2020b). Acta Cryst. E76, 811–815. Web of Science CSD CrossRef IUCr Journals Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381. Web of Science CSD CrossRef CAS Google Scholar
Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038. Web of Science CSD CrossRef CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17.5. University of Western Australia.https://hirshfeldsuface.net Google Scholar
Zollinger, H. (1994). Diazo Chemistry I: Aromatic and Heteroaromatic Compounds. New York: Wiley. Google Scholar
Zollinger, H. (1995). Diazo Chemistry II: Aliphatic, Inorganic and Organometallic Compounds. Weinheim: VCH. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.