research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Syntheses and crystal structures of 4-(4-nitro­phen­yl)piperazin-1-ium benzoate monohydrate and 4-(4-nitro­phen­yl)piperazin-1-ium 2-carb­­oxy-4,6-di­nitro­phenolate

crossmark logo

aDepartment of Chemistry, Yuvaraja's College, University of Mysore, Mysore-570 005, India, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore-570 006, India, cDepartment of Chemistry, University of Kentucky, Lexington, KY 40506, USA, and dSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, UK
*Correspondence e-mail: yathirajan@hotmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 18 July 2022; accepted 20 July 2022; online 26 July 2022)

Crystal structures are reported for two mol­ecular salts containing the 4-(4-nitro­phen­yl)piperazin-1-ium cation. Co-crystallization from methanol/ethyl acetate solution of N-(4-nitro­phen­yl)piperazine with benzoic acid gives the benzoate salt, which crystallizes as a monohydrate, C10H14N3O2·C7H5O2·H2O, (I), and similar co-crystallization with 3,5-di­nitro­salicylic acid yields the 2-carb­oxy-4,6-di­nitro­phenolate salt, C10H14N3O2·C7H3N2O7, (II). In the structure of (I), a combination of O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds links the components into sheets, while in the structure of (II), the supra­molecular assembly, generated by hydrogen bonds of the same types as in (I), is three dimensional. Comparisons are made with the structures of some related compounds.

Crystal structures for two molecular salts of 4-(4-nitrophenyl)piperazine

What is it about?

Co-crystallization from methanol/ethyl acetate solution of N-(4-nitrophenyl)piperazine with benzoic acid gives the benzoate salt, which crystallizes as a monohydrate, C10H14N3O2C7H5O2H2O, (I), and similar co-crystallization with 3,5-dinitrosalicylic acid yields the 2-carboxy-4,6-dinitrophenolate salt, C10H14N3O2C7H3N2O7, (II).

Why is it important?

In the structure of (I), a combination of O—HO, N—HO and C—HO hydrogen bonds links the components into sheets, while in the structure of (II), the supramolecular assembly, generated by hydrogen bonds of the same types as in (I), is three dimensional.

Read more on Kudos…
The following have contributed to this page:
Hemmige Yathirajan

1. Chemical context

Piperazines and substituted piperazines are important pharmacophores, which can be found in many biologically active compounds (Berkheij, 2005[Berkheij, M., van der Sluis, L., Sewing, C., den Boer, D. J., Terpstra, J. W., Hiemstra, H., Iwema Bakker, W. I., van den Hoogenband, A. & van Maarseveen, J. H. (2005). Tetrahedron Lett. 46, 2369-2371.]) such as anti­fungal (Upadhayaya et al., 2004[Upadhayaya, P. S., Sinha, N., Jain, S., Kishore, N., Chandra, R. & Arora, S. K. (2004). Bioorg. Med. Chem. 12, 2225-2238.]), anti-bacterial, anti-malarial and anti-psychotic agents (Chaudhary et al., 2006[Chaudhary, P., Kumar, R., Verma, K., Singh, D., Yadav, V., Chhillar, A. K., Sharma, G. L. & Chandra, R. (2006). Bioorg. Med. Chem. 14, 1819-1826.]). Both the general pharmacological and specific anti­microbial activities of piperazine derivatives have been reviewed in recent years (Elliott, 2011[Elliott, S. (2011). Drug Test. Anal. 3, 430-438.]; Kharb et al., 2012[Kharb, R., Bansal, K. & Sharma, A. K. (2012). Der Pharma Chem. 4, 2470-2488.]). Among specific examples of piperazine derivatives, N-(4-nitro­phen­yl)piperazine has found use in the control of potassium channels (Lu, 2007[Lu, Y.-X. (2007). Acta Cryst. E63, o3611.]). The crystal structures of a number of 4-(4-nitro­phen­yl)piperazin-1-ium salts have been reported (Lu, 2007[Lu, Y.-X. (2007). Acta Cryst. E63, o3611.]; Mahesha et al., 2022[Mahesha, N., Kiran Kumar, H., Yathirajan, H. S., Foro, S., Abdelbaky, M. S. M. & Garcia-Granda, S. (2022). Acta Cryst. E78, 510-518.]), and here we report the mol­ecular and supra­molecular structures of two further representatives of this family of salts, namely 4-(4-nitro­phen­yl)piperazin-1-ium benzoate monohydrate, C10H14N3O2·C7H5O2·H2O, (I)[link], and 4-(4-nitro­phen­yl)pip­erazin-1-ium 2-carb­oxy-4,6-di­nitro­phenolate, C10H14N3O2·C7H3N2O7, (II)[link].

2. Structural commentary

In each of compounds (I)[link] and (II)[link] (Figs. 1[link] and 2[link]), the piperazine ring adopts a chair conformation, with the ring-puckering angle θ (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) calculated for the atom sequence (N11/C12/C13/N14/C15/C16) close to the ideal value of zero (Boeyens, 1978[Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317-320.]): θ = 6.42 (11) for (I)[link] and 8.75 (11)° for (II)[link]. However, in (I)[link], the nitro­phenyl substituent occupies an equatorial site, whereas in (II)[link] this substituent occupies an axial site. In each compound, the N-nitro­phenyl unit shows the pattern of distances typical of 4-nitro­aniline derivatives, namely both C—N distances are short for their types (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]), while the nitro N—O distances are long for their type. In addition, the distances C141—C142 and C141—C146 lie in the range 1.4049 (16) to 1.4132 (15) Å whereas the remaining C—C distances for this ring are smaller, falling in the range 1.3764 (17) to 1.3881 (15) Å. These variations are most simply inter­preted in terms of some 1,4-quinonoid type bond fixation, moderated by the high electronegativity of the nitro group, generally regarded as similar to that of a fluoro substituent (Huheey, 1966[Huheey, J. E. (1966). J. Phys. Chem. 70, 2086-2092.]; Mullay, 1985[Mullay, J. (1985). J. Am. Chem. Soc. 107, 7271-7275.]).

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing hydrogen bonds (drawn as dashed lines) within the selected asymmetric unit. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of (II)[link], showing hydrogen bonds (drawn as dashed lines) within the selected asymmetric unit. Displacement ellipsoids are drawn at the 50% probability level.

In the anion of compound (II)[link], the C21—O21 distance, 1.2788 (13) Å is more typical of those in ketones than those in phenols (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]); the distances C21—C22 and C21—C26, 1.4394 (15) and 1.4340 (15) Å are longer than the remaining C—C distances in the ring, which are in the range 1.3747 (15) to 1.3869 (15). These observations, taken together, indicate that the negative charge in this anion is delocalized over atoms C22–C26 rather than being localized on atom O21 (see Scheme[link]).

3. Supra­molecular features

In each of compounds (I)[link] and (II)[link], the supra­molecular assembly involves a combination of O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds, augmented in the case of (I)[link] by a single C—H⋯π(arene) hydrogen bond: however, aromatic ππ stacking inter­actions are absent from both structures.

The supra­molecular assembly in (I)[link] is di-periodic and the formation of the sheet structure is readily analysed in terms of two mono-periodic sub-structures (Ferguson et al., 1998a[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129-138.],b[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139-150.]; Gregson et al., 2000[Gregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39-57.]). Within the selected asymmetric unit for (I)[link] (Fig. 1[link]), the ionic components are linked by an asymmetric bifurcated (three-centre) N—H⋯(O,O) hydrogen bond (Table 1[link]), while the water mol­ecule is linked to the anion by an O—H⋯O hydrogen bond. In one of the two sub-structures, a combination of one two-centre N—H⋯O hydrogen bond and a second O—H⋯O hydrogen bond links these three-component aggregates (Fig. 1[link]) into a chain of rings running parallel to the [100] direction (Fig. 3[link]) in which there are two different types of R64(12) ring (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]), centred at (n, 0.5, 0.5) and (n + 0.5, 0.5, 0.5), respectively, where n represents an integer in each case. The second sub-structure, which includes the C—H⋯O hydrogen bond (Table 1[link], Fig. 4[link]), takes the form of another chain of rings in which R64(12) rings centred at (n + 0.5, n + 0.5, 0.5) alternate with R42(10) rings centred at (n, n, 0.5), where n again represents an integer, so forming a chain of rings running parallel to the [110] direction (Fig. 4[link]). The combination of chains along [100] and [110] generates a sheet structure lying parallel to (001). The single C—H⋯π(arene) hydrogen bond (Table 1[link]) lies within this sheet, and so has no influence on the dimensionality of the assembly.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg1 is the centroid of the C21–C26 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11⋯O271 0.926 (14) 2.564 (14) 3.1009 (13) 117.4 (10)
N11—H11⋯O272 0.926 (14) 1.857 (14) 2.7781 (12) 172.9 (13)
N11—H12⋯O31i 0.920 (15) 1.884 (15) 2.7965 (14) 171.0 (12)
O31—H31⋯O271 0.892 (18) 1.757 (18) 2.6486 (13) 179 (3)
O31—H32⋯O272ii 0.908 (17) 1.862 (17) 2.7581 (12) 168.8 (16)
C12—H12B⋯O272iii 0.99 2.45 3.3751 (15) 156
C146—H146⋯Cg1iv 0.95 2.67 3.4363 (13) 138
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) x+1, y, z; (iii) [-x, -y, -z+1]; (iv) [-x+1, -y, -z+1].
[Figure 3]
Figure 3
Part of the crystal structure of compound (I)[link] showing the formation of a chain of hydrogen-bonded rings running parallel to the [100] direction. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have all been omitted.
[Figure 4]
Figure 4
Part of the crystal structure of compound (I)[link] showing the formation of a chain of hydrogen-bonded rings running parallel to the [110] direction. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to those C atoms that are not involved in the motif shown have been omitted.

The supra­molecular assembly for compound (II)[link], by contrast, is tri-periodic (three dimensional) and, as for (I)[link], the formation of the framework is readily analysed in terms of simple sub-structures. Within the selected asymmetric unit (Fig. 2[link]), there is an intra­molecular O—H⋯O hydrogen bond in the anion, and the hydroxyl H atom plays no part in the supra­molecular assembly. The two independent components are linked by a very asymmetric bifurcated N—H⋯(O,O) hydrogen bond (Table 2[link]), and a two-centre N—H⋯O hydrogen bond links these ion pairs into a chain of rings running parallel to the [010] direction (Fig. 5[link]). There are four C—H⋯O hydrogen bonds in the structure of (II)[link] and that involving atom C145 (Table 2[link]) links the ion pairs into a second chain, this time running parallel to the [101] direction (Fig. 6[link]). The two C—H⋯O hydrogen bonds involving atoms C12 and C16 link inversion-related pairs of cations into a centrosymmetric motif containing R22(8) rings (Fig. 7[link]), and the aggregates of this type are further linked by the final C—H⋯O hydrogen bond, that involves atom C146, to form a complex chain of rings running parallel to the [001] direction (Fig. 8[link]). The combination of hydrogen-bonded chains parallel to [010], [001] and [101] generates a three-dimensional network. We also note a fairly short nitro–nitro contact, 2.823 (4) Å, between atom O142 at (x, y, z) and atom N24 at (1 + x, y, 1 + z): this probably represents a dipolar attraction between negatively charged O and positively charged N atoms.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11⋯O21 0.894 (14) 1.869 (14) 2.7356 (12) 162.8 (13)
N11—H11⋯O262 0.894 (14) 2.396 (14) 2.8937 (13) 115.4 (11)
N11—H12⋯O271i 0.910 (14) 1.874 (14) 2.7668 (12) 166.2 (12)
O272—H272⋯O21 1.000 (17) 1.549 (17) 2.5020 (12) 157.4 (15)
C12—H12B⋯O142ii 0.99 2.41 3.3921 (14) 173
C16—H16A⋯O141ii 0.99 2.54 3.4906 (14) 161
C145—H145⋯O242iii 0.95 2.46 3.3927 (15) 168
C146—H146⋯O241iv 0.95 2.55 3.4227 (15) 153
Symmetry codes: (i) [x, y-1, z]; (ii) [-x+1, -y+1, -z+2]; (iii) x+1, y, z+1; (iv) [-x+1, -y+1, -z+1].
[Figure 5]
Figure 5
Part of the crystal structure of compound (II)[link], showing the formation of a hydrogen-bonded chain of rings running parallel to [010]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have all been omitted.
[Figure 6]
Figure 6
Part of the crystal structure of compound (II)[link] showing the formation of a chain of hydrogen-bonded rings running parallel to the [101] direction. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to those C atoms that are not involved in the motif shown have been omitted.
[Figure 7]
Figure 7
Part of the crystal structure of compound (II)[link] showing the linkage of an inversion-related pair of cations by two independent C—H⋯O hydrogen bonds, drawn as dashed lines. For the sake of clarity, the anions, the H atoms bonded to those C atoms that are not involved in the motif shown, and the unit-cell outline have been omitted. The atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 2 − z).
[Figure 8]
Figure 8
Part of the crystal structure of compound (II)[link] showing the formation of a chain of hydrogen-bonded rings running parallel to the [001] direction. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to those C atoms that are not involved in the motif shown have been omitted.

4. Database survey

The first structure report on a salt of N-(4-nitro­phen­yl)piperazine concerned the chloride salt, which crystallizes as a monohydrate (Lu, 2007[Lu, Y.-X. (2007). Acta Cryst. E63, o3611.]); despite the presence of hydrogen bonds of N—H⋯O, N—H⋯Cl and O—H⋯Cl types, the supra­molecular assembly is only mono-periodic. The structures of six salts of N-(4-nitro­phen­yl)piperazine with aromatic carb­oxy­lic acids have recently been reported (Mahesha et al., 2022[Mahesha, N., Kiran Kumar, H., Yathirajan, H. S., Foro, S., Abdelbaky, M. S. M. & Garcia-Granda, S. (2022). Acta Cryst. E78, 510-518.]): in all but one of these, the supra­molecular assembly is mono-periodic, although it is di-periodic in the 4-eth­oxy­benzoate salt. This may be contrasted with the triperiodic assembly found here for compound (II)[link].

In addition, we note that structures have been reported for a wide variety of salts derived from N-(4-fluoro­phen­yl)piperazine (Harish Chinthal, Yathirajan, Archana et al., 2020[Harish Chinthal, C., Yathirajan, H. S., Archana, S. D., Foro, S. & Glidewell, C. (2020). Acta Cryst. E76, 841-847.]; Harish Chinthal, Yathirajan, Kavitha et al., 2020[Harish Chinthal, C., Yathirajan, H. S., Kavitha, C. N., Foro, S. & Glidewell, C. (2020). Acta Cryst. E76, 1179-1186.]), and from N-(4-meth­oxy­phen­yl)piperazine (Kiran Kumar et al., 2019[Kiran Kumar, H., Yathirajan, H. S., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1494-1506.], 2020[Kiran Kumar, H., Yathirajan, H. S., Harish Chinthal, C., Foro, S. & Glidewell, C. (2020). Acta Cryst. E76, 488-495.]). Finally, the structure of 4-(2-meth­oxy­phen­yl)piperazin-1-ium 3,5-di­nitro­salicylate has been reported, but without any description of discussion of the geometry of the anion (Subha et al., 2022[Subha, V., Seethalakshmi, T., Balakrishnan, T., Percino, M. J. & Venkatesan, P. (2022). Acta Cryst. E78, 774-778.]).

5. Synthesis and crystallization

For the preparation of compounds (I)[link] and (II)[link], a solution of N-(4-nitro­phen­yl)piperazine (100 mg, 0.483 mmol) in methanol (10 ml) was mixed with a solution of either benzoic acid (59 mg, 0.483 mmol) for (I)[link] or 3,5-di­nitro­salicylic acid (110 mg, 0.483 mmol) for (II)[link] in methanol/ethyl acetate (1:1 v/v, 20 ml). The solutions of the base and the corresponding acid were mixed, stirred at ambient temperature for 15 min, and then set aside to crystallize at ambient temperature and in the presence of air. After one week, crystals suitable for single-crystal X-ray diffraction were collected by filtration and dried in air: compound (I)[link], pale yellow, m.p. 410–413 K; compound (II)[link], orange, m.p. 446–448 K.

6. Refinement

Crystal data, data collection and refinement details are summarized in Table 3[link]. All H atoms were located in difference maps. The H atoms bonded to C atoms were then treated as riding atoms in geometrically idealized positions with C—H distances of 0.95 Å (aromatic) or 0.99 Å (CH2), and with Uiso(H) = 1.2Ueq(C). For the H atoms bonded to N or O atoms, the atomic coordinates were refined with Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O), giving the N—H and O—H distances shown in Tables 1[link] and 2[link].

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C10H14N3O2+·C7H5O2·H2O C10H14N3O2+·C7H3N2O7
Mr 347.37 435.35
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 90 90
a, b, c (Å) 6.0768 (3), 7.4427 (4), 18.4737 (9) 7.9599 (4), 8.5391 (4), 14.2227 (5)
α, β, γ (°) 78.894 (2), 85.870 (3), 83.668 (2) 90.426 (2), 105.273 (1), 98.538 (2)
V3) 813.77 (7) 921.15 (7)
Z 2 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.11 0.13
Crystal size (mm) 0.24 × 0.22 × 0.17 0.22 × 0.18 × 0.12
 
Data collection
Diffractometer Bruker D8 Venture Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.912, 0.971 0.919, 0.971
No. of measured, independent and observed [I > 2σ(I)] reflections 27142, 3737, 3164 38287, 4212, 3662
Rint 0.066 0.043
(sin θ/λ)max−1) 0.651 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.091, 1.04 0.029, 0.077, 1.04
No. of reflections 3737 4212
No. of parameters 238 289
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.25, −0.20 0.28, −0.18
Computer programs: APEX3 (Bruker, 2016[Bruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

For both structures, data collection: APEX3 (Bruker, 2016); cell refinement: APEX3 (Bruker, 2016); data reduction: APEX3 (Bruker, 2016); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b) and PLATON (Spek, 2020).

4-(4-Nitrophenyl)piperazin-1-ium benzoate monohydrate (I) top
Crystal data top
C10H14N3O2+·C7H5O2·H2OZ = 2
Mr = 347.37F(000) = 368
Triclinic, P1Dx = 1.418 Mg m3
a = 6.0768 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.4427 (4) ÅCell parameters from 3737 reflections
c = 18.4737 (9) Åθ = 2.3–27.6°
α = 78.894 (2)°µ = 0.11 mm1
β = 85.870 (3)°T = 90 K
γ = 83.668 (2)°Block, pale yellow
V = 813.77 (7) Å30.24 × 0.22 × 0.17 mm
Data collection top
Bruker D8 Venture
diffractometer
3737 independent reflections
Radiation source: microsource3164 reflections with I > 2σ(I)
Multilayer mirror monochromatorRint = 0.066
φ and ω scansθmax = 27.6°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 77
Tmin = 0.912, Tmax = 0.971k = 99
27142 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.030P)2 + 0.2902P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3737 reflectionsΔρmax = 0.25 e Å3
238 parametersΔρmin = 0.20 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.22281 (16)0.29238 (14)0.44679 (5)0.0163 (2)
H110.172 (2)0.2234 (19)0.4908 (8)0.020*
H120.255 (2)0.403 (2)0.4565 (7)0.020*
C120.04640 (18)0.33021 (16)0.39257 (6)0.0175 (2)
H12A0.08540.39830.41290.021*
H12B0.00200.21240.38390.021*
C130.12736 (18)0.44242 (16)0.32002 (6)0.0172 (2)
H13A0.01120.45750.28380.021*
H13B0.15240.56640.32780.021*
N140.33332 (15)0.35614 (13)0.28973 (5)0.0147 (2)
C150.50502 (18)0.30670 (16)0.34411 (6)0.0163 (2)
H15A0.55610.42050.35460.020*
H15B0.63360.23650.32300.020*
C160.42143 (19)0.19258 (16)0.41561 (6)0.0177 (2)
H16A0.38300.07340.40630.021*
H16B0.53940.16710.45150.021*
C1410.40488 (18)0.44038 (15)0.21853 (6)0.0149 (2)
C1420.26572 (19)0.57118 (16)0.17307 (6)0.0199 (2)
H1420.11880.60400.19060.024*
C1430.3394 (2)0.65311 (16)0.10304 (6)0.0213 (3)
H1430.24320.73990.07250.026*
C1440.5535 (2)0.60750 (16)0.07820 (6)0.0189 (2)
C1450.6944 (2)0.47632 (16)0.12051 (6)0.0199 (2)
H1450.84060.44420.10210.024*
C1460.61972 (19)0.39295 (16)0.18972 (6)0.0178 (2)
H1460.71520.30150.21860.021*
N1440.63672 (18)0.70469 (14)0.00703 (6)0.0242 (2)
O1410.50758 (17)0.81136 (14)0.03222 (5)0.0352 (2)
O1420.83458 (17)0.67621 (15)0.01004 (6)0.0421 (3)
C210.13555 (18)0.09842 (14)0.71032 (6)0.0156 (2)
C220.05414 (19)0.01147 (15)0.73666 (6)0.0170 (2)
H220.15650.00720.70300.020*
C230.0937 (2)0.04784 (16)0.81206 (6)0.0207 (2)
H230.22390.10580.82990.025*
C240.0564 (2)0.02246 (16)0.86119 (6)0.0229 (3)
H240.02970.06360.91270.027*
C250.2458 (2)0.06303 (16)0.83528 (7)0.0236 (3)
H250.34940.07930.86910.028*
C260.2842 (2)0.12465 (16)0.76032 (7)0.0203 (2)
H260.41270.18520.74290.024*
C270.18134 (19)0.16532 (15)0.62878 (6)0.0179 (2)
O2710.32916 (15)0.27141 (13)0.61005 (5)0.0293 (2)
O2720.06693 (14)0.11185 (11)0.58360 (4)0.02171 (19)
O310.70609 (15)0.35347 (12)0.53628 (5)0.02152 (19)
H310.579 (3)0.325 (2)0.5608 (9)0.032*
H320.813 (3)0.268 (2)0.5570 (9)0.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0197 (5)0.0150 (5)0.0136 (5)0.0029 (4)0.0017 (4)0.0017 (4)
C120.0152 (5)0.0199 (6)0.0168 (5)0.0021 (4)0.0012 (4)0.0027 (4)
C130.0147 (5)0.0189 (5)0.0165 (5)0.0002 (4)0.0009 (4)0.0011 (4)
N140.0129 (4)0.0170 (5)0.0133 (4)0.0004 (4)0.0003 (3)0.0016 (3)
C150.0142 (5)0.0186 (5)0.0153 (5)0.0005 (4)0.0002 (4)0.0023 (4)
C160.0189 (6)0.0174 (5)0.0154 (5)0.0014 (4)0.0004 (4)0.0015 (4)
C1410.0166 (5)0.0138 (5)0.0149 (5)0.0035 (4)0.0003 (4)0.0038 (4)
C1420.0173 (6)0.0229 (6)0.0178 (6)0.0004 (5)0.0000 (4)0.0011 (4)
C1430.0238 (6)0.0203 (6)0.0181 (6)0.0008 (5)0.0032 (5)0.0002 (4)
C1440.0267 (6)0.0166 (5)0.0138 (5)0.0061 (5)0.0018 (4)0.0023 (4)
C1450.0203 (6)0.0205 (6)0.0186 (6)0.0023 (5)0.0036 (4)0.0048 (4)
C1460.0181 (6)0.0167 (5)0.0174 (5)0.0009 (4)0.0003 (4)0.0020 (4)
N1440.0324 (6)0.0222 (5)0.0170 (5)0.0051 (4)0.0035 (4)0.0018 (4)
O1410.0423 (6)0.0372 (6)0.0203 (5)0.0024 (5)0.0027 (4)0.0089 (4)
O1420.0364 (6)0.0463 (6)0.0329 (5)0.0013 (5)0.0165 (4)0.0092 (5)
C210.0167 (5)0.0110 (5)0.0180 (5)0.0009 (4)0.0008 (4)0.0019 (4)
C220.0169 (5)0.0158 (5)0.0186 (5)0.0011 (4)0.0002 (4)0.0043 (4)
C230.0226 (6)0.0172 (6)0.0209 (6)0.0024 (5)0.0060 (5)0.0026 (4)
C240.0348 (7)0.0164 (6)0.0158 (5)0.0018 (5)0.0008 (5)0.0021 (4)
C250.0302 (7)0.0180 (6)0.0236 (6)0.0003 (5)0.0100 (5)0.0047 (5)
C260.0190 (6)0.0142 (5)0.0271 (6)0.0019 (4)0.0013 (5)0.0024 (4)
C270.0171 (5)0.0130 (5)0.0211 (6)0.0017 (4)0.0036 (4)0.0004 (4)
O2710.0260 (5)0.0318 (5)0.0282 (5)0.0127 (4)0.0070 (4)0.0012 (4)
O2720.0275 (5)0.0213 (4)0.0157 (4)0.0036 (3)0.0013 (3)0.0020 (3)
O310.0203 (4)0.0214 (4)0.0228 (4)0.0045 (4)0.0042 (3)0.0044 (3)
Geometric parameters (Å, º) top
N11—C161.4857 (14)C144—C1451.3841 (17)
N11—C121.4870 (14)C144—N1441.4581 (14)
N11—H110.925 (14)C145—C1461.3780 (16)
N11—H120.921 (15)C145—H1450.9500
C12—C131.5167 (15)C146—H1460.9500
C12—H12A0.9900N144—O1411.2226 (14)
C12—H12B0.9900N144—O1421.2268 (14)
C13—N141.4671 (14)C21—C261.3911 (16)
C13—H13A0.9900C21—C221.3953 (16)
C13—H13B0.9900C21—C271.5084 (15)
N14—C1411.4044 (14)C22—C231.3896 (16)
N14—C151.4688 (14)C22—H220.9500
C15—C161.5134 (15)C23—C241.3840 (18)
C15—H15A0.9900C23—H230.9500
C15—H15B0.9900C24—C251.3869 (18)
C16—H16A0.9900C24—H240.9500
C16—H16B0.9900C25—C261.3838 (17)
C141—C1421.4049 (16)C25—H250.9500
C141—C1461.4081 (16)C26—H260.9500
C142—C1431.3853 (16)C27—O2711.2476 (14)
C142—H1420.9500C27—O2721.2692 (14)
C143—C1441.3764 (17)O31—H310.893 (17)
C143—H1430.9500O31—H320.909 (17)
C16—N11—C12109.33 (9)C141—C142—H142119.5
C16—N11—H11110.2 (8)C144—C143—C142119.36 (11)
C12—N11—H11110.3 (8)C144—C143—H143120.3
C16—N11—H12111.3 (8)C142—C143—H143120.3
C12—N11—H12108.0 (8)C143—C144—C145121.48 (11)
H11—N11—H12107.6 (12)C143—C144—N144119.32 (11)
N11—C12—C13110.80 (9)C145—C144—N144119.16 (11)
N11—C12—H12A109.5C146—C145—C144119.05 (11)
C13—C12—H12A109.5C146—C145—H145120.5
N11—C12—H12B109.5C144—C145—H145120.5
C13—C12—H12B109.5C145—C146—C141121.42 (10)
H12A—C12—H12B108.1C145—C146—H146119.3
N14—C13—C12112.32 (9)C141—C146—H146119.3
N14—C13—H13A109.1O141—N144—O142123.28 (11)
C12—C13—H13A109.1O141—N144—C144118.78 (11)
N14—C13—H13B109.1O142—N144—C144117.94 (10)
C12—C13—H13B109.1C26—C21—C22119.26 (10)
H13A—C13—H13B107.9C26—C21—C27119.54 (10)
C141—N14—C13115.67 (9)C22—C21—C27121.19 (10)
C141—N14—C15115.77 (9)C23—C22—C21120.20 (11)
C13—N14—C15112.34 (9)C23—C22—H22119.9
N14—C15—C16112.12 (9)C21—C22—H22119.9
N14—C15—H15A109.2C24—C23—C22119.98 (11)
C16—C15—H15A109.2C24—C23—H23120.0
N14—C15—H15B109.2C22—C23—H23120.0
C16—C15—H15B109.2C23—C24—C25120.06 (11)
H15A—C15—H15B107.9C23—C24—H24120.0
N11—C16—C15110.12 (9)C25—C24—H24120.0
N11—C16—H16A109.6C26—C25—C24120.10 (11)
C15—C16—H16A109.6C26—C25—H25119.9
N11—C16—H16B109.6C24—C25—H25119.9
C15—C16—H16B109.6C25—C26—C21120.38 (11)
H16A—C16—H16B108.2C25—C26—H26119.8
N14—C141—C142121.85 (10)C21—C26—H26119.8
N14—C141—C146120.53 (10)O271—C27—O272124.07 (11)
C142—C141—C146117.62 (10)O271—C27—C21117.57 (11)
C143—C142—C141121.01 (11)O272—C27—C21118.35 (10)
C143—C142—H142119.5H31—O31—H32106.4 (14)
C16—N11—C12—C1358.34 (12)C144—C145—C146—C1410.95 (17)
N11—C12—C13—N1454.53 (12)N14—C141—C146—C145178.85 (10)
C12—C13—N14—C141172.83 (9)C142—C141—C146—C1452.33 (17)
C12—C13—N14—C1551.20 (12)C143—C144—N144—O1417.29 (17)
C141—N14—C15—C16171.67 (9)C145—C144—N144—O141175.18 (11)
C13—N14—C15—C1652.40 (12)C143—C144—N144—O142171.98 (12)
C12—N11—C16—C1559.27 (12)C145—C144—N144—O1425.55 (17)
N14—C15—C16—N1156.67 (12)C26—C21—C22—C230.09 (16)
C13—N14—C141—C14213.70 (15)C27—C21—C22—C23179.53 (10)
C15—N14—C141—C142148.15 (11)C21—C22—C23—C240.69 (17)
C13—N14—C141—C146167.53 (10)C22—C23—C24—C250.35 (18)
C15—N14—C141—C14633.07 (14)C23—C24—C25—C260.59 (18)
N14—C141—C142—C143179.86 (11)C24—C25—C26—C211.19 (17)
C146—C141—C142—C1431.33 (17)C22—C21—C26—C250.85 (17)
C141—C142—C143—C1441.02 (18)C27—C21—C26—C25179.52 (10)
C142—C143—C144—C1452.49 (18)C26—C21—C27—O27112.91 (16)
C142—C143—C144—N144174.99 (11)C22—C21—C27—O271166.71 (11)
C143—C144—C145—C1461.51 (18)C26—C21—C27—O272167.61 (10)
N144—C144—C145—C146175.97 (10)C22—C21—C27—O27212.77 (16)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C21–C26 ring.
D—H···AD—HH···AD···AD—H···A
N11—H11···O2710.926 (14)2.564 (14)3.1009 (13)117.4 (10)
N11—H11···O2720.926 (14)1.857 (14)2.7781 (12)172.9 (13)
N11—H12···O31i0.920 (15)1.884 (15)2.7965 (14)171.0 (12)
O31—H31···O2710.892 (18)1.757 (18)2.6486 (13)179 (3)
O31—H32···O272ii0.908 (17)1.862 (17)2.7581 (12)168.8 (16)
C12—H12B···O272iii0.992.453.3751 (15)156
C146—H146···Cg1iv0.952.673.4363 (13)138
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x, y, z+1; (iv) x+1, y, z+1.
4-(4-Nitrophenyl)piperazin-1-ium 2-carboxy-4,6-dinitrophenolate (II) top
Crystal data top
C10H14N3O2+·C7H3N2O7Z = 2
Mr = 435.35F(000) = 452
Triclinic, P1Dx = 1.570 Mg m3
a = 7.9599 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.5391 (4) ÅCell parameters from 4212 reflections
c = 14.2227 (5) Åθ = 2.4–27.5°
α = 90.426 (2)°µ = 0.13 mm1
β = 105.273 (1)°T = 90 K
γ = 98.538 (2)°Block, orange
V = 921.15 (7) Å30.22 × 0.18 × 0.12 mm
Data collection top
Bruker D8 Venture
diffractometer
4212 independent reflections
Radiation source: microsource3662 reflections with I > 2σ(I)
Multilayer mirror monochromatorRint = 0.043
φ and ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1010
Tmin = 0.919, Tmax = 0.971k = 1111
38287 measured reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.029P)2 + 0.3527P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4212 reflectionsΔρmax = 0.28 e Å3
289 parametersΔρmin = 0.18 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.30883 (12)0.10386 (11)0.64405 (7)0.01693 (19)
H110.2967 (17)0.1840 (17)0.6040 (10)0.020*
H120.2796 (17)0.0129 (17)0.6057 (10)0.020*
C120.17915 (14)0.10314 (13)0.70340 (8)0.0188 (2)
H12A0.05790.07330.66080.023*
H12B0.18900.21070.73280.023*
C130.21403 (14)0.01389 (13)0.78350 (8)0.0187 (2)
H13A0.13210.00920.82480.022*
H13B0.19310.12290.75410.022*
N140.39625 (12)0.02405 (11)0.84356 (6)0.01699 (19)
C150.51561 (14)0.00483 (13)0.78325 (8)0.0170 (2)
H15A0.48840.10430.75360.020*
H15B0.63880.02150.82450.020*
C160.49616 (14)0.12299 (13)0.70345 (8)0.0172 (2)
H16A0.53340.23220.73300.021*
H16B0.57290.10550.66100.021*
C1410.44287 (14)0.13710 (12)0.91966 (7)0.0156 (2)
C1420.31639 (14)0.18318 (13)0.96323 (8)0.0185 (2)
H1420.19550.14060.93700.022*
C1430.36498 (14)0.28859 (13)1.04300 (8)0.0182 (2)
H1430.27830.31791.07170.022*
C1440.54137 (14)0.35176 (12)1.08126 (7)0.0161 (2)
C1450.66886 (14)0.31362 (13)1.03852 (8)0.0173 (2)
H1450.78870.36011.06400.021*
C1460.62025 (14)0.20794 (13)0.95897 (8)0.0174 (2)
H1460.70780.18210.92990.021*
N1440.59245 (12)0.46290 (11)1.16455 (6)0.01728 (19)
O1410.47859 (11)0.49209 (10)1.20379 (6)0.02406 (19)
O1420.74805 (11)0.52457 (10)1.19410 (6)0.02329 (18)
C210.24532 (14)0.43648 (13)0.46951 (8)0.0171 (2)
C220.20094 (14)0.59329 (12)0.45355 (8)0.0168 (2)
C230.15472 (14)0.65011 (13)0.36161 (8)0.0163 (2)
H230.13080.75570.35370.020*
C240.14290 (14)0.55395 (13)0.28038 (8)0.0164 (2)
C250.17807 (14)0.40041 (13)0.28998 (8)0.0165 (2)
H250.16560.33400.23390.020*
C260.23134 (14)0.34521 (12)0.38199 (8)0.0162 (2)
O210.28898 (12)0.38660 (9)0.55580 (6)0.02378 (19)
C270.20933 (15)0.70160 (13)0.53734 (8)0.0199 (2)
O2710.16416 (12)0.83252 (9)0.52573 (6)0.02424 (19)
O2720.26860 (13)0.65093 (10)0.62536 (6)0.0294 (2)
H2720.288 (2)0.540 (2)0.6144 (12)0.044*
N240.09824 (12)0.61730 (11)0.18421 (7)0.01767 (19)
O2410.08439 (11)0.75980 (9)0.17920 (6)0.02152 (18)
O2420.07873 (11)0.52884 (10)0.11242 (6)0.02219 (18)
N260.27842 (12)0.18676 (11)0.38689 (7)0.01824 (19)
O2610.20718 (11)0.09218 (9)0.31673 (6)0.02451 (19)
O2620.38998 (12)0.15381 (10)0.45879 (6)0.02596 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0230 (5)0.0128 (4)0.0146 (4)0.0040 (4)0.0037 (4)0.0003 (4)
C120.0177 (5)0.0181 (5)0.0198 (5)0.0037 (4)0.0032 (4)0.0033 (4)
C130.0188 (5)0.0191 (5)0.0171 (5)0.0008 (4)0.0051 (4)0.0030 (4)
N140.0184 (4)0.0179 (4)0.0142 (4)0.0015 (4)0.0045 (3)0.0018 (3)
C150.0195 (5)0.0162 (5)0.0159 (5)0.0045 (4)0.0048 (4)0.0012 (4)
C160.0194 (5)0.0157 (5)0.0175 (5)0.0030 (4)0.0066 (4)0.0006 (4)
C1410.0210 (5)0.0132 (5)0.0128 (5)0.0032 (4)0.0044 (4)0.0028 (4)
C1420.0163 (5)0.0207 (5)0.0176 (5)0.0029 (4)0.0030 (4)0.0004 (4)
C1430.0192 (5)0.0199 (5)0.0173 (5)0.0064 (4)0.0063 (4)0.0020 (4)
C1440.0218 (5)0.0130 (5)0.0133 (5)0.0031 (4)0.0039 (4)0.0005 (4)
C1450.0175 (5)0.0168 (5)0.0170 (5)0.0012 (4)0.0045 (4)0.0015 (4)
C1460.0190 (5)0.0176 (5)0.0169 (5)0.0031 (4)0.0071 (4)0.0011 (4)
N1440.0211 (5)0.0150 (4)0.0161 (4)0.0033 (4)0.0054 (4)0.0013 (3)
O1410.0240 (4)0.0273 (4)0.0229 (4)0.0058 (3)0.0092 (3)0.0061 (3)
O1420.0213 (4)0.0234 (4)0.0230 (4)0.0029 (3)0.0058 (3)0.0057 (3)
C210.0188 (5)0.0154 (5)0.0162 (5)0.0013 (4)0.0039 (4)0.0003 (4)
C220.0183 (5)0.0142 (5)0.0172 (5)0.0014 (4)0.0042 (4)0.0017 (4)
C230.0156 (5)0.0146 (5)0.0187 (5)0.0024 (4)0.0043 (4)0.0001 (4)
C240.0151 (5)0.0189 (5)0.0146 (5)0.0018 (4)0.0034 (4)0.0011 (4)
C250.0143 (5)0.0176 (5)0.0174 (5)0.0001 (4)0.0054 (4)0.0042 (4)
C260.0164 (5)0.0131 (5)0.0196 (5)0.0024 (4)0.0059 (4)0.0013 (4)
O210.0394 (5)0.0160 (4)0.0151 (4)0.0071 (3)0.0044 (3)0.0009 (3)
C270.0252 (6)0.0158 (5)0.0178 (5)0.0013 (4)0.0051 (4)0.0015 (4)
O2710.0347 (5)0.0153 (4)0.0218 (4)0.0066 (3)0.0046 (3)0.0032 (3)
O2720.0541 (6)0.0178 (4)0.0151 (4)0.0096 (4)0.0051 (4)0.0019 (3)
N240.0141 (4)0.0220 (5)0.0168 (4)0.0022 (4)0.0043 (3)0.0004 (4)
O2410.0228 (4)0.0206 (4)0.0216 (4)0.0054 (3)0.0056 (3)0.0050 (3)
O2420.0224 (4)0.0284 (4)0.0151 (4)0.0022 (3)0.0049 (3)0.0038 (3)
N260.0207 (5)0.0153 (4)0.0209 (5)0.0031 (4)0.0093 (4)0.0007 (4)
O2610.0267 (4)0.0178 (4)0.0285 (4)0.0023 (3)0.0074 (3)0.0087 (3)
O2620.0329 (5)0.0245 (4)0.0226 (4)0.0132 (4)0.0061 (3)0.0031 (3)
Geometric parameters (Å, º) top
N11—C161.4919 (14)C145—C1461.3765 (15)
N11—C121.4951 (14)C145—H1450.9500
N11—H110.894 (14)C146—H1460.9500
N11—H120.910 (14)N144—O1421.2315 (12)
C12—C131.5187 (15)N144—O1411.2355 (12)
C12—H12A0.9900C21—O211.2788 (13)
C12—H12B0.9900C21—C261.4340 (15)
C13—N141.4635 (14)C21—C221.4394 (15)
C13—H13A0.9900C22—C231.3747 (15)
C13—H13B0.9900C22—C271.4844 (15)
N14—C1411.3812 (13)C23—C241.3869 (15)
N14—C151.4625 (14)C23—H230.9500
C15—C161.5169 (15)C24—C251.3811 (15)
C15—H15A0.9900C24—N241.4498 (13)
C15—H15B0.9900C25—C261.3750 (15)
C16—H16A0.9900C25—H250.9500
C16—H16B0.9900C26—N261.4540 (14)
C141—C1421.4125 (15)C27—O2711.2236 (14)
C141—C1461.4133 (15)C27—O2721.3171 (14)
C142—C1431.3774 (15)O272—H2721.003 (18)
C142—H1420.9500N24—O2421.2277 (12)
C143—C1441.3881 (15)N24—O2411.2389 (12)
C143—H1430.9500N26—O2621.2303 (12)
C144—C1451.3875 (15)N26—O2611.2343 (12)
C144—N1441.4437 (13)
C16—N11—C12113.90 (8)C144—C143—H143120.2
C16—N11—H11108.4 (9)C145—C144—C143120.87 (10)
C12—N11—H11108.3 (9)C145—C144—N144119.43 (10)
C16—N11—H12111.0 (8)C143—C144—N144119.67 (10)
C12—N11—H12108.3 (9)C146—C145—C144119.48 (10)
H11—N11—H12106.8 (12)C146—C145—H145120.3
N11—C12—C13110.16 (9)C144—C145—H145120.3
N11—C12—H12A109.6C145—C146—C141121.42 (10)
C13—C12—H12A109.6C145—C146—H146119.3
N11—C12—H12B109.6C141—C146—H146119.3
C13—C12—H12B109.6O142—N144—O141122.45 (9)
H12A—C12—H12B108.1O142—N144—C144118.77 (9)
N14—C13—C12109.99 (9)O141—N144—C144118.78 (9)
N14—C13—H13A109.7O21—C21—C26124.86 (10)
C12—C13—H13A109.7O21—C21—C22120.75 (9)
N14—C13—H13B109.7C26—C21—C22114.38 (9)
C12—C13—H13B109.7C23—C22—C21121.89 (10)
H13A—C13—H13B108.2C23—C22—C27117.59 (10)
C141—N14—C15121.02 (9)C21—C22—C27120.49 (10)
C141—N14—C13121.10 (9)C22—C23—C24120.26 (10)
C15—N14—C13109.06 (8)C22—C23—H23119.9
N14—C15—C16110.28 (9)C24—C23—H23119.9
N14—C15—H15A109.6C25—C24—C23120.99 (10)
C16—C15—H15A109.6C25—C24—N24119.55 (9)
N14—C15—H15B109.6C23—C24—N24119.43 (10)
C16—C15—H15B109.6C26—C25—C24118.95 (10)
H15A—C15—H15B108.1C26—C25—H25120.5
N11—C16—C15109.87 (9)C24—C25—H25120.5
N11—C16—H16A109.7C25—C26—C21123.45 (10)
C15—C16—H16A109.7C25—C26—N26115.98 (9)
N11—C16—H16B109.7C21—C26—N26120.55 (9)
C15—C16—H16B109.7O271—C27—O272121.14 (10)
H16A—C16—H16B108.2O271—C27—C22121.85 (10)
N14—C141—C142121.47 (10)O272—C27—C22117.01 (10)
N14—C141—C146121.20 (10)C27—O272—H272105.0 (10)
C142—C141—C146117.30 (10)O242—N24—O241123.40 (9)
C143—C142—C141121.27 (10)O242—N24—C24118.92 (9)
C143—C142—H142119.4O241—N24—C24117.67 (9)
C141—C142—H142119.4O262—N26—O261122.85 (9)
C142—C143—C144119.59 (10)O262—N26—C26119.17 (9)
C142—C143—H143120.2O261—N26—C26117.95 (9)
C16—N11—C12—C1350.40 (12)C26—C21—C22—C231.93 (15)
N11—C12—C13—N1456.08 (11)O21—C21—C22—C271.51 (16)
C12—C13—N14—C14184.07 (12)C26—C21—C22—C27179.98 (10)
C12—C13—N14—C1563.61 (11)C21—C22—C23—C242.55 (16)
C141—N14—C15—C1683.73 (12)C27—C22—C23—C24179.35 (10)
C13—N14—C15—C1663.98 (11)C22—C23—C24—C250.39 (16)
C12—N11—C16—C1550.41 (11)C22—C23—C24—N24178.48 (9)
N14—C15—C16—N1156.47 (11)C23—C24—C25—C262.25 (16)
C15—N14—C141—C142164.67 (10)N24—C24—C25—C26175.84 (9)
C13—N14—C141—C14220.80 (15)C24—C25—C26—C212.85 (16)
C15—N14—C141—C14617.23 (15)C24—C25—C26—N26175.67 (9)
C13—N14—C141—C146161.10 (10)O21—C21—C26—C25177.64 (10)
N14—C141—C142—C143175.90 (10)C22—C21—C26—C250.79 (16)
C146—C141—C142—C1432.27 (16)O21—C21—C26—N263.90 (17)
C141—C142—C143—C1440.36 (16)C22—C21—C26—N26177.67 (9)
C142—C143—C144—C1451.84 (16)C23—C22—C27—O2715.49 (17)
C142—C143—C144—N144179.67 (10)C21—C22—C27—O271176.38 (10)
C143—C144—C145—C1462.02 (16)C23—C22—C27—O272174.21 (10)
N144—C144—C145—C146179.86 (10)C21—C22—C27—O2723.93 (16)
C144—C145—C146—C1410.00 (16)C25—C24—N24—O2425.79 (14)
N14—C141—C146—C145176.08 (10)C23—C24—N24—O242176.09 (9)
C142—C141—C146—C1452.09 (16)C25—C24—N24—O241173.14 (9)
C145—C144—N144—O1421.91 (15)C23—C24—N24—O2414.98 (14)
C143—C144—N144—O142175.95 (10)C25—C26—N26—O262150.18 (10)
C145—C144—N144—O141177.77 (10)C21—C26—N26—O26228.38 (15)
C143—C144—N144—O1414.37 (15)C25—C26—N26—O26127.86 (14)
O21—C21—C22—C23179.56 (10)C21—C26—N26—O261153.57 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O210.894 (14)1.869 (14)2.7356 (12)162.8 (13)
N11—H11···O2620.894 (14)2.396 (14)2.8937 (13)115.4 (11)
N11—H12···O271i0.910 (14)1.874 (14)2.7668 (12)166.2 (12)
O272—H272···O211.000 (17)1.549 (17)2.5020 (12)157.4 (15)
C12—H12B···O142ii0.992.413.3921 (14)173
C16—H16A···O141ii0.992.543.4906 (14)161
C145—H145···O242iii0.952.463.3927 (15)168
C146—H146···O241iv0.952.553.4227 (15)153
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z+2; (iii) x+1, y, z+1; (iv) x+1, y+1, z+1.
 

Acknowledgements

HJS is grateful to the University of Mysore for research facilities.

Funding information

HSY thanks the UGC for a BSR Faculty fellowship for three years.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBerkheij, M., van der Sluis, L., Sewing, C., den Boer, D. J., Terpstra, J. W., Hiemstra, H., Iwema Bakker, W. I., van den Hoogenband, A. & van Maarseveen, J. H. (2005). Tetrahedron Lett. 46, 2369–2371.  Web of Science CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBoeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317–320.  CrossRef Web of Science Google Scholar
First citationBruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChaudhary, P., Kumar, R., Verma, K., Singh, D., Yadav, V., Chhillar, A. K., Sharma, G. L. & Chandra, R. (2006). Bioorg. Med. Chem. 14, 1819–1826.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationElliott, S. (2011). Drug Test. Anal. 3, 430–438.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129–138.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139–150.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39–57.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHarish Chinthal, C., Yathirajan, H. S., Archana, S. D., Foro, S. & Glidewell, C. (2020). Acta Cryst. E76, 841–847.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarish Chinthal, C., Yathirajan, H. S., Kavitha, C. N., Foro, S. & Glidewell, C. (2020). Acta Cryst. E76, 1179–1186.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHuheey, J. E. (1966). J. Phys. Chem. 70, 2086–2092.  CrossRef CAS Google Scholar
First citationKharb, R., Bansal, K. & Sharma, A. K. (2012). Der Pharma Chem. 4, 2470–2488.  CAS Google Scholar
First citationKiran Kumar, H., Yathirajan, H. S., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1494–1506.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKiran Kumar, H., Yathirajan, H. S., Harish Chinthal, C., Foro, S. & Glidewell, C. (2020). Acta Cryst. E76, 488–495.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLu, Y.-X. (2007). Acta Cryst. E63, o3611.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMahesha, N., Kiran Kumar, H., Yathirajan, H. S., Foro, S., Abdelbaky, M. S. M. & Garcia-Granda, S. (2022). Acta Cryst. E78, 510–518.  CSD CrossRef IUCr Journals Google Scholar
First citationMullay, J. (1985). J. Am. Chem. Soc. 107, 7271–7275.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSubha, V., Seethalakshmi, T., Balakrishnan, T., Percino, M. J. & Venkatesan, P. (2022). Acta Cryst. E78, 774–778.  CrossRef IUCr Journals Google Scholar
First citationUpadhayaya, P. S., Sinha, N., Jain, S., Kishore, N., Chandra, R. & Arora, S. K. (2004). Bioorg. Med. Chem. 12, 2225–2238.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds