research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (E)-2-(4-bromo­phen­yl)-1-[2,2-di­bromo-1-(4-nitro­phen­yl)ethen­yl]diazene

crossmark logo

aDepartment of Physics, Faculty of Science, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Physics, Faculty of Science, Eskisehir Technical University, Yunus Emre Campus 26470 Eskisehir, Turkey, cOrganic Chemistry Department, Baku State University, Z. Khalilov str. 23, AZ 1148 Baku, Azerbaijan, dAzerbaijan State University of Economics (UNEC), Istiglaliyyat str., Baku, Azerbaijan, ePeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow, 117198, Russian Federation, fN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, and gDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

Edited by A. V. Yatsenko, Moscow State University, Russia (Received 26 May 2022; accepted 13 June 2022; online 16 June 2022)

The mol­ecule of the title compound, C14H8Br3N3O2, consists of three almost planar groups: the central di­bromo­ethenyldiazene fragment and two attached aromatic rings. The mean planes of these rings form dihedral angles with the plane of the central fragment of 26.35 (15) and 72.57 (14)° for bromine- and nitro-substituted rings, respectively. In the crystal, C—H⋯Br inter­actions connect mol­ecules, generating zigzag C(8) chains along the [100] direction. These chains are linked by C—Br⋯π inter­actions into layers parallel to (001). van der Waals inter­actions between the layers aid in the cohesion of the crystal packing. The most substantial contributions to crystal packing, according to a Hirshfeld surface analysis, are from Br⋯H/H⋯Br (20.9%), C⋯H/H⋯C (15.2%), O⋯H/H⋯O (12.6%) and H⋯H (11.7%) contacts.

1. Chemical context

Azo dyes constitute the largest production volume (ca 70%) of the dye industry today, and their relative importance may increase further in the future (Lipskikh et al., 2018[Lipskikh, O. I., Korotkova, E. I., Khristunova, Y. P., Barek, J. & Kratochvil, B. (2018). Electrochim. Acta, 260, 974-985.]). They play a crucial role in the printing market, the design of functional materials attributed to smart hydrogen bonding, photo-triggered structural switching, self-assembled layers, ionophores, liquid crystals, semiconductors, indicators, spectrophotometric reagents for determination of metal ions, photoluminescent materials, catalysts, anti­microbial agents, optical recording media, spin-coating films, etc (Zollinger, 1994[Zollinger, H. (1994). Diazo Chemistry I: Aromatic and Heteroaromatic Compounds. New York: Wiley.], 1995[Zollinger, H. (1995). Diazo Chemistry II: Aliphatic, Inorganic and Organometallic Compounds. Weinheim: VCH.]; Gurbanov et al., 2020a[Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628-633.],b[Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833-14837.]; Mahmudov et al., 2010[Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Kopylovich, M. N. & Pombeiro, A. J. L. (2010). Anal. Lett. 43, 2923-2938.], 2013[Mahmudov, K. T., Kopylovich, M. N. & Pombeiro, A. J. L. (2013). Coord. Chem. Rev. 257, 1244-1281.]). Depending on the attached substituents, the functional properties of azo compounds and their metal complexes can be improved/controlled (Ma et al., 2020[Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482.], 2021[Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.]). Both E/Z isomerism and azo–hydrazo tautomerism properties of azo dyes are key phenomena in the synthesis and development of new functional materials (Shixaliyev et al., 2018[Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377-381.], 2019[Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032-5038.]). The attachment of non-covalent bond acceptor or donor centres to the azo dyes can be used as a synthetic strategy for the improvement of the functional properties of their metal complexes (Mahmudov et al., 2020[Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381.], 2021[Mahmudov, K. T., Huseynov, F. E., Aliyeva, V. A., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Chem. Eur. J. 27, 14370-14389.], 2022[Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Guedes da Silva, M. F. C., Resnati, G. & Pombeiro, A. J. L. (2022). Coord. Chem. Rev. 464, 214556.]). Thus, we have attached bromine atoms and a nitro group together with aryl rings to the –N=N– linkage leading to a new azo compound, (E)-2-(4-bromo­phen­yl)-1-[2,2-di­bromo-1-(4-nitro­phen­yl)ethen­yl]diazene, which can provide inter­molecular halogen and hydrogen bonds as well as π-inter­actions.

[Scheme 1]

2. Structural commentary

The mol­ecule of the title compound (Fig. 1[link]) consists of three almost planar groups: the central di­bromo­ethenyldiazene fragment [largest deviation from the l.s. plane is 0.039 (3) Å for N2] and two attached aromatic rings. The mean planes of these rings form dihedral angles with the plane of the central fragment of 26.35 (15) and 72.57 (14)° for the bromine- and nitro-substituted rings, respectively. The nitro group is twisted by 8.1 (2)° with respect to the C3–C8 aromatic ring. The C2—N2 bond distance of 1.406 (4) Å indicates π-conjugation between ethene and diazo groups. All other bond lengths and angles in the title compound are similar to those reported for the related azo compounds discussed in the Database survey section.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, C—H⋯Br inter­actions connect the mol­ecules, generating zigzag C(8) chains (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) along the [100] direction (Table 1[link], Figs. 2[link] and 3[link]). These chains are linked by C—Br⋯π inter­actions [C1—Br1⋯Cg1ii; C1—Br1 = 1.864 (3) Å, Br1⋯Cg1ii = 3.5803 (16) Å, C1⋯Cg1ii = 4.722 (3) Å, C1—Br1⋯Cg1ii = 116.77 (9)°; Cg1 is the centroid of the C3–C8 ring; symmetry code (ii): x + [{1\over 2}], −y + [{3\over 2}], z] into layers parallel to (001) (Fig. 4[link]). van der Waals inter­actions between the layers help to keep the crystal packing together.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯Br1i 0.95 2.89 3.530 (4) 126
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z].
[Figure 2]
Figure 2
View down the a-axis of the title compound showing the C—H⋯Br inter­actions.
[Figure 3]
Figure 3
View down the b-axis of the title compound, showing the C—Br⋯π inter­actions.
[Figure 4]
Figure 4
View down the c axis of the title compound, showing the C—Br⋯π inter­actions.

Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17.5. University of Western Australia.https://hirshfeldsuface.net]) was used to perform a Hirshfeld surface analysis and to generate the corresponding two-dimensional fingerprint plots, with a standard resolution of the three-dimensional dnorm surfaces plotted over a fixed color scale of −0.1401 (red) to 1.1158 (blue) a.u. (Fig. 5[link]). The red patches represent short contacts and negative dnorm values on the surface, which correspond to the C—H⋯Br hydrogen bonds discussed above (Table 1[link]). The C10—H10⋯Br1 inter­actions, which are important for mol­ecular packing of the title compound, are responsible for the red patch that appears around Br1.

[Figure 5]
Figure 5
View of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm in the range −0.1401 to 1.1158 a.u.

The overall two-dimensional fingerprint plot for the title compound and those delineated into Br⋯H / H⋯Br (20.9%), C⋯H/H⋯C (15.2%), O⋯H/H⋯O (12.6%) and H⋯H (11.7%) contacts are shown in Fig. 6[link], while numerical details for short inter­molecular contacts are given in Table 2[link]. Br⋯C/C⋯Br (8.8%), Br⋯Br (6.7%), N⋯H/H⋯N (6.5%), Br⋯O/O⋯Br (5.6%), O⋯C/C⋯O (4.1%), Br⋯N/N⋯Br (3.9%), C⋯C (2.5%), O⋯N/N⋯O (1.3%) and N⋯C/C⋯N (0.1%) contacts have little directional influence on the mol­ecular packing.

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

Br1⋯H10 2.89 [{1\over 2}] + x, [{3\over 2}] − y, z
H14⋯H5 2.40 [{1\over 2}] − x, −[{1\over 2}] + y, −[{1\over 2}] + z
Br2⋯Br3 3.44 [{1\over 2}] + x, [{1\over 2}] − y, z
H10⋯C13 3.02 x, 1 − y, [{1\over 2}] + z
O1⋯H13 2.75 x, 1 + y, z
H7⋯N2 2.65 [{1\over 2}] − x, [{1\over 2}] + y, −[{1\over 2}] + z
[Figure 6]
Figure 6
The full two-dimensional fingerprint plots for the title compound, showing all inter­actions (a) and delineated into (b) Br⋯H/H⋯Br, (c) C⋯H/H⋯C, (d) O⋯H/H⋯O, and (e) H⋯H inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for similar structures with the (E)-1-(2,2-di­bromo-1-phenyl­ethen­yl)-2-phenyl­diazene fragment showed that the nine closest are those of CSD refcodes TAZDIL [(I); Atioğlu et al., 2022[Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Mammadova, N. A., Babayeva, G. V., Khrustalev, V. N. & Bhattarai, A. (2022). Acta Cryst. E78, 530-535.]], PAXDOL [(II); Çelikesir et al., 2022[Çelikesir, S. T., Akkurt, M., Shikhaliyev, N. Q., Mammadova, N. A., Suleymanova, G. T., Khrustalev, V. N. & Bhattarai, A. (2022). Acta Cryst. E78, 404-408.]], GUPHIL [(III); Özkaraca et al., 2020b[Özkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Shikhaliyeva, I. M. & Bhattarai, A. (2020b). Acta Cryst. E76, 811-815.]], HONBUK [(IV); Akkurt et al., 2019[Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199-1204.]], HONBOE [(V); Akkurt et al., 2019[Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199-1204.]], HODQAV [(VI); Shikhaliyev et al., 2019[Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032-5038.]], XIZREG [(VII); Atioğlu et al., 2019[Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237-241.]], LEQXOX [(VIII); Shikhaliyev et al., 2018[Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377-381.]] and LEQXIR [(IX); Shikhaliyev et al., 2018[Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377-381.]].

In (I), the mol­ecules are connected by C—H⋯O and C—H⋯F hydrogen bonds into layers parallel to (011). The crystal packing is consolidated by C—Br⋯π and C—F⋯π contacts, as well as by ππ stacking inter­actions. In the crystal of (II), the mol­ecules are linked into chains running parallel to [001] by C—H⋯O hydrogen bonds. The crystal packing is consolidated by C—F⋯π contacts and ππ stacking inter­actions, and short Br⋯O [2.9828 (13) Å] distances are also observed. In the crystal of (III), the mol­ecules are linked into inversion dimers via short halogen–halogen contacts [Cl1⋯Cl1 = 3.3763 (9) Å, C16—Cl1⋯Cl1 = 141.47 (7)°] compared to the van der Waals radius sum of 3.50 Å for two chlorine atoms. No other directional contacts could be identified, and the shortest aromatic ring centroid separation is greater than 5.25 Å. In the crystals of (IV) and (V), the mol­ecules are linked through weak X⋯Cl contacts [X = Cl for (IV) and Br for (V)], C—H⋯Cl and C—Cl⋯π inter­actions into sheets lying parallel to (001). In the crystal of (VI), the mol­ecules are stacked in columns parallel to [100] via weak C—H⋯Cl hydrogen bonds and face-to-face ππ stacking inter­actions. The crystal packing is further consolidated by short Cl⋯Cl contacts. In (VII), mol­ecules are linked by C—H⋯O hydrogen bonds into zigzag chains running parallel to [001]. The crystal packing also features C—Cl⋯π, C—F⋯π and N—O⋯π inter­actions. In (VIII), C—H⋯N and short Cl⋯Cl contacts are observed, and in (IX), C—H⋯N and C—H⋯O hydrogen bonds and short Cl⋯O contacts occur.

5. Synthesis and crystallization

This dye was synthesized according to the reported method (Akkurt et al., 2019[Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199-1204.]; Atioğlu et al., 2019[Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237-241.]; Maharramov et al., 2018[Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135-141.]; Özkaraca et al., 2020a[Özkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Mammadova, G. Z. & Shadrack, D. M. (2020a). Acta Cryst. E76, 1251-1254.],b[Özkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Shikhaliyeva, I. M. & Bhattarai, A. (2020b). Acta Cryst. E76, 811-815.]). A 20 mL screw neck vial was charged with DMSO (10 mL), (E)-1-(4-bromo­phen­yl)-2-(4-nitro­benzyl­idene)hydrazine (1 mmol), tetra­methyl­ethylene­di­amine (TMEDA; 295 mg, 2.5 mmol), CuCl (2 mg, 0.02 mmol) and CBr4 (4.5 mmol). After 1-3 h (until TLC analysis showed complete consumption of corresponding Schiff base), the reaction mixture was poured into 0.01 M solution of HCl (100 mL, pH = 2–3), and extracted with di­chloro­methane (3 × 20 mL). The combined organic phase was washed with water (3 × 50 mL), brine (30 mL), dried over anhydrous Na2SO4 and concentrated in vacuo using a rotary evaporator. The residue was purified by column chromatography on silica gel using appropriate mixtures of hexane and di­chloro­methane (3/1–1/1). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution. Red solid (58%); m.p. 398 K. Analysis calculated for C14H8Br3N3O2 (M = 489.95): C 34.32, H 1.65, N 8.58; found: C 34.27, H 1.70, N 8.56%. 1H NMR (300 MHz, CDCl3) δ 8.16–7.41 (8H, Ar–H). 13C NMR (75MHz, CDCl3) δ 150.89, 149.62, 148.26, 136.43, 132.25, 127.77, 125.57, 124.53, 123.57, 93.24. ESI–MS: m/z: 490.96 [M + H]+.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were positioned geometrically and constrained to ride on their parent atoms (C—H = 0.95 Å) with Uiso(H) = 1.2Ueq(C). One reflection (110), affected by the beam stop, was omitted in the final cycles of refinement.

Table 3
Experimental details

Crystal data
Chemical formula C14H8Br3N3O2
Mr 489.96
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 100
a, b, c (Å) 13.8678 (5), 13.5442 (5), 8.3017 (3)
V3) 1559.29 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 7.77
Crystal size (mm) 0.31 × 0.14 × 0.08
 
Data collection
Diffractometer Bruker D8 QUEST, Photon III detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.044, 0.110
No. of measured, independent and observed [I > 2σ(I)] reflections 75835, 7370, 5962
Rint 0.057
(sin θ/λ)max−1) 0.826
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.085, 1.02
No. of reflections 7370
No. of parameters 199
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.41, −0.97
Absolute structure Flack parameter determined using 2437 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]).
Absolute structure parameter 0.003 (5)
Computer programs: APEX3 and SAINT (Bruker, 2018[Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

(E)-2-(4-Bromophenyl)-1-[2,2-dibromo-1-(4-nitrophenyl)ethenyl]diazene top
Crystal data top
C14H8Br3N3O2Dx = 2.087 Mg m3
Mr = 489.96Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 9976 reflections
a = 13.8678 (5) Åθ = 2.9–34.8°
b = 13.5442 (5) ŵ = 7.77 mm1
c = 8.3017 (3) ÅT = 100 K
V = 1559.29 (10) Å3Block, red
Z = 40.31 × 0.14 × 0.08 mm
F(000) = 936
Data collection top
Bruker D8 QUEST, Photon III detector
diffractometer
7370 independent reflections
Radiation source: fine-focus sealed X-Ray tube5962 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
Detector resolution: 7.31 pixels mm-1θmax = 36.0°, θmin = 2.9°
φ and ω shutterless scansh = 2222
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 2222
Tmin = 0.044, Tmax = 0.110l = 1313
75835 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0438P)2 + 0.8309P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.002
7370 reflectionsΔρmax = 1.41 e Å3
199 parametersΔρmin = 0.97 e Å3
1 restraintAbsolute structure: Flack parameter determined using 2437 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.003 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.49964 (2)0.72932 (3)0.49158 (6)0.02765 (8)
Br20.44572 (2)0.50470 (2)0.51189 (7)0.02906 (8)
Br30.10955 (3)0.24165 (3)0.55241 (7)0.03182 (9)
O10.1810 (2)1.1045 (2)0.3729 (4)0.0333 (6)
O20.1662 (3)1.1002 (2)0.6323 (4)0.0326 (6)
N10.18506 (19)1.0613 (2)0.5020 (5)0.0231 (5)
N20.24431 (19)0.57755 (19)0.5188 (4)0.0207 (5)
N30.15599 (19)0.5982 (2)0.5376 (4)0.0228 (6)
C10.4020 (2)0.6350 (2)0.5012 (6)0.0222 (6)
C20.3073 (2)0.6586 (2)0.5080 (5)0.0205 (5)
C30.2727 (2)0.7629 (2)0.5040 (5)0.0196 (5)
C40.2373 (3)0.8055 (3)0.6449 (5)0.0221 (6)
H40.2332340.7676150.7410620.027*
C50.2076 (3)0.9043 (3)0.6441 (5)0.0222 (6)
H50.1840390.9347720.7393480.027*
C60.2136 (2)0.9563 (2)0.5016 (5)0.0212 (5)
C70.2468 (3)0.9148 (3)0.3596 (5)0.0249 (7)
H70.2489720.9521620.2628340.030*
C80.2769 (3)0.8171 (3)0.3629 (5)0.0235 (6)
H80.3005980.7871690.2673510.028*
C90.0971 (2)0.5110 (2)0.5422 (5)0.0208 (6)
C100.0066 (3)0.5207 (3)0.6113 (5)0.0251 (7)
H100.0133560.5823300.6543990.030*
C110.0553 (3)0.4391 (3)0.6172 (5)0.0262 (7)
H110.1171650.4443740.6655050.031*
C120.0249 (3)0.3509 (2)0.5516 (5)0.0243 (6)
C130.0662 (2)0.3397 (2)0.4837 (5)0.0246 (7)
H130.0859330.2779600.4404650.030*
C140.1275 (2)0.4203 (2)0.4803 (5)0.0236 (6)
H140.1903800.4139150.4359720.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01833 (12)0.02119 (13)0.0434 (2)0.00217 (10)0.00069 (14)0.00037 (16)
Br20.02025 (12)0.01897 (13)0.0480 (2)0.00223 (10)0.00256 (15)0.00061 (14)
Br30.02917 (16)0.02402 (15)0.0423 (2)0.00937 (12)0.00254 (18)0.00189 (17)
O10.0460 (17)0.0222 (13)0.0317 (15)0.0060 (12)0.0009 (13)0.0062 (11)
O20.0450 (16)0.0217 (13)0.0310 (16)0.0042 (12)0.0006 (13)0.0038 (11)
N10.0211 (10)0.0185 (11)0.0296 (15)0.0000 (8)0.0007 (13)0.0001 (12)
N20.0179 (10)0.0190 (10)0.0251 (15)0.0007 (8)0.0006 (10)0.0012 (11)
N30.0184 (11)0.0192 (11)0.0306 (17)0.0012 (8)0.0016 (10)0.0014 (11)
C10.0181 (11)0.0170 (11)0.0315 (16)0.0001 (9)0.0020 (13)0.0003 (13)
C20.0182 (11)0.0171 (11)0.0263 (15)0.0002 (9)0.0010 (12)0.0015 (12)
C30.0164 (10)0.0167 (11)0.0257 (15)0.0004 (8)0.0012 (13)0.0022 (12)
C40.0237 (14)0.0183 (13)0.0243 (16)0.0015 (11)0.0002 (12)0.0010 (12)
C50.0215 (14)0.0211 (14)0.0241 (16)0.0024 (11)0.0005 (12)0.0010 (12)
C60.0194 (11)0.0166 (11)0.0275 (15)0.0000 (9)0.0004 (13)0.0007 (13)
C70.0262 (15)0.0209 (14)0.0276 (18)0.0018 (12)0.0018 (13)0.0031 (12)
C80.0238 (14)0.0202 (14)0.0265 (17)0.0003 (11)0.0022 (13)0.0003 (12)
C90.0189 (12)0.0167 (11)0.0269 (17)0.0010 (9)0.0007 (11)0.0000 (12)
C100.0230 (14)0.0182 (13)0.0342 (19)0.0003 (11)0.0021 (13)0.0015 (13)
C110.0203 (13)0.0209 (14)0.037 (2)0.0021 (11)0.0034 (13)0.0005 (13)
C120.0238 (13)0.0185 (12)0.0305 (17)0.0061 (10)0.0016 (13)0.0016 (14)
C130.0246 (13)0.0182 (12)0.0312 (19)0.0007 (10)0.0009 (14)0.0027 (13)
C140.0205 (12)0.0208 (13)0.0295 (19)0.0005 (10)0.0035 (13)0.0024 (13)
Geometric parameters (Å, º) top
Br1—C11.864 (3)C5—H50.9500
Br2—C11.868 (3)C6—C71.384 (6)
Br3—C121.888 (3)C7—C81.388 (5)
O1—N11.223 (5)C7—H70.9500
O2—N11.231 (5)C8—H80.9500
N1—C61.477 (4)C9—C101.386 (5)
N2—N31.266 (4)C9—C141.397 (5)
N2—C21.406 (4)C10—C111.400 (5)
N3—C91.437 (4)C10—H100.9500
C1—C21.352 (4)C11—C121.378 (5)
C2—C31.492 (4)C11—H110.9500
C3—C81.384 (5)C12—C131.392 (5)
C3—C41.394 (5)C13—C141.384 (5)
C4—C51.400 (5)C13—H130.9500
C4—H40.9500C14—H140.9500
C5—C61.379 (5)
O1—N1—O2123.8 (3)C6—C7—H7121.0
O1—N1—C6118.1 (3)C8—C7—H7121.0
O2—N1—C6118.1 (3)C3—C8—C7120.7 (3)
N3—N2—C2115.9 (3)C3—C8—H8119.6
N2—N3—C9111.8 (3)C7—C8—H8119.6
C2—C1—Br1123.1 (2)C10—C9—C14120.6 (3)
C2—C1—Br2122.4 (2)C10—C9—N3116.6 (3)
Br1—C1—Br2114.43 (15)C14—C9—N3122.8 (3)
C1—C2—N2115.0 (3)C9—C10—C11119.7 (3)
C1—C2—C3122.3 (3)C9—C10—H10120.2
N2—C2—C3122.7 (3)C11—C10—H10120.2
C8—C3—C4120.3 (3)C12—C11—C10118.9 (3)
C8—C3—C2120.5 (3)C12—C11—H11120.6
C4—C3—C2119.1 (3)C10—C11—H11120.6
C3—C4—C5119.7 (3)C11—C12—C13122.1 (3)
C3—C4—H4120.2C11—C12—Br3119.2 (3)
C5—C4—H4120.2C13—C12—Br3118.7 (3)
C6—C5—C4118.3 (3)C14—C13—C12118.7 (3)
C6—C5—H5120.8C14—C13—H13120.7
C4—C5—H5120.8C12—C13—H13120.7
C5—C6—C7122.9 (3)C13—C14—C9120.0 (3)
C5—C6—N1118.3 (3)C13—C14—H14120.0
C7—C6—N1118.8 (3)C9—C14—H14120.0
C6—C7—C8118.0 (3)
C2—N2—N3—C9178.1 (3)O2—N1—C6—C7171.8 (3)
Br1—C1—C2—N2178.4 (3)C5—C6—C7—C81.2 (5)
Br2—C1—C2—N21.8 (6)N1—C6—C7—C8177.5 (3)
Br1—C1—C2—C31.6 (6)C4—C3—C8—C70.6 (5)
Br2—C1—C2—C3178.2 (3)C2—C3—C8—C7178.5 (3)
N3—N2—C2—C1174.8 (4)C6—C7—C8—C30.6 (5)
N3—N2—C2—C35.2 (5)N2—N3—C9—C10160.3 (4)
C1—C2—C3—C872.2 (5)N2—N3—C9—C1420.0 (5)
N2—C2—C3—C8107.7 (4)C14—C9—C10—C110.9 (6)
C1—C2—C3—C4106.9 (5)N3—C9—C10—C11178.9 (4)
N2—C2—C3—C473.1 (5)C9—C10—C11—C120.9 (6)
C8—C3—C4—C51.3 (5)C10—C11—C12—C131.7 (7)
C2—C3—C4—C5177.8 (3)C10—C11—C12—Br3177.8 (3)
C3—C4—C5—C60.8 (5)C11—C12—C13—C140.8 (6)
C4—C5—C6—C70.5 (5)Br3—C12—C13—C14178.8 (3)
C4—C5—C6—N1178.2 (3)C12—C13—C14—C91.0 (6)
O1—N1—C6—C5172.7 (3)C10—C9—C14—C131.8 (6)
O2—N1—C6—C56.9 (4)N3—C9—C14—C13177.9 (4)
O1—N1—C6—C78.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···Br1i0.952.893.530 (4)126
Symmetry code: (i) x1/2, y+3/2, z.
Summary of short interatomic contacts (Å) in the title compound top
Br1···H102.891/2 + x, 3/2 - y, z
H14···H52.401/2 - x, -1/2 + y, -1/2 + z
Br2···Br33.441/2 + x, 1/2 - y, z
H10···C133.02-x, 1 - y, 1/2 + z
O1···H132.75x, 1 + y, z
H7···N22.651/2 - x, 1/2 + y, -1/2 + z
 

Acknowledgements

The authors' contributions are as follows. Conceptualization, NQS, MA and AB; synthesis, NAM and GTS; X-ray analysis, SÖY, VNK and MA; writing (review and editing of the manuscript) SÖY, MA and AB; funding acquisition, NQS, NAM and GTS; supervision, NQS, MA and AB.

Funding information

This work was performed under the support of the Science Development Foundation under the President of the Republic of Azerbaijan (grant No. EIF-BGM-4- RFTF-1/2017–21/13/4).

References

First citationAkkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199–1204.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAtioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Mammadova, N. A., Babayeva, G. V., Khrustalev, V. N. & Bhattarai, A. (2022). Acta Cryst. E78, 530–535.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAtioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237–241.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationÇelikesir, S. T., Akkurt, M., Shikhaliyev, N. Q., Mammadova, N. A., Suleymanova, G. T., Khrustalev, V. N. & Bhattarai, A. (2022). Acta Cryst. E78, 404–408.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLipskikh, O. I., Korotkova, E. I., Khristunova, Y. P., Barek, J. & Kratochvil, B. (2018). Electrochim. Acta, 260, 974–985.  Web of Science CrossRef CAS Google Scholar
First citationMa, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.  Web of Science CrossRef Google Scholar
First citationMa, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482.  Web of Science CrossRef Google Scholar
First citationMaharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141.  Web of Science CrossRef CAS Google Scholar
First citationMahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Guedes da Silva, M. F. C., Resnati, G. & Pombeiro, A. J. L. (2022). Coord. Chem. Rev. 464, 214556.  Web of Science CrossRef Google Scholar
First citationMahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381.  Web of Science CrossRef Google Scholar
First citationMahmudov, K. T., Huseynov, F. E., Aliyeva, V. A., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Chem. Eur. J. 27, 14370–14389.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N. & Pombeiro, A. J. L. (2013). Coord. Chem. Rev. 257, 1244–1281.  Web of Science CrossRef CAS Google Scholar
First citationMahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Kopylovich, M. N. & Pombeiro, A. J. L. (2010). Anal. Lett. 43, 2923–2938.  Web of Science CrossRef CAS Google Scholar
First citationÖzkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Mammadova, G. Z. & Shadrack, D. M. (2020a). Acta Cryst. E76, 1251–1254.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÖzkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Shikhaliyeva, I. M. & Bhattarai, A. (2020b). Acta Cryst. E76, 811–815.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381.  Web of Science CSD CrossRef CAS Google Scholar
First citationShikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17.5. University of Western Australia.https://hirshfeldsuface.net  Google Scholar
First citationZollinger, H. (1994). Diazo Chemistry I: Aromatic and Heteroaromatic Compounds. New York: Wiley.  Google Scholar
First citationZollinger, H. (1995). Diazo Chemistry II: Aliphatic, Inorganic and Organometallic Compounds. Weinheim: VCH.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds