research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of rac-2-(1,3-dioxo­isoindolin-2-yl)ethyl 4-methyl-N-phenyl-N′-(tri­iso­propyl­sil­yl)benzene­sulfondiimidoate: the first member of a new substance class

crossmark logo

aAlarich-Weiss-Str. 4, 64287 Darmstadt, Germany, and bMerck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
*Correspondence e-mail: re@chemie.tu-darmstadt.de

Edited by M. Zeller, Purdue University, USA (Received 4 May 2022; accepted 2 June 2022; online 10 June 2022)

The title compound {systematic name: rac-2-[7-methyl-4-(4-methylphenyl)-4-(phenylimino)-6,6-bis(propan-2-yl)-3-oxa-4λ6-thia-5-aza-6-silaoct-4-en-1-yl]-2,3-dihydro-1H-isoindole-1,3-dione}, C32H41N3O3SSi, was synthesized by desoxychlorination of 4-methyl-N-phenyl-N′-(triisopropyl­sil­yl)benzene­sul­fon­imid­am­ide and subsequent reaction with 2-(2-hy­droxy­eth­yl)isoindoline-1,3-dione. The racemic compound was crystallized from isopropanol. The structural characterization by single-crystal X-ray diffraction revealed two double-bonded nitro­gen atoms to the central sulfur atom and an overall crystal packing driven by its aromatic inter­actions.

1. Chemical context

Since 2013 (Lücking, 2013[Lücking, U. (2013). Angew. Chem. Int. Ed. 52, 9399-9408.], 2019[Lücking, U. (2019). Org. Chem. Front. 6, 1319-1324.]), there has been an increased research inter­est in bioisosters of sulfonamides and sulfones. In addition to vigorous inter­est in the development of new synthetic procedures towards sulfonimidamides (Nandi & Arvidsson, 2018[Nandi, G. C. & Arvidsson, P. I. (2018). Adv. Synth. Catal. 360, 2976-3001.]; Chen & Gibson, 2015[Chen, Y. & Gibson, J. (2015). RSC Adv. 5, 4171-4174.]; Wen et al., 2016[Wen, J., Cheng, H., Dong, S. & Bolm, C. (2016). Chem. Eur. J. 22, 5547-5550.]; Izzo et al., 2017[Izzo, F., Schäfer, M., Stockman, R. & Lücking, U. (2017). Chem. Eur. J. 23, 15189-15193.]; Greed et al., 2020[Greed, S., Briggs, E. L., Idiris, F. I. M., White, A. J. P., Lücking, U. & Bull, J. A. (2020). Chem. Eur. J. 26, 12533-12538.]; Liu et al., 2021[Liu, Y., Pan, Q., Hu, X., Guo, Y., Chen, Q.-Y. & Liu, C. (2021). Org. Lett. 23, 3975-3980.]), activities towards the synthesis of sulfondi­imides have recently just begun (Zhang et al., 2019[Zhang, Z.-X., Davies, T. Q. & Willis, M. C. (2019). J. Am. Chem. Soc. 141, 13022-13027.]; Bohmann et al., 2019[Bohmann, R. A., Schöbel, J.-H., Unoh, Y., Miura, M. & Bolm, C. (2019). Adv. Synth. Catal. 361, 2000-2003.]). With the synthesis of stable sulfondiimidamides, Zhang & Willis (2022[Zhang, Z.-X. & Willis, M. C. (2022). Chem, 8, 1137-1146.]) introduced a new functional group for medicinal chemistry.

The different aza-analogs of sulfonamides and sulfones have inter­esting properties for medicinal chemistry due to the (additional) nitro­gen atom(s). Besides the potential centrochirality of sulfur, the nitro­gen substituents offer new possibilities for functionalization optimizing steric demand, solubility and reactivity.

[Scheme 1]

The herein reported sulfondiimidoate 1 is, based on extensive database searches, not yet described in the literature and therefore represents the first member of a new substance class. It can be described as an aza-oxo-inverse sulfonamide or an aza-analogue of a sulfonimidoate.

2. Structural commentary

The title compound 1 crystallizes in the triclinic crystal system and P[\overline{1}] as the centrosymmetric space group, having one mol­ecule in the asymmetric unit (Fig. 1[link]). Geometric parameters may be regarded as normal. A selection is listed in Table 1[link].

Table 1
Selected geometric parameters (Å, °)

S1—N1 1.5139 (16) S1—C17 1.7718 (19)
S1—N2 1.4838 (16) Si—N2 1.7240 (17)
S1—O1 1.6257 (14) N1—C11 1.412 (2)
       
N1—S1—O1 105.93 (8) N2—S1—N1 126.60 (9)
N1—S1—C17 101.98 (9) S1—N2—Si 142.24 (11)
N2—S1—O1 107.27 (8) N2—Si—C27 105.99 (9)
[Figure 1]
Figure 1
The mol­ecular structure of 2-(1,3-dioxoisoindolin-2-yl)ethyl-4-methyl-N-phenyl-N′-(triisopropyl­sil­yl)benzene­sulfondiimidoate (1) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

The tetra­hedral mol­ecular structure shows a sulfur as the central atom, surrounded by four substituents, including two sulfur–nitro­gen double bonds. As a result of the steric repulsion of the aniline ring and the bulky triisopropyl­silyl group, the angle N2—S1—N1 at 126.60 (9)° is larger than the typical tetra­hedral angle (109.5°), whereas the angle between the aniline and toluene ring (N1—S1—C17) and also the 1,3-dioxoisoindolin moiety (N1—S1—O1) are smaller at 101.98 (9) and 105.93 (8)°, respectively. The remaining angle (N2—S1—O1) is 107.27 (8)°. The bond lengths between S1—N1 [1.5139 (16) Å] and S1—N2 [1.4838 (16) Å] are similar to those observed in crystal structures of sulfoximines [1.484 Å; CSD refcode: LISJAZ (Lemasson et al., 2007[Lemasson, F., Gais, H.-J. & Raabe, G. (2007). Tetrahedron Lett. 48, 8752-8756.]) or 1.518 Å; CSD refcode: NADNAH; (Mash et al., 1996[Mash, E. A., Gregg, T. M. & Kaczynski, M. A. (1996). J. Org. Chem. 61, 2743-2752.])], and therefore confirming the presence of the double bonds (Reggelin & Zur, 2000[Reggelin, M. & Zur, C. (2000). Synthesis, pp. 1-64.]). The ring systems are planar (r.m.s values of 0.003 and 0.007 Å for the phenyl rings and 0.022 Å for the phthalimide).

3. Supra­molecular features

The title compound 1 contains secondary nitro­gen groups and a dicarboximide, which are hydrogen-bond acceptors, but no strong or moderate inter­molecular hydrogen bonds were detected in the crystal. Geometric details of some possible weak hydrogen bonds are listed in Table 2[link]. This includes three borderline C—H⋯O hydrogen bonds, which link the chains via the operators 1 + x, −1 + y, z and 2 − x, 1 − y, 1 − z. The contact C31—H31⋯N1, involving a tertiary methyl group, connects the mol­ecules via the operator x, 1 + y, z. Fig. 2[link] shows the unit cell of the compound along the b-axis. It appears that the crystal structure contains anti-parallel π stacking inter­actions of the phthalimide between its electron-rich six-membered ring and electron-poor five-membered ring (Ahmed et al., 2019[Ahmed, M. N., Arif, M., Jabeen, F., Khan, H. A., Yasin, K. A., Tahir, M. N., Franconetti, A. & Frontera, A. (2019). New J. Chem. 43, 8122-8131.]). The centroid-to-centroid distance of 3.470 (1) Å, which is in the range of ππ stacking inter­actions, confirms its presence. The crystal packing is mainly driven by its attractive inter­molecular aromatic inter­actions, as can be shown by the Aromatics Analyser (feature available in Mercury as part of the CSD-Materials and CSD-Enterprise suites). The distance between centroids for which the assessment was labelled `strong' equals to 4.11 Å (score: 9.3) and for the `moderate' ones between 4.48 and 6.39 Å (score: 6.9–3.7) by the CCDC's Aromatics Analyser using a score from 0 (no stabilizing contribution) to 10 (an ideal aromatic inter­action geometry) (assessment: `weak' 0–3, `moderate' 3–7, `strong' 7–10. Mercury 2021.3.0 (Build 333817) used (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O2i 0.95 2.52 3.429 (3) 160
C22—H22⋯O2ii 0.95 2.64 3.348 (3) 132
C14—H14⋯O3iii 0.95 2.52 3.429 (3) 161
C31—H31B⋯N1iv 0.98 2.60 3.361 (3) 135
Symmetry codes: (i) [x+1, y-1, z]; (ii) [x, y-1, z]; (iii) [-x+2, -y+1, -z+1]; (iv) x, y+1, z.
[Figure 2]
Figure 2
Crystal packing in rac-2-(1,3-dioxoisoindolin-2-yl)ethyl-4-methyl-N-phenyl-N′-(triisopropyl­sil­yl)benzene­sulfondiimidoate (1) viewed along the b axis. Anti­parallel stacking of the phthalimide occurs with a centroid–centroid distance of 3.470 (1) Å. Displacement ellipsoids are drawn at the 50% probability level and H atoms are omitted for clarity.

4. Database survey

The herein reported sulfondiimidoate 1 is, based on extensive database searches, not yet described in the literature. A Scifindern structure search with undefined bonds on all substituents of the sulfur and a substituent on the oxygen atom resulted in no structure matches as drawn (SciFinder; Chemical Abstracts Service: Columbus, OH; https://scifinder.cas.org; accessed: 06.05.2022). A broadly defined Cambridge Structural Database search with the five central atoms and any type of bonds (SMARTS pattern [#7]∼[#16](∼[#8])(∼[#6])∼[#7]) on CSD version 5.43 November 2021 plus update of March 2022 found 85 hits (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), all of which are sulfonimidamides.

Restricting this query to a single bond (instead of any bond) between the sulfur and the oxygen returns zero hits. The mean distance between sulfur and oxygen in the 85 hits dataset is 1.436 with a standard deviation of 0.014. The distance S1—O1 (see also Table 1[link]) is hence clearly a single bond and similar functional groups have not been missed by setting the query in too narrow a way.

5. Synthesis and crystallization

Mol­ecular schemes with the atom numbering used in the NMR assignments can be found in Figures S1–S3 in the supporting information. Solvent residue signals were used as inter­nal standard according to the literature [1H-NMR: δ (CHCl3) = 7.26 ppm; 13C-NMR: δ (CDCl3) = 77.16 ppm; (Gottlieb et al., 1997[Gottlieb, H. E., Kotlyar, V. & Nudelman, A. (1997). J. Org. Chem. 62, 7512-7515.])]. The synthesis is shown in Fig. 3[link].

[Figure 3]
Figure 3
Synthesis of the sulfondiimidoate 1. (a) TIPS-Cl, NEt3; (b) C2Cl6, PPh3, NEt3, aniline; (c) C2Cl6, PPh3, NEt3, N-hy­droxy­ethyl­phthalimide.

N-(Tri-iso-propyl­sil­yl)-4-methyl­benzene­sulfonamide (3)

7.51 mL (6.82 g, 35.0 mmol, 1.2 eq.) of TIPS-Cl and 12.1 mL (8.87 g, 87.6 mmol, 3.0 eq.) of NEt3 were added to a suspension of 5.00 g (29.2 mmol, 1.0 eq.) of p-toluene­sulfonamide (2) in 100 mL of CH2Cl2. After stirring for 62 h, 100 mL of 1M HCl were added to the reaction mixture. The aqueous layer was extracted with CH2Cl2 three times, the combined organic layers were dried over MgSO4, the solvent was removed under reduced pressure and the crude product was dissolved in 100 mL of CH2Cl2. After addition of 300 mL of petroleum ether, the CH2Cl2 was removed under reduced pressure. The resulting precipitate was filtered off and washed with pentane. After drying, the protected sulfonamide 3 (9.12 g, 27.8 mmol, 95%) was obtained as a colorless solid. Rf 0.75 (20% EtOAc in penta­ne). M.p. = 427 K. IR (ATR)/cm−1 1462, 1344, 1286, 1154, 1094, 1004, 936. 1H-NMR (CDCl3, 500 MHz, 300 K): δ = 7.80 (d, J = 8.3 Hz, 4-H2), 7.27 (d, J = 8.3 Hz, 3-H2), 4.43 (bs, 6-H1), 2.42 (s, 1-H3), 1.29 (hep., J = 7.5 Hz, 7-H3), 1.15 (d, J = 7.5 Hz, 8-H18) ppm. 13C-NMR (CDCl3, 125 MHz, 300 K): δ = 142.6 (2-C), 141.1 (5-C), 129.5 (3-C2), 126.2 (4-C2), 21.6 (1-C), 18.1 (8-C6), 12.1 (7-C3) ppm. Calculated for C16H29NO2SSi: C 58.67, H 8.92, N 4.28; found: C 58.68, H 9.30, N 4.53. ESI–MS: m/z = 328.18 [M + H]+, 677.33 [2M + Na]+.

4-Methyl-N-phenyl-N-(tri-iso-propyl­sil­yl)benzene­sulf­on­im­id­amide (4)

3.98 g (16.8 mmol, 1.1 eq) of C2Cl6 and 4.40 g (16.8 mmol, 1.1 eq) of PPh3 were heated to reflux of the solvent in 60 mL of CHCl3 for 6 h. After cooling to room temperature, 3.19 mL (2.32 g, 22.9 mmol, 1.5 eq) of NEt3 was added via syringe. After five minutes, the reaction mixture was cooled to 273 K. After another five minutes, 5.00 g (15.3 mmol, 1.0 eq) of 4-methyl-N-(triisopropyl­sil­yl)benzene­sulfon­amide (3) were added. After ten more minutes, 5.58 mL (5.69 g, 61.1 mmol, 4.0 eq) of aniline were added via syringe and the mixture was stirred for one h, at which point the reaction was stopped by the addition of 100 mL of saturated NH4Cl solution. The aqueous phase was extracted three times with 50 mL of CH2Cl2. The combined organic layers were dried over MgSO4, the solvent was removed under reduced pressure and the crude product was purified by flash chromatography (5% EtOAc in penta­ne) affording the sulfonimidamide 4 (5.64 g, 14.0 mmol, 92%) as a colorless solid. Rf 0.63 (20% EtOAc in penta­ne). M.p. = 364 K. IR (ATR)/cm−1 3228, 1600, 1480, 1410, 1347, 1282, 1141, 1091, 895. 1H-NMR (CDCl3, 500 MHz, 300 K): δ = 7.68 (d, J = 8.3Hz, 4-H2), 7.19–7.13 (m, 3/8-H4), 7.03–6.97 (m, 9/10-H3), 6.30 (bs, 6-H), 2.34 (s, 1-H3), 1.18–1.03 (m, 11/12-H21) ppm. 13C-NMR (CDCl3, 125 MHz, 300 K): δ = 142.2 (7-C), 141.0 (2-C), 138.9 (5-C), 129.2 (9-C2), 129.0 (3-C2), 127.1 (4-C2), 124.2 (8-C2), 121.2 (10-C), 21.5 (1-C), 18.5 (12-C6), 13.3 (11-C3) ppm. Calculated for C22H34N2OSSi: C 65.62, H 6.96, N 8.51; found: C 65.65, H 6.97, N 8.55. ESI–MS: m/z = 403.22 [M + H]+.

rac-2-(1,3-Dioxo-iso-indolin-2-yl)ethyl-4-methyl-N-phenyl-N-(tri-iso-propyl­sil­yl)­benzene­sulfondiimidoate (1)

282 mg (1.19 mmol, 1.2 eq) of C2Cl6 and 313 mg (1.19 mmol, 1.2 eq) of PPh3 were heated to reflux of the solvent in 5 mL of CHCl3 for 6 h. After cooling to room temperature, 0.83 mL (603 mg, 5.96 mmol, 6.0 eq) of NEt3 were added via syringe. After five minutes, the reaction mixture was cooled to 273 K. After five more minutes, 400 mg (0.99 mmol, 1.0 eq) of 4-methyl-N-phenyl-N′-(triisopropyl­sil­yl)benzene­sulfonimid­amide (4) were added and the reaction mixture was stirred for 20 more minutes at 273 K, at which point 1.52 g (7.95 mmol, 8.0 eq) of 2-(2-hy­droxy­eth­yl)isoindoline-1,3-dione were added. The mixture was stirred for another 30 min and then quenched with 20 mL of saturated NH4Cl solution. After phase separation, the aqueous solution was extracted three times with 20 mL of CH2Cl2, the combined organic layers were dried over MgSO4, the solvent was removed under reduced pressure and the resulting crude product was purified by flash chromatography (8% EtOAc in penta­ne) affording the sulfondiimidoate 1 (447 mg, 0.78 mmol, 78%) as a colorless solid. Crystals suitable for X-ray structure analysis were obtained by recrystallization from iso-propanol. Rf 0.16 (10% EtOAc in penta­ne). M.p. = 380 K. IR (ATR)/cm−1 2941, 2862, 1712, 1594, 1488, 1391, 1294, 1056, 995. 1H-NMR (CDCl3, 500 MHz, 300 K): δ = 7.83–7.77 (m, 4/16-H4), 7.75–7.70 (m, 17-H2), 7.11–7.04 (m, 3/10-H4), 6.98–6.96 (m, 9-H2), 6.82 (t, J = 7.3 Hz, 11-H), 4.19–4.06 (m, 12-H2), 3.88 (t, J = 5.6 Hz, 13-H2), 2.30 (s, 1-H3), 0.94–0.88 (m, 6/7-H21) ppm. 13C-NMR (CDCl3, 125 MHz, 300 K): δ = 167.9 (14-C2), 144.6 (8-C), 142.4 (2-C), 139.3 (5-C), 134.0 (17-C2), 132.2 (1-C2), 129.3 (3-C2), 128.7 (10-C2), 127.5 (4-C2), 123.7 (9-C2), 123.4 (16-C2), 121.2 (11-C), 64.5 (12-C), 37.2 (13-C), 21.6 (1-C), 18.3 (7-C3), 18.3 (7′-C3), 13.3 (6-C3) ppm. Calculated for C32H41N3O3SSi: C 66.75, H 7.18, N 7.30; found: C 66.62, H 6.86, N 7.13. ESI–MS: m/z = 576.27 [M + H]+.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atoms were refined isotropically using a riding model. The C—H bond distances were constrained to 0.95 Å for aromatic C—H moieties, and to 1.00, 0.99 and 0.98 Å for aliphatic C—H, CH2 and CH3 moieties, respectively. Methyl-H atoms were allowed to rotate but not to tip to best fit the experimental electron density. Uiso(H) values were set to a multiple of Ueq(C) with 1.5 for CH3, and 1.2 for C—H, CH2 groups, respectively.

Table 3
Experimental details

Crystal data
Chemical formula C32H41N3O3SSi
Mr 575.83
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 8.6752 (2), 8.8765 (2), 20.2299 (6)
α, β, γ (°) 78.107 (2), 87.922 (2), 89.512 (2)
V3) 1523.37 (7)
Z 2
Radiation type Cu Kα
μ (mm−1) 1.61
Crystal size (mm) 0.21 × 0.16 × 0.06
 
Data collection
Diffractometer XtaLAB Synergy R, HyPix-Arc 150
Absorption correction Gaussian (CrysAlis PRO; Rigaku, 2021[Rigaku (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.555, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 28106, 5410, 4426
Rint 0.047
(sin θ/λ)max−1) 0.597
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.108, 1.05
No. of reflections 5410
No. of parameters 368
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.56, −0.38
Computer programs: CrysAlis PRO (Rigaku, 2021[Rigaku (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku, 2021); cell refinement: CrysAlis PRO (Rigaku, 2021); data reduction: CrysAlis PRO (Rigaku, 2021); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

rac-2-[7-Methyl-4-(4-methylphenyl)-4-(phenylimino)-6,6-bis(propan-2-yl)-3-oxa-4λ6-thia-5-aza-6-silaoct-4-en-1-yl]-2,3-dihydro-1H-isoindole-1,3-dione top
Crystal data top
C32H41N3O3SSiZ = 2
Mr = 575.83F(000) = 616
Triclinic, P1Dx = 1.255 Mg m3
a = 8.6752 (2) ÅCu Kα radiation, λ = 1.54184 Å
b = 8.8765 (2) ÅCell parameters from 4930 reflections
c = 20.2299 (6) Åθ = 4.5–72.1°
α = 78.107 (2)°µ = 1.61 mm1
β = 87.922 (2)°T = 100 K
γ = 89.512 (2)°Needle, colourless
V = 1523.37 (7) Å30.21 × 0.16 × 0.06 mm
Data collection top
XtaLAB Synergy R, HyPix-Arc 150
diffractometer
5410 independent reflections
Radiation source: Rotating-anode X-ray tube, PhotonJet R (Cu) X-ray Source4426 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.047
Detector resolution: 10.0000 pixels mm-1θmax = 67.1°, θmin = 4.5°
ω scansh = 109
Absorption correction: gaussian
(CrysAlisPro; Rigaku, 2021)
k = 1010
Tmin = 0.555, Tmax = 1.000l = 2424
28106 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0575P)2 + 0.4269P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
5410 reflectionsΔρmax = 0.56 e Å3
368 parametersΔρmin = 0.38 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.64242 (5)0.36921 (5)0.76180 (2)0.01884 (13)
Si0.82253 (6)0.58177 (6)0.83046 (3)0.01969 (14)
O10.53274 (15)0.43170 (15)0.69843 (7)0.0213 (3)
O20.37133 (16)0.92827 (16)0.67134 (7)0.0286 (3)
O30.61871 (16)0.63745 (16)0.53826 (7)0.0293 (3)
N10.75807 (18)0.26207 (18)0.73756 (9)0.0224 (4)
N30.47858 (18)0.75010 (18)0.61476 (8)0.0220 (4)
N20.67766 (18)0.50250 (18)0.79249 (8)0.0215 (4)
C170.5169 (2)0.2380 (2)0.81561 (10)0.0191 (4)
C110.8812 (2)0.3081 (2)0.69029 (10)0.0215 (4)
C40.6598 (2)0.9038 (2)0.54781 (10)0.0238 (4)
C300.8671 (2)0.7773 (2)0.77709 (11)0.0249 (5)
H300.9412340.8290500.8019230.030*
C161.0089 (2)0.2104 (2)0.69474 (11)0.0252 (5)
H161.0136550.1230950.7307620.030*
C90.5850 (2)0.9926 (2)0.58821 (10)0.0247 (4)
C200.3301 (2)0.0244 (2)0.90149 (11)0.0252 (5)
C180.5129 (2)0.2342 (2)0.88389 (10)0.0227 (4)
H180.5732530.3043580.9016270.027*
C30.5901 (2)0.7473 (2)0.56355 (10)0.0226 (4)
C210.3360 (2)0.0304 (2)0.83209 (11)0.0268 (5)
H210.2751460.0390100.8141080.032*
C100.4654 (2)0.8955 (2)0.63090 (10)0.0234 (4)
C120.8784 (2)0.4379 (2)0.63815 (10)0.0239 (4)
H120.7929380.5064350.6349800.029*
C220.4293 (2)0.1361 (2)0.78878 (11)0.0246 (4)
H220.4332140.1387410.7415560.030*
C10.4033 (2)0.5309 (2)0.70767 (10)0.0231 (4)
H1A0.4298080.5983870.7389100.028*
H1B0.3123860.4682280.7270470.028*
C190.4200 (2)0.1271 (2)0.92686 (11)0.0256 (5)
H190.4177840.1239930.9741100.031*
C240.9990 (2)0.4556 (2)0.83641 (11)0.0243 (4)
H241.0241220.4414810.7894350.029*
C20.3681 (2)0.6264 (2)0.63933 (11)0.0239 (4)
H2A0.3662440.5581880.6063270.029*
H2B0.2639290.6717950.6417620.029*
C130.9999 (2)0.4674 (2)0.59088 (11)0.0278 (5)
H130.9975090.5568270.5558040.033*
C270.7421 (2)0.5970 (2)0.91717 (11)0.0246 (4)
H270.7503570.4920070.9465480.030*
C80.6216 (3)1.1462 (2)0.58321 (11)0.0317 (5)
H80.5705881.2070380.6108280.038*
C280.5708 (2)0.6429 (3)0.91904 (12)0.0294 (5)
H28A0.5588790.7498670.8949870.044*
H28B0.5339300.6328560.9661090.044*
H28C0.5105180.5752620.8972140.044*
C250.9721 (2)0.2933 (2)0.87942 (12)0.0296 (5)
H25A0.9471970.3004810.9263090.044*
H25B1.0657070.2314020.8777780.044*
H25C0.8863150.2446440.8615860.044*
C50.7750 (2)0.9636 (2)0.50117 (11)0.0282 (5)
H50.8263840.9021150.4739130.034*
C151.1291 (2)0.2406 (3)0.64663 (12)0.0301 (5)
H151.2152070.1729320.6497360.036*
C141.1246 (2)0.3683 (3)0.59417 (12)0.0303 (5)
H141.2060570.3875320.5608830.036*
C70.7370 (3)1.2071 (3)0.53569 (11)0.0344 (5)
H70.7644861.3124000.5304830.041*
C230.2284 (3)0.0901 (3)0.94846 (12)0.0357 (6)
H23A0.1200460.0670140.9384810.054*
H23B0.2461650.0835270.9953490.054*
H23C0.2529580.1942930.9421080.054*
C261.1435 (2)0.5273 (3)0.85938 (12)0.0333 (5)
H26A1.1612850.6296330.8309420.050*
H26B1.2330530.4614660.8551960.050*
H26C1.1280790.5364570.9066210.050*
C290.8374 (3)0.7056 (3)0.94995 (12)0.0371 (6)
H29A0.9455920.6726650.9510770.056*
H29B0.7974070.7022200.9961610.056*
H29C0.8299420.8109090.9235020.056*
C60.8126 (3)1.1179 (3)0.49584 (11)0.0323 (5)
H60.8914331.1629220.4643200.039*
C310.7218 (3)0.8771 (3)0.76655 (14)0.0431 (6)
H31A0.6399530.8201850.7502340.065*
H31B0.7446300.9717750.7331540.065*
H31C0.6877160.9033970.8095010.065*
C320.9431 (3)0.7677 (3)0.70892 (13)0.0485 (7)
H32A1.0358160.7033640.7160900.073*
H32B0.9717240.8713290.6843810.073*
H32C0.8707150.7223510.6824920.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0187 (2)0.0157 (2)0.0222 (3)0.00142 (18)0.00128 (19)0.00441 (18)
Si0.0192 (3)0.0161 (3)0.0241 (3)0.0013 (2)0.0001 (2)0.0050 (2)
O10.0210 (7)0.0205 (7)0.0231 (8)0.0017 (5)0.0009 (6)0.0061 (6)
O20.0307 (8)0.0274 (8)0.0293 (8)0.0035 (6)0.0014 (7)0.0099 (6)
O30.0310 (8)0.0248 (8)0.0324 (9)0.0012 (6)0.0034 (7)0.0072 (7)
N10.0217 (8)0.0165 (8)0.0285 (10)0.0009 (7)0.0028 (7)0.0043 (7)
N30.0216 (8)0.0197 (8)0.0248 (9)0.0007 (7)0.0004 (7)0.0048 (7)
N20.0200 (8)0.0174 (8)0.0284 (10)0.0009 (7)0.0009 (7)0.0079 (7)
C170.0173 (9)0.0145 (9)0.0250 (11)0.0001 (7)0.0016 (8)0.0028 (8)
C110.0200 (10)0.0218 (10)0.0258 (11)0.0034 (8)0.0006 (8)0.0125 (8)
C40.0222 (10)0.0243 (10)0.0241 (11)0.0004 (8)0.0059 (8)0.0020 (8)
C300.0274 (11)0.0192 (10)0.0296 (12)0.0060 (8)0.0017 (9)0.0079 (9)
C160.0242 (11)0.0237 (10)0.0300 (12)0.0011 (8)0.0012 (9)0.0111 (9)
C90.0265 (11)0.0247 (10)0.0229 (11)0.0026 (9)0.0067 (9)0.0040 (9)
C200.0204 (10)0.0188 (10)0.0344 (13)0.0001 (8)0.0052 (9)0.0015 (9)
C180.0232 (10)0.0189 (9)0.0264 (11)0.0016 (8)0.0008 (8)0.0056 (8)
C30.0213 (10)0.0231 (10)0.0230 (11)0.0008 (8)0.0030 (8)0.0035 (9)
C210.0223 (10)0.0193 (10)0.0395 (13)0.0033 (8)0.0017 (9)0.0078 (9)
C100.0249 (10)0.0228 (10)0.0235 (11)0.0011 (8)0.0066 (9)0.0061 (8)
C120.0226 (10)0.0226 (10)0.0285 (12)0.0012 (8)0.0002 (9)0.0097 (9)
C220.0260 (11)0.0230 (10)0.0259 (11)0.0016 (8)0.0009 (9)0.0076 (9)
C10.0188 (10)0.0239 (10)0.0264 (11)0.0010 (8)0.0025 (8)0.0054 (9)
C190.0281 (11)0.0229 (10)0.0248 (11)0.0018 (9)0.0037 (9)0.0032 (9)
C240.0218 (10)0.0239 (10)0.0283 (12)0.0000 (8)0.0008 (9)0.0076 (9)
C20.0194 (10)0.0230 (10)0.0287 (12)0.0034 (8)0.0010 (8)0.0042 (9)
C130.0311 (11)0.0255 (11)0.0284 (12)0.0091 (9)0.0047 (9)0.0100 (9)
C270.0231 (10)0.0251 (10)0.0265 (11)0.0004 (8)0.0001 (8)0.0074 (9)
C80.0402 (13)0.0267 (11)0.0292 (12)0.0027 (10)0.0073 (10)0.0068 (9)
C280.0256 (11)0.0321 (11)0.0329 (13)0.0004 (9)0.0039 (9)0.0131 (10)
C250.0263 (11)0.0248 (11)0.0376 (13)0.0044 (9)0.0068 (9)0.0055 (10)
C50.0242 (11)0.0304 (11)0.0274 (12)0.0012 (9)0.0035 (9)0.0008 (9)
C150.0211 (11)0.0327 (12)0.0409 (14)0.0001 (9)0.0015 (9)0.0183 (10)
C140.0241 (11)0.0350 (12)0.0365 (13)0.0104 (9)0.0085 (9)0.0193 (10)
C70.0419 (13)0.0284 (11)0.0319 (13)0.0137 (10)0.0111 (11)0.0014 (10)
C230.0301 (12)0.0289 (12)0.0441 (15)0.0060 (10)0.0086 (10)0.0008 (10)
C260.0219 (11)0.0357 (12)0.0435 (14)0.0002 (9)0.0011 (10)0.0111 (11)
C290.0293 (12)0.0521 (15)0.0368 (14)0.0035 (11)0.0009 (10)0.0254 (12)
C60.0297 (12)0.0353 (12)0.0290 (12)0.0102 (10)0.0053 (10)0.0011 (10)
C310.0372 (13)0.0207 (11)0.0650 (18)0.0019 (10)0.0084 (12)0.0075 (11)
C320.0789 (19)0.0266 (12)0.0378 (15)0.0098 (13)0.0190 (14)0.0045 (11)
Geometric parameters (Å, º) top
S1—N11.5139 (16)C19—H190.9500
S1—N21.4838 (16)C24—H241.0000
S1—O11.6257 (14)C24—C251.537 (3)
S1—C171.7718 (19)C24—C261.539 (3)
Si—N21.7240 (17)C2—H2A0.9900
Si—C301.881 (2)C2—H2B0.9900
Si—C241.882 (2)C13—H130.9500
Si—C271.894 (2)C13—C141.383 (3)
O1—C11.452 (2)C27—H271.0000
O2—C101.211 (2)C27—C281.539 (3)
O3—C31.211 (2)C27—C291.539 (3)
N1—C111.412 (2)C8—H80.9500
N3—C31.396 (2)C8—C71.394 (3)
N3—C101.398 (2)C28—H28A0.9800
N3—C21.459 (2)C28—H28B0.9800
C17—C181.374 (3)C28—H28C0.9800
C17—C221.392 (3)C25—H25A0.9800
C11—C161.394 (3)C25—H25B0.9800
C11—C121.394 (3)C25—H25C0.9800
C4—C91.388 (3)C5—H50.9500
C4—C31.489 (3)C5—C61.392 (3)
C4—C51.380 (3)C15—H150.9500
C30—H301.0000C15—C141.386 (3)
C30—C311.531 (3)C14—H140.9500
C30—C321.525 (3)C7—H70.9500
C16—H160.9500C7—C61.387 (3)
C16—C151.389 (3)C23—H23A0.9800
C9—C101.486 (3)C23—H23B0.9800
C9—C81.385 (3)C23—H23C0.9800
C20—C211.393 (3)C26—H26A0.9800
C20—C191.392 (3)C26—H26B0.9800
C20—C231.507 (3)C26—H26C0.9800
C18—H180.9500C29—H29A0.9800
C18—C191.389 (3)C29—H29B0.9800
C21—H210.9500C29—H29C0.9800
C21—C221.387 (3)C6—H60.9500
C12—H120.9500C31—H31A0.9800
C12—C131.387 (3)C31—H31B0.9800
C22—H220.9500C31—H31C0.9800
C1—H1A0.9900C32—H32A0.9800
C1—H1B0.9900C32—H32B0.9800
C1—C21.505 (3)C32—H32C0.9800
O1—S1—C17101.13 (8)N3—C2—C1113.82 (17)
N1—S1—O1105.93 (8)N3—C2—H2A108.8
N1—S1—C17101.98 (9)N3—C2—H2B108.8
N2—S1—O1107.27 (8)C1—C2—H2A108.8
N2—S1—N1126.60 (9)C1—C2—H2B108.8
N2—S1—C17111.06 (9)H2A—C2—H2B107.7
N2—Si—C30107.57 (9)C12—C13—H13119.6
N2—Si—C24110.09 (9)C14—C13—C12120.8 (2)
S1—N2—Si142.24 (11)C14—C13—H13119.6
N2—Si—C27105.99 (9)Si—C27—H27106.6
C30—Si—C24110.30 (9)C28—C27—Si114.45 (15)
C30—Si—C27111.23 (9)C28—C27—H27106.6
C24—Si—C27111.50 (9)C29—C27—Si112.48 (14)
C1—O1—S1118.87 (12)C29—C27—H27106.6
C11—N1—S1125.44 (14)C29—C27—C28109.50 (17)
C3—N3—C10112.05 (16)C9—C8—H8121.6
C3—N3—C2123.98 (16)C9—C8—C7116.8 (2)
C10—N3—C2122.95 (16)C7—C8—H8121.6
C18—C17—S1119.20 (15)C27—C28—H28A109.5
C18—C17—C22120.93 (18)C27—C28—H28B109.5
C22—C17—S1119.81 (15)C27—C28—H28C109.5
C16—C11—N1116.63 (18)H28A—C28—H28B109.5
C12—C11—N1124.22 (17)H28A—C28—H28C109.5
C12—C11—C16119.04 (19)H28B—C28—H28C109.5
C9—C4—C3108.23 (18)C24—C25—H25A109.5
C5—C4—C9121.8 (2)C24—C25—H25B109.5
C5—C4—C3129.93 (19)C24—C25—H25C109.5
Si—C30—H30107.8H25A—C25—H25B109.5
C31—C30—Si111.13 (14)H25A—C25—H25C109.5
C31—C30—H30107.8H25B—C25—H25C109.5
C32—C30—Si112.26 (14)C4—C5—H5121.5
C32—C30—H30107.8C4—C5—C6117.0 (2)
C32—C30—C31110.0 (2)C6—C5—H5121.5
C11—C16—H16119.9C16—C15—H15119.7
C15—C16—C11120.2 (2)C14—C15—C16120.6 (2)
C15—C16—H16119.9C14—C15—H15119.7
C4—C9—C10108.12 (18)C13—C14—C15119.2 (2)
C8—C9—C4121.5 (2)C13—C14—H14120.4
C8—C9—C10130.3 (2)C15—C14—H14120.4
C21—C20—C23121.1 (2)C8—C7—H7119.2
C19—C20—C21118.59 (18)C6—C7—C8121.6 (2)
C19—C20—C23120.3 (2)C6—C7—H7119.2
C17—C18—H18120.2C20—C23—H23A109.5
C17—C18—C19119.65 (19)C20—C23—H23B109.5
C19—C18—H18120.2C20—C23—H23C109.5
O3—C3—N3125.02 (18)H23A—C23—H23B109.5
O3—C3—C4129.27 (19)H23A—C23—H23C109.5
N3—C3—C4105.70 (16)H23B—C23—H23C109.5
C20—C21—H21119.4C24—C26—H26A109.5
C22—C21—C20121.12 (19)C24—C26—H26B109.5
C22—C21—H21119.4C24—C26—H26C109.5
O2—C10—N3124.20 (19)H26A—C26—H26B109.5
O2—C10—C9129.97 (19)H26A—C26—H26C109.5
N3—C10—C9105.82 (17)H26B—C26—H26C109.5
C11—C12—H12119.9C27—C29—H29A109.5
C13—C12—C11120.15 (19)C27—C29—H29B109.5
C13—C12—H12119.9C27—C29—H29C109.5
C17—C22—H22120.5H29A—C29—H29B109.5
C21—C22—C17118.94 (19)H29A—C29—H29C109.5
C21—C22—H22120.5H29B—C29—H29C109.5
O1—C1—H1A110.2C5—C6—H6119.4
O1—C1—H1B110.2C7—C6—C5121.2 (2)
O1—C1—C2107.48 (15)C7—C6—H6119.4
H1A—C1—H1B108.5C30—C31—H31A109.5
C2—C1—H1A110.2C30—C31—H31B109.5
C2—C1—H1B110.2C30—C31—H31C109.5
C20—C19—H19119.6H31A—C31—H31B109.5
C18—C19—C20120.8 (2)H31A—C31—H31C109.5
C18—C19—H19119.6H31B—C31—H31C109.5
Si—C24—H24106.0C30—C32—H32A109.5
C25—C24—Si113.53 (14)C30—C32—H32B109.5
C25—C24—H24106.0C30—C32—H32C109.5
C25—C24—C26110.03 (18)H32A—C32—H32B109.5
C26—C24—Si114.45 (14)H32A—C32—H32C109.5
C26—C24—H24106.0H32B—C32—H32C109.5
S1—O1—C1—C2154.80 (13)C9—C4—C3—N31.7 (2)
S1—N1—C11—C16153.82 (16)C9—C4—C5—C60.5 (3)
S1—N1—C11—C1230.1 (3)C9—C8—C7—C60.7 (3)
S1—C17—C18—C19177.16 (14)C20—C21—C22—C170.5 (3)
S1—C17—C22—C21177.63 (15)C18—C17—C22—C210.5 (3)
O1—S1—N1—C1171.56 (18)C3—N3—C10—O2176.21 (19)
O1—S1—N2—Si143.37 (17)C3—N3—C10—C92.9 (2)
O1—S1—C17—C18138.15 (15)C3—N3—C2—C1105.9 (2)
O1—S1—C17—C2244.69 (16)C3—C4—C9—C100.0 (2)
O1—C1—C2—N374.8 (2)C3—C4—C9—C8177.80 (19)
N1—S1—O1—C1176.34 (13)C3—C4—C5—C6177.5 (2)
N1—S1—N2—Si17.3 (2)C21—C20—C19—C180.4 (3)
N1—S1—C17—C18112.72 (16)C10—N3—C3—O3176.40 (19)
N1—S1—C17—C2264.45 (17)C10—N3—C3—C42.9 (2)
N1—C11—C16—C15174.52 (18)C10—N3—C2—C186.5 (2)
N1—C11—C12—C13174.88 (18)C10—C9—C8—C7177.2 (2)
N2—S1—O1—C146.09 (15)C12—C11—C16—C151.8 (3)
N2—S1—N1—C1155.1 (2)C12—C13—C14—C151.8 (3)
N2—S1—C17—C1824.57 (18)C22—C17—C18—C190.0 (3)
N2—S1—C17—C22158.26 (15)C19—C20—C21—C220.1 (3)
N2—Si—C30—C3155.01 (18)C24—Si—N2—S10.8 (2)
N2—Si—C30—C3268.60 (19)C24—Si—C30—C31175.10 (16)
N2—Si—C24—C2561.52 (17)C24—Si—C30—C3251.5 (2)
N2—Si—C24—C26171.01 (15)C24—Si—C27—C28157.85 (14)
N2—Si—C27—C2838.05 (17)C24—Si—C27—C2976.34 (17)
N2—Si—C27—C29163.87 (15)C2—N3—C3—O37.7 (3)
C17—S1—O1—C170.31 (14)C2—N3—C3—C4171.58 (17)
C17—S1—N1—C11176.97 (17)C2—N3—C10—O27.4 (3)
C17—S1—N2—Si106.97 (18)C2—N3—C10—C9171.74 (17)
C17—C18—C19—C200.5 (3)C27—Si—N2—S1121.54 (18)
C11—C16—C15—C140.6 (3)C27—Si—C30—C3160.64 (18)
C11—C12—C13—C140.7 (3)C27—Si—C30—C32175.74 (17)
C4—C9—C10—O2177.3 (2)C27—Si—C24—C2555.82 (18)
C4—C9—C10—N31.7 (2)C27—Si—C24—C2671.65 (18)
C4—C9—C8—C70.0 (3)C8—C9—C10—O20.2 (4)
C4—C5—C6—C70.1 (3)C8—C9—C10—N3179.2 (2)
C30—Si—N2—S1119.40 (18)C8—C7—C6—C50.7 (3)
C30—Si—C24—C25179.92 (15)C5—C4—C9—C10178.36 (18)
C30—Si—C24—C2652.46 (18)C5—C4—C9—C80.6 (3)
C30—Si—C27—C2878.57 (17)C5—C4—C3—O30.7 (4)
C30—Si—C27—C2947.24 (18)C5—C4—C3—N3179.9 (2)
C16—C11—C12—C131.1 (3)C23—C20—C21—C22179.82 (19)
C16—C15—C14—C131.2 (3)C23—C20—C19—C18179.31 (18)
C9—C4—C3—O3177.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O2i0.952.523.429 (3)160
C22—H22···O2ii0.952.643.348 (3)132
C14—H14···O3iii0.952.523.429 (3)161
C31—H31B···N1iv0.982.603.361 (3)135
Symmetry codes: (i) x+1, y1, z; (ii) x, y1, z; (iii) x+2, y+1, z+1; (iv) x, y+1, z.
 

Funding information

Funding for this research was provided by: Merck KGaA.

References

First citationAhmed, M. N., Arif, M., Jabeen, F., Khan, H. A., Yasin, K. A., Tahir, M. N., Franconetti, A. & Frontera, A. (2019). New J. Chem. 43, 8122–8131.  Web of Science CSD CrossRef CAS Google Scholar
First citationBohmann, R. A., Schöbel, J.-H., Unoh, Y., Miura, M. & Bolm, C. (2019). Adv. Synth. Catal. 361, 2000–2003.  Web of Science CSD CrossRef CAS Google Scholar
First citationChen, Y. & Gibson, J. (2015). RSC Adv. 5, 4171–4174.  Web of Science CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGottlieb, H. E., Kotlyar, V. & Nudelman, A. (1997). J. Org. Chem. 62, 7512–7515.  CrossRef PubMed CAS Web of Science Google Scholar
First citationGreed, S., Briggs, E. L., Idiris, F. I. M., White, A. J. P., Lücking, U. & Bull, J. A. (2020). Chem. Eur. J. 26, 12533–12538.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIzzo, F., Schäfer, M., Stockman, R. & Lücking, U. (2017). Chem. Eur. J. 23, 15189–15193.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLemasson, F., Gais, H.-J. & Raabe, G. (2007). Tetrahedron Lett. 48, 8752–8756.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, Y., Pan, Q., Hu, X., Guo, Y., Chen, Q.-Y. & Liu, C. (2021). Org. Lett. 23, 3975–3980.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLücking, U. (2013). Angew. Chem. Int. Ed. 52, 9399–9408.  Google Scholar
First citationLücking, U. (2019). Org. Chem. Front. 6, 1319–1324.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMash, E. A., Gregg, T. M. & Kaczynski, M. A. (1996). J. Org. Chem. 61, 2743–2752.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationNandi, G. C. & Arvidsson, P. I. (2018). Adv. Synth. Catal. 360, 2976–3001.  Web of Science CrossRef CAS Google Scholar
First citationReggelin, M. & Zur, C. (2000). Synthesis, pp. 1–64.  CrossRef Google Scholar
First citationRigaku (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWen, J., Cheng, H., Dong, S. & Bolm, C. (2016). Chem. Eur. J. 22, 5547–5550.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhang, Z.-X., Davies, T. Q. & Willis, M. C. (2019). J. Am. Chem. Soc. 141, 13022–13027.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhang, Z.-X. & Willis, M. C. (2022). Chem, 8, 1137–1146.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds