research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of three zinc(II) halide coordination complexes with quinoline N-oxide

crossmark logo

aGeorgia Southern University, 11935 Abercorn St., Department of Chemistry and Biochemistry, Savannah GA 31419, USA
*Correspondence e-mail: cpadgett@georgiasouthern.edu

Edited by A. S. Batsanov, University of Durham, England (Received 20 January 2022; accepted 2 June 2022; online 10 June 2022)

The reaction of one equivalent of zinc(II) halide with two equivalents of quinoline N-oxide (QNO) in methanol yields compounds as ZnX2(QNO)2, where X = Cl (I), Br (II) and I (III), namely, di­chlorido­bis­(quinoline N-oxide-κO)zinc(II), [ZnCl2(C9H7NO)2], di­bromido­bis­(quinoline N-oxide-κO)zinc(II), [ZnBr2(C9H7NO)2], and di­iodido­bis­(quinoline N-oxide-κO)zinc(II) [ZnI2(C9H7NO)2]. In all three complexes, Zn cations are coordinated by two QNO ligands bound through the oxygen atoms and two halide atoms, with X—Zn—X bond angles ca 20° wider than the O—Zn—O, giving rise to a distorted tetra­hedral geometry. Crystals of (II) and (III) are isostructural and both show pairwise π-stacking of QNO ligands and weak C—H⋯X hydrogen bonds, while (I) packs differently, with a shorter C—H⋯Cl bond and without π-stacking.

1. Chemical context

N-oxide complexes have a rich history in organic transformations, including utility with transition metals in oxotransformations [see, for example, Eppenson (2003[Eppenson, J. H. (2003). Adv. Inorg. Chem. 54, 157-202.]) and Moustafa et al. (2014[Moustafa, M. E., Boyle, P. D. & Puddephatt, R. J. (2014). Organometallics, 33, 5402-5413.])]. These transition-metal N-oxide complexes highlight the strong Lewis acid/Lewis base properties of the zinc(II) ion and N-oxides, respectively. Aromatic N-oxides are strong Lewis base ligands and form transition-metal complexes that are prevalent in the literature and highlight the strong transition metal inter­actions with the lone pair on the N-oxide oxygen atom. Examples of such complexes include a 4-methyl­pyridine N-oxide (MePyNO) derivative CuCl2·2MePyNO (CMPYUC; Watson & Johnson, 1971[Watson, W. H. & Johnson, D. R. (1971). Inorg. Chem. 10, 1281-1288.]) and pyridine N-oxide (6PyNO) derivatives Ni(BF4)2·6PyNO (PYNONI; van Ingen Schenau et al., 1974[Ingen Schenau, A. D. van, Verschoor, C. G. & Romers, C. (1974). Acta Cryst. B30, 1686-1694.]) or Au(CF3)3·PyNO (NEPVOW; Pérez-Bitrián et al., 2017[Pérez-Bitrián, A., Baya, M., Casas, J. M., Falvello, L. R., Martín, A. & Menjón, B. (2017). Chem. Eur. J. 23, 14918-14930.]). Previous reports of zinc(II) complexes with aromatic N-oxides include di­bromo­bis­(4-meth­oxy­pyridine N-oxide-κO)zinc(II) (GAWHIW; Shi et al. 2005a[Shi, J. M., Zhang, F. X., Wu, C. J. & Liu, L. D. (2005a). Acta Cryst. E61, m2262-m2263.]), di­aqua­bis­(picolinato N-oxide-κ2O,O′)zinc(II) (XISBOR; Li et al., 2008[Li, X.-B., Shang, R.-L. & Sun, B.-W. (2008). Acta Cryst. E64, m131.]) and di­chloro­bis­(pyridine N-oxide)zinc(II) (QQQBXP01; McConnell et al., 1986[McConnell, N. M., Day, R. O. & Wood, J. S. (1986). Acta Cryst. C42, 1094-1095.]), all of which are mononuclear complexes.

Herein we report the crystal structures of three complexes of quinoline N-oxide (QNO) with zinc(II) chloride, bromide and iodide. All three were obtained by 1:2 stoichiometric reaction of the zinc(II) halide with QNO in methanol and found to be mononuclear ZnX2(QNO)2 complexes with a distorted tetra­hedral environment around the zinc ion.

[Scheme 1]

2. Structural commentary

Compound (I) crystallizes in the monoclinic space group P21 (Fig. 1[link]), whereas compounds (II) (Fig. 2[link]) and (III) (Fig. 3[link]) both crystallize in the monoclinic space group P21/c. Each structure contains one symmetrically independent mol­ecule, the coordination sphere around each Zn atom being a distorted tetra­hedron. Selected bond lengths and angles in these complexes are shown in Table 1[link]. Compounds (II) and (III) are isostructural in both the mol­ecular conformation and crystal packing, while (I) differs in both aspects, as illustrated by an overlay of mol­ecules (I) and (II) (Fig. 4[link]a) on one hand, and mol­ecules (II) and (III) on the other (Fig. 4[link]b). Most notably, (I) differs in the orientation of the QNO rings relative to each other, the C2—N1—N2—C11 torsion angles being −16.9 (5)° in (I) versus −113.9 (3)° in (II) and −111.6 (3)° in (III).

Table 1
Selected bond lengths and angles (Å, °)

Compound (I)   Compound (II)   Compound (III)  
Zn1—Cl1 2.215 (2) Zn1—Br1 2.3575 (9) Zn1—I1 2.5534 (8)
Zn1—Cl2 2.211 (2) Zn1—Br2 2.3472 (10) Zn1—I2 2.5475 (9)
Zn1—O1 1.991 (5) Zn1—O1 1.975 (4) Zn1—O1 1.974 (4)
Zn1—O2 1.959 (5) Zn1—O2 1.989 (4) Zn1—O2 1.995 (4)
Cl1—Zn1—Cl2 117.80 (9) Br1—Zn1—Br2 123.45 (4) I1—Zn1—I2 122.34 (3)
O1—Zn1—O2 99.4 (2) O1—Zn1—O2 103.10 (16) O1—Zn1—O2 104.12 (19)
[Figure 1]
Figure 1
A view of compound (I), showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
A view of compound (II), showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3]
Figure 3
A view of compound (III), showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 4]
Figure 4
(a) Mol­ecular overlay of compound (I) (green) and compound (II) (brown). (b) Mol­ecular overlay of compound (II) (brown) and compound (III) (purple).

3. Supra­molecular features

Figs. 5[link], 6[link] and 7[link] show the packing of compounds (I), (II) and (III), respectively. In the crystal structures, the packing is stabilized by van der Waals inter­actions and, in (II) and (III), by similar systems of pairwise ππ stacking inter­actions. Quinoline moieties Cg1–Cg3 and Cg2–Cg4 (see Figs. 6[link] and 7[link]) are stacked each against its own inversion-related equivalent, with the separations between their (parallel) mean planes equaling 3.483 (5) and 3.402 (5) Å, respectively, for (II), 3.466 (5) and 3.436 (5) Å for (III). The structure of (I) has no π-stacking. Besides, all three structures are characterized by C—H⋯X hydrogen bonds (X = halogen), see below.

[Figure 5]
Figure 5
Crystal packing diagram of compound (I), viewed down the [101] direction.
[Figure 6]
Figure 6
Crystal packing diagram of compound (II), viewed down the b axis.
[Figure 7]
Figure 7
Crystal packing diagram of compound (III), viewed down the b axis.

4. Hirshfeld surface analysis

The inter­molecular inter­actions were further investigated by qu­anti­tative analysis of the Hirshfeld surface, and visualized with Crystal Explorer 21 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) and the two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]). Figs. 8[link], 9[link] and 10[link] show Hirshfeld surfaces of mol­ecules (I) to (III) mapped with the function dnorm, the sum of the distances from a surface point to the nearest inter­ior (di) and exterior (de) atoms, normalized by the van der Waals (vdW) radii of the corres­ponding atoms (rvdW). Contacts shorter than the sums of vdW radii are shown in red, those longer in blue, and those approximately equal to vdW as white spots.

[Figure 8]
Figure 8
Hirshfeld surface for (I) mapped over dnorm.
[Figure 9]
Figure 9
Hirshfeld surface for (II) mapped over dnorm.
[Figure 10]
Figure 10
Hirshfeld surface for (III) mapped over dnorm.

For (I), the most intense red spots correspond to the inter­molecular contacts O1⋯C9(1 − x, y − [{1\over 2}], 1 − z) [3.048 (9) Å] and the hydrogen bond C18—H18⋯Cl2(x, y + 1, z). The latter has the distances H⋯Cl = 2.53 Å (for the C—H distance normalized to 1.083 Å) and C⋯Cl = 3.416 (9) Å within the previously observed range but shorter than the average values of 2.64 and 3.66 Å, respectively (Steiner, 1998[Steiner, T. (1998). Acta Cryst. B54, 456-463.]). The other chloride ligand, Cl2, forms four H⋯Cl contacts of 2.83–2.98 Å, more typical for van der Waals inter­actions (Rowland & Taylor, 1996[Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391.]). For (II) and (III), the red spots correspond to C—H⋯X inter­actions, viz. C18—H18⋯X1, C5—H5⋯X1, C16—H16⋯X2, and C9—H9⋯X2, which can be also regarded as weak hydrogen bonds (Steiner, 1998[Steiner, T. (1998). Acta Cryst. B54, 456-463.]). The H⋯X distances in (II) (X = Br) are 2.85, 2.88, 2.88 and 2.89 Å, respectively, while in (III) (X = I) they are 3.03, 3.12, 3.03 and 2.96 Å, respectively.

Analysis of the two-dimensional fingerprint plots (Table 2[link]) indicates that H⋯H contacts are the most common in all three structures. X⋯H contacts make the second highest contribution, which increases in the succession (I) < (II) < (III), together with the size of the halogen atoms and hence their share of the mol­ecular surface (16.9, 18.5 and 20.6%, respectively). Inter­estingly, π-stacking in the structures of (II) and (III) gives only a modest increase of C⋯C contacts compared to (I), probably because it is counterbalanced by an overall decrease of carbon atoms' share of the surface (21.4 > 19.5 > 18.3%). No halogen⋯halogen contacts are observed in any of the three structures.

Table 2
Contributions of selected inter­molecular contacts (%)

Compound (I) (II) (III)
H⋯H 32.0 36.7 36.5
H⋯X/X⋯H 24.4 28.4 30.0
C⋯H/H⋯C 22.7 18.5 18.0
C⋯C 5.4 7.1 6.4
O⋯H/H⋯O 6.0 4.0 3.7

5. Database survey

A search in the Cambridge Structural Database (CSD, version 5.42, update of February 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for aromatic N-oxides and halogen ligands bound to zinc returned 21 unique entries, the majority (15) of which contain pyridine N-oxide and its derivatives. Of these, the most closely related are pyridine N-oxide complexes, di­chloro­bis­(pyridine N-oxide)zinc(II) (QQQBXP01; McConnell et al., 1986[McConnell, N. M., Day, R. O. & Wood, J. S. (1986). Acta Cryst. C42, 1094-1095.]), di­bromo­robis(pyridine N-oxide)zinc(II) (FIPVUV; Edwards et al., 1999[Edwards, R. A., Gladkikh, O. P., Nieuwenhuyzen, M. & Wilkins, C. J. (1999). Z. Kristallogr. 214, 111-118.]) and di­iodo­robis(pyridine N-oxide)zinc(II) (IPNOZN01; Edwards et al., 1999[Edwards, R. A., Gladkikh, O. P., Nieuwenhuyzen, M. & Wilkins, C. J. (1999). Z. Kristallogr. 214, 111-118.]). Related to these are methyl derivatives of pyridine N-oxide complexes with ZnCl2, viz. di­chloro­bis­(2,6-di­methyl­pyridine N-oxide)zinc(II) (LUTOZN; Sager & Watson, 1968[Sager, R. S. & Watson, H. W. (1968). Inorg. Chem. 7, 1358-1362.]), three isomers of di­chloro­bis­(methyl­pyridine N-oxide)zinc(II) (QQQBXG, QQQBXJ, QQQBXM), for which only unit-cell parameters were determined (Kidd et al., 1967[Kidd, M. R., Sager, R. S. & Watson, W. H. (1967). Inorg. Chem. 6, 946-951.]), and finally, di­iodo­bis­(4-methyl­pyridine N-oxide)zinc(II) (SANRUV; Shi et al., 2005b[Shi, J.-M., Liu, Z., Lu, J.-J. & Liu, L.-D. (2005b). Acta Cryst. E61, m856-m857.]). There is one known structure of a quinoline N-oxide derivative, di­chloro­bis­(2-methyl­quinoline N-oxide)zinc(II) (AFUSEZ; Ivashevskaja et al., 2002[Ivashevskaja, S. N., Aleshina, L. A., Andreev, V. P., Nizhnik, Y. P., Chernyshev, V. V. & Schenk, H. (2002). Acta Cryst. C58, m300-m301.]).

6. Synthesis and crystallization

The water content of QNO and ZnBr2 have been determined by Thermal Gravimetric Analysis. The formulation for each was found to be QNO·0.28H2O (MW = 150.21 g mol−1) and ZnBr2·0.86H2O (FW = 240.69 g mol−1).

The title compounds were all synthesized in a similar manner. Compound (I) was synthesized by dissolving 0.0986 g of QNO·0.28H2O (0.656 mmol, purchased from Aldrich) in 33 mL of methanol to which 0.0440 g of ZnCl2 (0.176 mmol, purchased from Strem Chemicals) were added at 295 K. The solution was covered with parafilm then allowed to sit; X-ray quality crystals were grown by slow evaporation at 295 K. Yield, 0.0822 g (60.2%). Selected IR bands (ATR–IR, cm−1): 3107 (w), 3083 (w), 3057 (w), 1579 (m), 1513 (m), 1447 (m), 1402 (s), 1269 (s), 1227 (m), 1203 (s), 1179 (m), 1144 (m), 1089 (s), 1050 (m), 883 (s), 800 (s), 768 (s), 723 (m), 584 (m), 559 (m), 542 (m).

Compound (II) was synthesized by dissolving 0.0983 g of QNO·0.28H2O (0.654 mmol), in 40 mL of methanol to which 0.0778 g of ZnBr2·0.86H2O (0.323 mmol, purchased from Alfa Aesar) were added at 295 K. The solution was covered with parafilm then allowed to sit; X-ray quality crystals were grown by slow evaporation at 295 K. Yield, 0.0866 g (46.7%). Selected IR bands (ATR–IR, cm−1): 3106 (w), 3075 (w), 3061 (w), 3016 (w), 1580 (m), 1510 (s), 1455 (m), 1270 (s), 1227 (m), 1214 (s), 1204 (s), 1173 (m), 1138 (m), 1086 (s), 1048 (m), 877 (m), 800 (s), 767 (s), 720 (s), 581 (m), 563 (m), 500 (m).

Compound (III) was synthesized by dissolving 0.0517 g of QNO·0.28H2O (0.352 mmol) in approximately 36 mL of methanol to which 0.0524 g of ZnI2 (0.164 mmol, purchased from Aldrich) were added at 295 K. The solution was covered with parafilm then allowed to sit; X-ray quality crystals were grown by slow evaporation at 295 K. Yield, 0.0910 g (52.3%). Selected IR Bands (ATR–IR, cm−1): 3100 (w), 3090 (w), 2076 (w), 3059 (w), 3027 (w),1580 (s), 1507 (s), 1382 (s), 1267 (m), 1225 (m), 1207 (s), 1169 (m), 1141 (m), 1044 (m), 880 (s), 807 (s), 769 (s), 720 (m), 580 (m), 562 (m), 499 (m).

Infrared spectroscopy confirms the presence of the QNO ligand in all three complexes. Characteristic IR bands include weak νC—H aromatic stretches observed from 3020–3107 cm−1 and νN—O stretches of the bound N-oxide in the range 1350–1150 cm−1; notably, a medium band observed in the ligand at 1311 cm−1, appears at between 1225–1227 cm−1 in the three metal complexes. Finally, a broad absorbance in the free ligand from 3100–3500 cm−1 (assigned to the water νO—H stretch) is absent in all of the metal complexes (Mautner et al., 2016[Mautner, F. A., Berger, C., Fischer, R. C. & Massoud, S. S. (2016). Inorg. Chim. Acta, 439, 1, 69-76.]).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All carbon-bound H atoms were positioned geometrically and refined as riding: C—H = 0.95–0.98 Å with Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula [ZnCl2(C9H7NO)2] [ZnBr2(C9H7NO)2] [ZnI2(C9H7NO)2]
Mr 426.58 515.50 609.48
Crystal system, space group Monoclinic, P21 Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 298 298 297
a, b, c (Å) 8.5167 (4), 7.8697 (4), 13.1617 (7) 16.3922 (11), 7.3527 (6), 15.5809 (10) 16.7231 (7), 7.6155 (4), 15.8689 (7)
β (°) 94.890 (5) 97.113 (6) 97.192 (4)
V3) 878.94 (8) 1863.5 (2) 2005.08 (16)
Z 2 4 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 1.72 5.62 4.32
Crystal size (mm) 0.1 × 0.1 × 0.03 0.15 × 0.08 × 0.03 0.3 × 0.3 × 0.3
 
Data collection
Diffractometer Rigaku XtaLAB mini XtaLAB Mini (ROW) Rigaku XtaLAB mini
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.968, 1.000 0.833, 1.000 0.896, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 5308, 3169, 2456 7207, 3415, 2095 11510, 3668, 2748
Rint 0.036 0.043 0.032
(sin θ/λ)max−1) 0.602 0.602 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.077, 1.03 0.042, 0.090, 1.02 0.035, 0.085, 1.07
No. of reflections 3169 3415 3668
No. of parameters 226 226 227
No. of restraints 1 0 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.42, −0.35 0.55, −0.35 0.80, −0.81
Absolute structure Flack x determined using 810 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]).
Absolute structure parameter −0.006 (15)
Computer programs: CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For all structures, data collection: CrysAlis PRO (Rigaku OD, 2019); cell refinement: CrysAlis PRO (Rigaku OD, 2019); data reduction: CrysAlis PRO (Rigaku OD, 2019); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Dichloridobis(quinoline N-oxide-κO)zinc(II) (I) top
Crystal data top
[ZnCl2(C9H7NO)2]F(000) = 432
Mr = 426.58Dx = 1.612 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 8.5167 (4) ÅCell parameters from 1644 reflections
b = 7.8697 (4) Åθ = 2.4–22.4°
c = 13.1617 (7) ŵ = 1.72 mm1
β = 94.890 (5)°T = 298 K
V = 878.94 (8) Å3Cube, clear colourless
Z = 20.1 × 0.1 × 0.03 mm
Data collection top
Rigaku XtaLAB mini
diffractometer
3169 independent reflections
Radiation source: fine-focus sealed X-ray tube, Rigaku (Mo) X-ray Source2456 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 25.4°, θmin = 2.4°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2019)
h = 1010
Tmin = 0.968, Tmax = 1.000k = 99
5308 measured reflectionsl = 1514
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.044 w = 1/[σ2(Fo2) + (0.0183P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.077(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.42 e Å3
3169 reflectionsΔρmin = 0.35 e Å3
226 parametersAbsolute structure: Flack x determined using 810 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
1 restraintAbsolute structure parameter: 0.006 (15)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.60832 (9)0.40878 (9)0.69325 (6)0.0481 (2)
Cl10.8131 (2)0.5260 (3)0.78185 (18)0.0717 (6)
Cl20.5724 (2)0.1322 (2)0.71012 (17)0.0668 (6)
O10.6087 (5)0.4435 (7)0.5459 (4)0.0660 (17)
O20.4152 (6)0.5393 (6)0.7184 (4)0.0543 (13)
N10.6919 (7)0.5702 (8)0.5068 (4)0.0472 (15)
N20.3927 (6)0.6163 (7)0.8067 (4)0.0461 (14)
C10.7938 (8)0.5254 (9)0.4342 (5)0.0418 (17)
C20.8061 (9)0.3562 (9)0.4045 (6)0.052 (2)
H20.7457780.2725010.4324330.063*
C30.9086 (10)0.3150 (11)0.3332 (6)0.065 (2)
H30.9161680.2030420.3116360.077*
C41.0011 (10)0.4398 (14)0.2932 (6)0.071 (3)
H41.0722980.4096060.2465980.085*
C50.9891 (9)0.6041 (11)0.3210 (6)0.061 (2)
H51.0510650.6856760.2925530.074*
C60.8835 (8)0.6538 (9)0.3931 (5)0.0469 (18)
C70.8623 (9)0.8234 (8)0.4243 (6)0.056 (2)
H70.9207370.9100570.3977500.067*
C80.7577 (10)0.8601 (9)0.4927 (6)0.063 (2)
H80.7420520.9720810.5119240.075*
C90.6733 (9)0.7293 (10)0.5342 (6)0.056 (2)
H90.6027180.7548240.5821430.068*
C100.3113 (8)0.5307 (9)0.8777 (6)0.0441 (18)
C110.2654 (9)0.3621 (9)0.8595 (6)0.059 (2)
H110.2892390.3064870.8003710.071*
C120.1846 (10)0.2810 (12)0.9306 (7)0.073 (2)
H120.1548900.1680620.9207400.087*
C130.1458 (11)0.3686 (13)1.0195 (7)0.081 (3)
H130.0890400.3128531.0667780.097*
C140.1899 (10)0.5309 (12)1.0360 (7)0.069 (3)
H140.1638180.5856311.0949120.082*
C150.2745 (8)0.6187 (10)0.9661 (5)0.0508 (19)
C160.3245 (9)0.7899 (11)0.9803 (6)0.065 (2)
H160.3004580.8504851.0375800.078*
C170.4081 (9)0.8637 (10)0.9084 (6)0.067 (2)
H170.4431320.9750850.9171710.081*
C180.4411 (9)0.7745 (11)0.8231 (6)0.061 (2)
H180.4993840.8269570.7753840.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0494 (4)0.0451 (5)0.0519 (5)0.0013 (5)0.0168 (4)0.0023 (5)
Cl10.0656 (13)0.0678 (14)0.0812 (16)0.0173 (11)0.0034 (12)0.0053 (12)
Cl20.0710 (14)0.0421 (11)0.0875 (16)0.0034 (10)0.0087 (12)0.0054 (10)
O10.066 (3)0.083 (5)0.052 (3)0.033 (3)0.025 (3)0.006 (3)
O20.059 (3)0.063 (3)0.043 (3)0.011 (3)0.017 (3)0.010 (3)
N10.045 (3)0.057 (4)0.040 (4)0.004 (3)0.006 (3)0.002 (3)
N20.042 (3)0.050 (4)0.046 (4)0.007 (3)0.004 (3)0.003 (3)
C10.041 (4)0.047 (4)0.037 (4)0.003 (4)0.000 (3)0.010 (4)
C20.052 (5)0.056 (5)0.048 (5)0.008 (4)0.005 (4)0.003 (3)
C30.071 (6)0.064 (6)0.060 (5)0.005 (5)0.012 (5)0.003 (4)
C40.065 (5)0.097 (8)0.053 (5)0.012 (6)0.016 (4)0.008 (6)
C50.047 (5)0.078 (6)0.061 (6)0.006 (5)0.018 (4)0.027 (5)
C60.044 (4)0.052 (5)0.045 (4)0.008 (4)0.004 (4)0.010 (4)
C70.058 (5)0.043 (5)0.062 (5)0.012 (4)0.013 (4)0.019 (4)
C80.076 (6)0.042 (5)0.068 (5)0.006 (4)0.009 (5)0.001 (4)
C90.059 (5)0.065 (6)0.046 (4)0.013 (4)0.010 (4)0.004 (4)
C100.039 (4)0.043 (4)0.050 (5)0.009 (4)0.004 (4)0.008 (4)
C110.055 (5)0.061 (6)0.062 (5)0.003 (4)0.011 (4)0.004 (4)
C120.076 (6)0.056 (5)0.086 (7)0.007 (5)0.015 (6)0.002 (5)
C130.073 (6)0.097 (10)0.075 (6)0.004 (6)0.021 (5)0.022 (6)
C140.062 (6)0.085 (7)0.060 (6)0.004 (5)0.012 (5)0.001 (5)
C150.047 (4)0.059 (5)0.046 (5)0.008 (4)0.004 (4)0.002 (4)
C160.066 (6)0.065 (6)0.063 (5)0.010 (5)0.001 (5)0.021 (5)
C170.070 (6)0.053 (6)0.078 (6)0.004 (4)0.001 (5)0.011 (4)
C180.072 (6)0.039 (4)0.073 (6)0.005 (4)0.012 (5)0.004 (5)
Geometric parameters (Å, º) top
Zn1—Cl12.215 (2)C7—H70.9300
Zn1—Cl22.211 (2)C7—C81.350 (11)
Zn1—O11.959 (5)C8—H80.9300
Zn1—O21.991 (4)C8—C91.393 (10)
O1—N11.351 (7)C9—H90.9300
O2—N21.339 (6)C10—C111.398 (10)
N1—C11.389 (8)C10—C151.412 (10)
N1—C91.316 (9)C11—H110.9300
N2—C101.385 (8)C11—C121.366 (10)
N2—C181.324 (9)C12—H120.9300
C1—C21.395 (9)C12—C131.421 (12)
C1—C61.403 (9)C13—H130.9300
C2—H20.9300C13—C141.344 (12)
C2—C31.373 (10)C14—H140.9300
C3—H30.9300C14—C151.399 (10)
C3—C41.390 (11)C15—C161.420 (11)
C4—H40.9300C16—H160.9300
C4—C51.350 (12)C16—C171.362 (11)
C5—H50.9300C17—H170.9300
C5—C61.417 (10)C17—C181.373 (10)
C6—C71.412 (10)C18—H180.9300
Cl2—Zn1—Cl1117.80 (9)C8—C7—H7119.9
O1—Zn1—Cl1113.30 (15)C7—C8—H8120.2
O1—Zn1—Cl2104.40 (18)C7—C8—C9119.7 (7)
O1—Zn1—O299.4 (2)C9—C8—H8120.2
O2—Zn1—Cl1108.81 (16)N1—C9—C8121.1 (7)
O2—Zn1—Cl2111.57 (16)N1—C9—H9119.4
N1—O1—Zn1121.7 (4)C8—C9—H9119.4
N2—O2—Zn1124.0 (4)N2—C10—C11119.6 (7)
O1—N1—C1117.0 (6)N2—C10—C15118.5 (7)
C9—N1—O1121.2 (6)C11—C10—C15121.9 (7)
C9—N1—C1121.8 (6)C10—C11—H11120.8
O2—N2—C10118.8 (6)C12—C11—C10118.4 (8)
C18—N2—O2120.2 (6)C12—C11—H11120.8
C18—N2—C10120.9 (6)C11—C12—H12119.9
N1—C1—C2120.1 (7)C11—C12—C13120.2 (9)
N1—C1—C6118.3 (7)C13—C12—H12119.9
C2—C1—C6121.6 (7)C12—C13—H13119.6
C1—C2—H2120.5C14—C13—C12120.9 (9)
C3—C2—C1118.9 (7)C14—C13—H13119.6
C3—C2—H2120.5C13—C14—H14119.5
C2—C3—H3119.8C13—C14—C15121.0 (9)
C2—C3—C4120.4 (8)C15—C14—H14119.5
C4—C3—H3119.8C10—C15—C16119.2 (7)
C3—C4—H4119.5C14—C15—C10117.6 (8)
C5—C4—C3121.0 (8)C14—C15—C16123.2 (8)
C5—C4—H4119.5C15—C16—H16120.6
C4—C5—H5119.6C17—C16—C15118.8 (7)
C4—C5—C6120.9 (8)C17—C16—H16120.6
C6—C5—H5119.6C16—C17—H17119.8
C1—C6—C5117.2 (7)C16—C17—C18120.3 (8)
C1—C6—C7118.8 (7)C18—C17—H17119.8
C7—C6—C5124.0 (7)N2—C18—C17122.1 (8)
C6—C7—H7119.9N2—C18—H18118.9
C8—C7—C6120.3 (7)C17—C18—H18118.9
Zn1—O1—N1—C1127.4 (5)C4—C5—C6—C10.5 (11)
Zn1—O1—N1—C954.6 (8)C4—C5—C6—C7178.7 (8)
Zn1—O2—N2—C1094.8 (6)C5—C6—C7—C8179.3 (7)
Zn1—O2—N2—C1888.5 (7)C6—C1—C2—C30.0 (12)
O1—N1—C1—C20.3 (10)C6—C7—C8—C91.6 (12)
O1—N1—C1—C6179.2 (6)C7—C8—C9—N11.1 (12)
O1—N1—C9—C8179.1 (6)C9—N1—C1—C2177.7 (7)
O2—N2—C10—C115.0 (9)C9—N1—C1—C62.8 (10)
O2—N2—C10—C15173.8 (6)C10—N2—C18—C172.7 (11)
O2—N2—C18—C17174.0 (6)C10—C11—C12—C131.4 (12)
N1—C1—C2—C3179.5 (6)C10—C15—C16—C170.7 (11)
N1—C1—C6—C5178.5 (6)C11—C10—C15—C140.1 (11)
N1—C1—C6—C72.2 (10)C11—C10—C15—C16180.0 (7)
N2—C10—C11—C12179.7 (7)C11—C12—C13—C141.2 (14)
N2—C10—C15—C14179.0 (6)C12—C13—C14—C150.4 (14)
N2—C10—C15—C161.2 (10)C13—C14—C15—C100.1 (13)
C1—N1—C9—C81.1 (11)C13—C14—C15—C16179.7 (8)
C1—C2—C3—C41.4 (12)C14—C15—C16—C17179.1 (8)
C1—C6—C7—C80.1 (11)C15—C10—C11—C120.9 (11)
C2—C1—C6—C51.0 (11)C15—C16—C17—C181.0 (12)
C2—C1—C6—C7178.3 (7)C16—C17—C18—N20.7 (13)
C2—C3—C4—C51.9 (13)C18—N2—C10—C11178.3 (7)
C3—C4—C5—C60.9 (13)C18—N2—C10—C152.9 (10)
Dibromidobis(quinoline N-oxide-κO)zinc(II) (II) top
Crystal data top
[ZnBr2(C9H7NO)2]F(000) = 1008
Mr = 515.50Dx = 1.837 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 16.3922 (11) ÅCell parameters from 1219 reflections
b = 7.3527 (6) Åθ = 2.6–22.0°
c = 15.5809 (10) ŵ = 5.62 mm1
β = 97.113 (6)°T = 298 K
V = 1863.5 (2) Å3Irregular, clear colourless
Z = 40.15 × 0.08 × 0.03 mm
Data collection top
XtaLAB Mini (ROW)
diffractometer
3415 independent reflections
Radiation source: fine-focus sealed X-ray tube, Rigaku (Mo) X-ray Source2095 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ω scansθmax = 25.4°, θmin = 2.5°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2019)
h = 1619
Tmin = 0.833, Tmax = 1.000k = 88
7207 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0258P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3415 reflectionsΔρmax = 0.55 e Å3
226 parametersΔρmin = 0.35 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.25508 (4)0.26213 (9)0.37264 (4)0.0514 (2)
Br20.22409 (4)0.03623 (9)0.41131 (4)0.0695 (2)
Br10.26119 (4)0.35514 (10)0.22878 (4)0.0698 (2)
O10.3616 (2)0.3196 (6)0.4411 (2)0.0662 (11)
O20.1778 (2)0.4332 (5)0.4197 (2)0.0597 (10)
N20.1157 (3)0.3586 (5)0.4557 (3)0.0445 (11)
N10.4115 (3)0.4386 (7)0.4079 (3)0.0543 (12)
C100.0394 (3)0.3446 (7)0.4065 (3)0.0415 (12)
C10.4897 (3)0.3784 (8)0.3969 (3)0.0466 (14)
C150.0264 (3)0.2713 (7)0.4450 (3)0.0468 (13)
C160.0121 (4)0.2148 (7)0.5319 (3)0.0550 (15)
H160.0549790.1671000.5587200.066*
C180.1273 (3)0.3032 (7)0.5371 (3)0.0526 (15)
H180.1791910.3136860.5684550.063*
C170.0635 (4)0.2296 (8)0.5765 (3)0.0561 (15)
H170.0727910.1904830.6335900.067*
C110.0284 (4)0.4086 (8)0.3210 (3)0.0571 (16)
H110.0717590.4603470.2963630.069*
C60.5437 (4)0.5023 (9)0.3641 (3)0.0592 (16)
C20.5136 (4)0.2028 (9)0.4187 (3)0.0626 (17)
H20.4769040.1221600.4393920.075*
C140.1031 (4)0.2572 (8)0.3940 (4)0.0673 (17)
H140.1472900.2062670.4175220.081*
C130.1135 (4)0.3168 (9)0.3113 (4)0.0742 (19)
H130.1646320.3071270.2784740.089*
C120.0477 (4)0.3927 (9)0.2752 (3)0.0723 (19)
H120.0559850.4336960.2183510.087*
C90.3862 (4)0.6041 (10)0.3872 (4)0.0730 (19)
H90.3330600.6391410.3950280.088*
C70.5161 (5)0.6777 (10)0.3420 (4)0.077 (2)
H70.5508320.7600220.3193630.093*
C30.5912 (4)0.1490 (10)0.4098 (4)0.083 (2)
H30.6076810.0307020.4242670.099*
C80.4388 (5)0.7279 (9)0.3536 (4)0.083 (2)
H80.4205150.8449680.3391480.099*
C50.6244 (4)0.4382 (12)0.3568 (4)0.085 (2)
H50.6624110.5154110.3360460.102*
C40.6460 (5)0.2678 (14)0.3794 (5)0.095 (3)
H40.6991900.2286960.3745940.114*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0345 (4)0.0688 (5)0.0519 (4)0.0003 (3)0.0089 (3)0.0017 (3)
Br20.0598 (4)0.0637 (4)0.0855 (5)0.0040 (3)0.0113 (3)0.0048 (4)
Br10.0663 (4)0.0960 (5)0.0476 (3)0.0052 (4)0.0090 (3)0.0030 (4)
O10.037 (2)0.102 (3)0.059 (2)0.016 (2)0.0020 (18)0.010 (2)
O20.046 (2)0.055 (2)0.083 (3)0.005 (2)0.0278 (19)0.002 (2)
N20.040 (3)0.042 (3)0.054 (3)0.007 (2)0.014 (2)0.005 (2)
N10.043 (3)0.072 (4)0.045 (3)0.005 (3)0.007 (2)0.012 (3)
C100.043 (3)0.039 (3)0.043 (3)0.007 (3)0.011 (2)0.006 (3)
C10.039 (3)0.062 (4)0.037 (3)0.005 (3)0.002 (2)0.011 (3)
C150.041 (3)0.048 (3)0.054 (3)0.003 (3)0.015 (3)0.003 (3)
C160.051 (4)0.060 (4)0.057 (4)0.001 (3)0.020 (3)0.006 (3)
C180.053 (4)0.056 (4)0.047 (3)0.009 (3)0.003 (3)0.004 (3)
C170.063 (4)0.062 (4)0.046 (3)0.007 (3)0.017 (3)0.008 (3)
C110.064 (4)0.063 (4)0.046 (3)0.008 (3)0.015 (3)0.003 (3)
C60.051 (4)0.076 (5)0.049 (3)0.016 (4)0.001 (3)0.015 (3)
C20.053 (4)0.072 (5)0.059 (4)0.003 (3)0.007 (3)0.003 (3)
C140.042 (4)0.079 (5)0.081 (5)0.008 (3)0.008 (3)0.000 (4)
C130.055 (4)0.092 (5)0.072 (4)0.002 (4)0.007 (3)0.006 (4)
C120.085 (5)0.094 (5)0.037 (3)0.016 (4)0.002 (3)0.002 (3)
C90.052 (4)0.088 (5)0.075 (4)0.009 (4)0.010 (3)0.028 (4)
C70.086 (6)0.074 (5)0.071 (4)0.029 (4)0.002 (4)0.003 (4)
C30.064 (5)0.079 (5)0.101 (5)0.010 (4)0.007 (4)0.016 (4)
C80.098 (6)0.053 (4)0.087 (5)0.003 (5)0.028 (5)0.000 (4)
C50.056 (5)0.122 (7)0.079 (5)0.035 (5)0.022 (4)0.023 (5)
C40.050 (5)0.130 (7)0.104 (6)0.006 (5)0.008 (4)0.029 (6)
Geometric parameters (Å, º) top
Zn1—Br22.3472 (10)C11—H110.9300
Zn1—Br12.3575 (8)C11—C121.364 (8)
Zn1—O11.975 (3)C6—C71.395 (8)
Zn1—O21.989 (4)C6—C51.422 (9)
O1—N11.345 (5)C2—H20.9300
O2—N21.339 (5)C2—C31.356 (8)
N2—C101.388 (6)C14—H140.9300
N2—C181.323 (6)C14—C131.352 (8)
N1—C11.386 (6)C13—H130.9300
N1—C91.313 (7)C13—C121.392 (8)
C10—C151.406 (7)C12—H120.9300
C10—C111.402 (7)C9—H90.9300
C1—C61.410 (7)C9—C81.400 (9)
C1—C21.380 (7)C7—H70.9300
C15—C161.408 (7)C7—C81.354 (9)
C15—C141.405 (7)C3—H30.9300
C16—H160.9300C3—C41.378 (10)
C16—C171.346 (7)C8—H80.9300
C18—H180.9300C5—H50.9300
C18—C171.387 (7)C5—C41.338 (9)
C17—H170.9300C4—H40.9300
Br2—Zn1—Br1123.45 (4)C12—C11—H11121.0
O1—Zn1—Br2105.44 (12)C1—C6—C5116.5 (6)
O1—Zn1—Br1108.21 (11)C7—C6—C1119.2 (6)
O1—Zn1—O2103.10 (16)C7—C6—C5124.2 (7)
O2—Zn1—Br2109.17 (11)C1—C2—H2120.4
O2—Zn1—Br1105.72 (11)C3—C2—C1119.3 (6)
N1—O1—Zn1118.1 (3)C3—C2—H2120.4
N2—O2—Zn1116.6 (3)C15—C14—H14119.6
O2—N2—C10118.5 (4)C13—C14—C15120.8 (6)
C18—N2—O2120.1 (4)C13—C14—H14119.6
C18—N2—C10121.4 (5)C14—C13—H13119.9
O1—N1—C1117.1 (5)C14—C13—C12120.2 (6)
C9—N1—O1120.5 (5)C12—C13—H13119.9
C9—N1—C1122.4 (6)C11—C12—C13121.8 (6)
N2—C10—C15118.6 (5)C11—C12—H12119.1
N2—C10—C11120.1 (5)C13—C12—H12119.1
C11—C10—C15121.3 (5)N1—C9—H9119.9
N1—C1—C6118.0 (6)N1—C9—C8120.2 (6)
C2—C1—N1120.5 (5)C8—C9—H9119.9
C2—C1—C6121.5 (6)C6—C7—H7120.0
C10—C15—C16118.6 (5)C8—C7—C6119.9 (7)
C14—C15—C10117.9 (5)C8—C7—H7120.0
C14—C15—C16123.6 (5)C2—C3—H3119.7
C15—C16—H16119.8C2—C3—C4120.7 (7)
C17—C16—C15120.3 (5)C4—C3—H3119.7
C17—C16—H16119.8C9—C8—H8119.9
N2—C18—H18119.4C7—C8—C9120.2 (7)
N2—C18—C17121.1 (5)C7—C8—H8119.9
C17—C18—H18119.4C6—C5—H5119.7
C16—C17—C18120.0 (5)C4—C5—C6120.5 (7)
C16—C17—H17120.0C4—C5—H5119.7
C18—C17—H17120.0C3—C4—H4119.3
C10—C11—H11121.0C5—C4—C3121.5 (7)
C12—C11—C10118.0 (6)C5—C4—H4119.3
Zn1—O1—N1—C1122.3 (4)C1—C6—C7—C81.1 (9)
Zn1—O1—N1—C957.8 (6)C1—C6—C5—C40.7 (9)
Zn1—O2—N2—C1097.8 (4)C1—C2—C3—C40.2 (9)
Zn1—O2—N2—C1883.4 (5)C15—C10—C11—C122.0 (8)
O1—N1—C1—C6178.5 (4)C15—C16—C17—C180.9 (9)
O1—N1—C1—C20.7 (7)C15—C14—C13—C120.3 (10)
O1—N1—C9—C8179.3 (5)C16—C15—C14—C13178.8 (6)
O2—N2—C10—C15178.1 (4)C18—N2—C10—C150.6 (7)
O2—N2—C10—C110.3 (7)C18—N2—C10—C11178.4 (5)
O2—N2—C18—C17178.4 (5)C11—C10—C15—C16177.9 (5)
N2—C10—C15—C160.2 (7)C11—C10—C15—C142.6 (8)
N2—C10—C15—C14179.7 (5)C6—C1—C2—C31.1 (8)
N2—C10—C11—C12179.7 (5)C6—C7—C8—C90.3 (10)
N2—C18—C17—C160.5 (8)C6—C5—C4—C30.5 (11)
N1—C1—C6—C71.6 (7)C2—C1—C6—C7179.2 (5)
N1—C1—C6—C5177.7 (5)C2—C1—C6—C51.5 (8)
N1—C1—C2—C3178.1 (5)C2—C3—C4—C51.0 (11)
N1—C9—C8—C70.1 (10)C14—C15—C16—C17178.9 (6)
C10—N2—C18—C170.3 (8)C14—C13—C12—C110.4 (10)
C10—C15—C16—C170.6 (8)C9—N1—C1—C61.4 (7)
C10—C15—C14—C131.7 (9)C9—N1—C1—C2179.4 (5)
C10—C11—C12—C130.5 (9)C7—C6—C5—C4179.9 (6)
C1—N1—C9—C80.6 (8)C5—C6—C7—C8178.1 (6)
Diiodidodobis(quinoline N-oxide-κO)zinc(II) (III) top
Crystal data top
[ZnI2(C9H7NO)2]F(000) = 1152
Mr = 609.48Dx = 2.019 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 16.7231 (7) ÅCell parameters from 3422 reflections
b = 7.6155 (4) Åθ = 2.6–24.1°
c = 15.8689 (7) ŵ = 4.32 mm1
β = 97.192 (4)°T = 297 K
V = 2005.08 (16) Å3Block, clear colourless
Z = 40.3 × 0.3 × 0.3 mm
Data collection top
Rigaku XtaLAB mini
diffractometer
2748 reflections with I > 2σ(I)
ω scansRint = 0.032
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2019)
θmax = 25.4°, θmin = 2.5°
Tmin = 0.896, Tmax = 1.000h = 2020
11510 measured reflectionsk = 89
3668 independent reflectionsl = 1919
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0249P)2 + 3.8317P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.085(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.80 e Å3
3668 reflectionsΔρmin = 0.81 e Å3
227 parametersExtinction correction: SHELXL-2018/1 (Sheldrick 2015a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00071 (11)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.26214 (2)0.37499 (6)0.22453 (2)0.07021 (17)
I20.22463 (3)0.02923 (6)0.41988 (3)0.07442 (17)
Zn10.25578 (3)0.28426 (10)0.37845 (4)0.0553 (2)
O10.3601 (2)0.3426 (7)0.4449 (3)0.0780 (13)
O20.1777 (2)0.4466 (5)0.4234 (3)0.0627 (10)
N10.4094 (3)0.4544 (7)0.4109 (3)0.0592 (12)
N20.1160 (3)0.3728 (6)0.4566 (3)0.0509 (11)
C10.4847 (3)0.3925 (8)0.3984 (3)0.0545 (14)
C20.5069 (4)0.2175 (9)0.4180 (4)0.0707 (17)
H20.4705990.1403890.4383410.085*
C30.5817 (5)0.1635 (11)0.4068 (5)0.095 (2)
H30.5968120.0480980.4196870.114*
C40.6360 (5)0.2760 (13)0.3768 (6)0.105 (3)
H40.6875000.2358370.3706830.126*
C50.6159 (4)0.4433 (12)0.3560 (5)0.088 (2)
H50.6534060.5169200.3354380.106*
C60.5378 (4)0.5077 (9)0.3652 (4)0.0641 (16)
C70.5127 (5)0.6797 (10)0.3444 (5)0.082 (2)
H70.5471980.7572440.3216370.099*
C80.4374 (5)0.7327 (10)0.3576 (5)0.085 (2)
H80.4199380.8461440.3435110.102*
C90.3871 (4)0.6157 (10)0.3923 (4)0.0758 (19)
H90.3362220.6528180.4026010.091*
C100.0431 (3)0.3575 (7)0.4054 (3)0.0487 (12)
C110.0343 (4)0.4227 (8)0.3219 (4)0.0638 (16)
H110.0770500.4759110.2996040.077*
C120.0388 (5)0.4051 (10)0.2751 (4)0.081 (2)
H120.0461010.4483510.2198800.098*
C130.1039 (4)0.3237 (11)0.3073 (5)0.088 (2)
H130.1530420.3119180.2731480.106*
C140.0955 (4)0.2624 (9)0.3879 (5)0.0755 (19)
H140.1387830.2085700.4089200.091*
C150.0218 (3)0.2796 (7)0.4398 (4)0.0534 (13)
C160.0094 (4)0.2205 (8)0.5249 (4)0.0632 (16)
H160.0515130.1680710.5487600.076*
C170.0633 (4)0.2398 (9)0.5717 (4)0.0666 (17)
H170.0712470.2013240.6277300.080*
C180.1257 (4)0.3171 (8)0.5358 (4)0.0589 (15)
H180.1755930.3301220.5682510.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0640 (3)0.0961 (4)0.0508 (2)0.0078 (2)0.00801 (19)0.0018 (2)
I20.0652 (3)0.0668 (3)0.0928 (3)0.0106 (2)0.0157 (2)0.0090 (2)
Zn10.0377 (3)0.0742 (5)0.0542 (4)0.0006 (3)0.0070 (3)0.0005 (3)
O10.048 (2)0.122 (4)0.063 (3)0.014 (2)0.002 (2)0.006 (3)
O20.055 (2)0.059 (3)0.078 (3)0.0007 (19)0.024 (2)0.003 (2)
N10.043 (3)0.079 (4)0.052 (3)0.001 (3)0.003 (2)0.012 (3)
N20.047 (2)0.052 (3)0.057 (3)0.007 (2)0.016 (2)0.001 (2)
C10.042 (3)0.075 (4)0.044 (3)0.001 (3)0.005 (2)0.014 (3)
C20.066 (4)0.069 (5)0.073 (4)0.001 (3)0.007 (3)0.004 (3)
C30.073 (5)0.086 (6)0.120 (7)0.013 (4)0.009 (5)0.026 (5)
C40.064 (5)0.114 (7)0.136 (8)0.012 (5)0.011 (5)0.054 (6)
C50.061 (4)0.110 (7)0.097 (6)0.016 (4)0.021 (4)0.026 (5)
C60.053 (3)0.073 (5)0.066 (4)0.011 (3)0.006 (3)0.017 (3)
C70.083 (5)0.076 (5)0.086 (5)0.022 (4)0.001 (4)0.008 (4)
C80.087 (5)0.065 (5)0.095 (5)0.004 (4)0.018 (4)0.013 (4)
C90.063 (4)0.084 (5)0.076 (4)0.008 (4)0.011 (4)0.024 (4)
C100.051 (3)0.047 (3)0.049 (3)0.007 (2)0.013 (3)0.000 (2)
C110.070 (4)0.071 (4)0.051 (3)0.005 (3)0.012 (3)0.003 (3)
C120.092 (5)0.099 (6)0.052 (4)0.014 (4)0.002 (4)0.001 (4)
C130.065 (4)0.110 (6)0.085 (5)0.005 (4)0.015 (4)0.006 (5)
C140.056 (4)0.083 (5)0.086 (5)0.008 (3)0.004 (4)0.010 (4)
C150.050 (3)0.053 (3)0.058 (3)0.004 (3)0.011 (3)0.003 (3)
C160.062 (4)0.060 (4)0.071 (4)0.005 (3)0.025 (3)0.013 (3)
C170.067 (4)0.080 (5)0.056 (4)0.014 (3)0.016 (3)0.011 (3)
C180.056 (3)0.069 (4)0.051 (3)0.009 (3)0.005 (3)0.000 (3)
Geometric parameters (Å, º) top
I1—Zn12.5534 (8)C7—H70.9300
I2—Zn12.5473 (9)C7—C81.363 (10)
Zn1—O11.973 (4)C8—H80.9300
Zn1—O21.994 (4)C8—C91.386 (10)
O1—N11.345 (6)C9—H90.9300
O2—N21.339 (5)C10—C111.405 (8)
N1—C11.381 (7)C10—C151.405 (7)
N1—C91.307 (8)C11—H110.9300
N2—C101.383 (7)C11—C121.356 (9)
N2—C181.317 (7)C12—H120.9300
C1—C21.408 (9)C12—C131.404 (10)
C1—C61.397 (8)C13—H130.9300
C2—H20.9300C13—C141.352 (10)
C2—C31.350 (9)C14—H140.9300
C3—H30.9300C14—C151.400 (8)
C3—C41.377 (12)C15—C161.414 (8)
C4—H40.9300C16—H160.9300
C4—C51.348 (12)C16—C171.350 (8)
C5—H50.9300C17—H170.9300
C5—C61.420 (9)C17—C181.382 (8)
C6—C71.402 (10)C18—H180.9300
I2—Zn1—I1122.33 (3)C8—C7—H7120.2
O1—Zn1—I1108.10 (13)C7—C8—H8120.4
O1—Zn1—I2105.60 (15)C7—C8—C9119.3 (7)
O1—Zn1—O2104.13 (19)C9—C8—H8120.4
O2—Zn1—I1106.36 (12)N1—C9—C8121.6 (7)
O2—Zn1—I2108.93 (12)N1—C9—H9119.2
N1—O1—Zn1118.3 (3)C8—C9—H9119.2
N2—O2—Zn1116.9 (3)N2—C10—C11120.3 (5)
O1—N1—C1117.2 (5)N2—C10—C15118.3 (5)
C9—N1—O1120.9 (5)C15—C10—C11121.4 (5)
C9—N1—C1121.9 (6)C10—C11—H11121.2
O2—N2—C10118.0 (4)C12—C11—C10117.6 (6)
C18—N2—O2120.2 (5)C12—C11—H11121.2
C18—N2—C10121.8 (5)C11—C12—H12118.9
N1—C1—C2120.7 (6)C11—C12—C13122.1 (6)
N1—C1—C6118.3 (6)C13—C12—H12118.9
C6—C1—C2121.0 (6)C12—C13—H13119.9
C1—C2—H2120.6C14—C13—C12120.2 (7)
C3—C2—C1118.8 (7)C14—C13—H13119.9
C3—C2—H2120.6C13—C14—H14119.8
C2—C3—H3119.4C13—C14—C15120.3 (7)
C2—C3—C4121.3 (8)C15—C14—H14119.8
C4—C3—H3119.4C10—C15—C16118.5 (5)
C3—C4—H4119.4C14—C15—C10118.4 (5)
C5—C4—C3121.2 (8)C14—C15—C16123.0 (6)
C5—C4—H4119.4C15—C16—H16119.9
C4—C5—H5119.8C17—C16—C15120.3 (6)
C4—C5—C6120.4 (8)C17—C16—H16119.9
C6—C5—H5119.8C16—C17—H17120.2
C1—C6—C5117.3 (7)C16—C17—C18119.6 (6)
C1—C6—C7119.3 (6)C18—C17—H17120.2
C7—C6—C5123.4 (7)N2—C18—C17121.5 (6)
C6—C7—H7120.2N2—C18—H18119.3
C8—C7—C6119.7 (7)C17—C18—H18119.3
Zn1—O1—N1—C1119.9 (4)C4—C5—C6—C11.6 (10)
Zn1—O1—N1—C961.5 (6)C4—C5—C6—C7179.6 (7)
Zn1—O2—N2—C1096.9 (5)C5—C6—C7—C8178.0 (7)
Zn1—O2—N2—C1883.1 (5)C6—C1—C2—C32.1 (9)
O1—N1—C1—C22.2 (7)C6—C7—C8—C90.6 (11)
O1—N1—C1—C6178.3 (5)C7—C8—C9—N11.6 (11)
O1—N1—C9—C8179.7 (5)C9—N1—C1—C2179.2 (6)
O2—N2—C10—C111.7 (7)C9—N1—C1—C60.3 (8)
O2—N2—C10—C15179.7 (5)C10—N2—C18—C170.3 (9)
O2—N2—C18—C17179.7 (5)C10—C11—C12—C130.6 (11)
N1—C1—C2—C3178.4 (6)C10—C15—C16—C170.3 (9)
N1—C1—C6—C5177.6 (5)C11—C10—C15—C142.1 (9)
N1—C1—C6—C71.2 (8)C11—C10—C15—C16178.5 (5)
N2—C10—C11—C12179.5 (6)C11—C12—C13—C141.2 (12)
N2—C10—C15—C14179.4 (5)C12—C13—C14—C150.0 (12)
N2—C10—C15—C160.0 (8)C13—C14—C15—C101.6 (10)
C1—N1—C9—C81.1 (9)C13—C14—C15—C16179.1 (7)
C1—C2—C3—C40.1 (11)C14—C15—C16—C17179.6 (6)
C1—C6—C7—C80.7 (10)C15—C10—C11—C121.0 (9)
C2—C1—C6—C52.9 (9)C15—C16—C17—C180.3 (10)
C2—C1—C6—C7178.3 (6)C16—C17—C18—N20.0 (10)
C2—C3—C4—C51.2 (13)C18—N2—C10—C11178.3 (5)
C3—C4—C5—C60.4 (13)C18—N2—C10—C150.2 (8)
Selected bond lengths and angles (Å, °) top
Compound (I)Compound (II)Compound (III)
Zn1—Cl12.215 (2)Zn1—Br12.3575 (9)Zn1—I12.5534 (8)
Zn1—Cl22.211 (2)Zn1—Br22.3472 (10)Zn1—I22.5475 (9)
Zn1—O11.991 (5)Zn1—O11.975 (4)Zn1—O11.974 (4)
Zn1—O21.959 (5)Zn1—O21.989 (4)Zn1—O21.995 (4)
Cl1—Zn1—Cl2117.80 (9)Br1—Zn1—Br2123.45 (4)I1—Zn1—I2122.34 (3)
O1—Zn1—O299.4 (2)O1—Zn1—O2103.10 (16)O1—Zn1—O2104.12 (19)
Contributions of selected intermolecular contacts (%) top
Compound(I)(II)(III)
H···H32.036.736.5
H···X/X···H24.428.430.0
C···H/H···C22.718.518.0
C···C5.47.16.4
O···H/H···O6.04.03.7
 

Acknowledgements

The authors would like to thank Georgia Southern University, Department of Chemistry and Biochemistry for the financial support of this work.

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEdwards, R. A., Gladkikh, O. P., Nieuwenhuyzen, M. & Wilkins, C. J. (1999). Z. Kristallogr. 214, 111–118.  Web of Science CSD CrossRef CAS Google Scholar
First citationEppenson, J. H. (2003). Adv. Inorg. Chem. 54, 157–202.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIngen Schenau, A. D. van, Verschoor, C. G. & Romers, C. (1974). Acta Cryst. B30, 1686–1694.  CSD CrossRef IUCr Journals Google Scholar
First citationIvashevskaja, S. N., Aleshina, L. A., Andreev, V. P., Nizhnik, Y. P., Chernyshev, V. V. & Schenk, H. (2002). Acta Cryst. C58, m300–m301.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKidd, M. R., Sager, R. S. & Watson, W. H. (1967). Inorg. Chem. 6, 946–951.  CSD CrossRef CAS Web of Science Google Scholar
First citationLi, X.-B., Shang, R.-L. & Sun, B.-W. (2008). Acta Cryst. E64, m131.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMautner, F. A., Berger, C., Fischer, R. C. & Massoud, S. S. (2016). Inorg. Chim. Acta, 439, 1, 69–76.  Google Scholar
First citationMcConnell, N. M., Day, R. O. & Wood, J. S. (1986). Acta Cryst. C42, 1094–1095.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMoustafa, M. E., Boyle, P. D. & Puddephatt, R. J. (2014). Organometallics, 33, 5402–5413.  Web of Science CSD CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPérez-Bitrián, A., Baya, M., Casas, J. M., Falvello, L. R., Martín, A. & Menjón, B. (2017). Chem. Eur. J. 23, 14918–14930.  Web of Science PubMed Google Scholar
First citationRigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391.  CrossRef CAS Web of Science Google Scholar
First citationSager, R. S. & Watson, H. W. (1968). Inorg. Chem. 7, 1358–1362.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, J.-M., Liu, Z., Lu, J.-J. & Liu, L.-D. (2005b). Acta Cryst. E61, m856–m857.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShi, J. M., Zhang, F. X., Wu, C. J. & Liu, L. D. (2005a). Acta Cryst. E61, m2262–m2263.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. (1998). Acta Cryst. B54, 456–463.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatson, W. H. & Johnson, D. R. (1971). Inorg. Chem. 10, 1281–1288.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds