research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures and Hirshfeld surface analyses of 2-amino-4-(4-bromo­phen­yl)-6-oxo-1-phenyl-1,4,5,6-tetra­hydro­pyridine-3-carbo­nitrile hemi­hydrate and 1,6-di­amino-2-oxo-4-phenyl-1,2-di­hydro­pyridine-3,5-dicarbo­nitrile

crossmark logo

aDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148, Baku, Azerbaijan, bPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St.6, Moscow, 117198, Russian Federation, cN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, d"Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan, eDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and fDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 11 July 2022; accepted 17 July 2022; online 26 July 2022)

In 2-amino-4-(4-bromo­phen­yl)-6-oxo-1-phenyl-1,4,5,6-tetra­hydro­pyridine-3-carbo­nitrile hemihydrate, C18H14BrN3O·0.5H2O, (I), pairs of mol­ecules are linked by pairs of N—H⋯N hydrogen bonds, forming dimers with an R22(12) ring motif. The dimers are connected by N—H⋯Br and O—H⋯O hydrogen bonds, and C—Br⋯π inter­actions, forming layers parallel to the (010) plane. 1,6-Di­amino-2-oxo-4-phenyl-1,2-di­hydro­pyridine-3,5-dicarbo­nitrile, C13H9N5O, (II), crystallizes in the triclinic space group P[\overline{1}] with two independent mol­ecules (IIA and IIB) in the asymmetric unit. In the crystal of (II), mol­ecules IIA and IIB are linked by inter­molecular N—H⋯N and N—H⋯O hydrogen bonds into layers parallel to (001). These layers are connected along the c-axis direction by weak C—H⋯N contacts. C—H⋯π and C—N⋯π inter­actions connect adjacent mol­ecules, forming chains along the a-axis direction. In (I) and (II), the stability of the packing is ensured by van der Waals inter­actions between the layers. In (I), Hirshfeld surface analysis showed that the most important contributions to the crystal packing are from H⋯H (37.9%), C⋯H/H⋯C (18.4%), Br⋯H/H⋯Br (13.3%), N⋯H/H⋯N (11.5%) and O⋯H/H⋯O (10.0%) inter­actions, while in (II), H⋯H inter­actions are the most significant contributors to the crystal packing (27.6% for mol­ecule IIA and 23.1% for mol­ecule IIB).

1. Chemical context

The formation of C—C, C—O, and C—N bonds is one of the essential transformation reactions of organic chemistry (Zubkov et al., 2018[Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949-952.]; Shikhaliyev et al., 2019[Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032-5038.]; Viswanathan et al., 2019[Viswanathan, A., Kute, D., Musa, A., Konda Mani, S., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291-303.]; Gurbanov et al., 2020[Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020). CrystEngComm, 22, 628-633.]). Nitro­gen-containing heterocycles, especially tetra­hydro­pyridine homologs, are well-known heterocyclic scaffolds that exhibit a broad spectrum of biological and pharmaceutical activities (Sośnicki & Idzik, 2019[Sośnicki, J. G. & Idzik, T. J. (2019). Synthesis, 51, 3369-3396.]; Sangwan et al., 2022[Sangwan, S., Yadav, N., Kumar, R., Chauhan, S., Dhanda, V., Walia, P. & Duhan, A. (2022). Eur. J. Med. Chem. 232, 114199.]). Being an important structural fragment of various natural products, they play a key role in cell metabolism. In view of the growing biological value of pyridine derivatives, we have considered the study of this class of compounds (Naghiyev et al., 2020b[Naghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A. & Brito, I. (2020b). Molecules, 25, 2235.]) to be of great inter­est. Thus, in the framework of our ongoing structural studies (Naghiyev et al., 2020a[Naghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020a). Acta Cryst. E76, 720-723.],b[Naghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A. & Brito, I. (2020b). Molecules, 25, 2235.], 2021[Naghiyev, F. N., Pavlova, A. V., Khrustalev, V. N., Akkurt, M., Khalilov, A. N., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 930-934.], 2021a[Naghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021a). Acta Cryst. E77, 516-521.],b[Naghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021b). Acta Cryst. E77, 516-521.], 2022[Naghiyev, F. N., Khrustalev, V. N., Novikov, A. P., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, I. G. (2022). Acta Cryst. E78, 554-558.]; Khalilov et al., 2022[Khalilov, A. N., Khrustalev, V. N., Tereshina, T. A., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2022). Acta Cryst. E78, 525-529.]), we report here the crystal structures and Hirshfeld surface analyses of 2-amino-4-(4-bromo­phen­yl)-6-oxo-1-phenyl-1,4,5,6-tetra­hydro­pyridine-3-carbo­nitrile hemihydrate (I)[link] and 1,6-di­amino-2-oxo-4-phenyl-1,2-di­hydro­pyridine-3,5-dicarbo­nitrile (II)[link].

[Scheme 1]

2. Structural commentary

Compound (I)[link] crystallizes in the monoclinic space group C2/c with Z = 4. In (I)[link] (Fig. 1[link]), the conformation of the central di­hydro­pyridine ring is close to screw-boat with puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) QT = 0.4650 (16) Å, θ = 61.3 (2)° and φ = 211.4 (2)°. The phenyl (C7–C12) and bromo­phenyl (C14–C19) rings form dihedral angles of 64.68 (8) and 88.25 (7)°, respectively, with the mean plane of the central di­hydro­pyridine ring. The chirality about the C4 atom is S for this molecule, but both enantiomers are present in the crystal. The Br atom is disordered over two sites in a 0.59 (2):0.41 (2) ratio.

[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link] with displacement ellipsoids drawn at the 30% probability level. The O—H⋯O hydrogen bond is drawn with a dashed line. Only the major component of the bromide disorder is shown for clarity.

Compound (II)[link] (Fig. 2[link]) contains two independent mol­ecules (IIA and IIB, atom labels for mol­ecule IIB including the suffix ') in the asymmetric unit. Fig. 3[link] shows the overlay of mol­ecules IIA and IIB (r.m.s. deviation = 0.210 Å). The pyridine and phenyl rings subtend dihedral angles of 52.95 (4)° in mol­ecule IIA and 56.75 (3) ° in mol­ecule IIB.

[Figure 2]
Figure 2
The mol­ecular structure of compound (II)[link]. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3]
Figure 3
Overlay image of the two independent mol­ecules (IIA and IIB) in the asymmetric unit of compound (II)[link]. Color code: carbon (gray), hydrogen (white), nitro­gen (blue) and oxygen (red).

The geometric parameters of mol­ecules (I)[link], (IIA) and (IIB) are normal and comparable to those of related compounds listed in the Database survey section.

3. Supra­molecular features

In (I)[link], pairs of N—H⋯N hydrogen bonds connect the mol­ecules, forming dimers with an [R_{2}^{2}](12) ring motif (Fig. 4[link], Table 1[link]). Further N—H⋯Br and O—H⋯O hydrogen bonds, as well as C—Br⋯π inter­actions [C17—Br1⋯Cg2vii: Br1⋯Cg2vii = 3.493 (2) Å, C17⋯Cg2vii = 5.3027 (18) Å, C17—Br1⋯Cg2vii = 157.80 (14)°; C17—Br1ACg2vii: Br1ACg2vii = 3.434 (6) Å, C17⋯Cg2vii = 5.3027 (18) Å, C17—Br1ACg2vii = 164.8 (3)°; symmetry code: (vii) x, 2 − y, −z + [{1\over 2}]; Cg2 is the centroid of the C7–C12 phenyl ring], link the dimers, forming layers parallel to the (010) plane (Fig. 4[link]). Inter­layer van der Waals inter­actions strengthen the mol­ecular packing.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯Br1i 0.82 (2) 2.75 (2) 3.507 (3) 154.4 (19)
N2—H2A⋯Br1Ai 0.82 (2) 2.73 (2) 3.493 (4) 155.1 (19)
N2—H2B⋯N3ii 0.84 (2) 2.24 (2) 3.0583 (18) 165 (2)
C5—H5B⋯N3iii 0.99 2.59 3.5426 (19) 160
C8—H8⋯O2iv 0.95 2.49 3.223 (2) 134
C12—H12⋯N3v 0.95 2.65 3.411 (2) 138
C16—H16⋯N3vi 0.95 2.62 3.5283 (19) 160
O2—H2C⋯O1 0.85 (1) 2.09 (2) 2.8739 (14) 153 (3)
Symmetry codes: (i) [x, -y+2, z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y+{\script{5\over 2}}, -z+1]; (iii) [x, y-1, z]; (iv) x, y+1, z; (v) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+1]; (vi) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 4]
Figure 4
Crystal packing of compound (I)[link] viewed down the b axis, showing the O—H⋯O, N—H⋯O and C—Br⋯π inter­actions.

In the crystal of (II)[link], mol­ecules IIA and IIB are linked by inter­molecular N—H⋯N and N—H⋯O hydrogen bonds (Table 2[link]) into layers parallel to (001). These layers are connected along the c-axis direction by weak C—H⋯N contacts. Furthermore, C—H⋯π (Table 1[link]) and C—N⋯π [C7—N3⋯Cg3: N3⋯Cg3 = 3.0831 (8) Å, C7⋯Cg3 = 3.3390 (8) Å, C7—N3⋯Cg3 = 92.50 (5)°; C7′—N3′⋯Cg1v: N3′⋯Cg1v = 3.4626 (9) Å, C7′⋯Cg1v = 3.7591 (9) Å, C7′—N3′⋯Cg1v = 95.78 (6)°; C14—N4⋯Cg3vi: N4⋯Cg3vi = 3.3807 (7) Å, C14⋯Cg3vi = 3.8513 (7) Å, C14—N4⋯Cg3vi = 105.23 (5)°; symmetry codes: (v) 1 + x, y, z, (vi) −1 + x, 1 + y, z; where Cg1 and Cg3 are the centroids of the N1/C2 –C6 and N1′/C2′ –C6′ pyridine rings of mol­ecules IIA and IIB, respectively] inter­actions connect the adjacent mol­ecules, forming chains along the a-axis direction (Fig. 5[link]). The stability of the mol­ecular packaging is ensured by van der Waals inter­actions between the layers.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg2 is the centroid of the C8–C13 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N4i 0.913 (13) 2.541 (13) 3.3713 (9) 151.6 (11)
N2—H2B⋯N4ii 0.916 (14) 2.495 (14) 3.2404 (10) 138.7 (11)
N2—H2B⋯O1iii 0.916 (14) 2.381 (13) 3.0650 (8) 131.5 (11)
N5—H5A⋯N3′ii 0.897 (14) 2.525 (14) 3.1431 (9) 126.6 (11)
N5—H5B⋯O1′ii 0.930 (14) 1.986 (14) 2.8853 (8) 162.3 (12)
N2′—H2A′⋯O1′iv 0.898 (13) 2.186 (13) 3.0608 (8) 164.4 (11)
N2′—H2B′⋯N2iii 0.902 (15) 2.681 (14) 3.1829 (8) 116.1 (10)
N2′—H2B′⋯O1 0.902 (15) 2.250 (15) 3.1373 (9) 167.5 (12)
N5′—H5A′⋯N3′i 0.887 (15) 2.102 (15) 2.9314 (8) 155.2 (13)
C9′—H9′⋯Cg2 0.95 2.93 3.7972 (5) 153
Symmetry codes: (i) [x, y-1, z]; (ii) [-x+1, -y+1, -z+1]; (iii) [-x+1, -y, -z+1]; (iv) [-x+2, -y, -z+1].
[Figure 5]
Figure 5
View down the b axis of compound (II)[link] showing the C—H⋯π and C—N⋯π hydrogen bonds (dashed lines). The intra­molecular C—N⋯π inter­action in mol­ecule IIA is omitted for clarity.

4. Hirshfeld surface analyses

CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]) was used to construct Hirshfeld surfaces and generate the related two-dimensional fingerprint plots to illustrate the inter­molecular inter­actions for mol­ecules (I)[link] and (II)[link]. The dnorm mappings of (I)[link] were conducted in the range −0.4915 to +1.2143 a.u. Bright-red circles on the dnorm surfaces (Fig. 6[link]a,b) represent N—H⋯O and O—H⋯O inter­action zones. Red areas on the Hirshfeld surfaces are also caused by the N—H⋯Br and C—H⋯N inter­actions (Tables 1[link] and 3[link]).

Table 3
Summary of short inter­atomic contacts (Å) in compound (I)

Contact Distance Symmetry operation
Br1A⋯H2A 2.73 x, 2 − y, −[{1\over 2}] + z
O1⋯H2C 2.09 1 − x, y, [{1\over 2}] − z
O1⋯H19 2.40 x, −1 + y, z
N3⋯H2B 2.24 [{3\over 2}] − x, [{5\over 2}] − y, 1 − z
H12⋯N3 2.65 [{3\over 2}] − x, [{3\over 2}] − y, 1 − z
N3⋯H16 2.62 [{3\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z
H8⋯O2 2.49 x, 1 + y, z
H9⋯C18 2.69 1 − x, y, [{1\over 2}] − z
O2⋯O1 2.87 1 − x, y, [{1\over 2}] − z
[Figure 6]
Figure 6
(a) Front and (b) back views of the Hirshfeld surfaces mapped over dnorm for (I)[link].

The fingerprint plots of (I)[link] (Fig. 7[link]) show that, while H⋯H (37.9%; Fig. 7[link]b) inter­actions provide the highest contribution (Table 3[link]), as would be expected for a mol­ecule with so many H atoms, C⋯H/H⋯C (18.4%; Fig. 7[link]c), Br⋯H/H⋯Br (13.3%; Fig. 7[link]d), N⋯H/H⋯N (11.5%; Fig. 7[link]e) and O⋯H/H⋯O (10.0%; Fig. 7[link]f) contacts are also significant. Table 5[link] shows the contributions of all contacts.

Table 5
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for compound (I)

Contact Percentage contribution
H⋯H 37.9
C⋯H/H⋯C 18.4
Br⋯H/H⋯Br 13.3
N⋯H/H⋯N 11.5
O⋯H/H⋯O 10.0
Br⋯C/C⋯Br 4.2
C⋯C 1.5
N⋯C/C⋯N 1.3
N⋯N 0.8
Br⋯Br 0.6
C⋯O/O⋯C 0.5
[Figure 7]
Figure 7
The two-dimensional fingerprint plots of (I)[link], showing all inter­actions (a), and those delineated into H⋯H (b), C⋯H/H⋯C (c), Br⋯H/H⋯Br (d), N⋯H/H⋯N (e) and O⋯H/H⋯O (f) inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surfaces.

In (II)[link], the dnorm mappings for mol­ecules IIA and IIB were performed in the ranges −0.5399 to 1.2085 a.u. and −0.5388 to 1.1921 a.u., respectively. The locations of N—H⋯N inter­actions are shown by bright red circles on the dnorm surfaces (Fig. 8[link]a,b for A and Fig. 8[link]c,d for B). Red spots on the Hirshfeld surfaces are also caused by N—H⋯O inter­actions (Tables 2[link] and 4[link]).

Table 4
Summary of short inter­atomic contacts (Å) in compound (II)

Contact Distance Symmetry operation
O1⋯H2B 2.25 x, y, z
H2A⋯N4 2.54 x, −1 + y, z
H2B⋯O1 2.38 1 − x, −y, 1 − z
H13⋯H5A 2.46 1 − x, 1 − y, 1 − z
N2⋯H2B 2.68 1 − x, −y, 1 − z
H10⋯H12′ 2.46 2 − x, 1 − y, −z
N4⋯H2A 2.82 −1 + x, 1 + y, z
H5B⋯O1′ 1.99 1 − x, 1 − y, 1 − z
H9⋯C12′ 2.83 −1 + x, y, z
H12⋯N5′ 2.89 x, 1 + y, z
H2A′⋯O1′ 2.19 2 − x, −y, 1 − z
N3′⋯H5A 2.10 1 + x, y, z
H10′⋯N4′ 2.55 2 − x, 1 − y, −z
H12′⋯H12′ 2.36 3 − x, 1 − y, −z
[Figure 8]
Figure 8
Front and back views of the three-dimensional Hirshfeld surface of mol­ecules (IIA) and (IIB) plotted over dnorm in the range −0.5399 to 1.2085 a.u. for (IIA) and in the range −0.5388 to 1.1921 a.u. for (IIB).

Fig. 9[link] displays the full two-dimensional fingerprint plot and those delineated into the major contacts. H⋯H inter­actions (Fig. 9[link]b; 27.6% contribution for IIA; 23.1% for IIB) are the major factor in the crystal packing with N⋯H/H⋯N (Fig. 9[link]c; 25.2% for IIA; 28.3% for IIB), C⋯H/H⋯C (Fig. 9[link]d; 15.2% for IIA; 21.2% for IIB) and O⋯H/H⋯O (Fig. 9[link]e; 11.4% for IIA; 8.8% for IIB) inter­actions representing the next highest contributions. The percentage contributions of comparative weaker inter­actions of mol­ecules IIA and IIB are given in Table 6[link]. The surroundings of mol­ecules IIA and IIB are quite similar, as seen by the data comparison.

Table 6
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for compound (II)

Contact % contribution for IIA % contribution for IIB
H⋯H 27.6 23.1
N⋯H/H⋯N 25.2 28.3
C⋯H/H⋯C 15.2 21.2
O⋯H/H⋯O 11.4 8.8
N⋯C/C⋯N 8.6 6.7
C⋯C 6.8 7.5
N⋯N 2.1 2.8
N⋯O/O⋯N 1.7 0.6
C⋯O/O⋯C 1.3 0.9
[Figure 9]
Figure 9
The full two-dimensional fingerprint plots for mol­ecules (IIA) and (IIB), showing all inter­actions (a) and those delineated into N⋯H/H⋯N (b), C⋯H/H⋯C (c) and O⋯H/H⋯O (d) inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave eleven compounds closely related to the title compounds, viz. CSD refcodes YAXQAT (I) (Mamedov et al., 2022[Mamedov, I. G., Khrustalev, V. N., Akkurt, M., Novikov, A. P., Asgarova, A. R., Aliyeva, K. N. & Akobirshoeva, A. A. (2022). Acta Cryst. E78, 291-296.]), OZAKOS (II) (Naghiyev et al., 2021[Naghiyev, F. N., Pavlova, A. V., Khrustalev, V. N., Akkurt, M., Khalilov, A. N., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 930-934.]), JEBREQ (III) (Mohana et al., 2017[Mohana, M., Thomas Muthiah, P. & Butcher, R. J. (2017). Acta Cryst. C73, 536-540.]), JEBRAM (IV) (Mohana et al., 2017[Mohana, M., Thomas Muthiah, P. & Butcher, R. J. (2017). Acta Cryst. C73, 536-540.]), SETWUK (V) (Suresh et al., 2007[Suresh, J., Suresh Kumar, R., Perumal, S., Mostad, A. & Natarajan, S. (2007). Acta Cryst. C63, o141-o144.]), SETWOE (VI) (Suresh et al., 2007[Suresh, J., Suresh Kumar, R., Perumal, S., Mostad, A. & Natarajan, S. (2007). Acta Cryst. C63, o141-o144.]), IQEFOC (VII) (Naghiyev et al., 2021a[Naghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021a). Acta Cryst. E77, 516-521.]), MOKBUL (VIII) (Mohamed et al., 2014[Mohamed, S. K., Akkurt, M., Singh, K., Hussein, B. R. M. & Albayati, M. R. (2014). Acta Cryst. E70, o993-o994.]), PAVQIO (IX) (Al-Said et al., 2012[Al-Said, M. S., Ghorab, M. M., Ghabbour, H. A., Arshad, S. & Fun, H.-K. (2012). Acta Cryst. E68, o1679.]), YIZGOE01 (X) (Jia & Tu, 2008[Jia, R. & Tu, S. J. (2008). Acta Cryst. E64, o1578.]) and YIBZAL (XI) (Eyduran et al., 2007[Eyduran, F., Özyürek, C., Dilek, N., Ocak Iskeleli, N. & Şendil, K. (2007). Acta Cryst. E63, o2415-o2417.]).

In the crystal of (I) (space group: Pc), the two mol­ecules in the asymmetric unit are joined together by N—H⋯O hydrogen bonds, forming a dimer with an [R_{2}^{2}](16) ring motif. N—H⋯O and N—H⋯N hydrogen bonds link the dimers, generating chains along the c-axis direction, which are connected by C—Br⋯π inter­actions. In (II) (space group: Pc), inter­molecular N—H⋯N and C—H⋯N hydrogen bonds, as well as N—H⋯π and C—H⋯π inter­actions, connect mol­ecules in the crystal, generating a 3D network. In both (III) (space group: P[\overline{1}]) and (IV) (space group: P[\overline{1}]), a supra­molecular homosynthon [[R_{2}^{2}](8) ring motif] is formed through N—H⋯N hydrogen bonds. The mol­ecular structures are further stabilized by ππ stacking, and C=O⋯π, C—H⋯O and C—H⋯Cl inter­actions. In (V) (space group: P21/n), the crystal structure is stabilized by inter­molecular C—H⋯F and C—H⋯π inter­actions, and in (VI) (space group: P21/c), by inter­molecular C—H⋯O and C—H⋯π inter­actions. In (VII) (space group: Cc), inter­molecular N—H⋯N and C—H⋯N hydrogen bonds form mol­ecular sheets parallel to the (110) and (110) planes, crossing each other. Adjacent mol­ecules are further linked by C—H⋯π inter­actions, which form zigzag chains propagating parallel to [100]. The compound (VIII) (space group: Pca21) crystallizes with two independent mol­ecules, A and B, in the asymmetric unit. In the crystal, mol­ecules A and B are linked by N—H⋯S, N—H⋯N and C—H⋯S hydrogen bonds, forming a three-dimensional network. In (IX) (space group: P21/c), mol­ecules are linked into a chain along the b-axis direction via C—H⋯O inter­actions. In (X) (space group: P[\overline{1}]), the crystal packing is stabilized by inter­molecular N—H⋯N, O—H⋯O and N—H⋯O hydrogen bonds. In (XI) (space group: P21/c), the mol­ecules form centrosymmetric dimers via N—H⋯S hydrogen bonds.

6. Synthesis and crystallization

Compounds (I)[link] and (II)[link] were synthesized using reported procedures [Mamedov et al. (2020[Mamedov, I., Naghiyev, F., Maharramov, A., Uwangue, O., Farewell, A., Sunnerhagen, P. & Erdelyi, M. (2020). Mendeleev Commun. 30, 498-499.]) and Soto et al. (1981[Soto, J. L., Seoane, C., Zamorano, P. & Cuadrado, F. J. (1981). Synthesis, pp. 529-530.]), respectively]. Colorless crystals of (I)[link] were obtained at room temperature upon slow evaporation of a homogeneous methanol solution, while colorless needle-like crystals of (II)[link] were obtained at room temperature upon slow evaporation from an ethanol/water (3:1) homogeneous solution.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 7[link]. In (I)[link], the H atoms were placed at calculated positions (C—H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl). The N-bound H atoms and the H atoms of the water mol­ecule located at the coordinates (0.5, y, 0.25) were found in a difference-Fourier map, and refined freely [N2—H2A = 0.82 (2), N2—H2B = 0.84 (2) Å, and O2—H2C = 0.849 (10), O2—H2C(−x + 1, y, −z + [{1\over 2}]) = 0.849 (10) Å, with Uiso(H) = 1.2 or 1.5Ueq(N, O). The DFIX instruction was applied to constrain the distance O2—H2C. The Br1 atom is disordered over two positions with refined occupancies of 0.59 (2) and 0.41 (2).

Table 7
Experimental details

  (I) (II)
Crystal data
Chemical formula 2C18H14BrN3O·H2O C13H9N5O
Mr 754.48 251.25
Crystal system, space group Monoclinic, C2/c Triclinic, P[\overline{1}]
Temperature (K) 100 100
a, b, c (Å) 27.539 (3), 6.3430 (6), 21.3540 (19) 8.6444 (1), 8.9104 (2), 16.0902 (2)
α, β, γ (°) 90, 118.170 (12), 90 79.196 (1), 86.485 (1), 69.003 (2)
V3) 3288.2 (6) 1136.52 (4)
Z 4 4
Radiation type Synchrotron, λ = 0.74500 Å Mo Kα
μ (mm−1) 2.83 0.10
Crystal size (mm) 0.10 × 0.07 × 0.05 0.15 × 0.12 × 0.06
 
Data collection
Diffractometer Rayonix SX-165 CCD XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (SCALA; Evans, 2006[Evans, P. (2006). Acta Cryst. D62, 72-82.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.742, 0.851 0.972, 0.980
No. of measured, independent and observed [I > 2σ(I)] reflections 28485, 4492, 4047 88754, 9666, 8561
Rint 0.025 0.029
(sin θ/λ)max−1) 0.692 0.816
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.086, 1.06 0.039, 0.118, 1.03
No. of reflections 4492 9666
No. of parameters 233 363
No. of restraints 2 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.45, −0.43 0.54, −0.31
Computer programs: Marccd (Doyle, 2011[Doyle, R. A. (2011). Marccd software manual. Rayonix L.L.C., Evanston, IL 60201, USA.]), CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), iMosflm (Battye et al., 2011[Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271-281.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

In (II)[link], the H atoms were placed at calculated positions (C—H = 0.95 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C). N-bound H atoms were found in a difference Fourier map and refined freely [N2—H2A = 0.913 (13), N2—H2B = 0.916 (14), N5—H5A = 0.897 (14) and N5—H5B = 0.930 (14) Å for mol­ecule IIA, and N2′—H2A′ = 0.898 (13), N2′—H2B′ = 0.902 (15), N5′—H5A′ = 0.887 (15) and N5′—H5B′ = 0.889 (12) Å for mol­ecule IIB].

Supporting information


Computing details top

Data collection: Marccd (Doyle, 2011) for (I); CrysAlis PRO (Rigaku OD, 2021) for (II). Cell refinement: iMosflm (Battye et al., 2011) for (I); CrysAlis PRO (Rigaku OD, 2021) for (II). Data reduction: iMosflm (Battye et al., 2011) for (I); CrysAlis PRO (Rigaku OD, 2021) for (II). For both structures, program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

2-Amino-4-(4-bromophenyl)-6-oxo-1-phenyl-1,4,5,6-tetrahydropyridine-3-carbonitrile hemihydrate (I) top
Crystal data top
2C18H14BrN3O·H2OF(000) = 1528
Mr = 754.48Dx = 1.524 Mg m3
Monoclinic, C2/cSynchrotron radiation, λ = 0.74500 Å
a = 27.539 (3) ÅCell parameters from 1000 reflections
b = 6.3430 (6) Åθ = 1.8–24.0°
c = 21.3540 (19) ŵ = 2.83 mm1
β = 118.170 (12)°T = 100 K
V = 3288.2 (6) Å3Prism, yellow
Z = 40.10 × 0.07 × 0.05 mm
Data collection top
Rayonix SX-165 CCD
diffractometer
4047 reflections with I > 2σ(I)
/f scanRint = 0.025
Absorption correction: multi-scan
(SCALA; Evans, 2006)
θmax = 31.0°, θmin = 1.8°
Tmin = 0.742, Tmax = 0.851h = 3838
28485 measured reflectionsk = 88
4492 independent reflectionsl = 2929
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0485P)2 + 2.5862P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.086(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.45 e Å3
4492 reflectionsΔρmin = 0.43 e Å3
233 parametersExtinction correction: SHELXL-2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.0066 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.58033 (10)1.0754 (4)0.04138 (12)0.0362 (3)0.59 (2)
Br1A0.5838 (2)1.1121 (17)0.0450 (2)0.0521 (7)0.41 (2)
O10.61090 (5)0.37633 (17)0.30715 (7)0.0337 (3)
N10.63725 (5)0.65818 (18)0.38065 (6)0.0224 (2)
N20.66784 (6)0.9297 (2)0.46401 (7)0.0259 (2)
H2A0.6410 (10)0.904 (3)0.4699 (12)0.031*
H2B0.6843 (9)1.044 (3)0.4797 (11)0.031*
N30.78997 (5)1.13330 (19)0.47344 (7)0.0273 (2)
C20.67632 (6)0.8155 (2)0.41704 (7)0.0221 (2)
C30.71957 (6)0.8467 (2)0.40309 (7)0.0228 (2)
C40.72370 (6)0.7256 (2)0.34490 (7)0.0222 (2)
H40.7633850.7163450.3568210.027*
C50.70242 (6)0.5023 (2)0.34527 (8)0.0248 (3)
H5A0.7005330.4224490.3043380.030*
H5B0.7287080.4289330.3892380.030*
C60.64645 (6)0.5040 (2)0.34127 (8)0.0248 (3)
C70.58549 (6)0.6519 (2)0.38258 (7)0.0249 (3)
C80.54681 (7)0.8076 (3)0.34787 (9)0.0339 (3)
H80.5542010.9183090.3236260.041*
C90.49690 (8)0.7984 (3)0.34924 (11)0.0446 (4)
H90.4701560.9055290.3264860.053*
C100.48580 (7)0.6351 (3)0.38334 (11)0.0442 (4)
H100.4513080.6294900.3832990.053*
C110.52464 (7)0.4800 (3)0.41753 (10)0.0382 (4)
H110.5168060.3677890.4408490.046*
C120.57518 (7)0.4881 (2)0.41780 (9)0.0304 (3)
H120.6022850.3829640.4417290.037*
C130.75857 (6)1.0032 (2)0.44177 (7)0.0230 (2)
C140.69159 (6)0.8247 (2)0.27130 (7)0.0222 (2)
C150.69605 (6)0.7419 (2)0.21353 (8)0.0284 (3)
H150.7211230.6299450.2209940.034*
C160.66441 (7)0.8207 (3)0.14545 (8)0.0320 (3)
H160.6670740.7617900.1062810.038*
C170.62892 (6)0.9867 (3)0.13569 (8)0.0293 (3)
C180.62500 (6)1.0777 (2)0.19181 (8)0.0264 (3)
H180.6014361.1949730.1843830.032*
C190.65621 (6)0.9943 (2)0.25941 (7)0.0235 (3)
H190.6533451.0542660.2983000.028*
O20.5000000.2217 (3)0.2500000.0497 (5)
H2C0.5274 (8)0.305 (4)0.2670 (16)0.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0326 (4)0.0536 (6)0.0240 (3)0.0061 (6)0.0149 (3)0.0099 (3)
Br1A0.0486 (12)0.0873 (19)0.0298 (7)0.0336 (9)0.0262 (7)0.0238 (8)
O10.0301 (6)0.0284 (5)0.0446 (6)0.0049 (4)0.0193 (5)0.0142 (4)
N10.0219 (5)0.0217 (5)0.0239 (5)0.0008 (4)0.0109 (4)0.0025 (4)
N20.0274 (6)0.0263 (5)0.0266 (6)0.0044 (5)0.0149 (5)0.0058 (4)
N30.0290 (6)0.0255 (5)0.0276 (6)0.0020 (5)0.0133 (5)0.0005 (4)
C20.0238 (6)0.0203 (5)0.0205 (5)0.0009 (4)0.0090 (5)0.0005 (4)
C30.0235 (6)0.0221 (5)0.0216 (6)0.0002 (5)0.0096 (5)0.0003 (4)
C40.0220 (6)0.0212 (5)0.0239 (6)0.0014 (4)0.0112 (5)0.0004 (4)
C50.0259 (7)0.0200 (5)0.0298 (6)0.0031 (5)0.0142 (5)0.0004 (5)
C60.0259 (7)0.0204 (5)0.0278 (6)0.0009 (5)0.0126 (5)0.0015 (5)
C70.0208 (6)0.0277 (6)0.0254 (6)0.0014 (5)0.0102 (5)0.0055 (5)
C80.0285 (8)0.0374 (8)0.0329 (7)0.0058 (6)0.0122 (6)0.0010 (6)
C90.0278 (8)0.0549 (10)0.0469 (10)0.0111 (7)0.0143 (7)0.0055 (8)
C100.0258 (8)0.0594 (11)0.0507 (10)0.0063 (7)0.0207 (8)0.0189 (9)
C110.0336 (8)0.0426 (9)0.0448 (9)0.0120 (7)0.0238 (7)0.0119 (7)
C120.0277 (7)0.0303 (7)0.0350 (7)0.0053 (6)0.0162 (6)0.0049 (6)
C130.0247 (6)0.0229 (6)0.0221 (6)0.0020 (5)0.0116 (5)0.0021 (5)
C140.0230 (6)0.0213 (5)0.0241 (6)0.0007 (5)0.0125 (5)0.0010 (4)
C150.0299 (7)0.0300 (6)0.0290 (7)0.0052 (5)0.0169 (6)0.0007 (5)
C160.0325 (8)0.0429 (8)0.0259 (7)0.0041 (6)0.0182 (6)0.0009 (6)
C170.0271 (7)0.0396 (7)0.0227 (6)0.0028 (6)0.0132 (5)0.0068 (6)
C180.0275 (7)0.0263 (6)0.0268 (6)0.0026 (5)0.0139 (6)0.0036 (5)
C190.0274 (7)0.0218 (6)0.0232 (6)0.0002 (5)0.0135 (5)0.0009 (5)
O20.0349 (10)0.0329 (9)0.0631 (13)0.0000.0082 (9)0.000
Geometric parameters (Å, º) top
Br1—C171.902 (3)C8—C91.390 (2)
Br1A—C171.912 (4)C8—H80.9500
O1—C61.2131 (18)C9—C101.381 (3)
N1—C61.3886 (17)C9—H90.9500
N1—C21.4027 (17)C10—C111.381 (3)
N1—C71.4460 (18)C10—H100.9500
N2—C21.3440 (17)C11—C121.390 (2)
N2—H2A0.82 (2)C11—H110.9500
N2—H2B0.84 (2)C12—H120.9500
N3—C131.1551 (19)C14—C191.3921 (18)
C2—C31.3716 (19)C14—C151.3986 (18)
C3—C131.4080 (19)C15—C161.388 (2)
C3—C41.5101 (18)C15—H150.9500
C4—C141.5278 (19)C16—C171.384 (2)
C4—C51.5347 (18)C16—H160.9500
C4—H41.0000C17—C181.380 (2)
C5—C61.5031 (19)C18—C191.390 (2)
C5—H5A0.9900C18—H180.9500
C5—H5B0.9900C19—H190.9500
C7—C81.383 (2)O2—H2C0.849 (10)
C7—C121.389 (2)O2—H2Ci0.849 (10)
C6—N1—C2121.67 (12)C10—C9—H9119.7
C6—N1—C7117.52 (11)C8—C9—H9119.7
C2—N1—C7120.82 (11)C9—C10—C11120.26 (16)
C2—N2—H2A119.6 (14)C9—C10—H10119.9
C2—N2—H2B120.8 (15)C11—C10—H10119.9
H2A—N2—H2B118 (2)C10—C11—C12120.00 (17)
N2—C2—C3123.97 (13)C10—C11—H11120.0
N2—C2—N1116.02 (12)C12—C11—H11120.0
C3—C2—N1120.00 (12)C7—C12—C11119.05 (16)
C2—C3—C13118.33 (12)C7—C12—H12120.5
C2—C3—C4121.03 (12)C11—C12—H12120.5
C13—C3—C4120.55 (12)N3—C13—C3179.02 (15)
C3—C4—C14113.92 (11)C19—C14—C15118.33 (13)
C3—C4—C5106.75 (11)C19—C14—C4121.39 (11)
C14—C4—C5110.35 (11)C15—C14—C4120.26 (12)
C3—C4—H4108.6C16—C15—C14121.04 (13)
C14—C4—H4108.6C16—C15—H15119.5
C5—C4—H4108.6C14—C15—H15119.5
C6—C5—C4112.13 (11)C17—C16—C15118.77 (13)
C6—C5—H5A109.2C17—C16—H16120.6
C4—C5—H5A109.2C15—C16—H16120.6
C6—C5—H5B109.2C18—C17—C16121.80 (13)
C4—C5—H5B109.2C18—C17—Br1119.43 (14)
H5A—C5—H5B107.9C16—C17—Br1118.58 (14)
O1—C6—N1120.51 (13)C18—C17—Br1A115.2 (2)
O1—C6—C5122.98 (12)C16—C17—Br1A123.0 (2)
N1—C6—C5116.49 (12)C17—C18—C19118.64 (13)
C8—C7—C12121.46 (14)C17—C18—H18120.7
C8—C7—N1119.04 (13)C19—C18—H18120.7
C12—C7—N1119.49 (13)C18—C19—C14121.34 (12)
C7—C8—C9118.56 (17)C18—C19—H19119.3
C7—C8—H8120.7C14—C19—H19119.3
C9—C8—H8120.7H2C—O2—H2Ci103 (4)
C10—C9—C8120.66 (17)
C6—N1—C2—N2167.48 (13)C12—C7—C8—C90.5 (2)
C7—N1—C2—N212.90 (18)N1—C7—C8—C9179.12 (14)
C6—N1—C2—C313.26 (19)C7—C8—C9—C101.3 (3)
C7—N1—C2—C3166.35 (13)C8—C9—C10—C110.9 (3)
N2—C2—C3—C132.1 (2)C9—C10—C11—C120.1 (3)
N1—C2—C3—C13178.68 (12)C8—C7—C12—C110.5 (2)
N2—C2—C3—C4174.42 (13)N1—C7—C12—C11178.07 (13)
N1—C2—C3—C44.77 (19)C10—C11—C12—C70.8 (2)
C2—C3—C4—C1485.13 (15)C3—C4—C14—C198.24 (18)
C13—C3—C4—C1491.35 (15)C5—C4—C14—C19111.81 (14)
C2—C3—C4—C536.93 (16)C3—C4—C14—C15173.58 (13)
C13—C3—C4—C5146.59 (12)C5—C4—C14—C1566.37 (16)
C3—C4—C5—C652.57 (15)C19—C14—C15—C162.6 (2)
C14—C4—C5—C671.70 (14)C4—C14—C15—C16175.64 (14)
C2—N1—C6—O1176.04 (13)C14—C15—C16—C171.3 (2)
C7—N1—C6—O13.6 (2)C15—C16—C17—C181.2 (2)
C2—N1—C6—C55.58 (18)C15—C16—C17—Br1173.74 (14)
C7—N1—C6—C5174.79 (12)C15—C16—C17—Br1A179.2 (4)
C4—C5—C6—O1141.73 (14)C16—C17—C18—C192.4 (2)
C4—C5—C6—N139.93 (17)Br1—C17—C18—C19172.52 (13)
C6—N1—C7—C8110.24 (15)Br1A—C17—C18—C19179.5 (3)
C2—N1—C7—C869.39 (18)C17—C18—C19—C141.1 (2)
C6—N1—C7—C1268.39 (17)C15—C14—C19—C181.4 (2)
C2—N1—C7—C12111.98 (15)C4—C14—C19—C18176.83 (13)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Br1ii0.82 (2)2.75 (2)3.507 (3)154.4 (19)
N2—H2A···Br1Aii0.82 (2)2.73 (2)3.493 (4)155.1 (19)
N2—H2B···N3iii0.84 (2)2.24 (2)3.0583 (18)165 (2)
C5—H5B···N3iv0.992.593.5426 (19)160
C8—H8···O2v0.952.493.223 (2)134
C12—H12···N3vi0.952.653.411 (2)138
C16—H16···N3vii0.952.623.5283 (19)160
O2—H2C···O10.85 (1)2.09 (2)2.8739 (14)153 (3)
Symmetry codes: (ii) x, y+2, z+1/2; (iii) x+3/2, y+5/2, z+1; (iv) x, y1, z; (v) x, y+1, z; (vi) x+3/2, y+3/2, z+1; (vii) x+3/2, y1/2, z+1/2.
1,6-Diamino-2-oxo-4-phenyl-1,2-dihydropyridine-3,5-dicarbonitrile (II) top
Crystal data top
C13H9N5OZ = 4
Mr = 251.25F(000) = 520
Triclinic, P1Dx = 1.468 Mg m3
a = 8.6444 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.9104 (2) ÅCell parameters from 60859 reflections
c = 16.0902 (2) Åθ = 2.5–35.6°
α = 79.196 (1)°µ = 0.10 mm1
β = 86.485 (1)°T = 100 K
γ = 69.003 (2)°Prism, colourless
V = 1136.52 (4) Å30.15 × 0.12 × 0.06 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
8561 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tubeRint = 0.029
φ and ω scansθmax = 35.4°, θmin = 2.5°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
h = 1413
Tmin = 0.972, Tmax = 0.980k = 1414
88754 measured reflectionsl = 2526
9666 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0719P)2 + 0.2449P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
9666 reflectionsΔρmax = 0.54 e Å3
363 parametersΔρmin = 0.31 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.49789 (8)0.24937 (8)0.36884 (4)0.01381 (11)
C30.53566 (8)0.37133 (8)0.30738 (4)0.01370 (11)
C40.48775 (8)0.53309 (8)0.31837 (4)0.01268 (10)
C50.39202 (8)0.57960 (7)0.38978 (4)0.01268 (10)
C60.33478 (8)0.46771 (8)0.44558 (4)0.01249 (10)
C70.63071 (9)0.31152 (8)0.23688 (4)0.01525 (11)
C80.53483 (8)0.65513 (8)0.25605 (4)0.01337 (11)
C90.50427 (10)0.67233 (8)0.16981 (4)0.01755 (12)
H90.4538110.6056950.1510800.021*
C100.54766 (11)0.78697 (9)0.11127 (5)0.02109 (14)
H100.5264890.7982390.0527600.025*
C110.62188 (10)0.88513 (9)0.13807 (5)0.02022 (13)
H110.6522790.9624600.0979610.024*
C120.65120 (9)0.86934 (8)0.22373 (5)0.01812 (12)
H120.7005590.9370290.2422770.022*
C130.60864 (9)0.75488 (8)0.28249 (4)0.01520 (11)
H130.6297970.7443300.3409460.018*
C140.34605 (8)0.74045 (8)0.40775 (4)0.01414 (11)
N10.38849 (7)0.30955 (7)0.43300 (4)0.01336 (10)
N20.33246 (8)0.19935 (7)0.49062 (4)0.01632 (11)
H2A0.3085 (16)0.1388 (16)0.4569 (8)0.027 (3)*
H2B0.4202 (17)0.1317 (16)0.5247 (8)0.029 (3)*
N30.70345 (9)0.25693 (8)0.18045 (4)0.02017 (12)
N40.31176 (8)0.86837 (7)0.42590 (4)0.01799 (11)
N50.23470 (8)0.50589 (7)0.51032 (4)0.01504 (10)
H5A0.1960 (17)0.4294 (17)0.5378 (8)0.030 (3)*
H5B0.1916 (17)0.6134 (17)0.5190 (9)0.031 (3)*
O10.55120 (7)0.10126 (6)0.36855 (3)0.01817 (10)
C2'0.97520 (8)0.16536 (7)0.35832 (4)0.01262 (11)
C3'1.02820 (8)0.27412 (7)0.29632 (4)0.01245 (10)
C4'1.08425 (8)0.23854 (7)0.21668 (4)0.01188 (10)
C5'1.09636 (8)0.08798 (7)0.19804 (4)0.01221 (10)
C6'1.04791 (8)0.02418 (7)0.25855 (4)0.01190 (10)
C7'1.02248 (9)0.42022 (8)0.32183 (4)0.01393 (11)
C8'1.12573 (5)0.36189 (4)0.15294 (3)0.01286 (11)
C9'1.00656 (4)0.51639 (5)0.13008 (3)0.01666 (12)
H9'0.8997830.5418830.1549790.020*
C10'1.04361 (6)0.63360 (4)0.07079 (3)0.02107 (14)
H10'0.9621580.7391940.0551670.025*
C11'1.19983 (6)0.59630 (5)0.03436 (3)0.02295 (15)
H11'1.2251530.6764080.0061580.028*
C12'1.31900 (5)0.44180 (6)0.05723 (3)0.02250 (15)
H12'1.4257760.4163110.0323290.027*
C13'1.28195 (5)0.32459 (4)0.11652 (3)0.01777 (12)
H13'1.3634040.2189980.1321410.021*
C14'1.14171 (9)0.04541 (8)0.11662 (4)0.01460 (11)
N1'0.98460 (7)0.01996 (6)0.33357 (3)0.01239 (10)
N2'0.93299 (8)0.09390 (7)0.39068 (4)0.01582 (11)
H2A'0.9758 (16)0.1024 (15)0.4416 (8)0.022 (3)*
H2B'0.8215 (18)0.0479 (17)0.3919 (9)0.032 (3)*
N3'1.01668 (9)0.53667 (7)0.34567 (4)0.01855 (12)
N4'1.17585 (9)0.00229 (8)0.05229 (4)0.02098 (12)
N5'1.05814 (8)0.16991 (7)0.24521 (4)0.01556 (11)
H5A'1.0282 (19)0.2369 (18)0.2854 (9)0.039 (4)*
H5B'1.0896 (15)0.2001 (15)0.1954 (8)0.023 (3)*
O1'0.92331 (7)0.18943 (6)0.42983 (3)0.01749 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0160 (3)0.0122 (2)0.0135 (2)0.0053 (2)0.0029 (2)0.00348 (19)
C30.0169 (3)0.0119 (2)0.0126 (2)0.0055 (2)0.0032 (2)0.00320 (19)
C40.0144 (3)0.0120 (2)0.0119 (2)0.0050 (2)0.00073 (19)0.00226 (18)
C50.0156 (3)0.0106 (2)0.0122 (2)0.0051 (2)0.00160 (19)0.00266 (18)
C60.0145 (3)0.0116 (2)0.0115 (2)0.0046 (2)0.00057 (19)0.00262 (18)
C70.0173 (3)0.0134 (2)0.0150 (3)0.0056 (2)0.0018 (2)0.0027 (2)
C80.0160 (3)0.0117 (2)0.0121 (2)0.0049 (2)0.00167 (19)0.00189 (18)
C90.0234 (3)0.0156 (3)0.0129 (3)0.0059 (2)0.0002 (2)0.0026 (2)
C100.0292 (4)0.0173 (3)0.0127 (3)0.0047 (3)0.0022 (2)0.0006 (2)
C110.0244 (3)0.0141 (3)0.0183 (3)0.0046 (2)0.0068 (2)0.0002 (2)
C120.0199 (3)0.0147 (3)0.0204 (3)0.0078 (2)0.0051 (2)0.0028 (2)
C130.0177 (3)0.0144 (3)0.0146 (3)0.0073 (2)0.0020 (2)0.0025 (2)
C140.0156 (3)0.0135 (2)0.0138 (2)0.0059 (2)0.0018 (2)0.00275 (19)
N10.0169 (2)0.0103 (2)0.0131 (2)0.00544 (18)0.00382 (18)0.00272 (17)
N20.0212 (3)0.0126 (2)0.0161 (2)0.0083 (2)0.0051 (2)0.00171 (18)
N30.0222 (3)0.0194 (3)0.0181 (3)0.0063 (2)0.0046 (2)0.0052 (2)
N40.0207 (3)0.0149 (2)0.0200 (3)0.0077 (2)0.0039 (2)0.0052 (2)
N50.0189 (3)0.0128 (2)0.0133 (2)0.00552 (19)0.00438 (19)0.00362 (17)
O10.0235 (2)0.0112 (2)0.0197 (2)0.00596 (18)0.00526 (19)0.00440 (16)
C2'0.0176 (3)0.0089 (2)0.0115 (2)0.0048 (2)0.00219 (19)0.00237 (18)
C3'0.0179 (3)0.0091 (2)0.0115 (2)0.0061 (2)0.00252 (19)0.00242 (18)
C4'0.0144 (3)0.0097 (2)0.0116 (2)0.00459 (19)0.00144 (19)0.00171 (18)
C5'0.0168 (3)0.0100 (2)0.0101 (2)0.0053 (2)0.00269 (19)0.00226 (18)
C6'0.0149 (3)0.0095 (2)0.0115 (2)0.00460 (19)0.00159 (19)0.00249 (18)
C7'0.0186 (3)0.0113 (2)0.0123 (2)0.0063 (2)0.0015 (2)0.00144 (19)
C8'0.0178 (3)0.0108 (2)0.0112 (2)0.0070 (2)0.00243 (19)0.00177 (18)
C9'0.0212 (3)0.0126 (2)0.0142 (3)0.0052 (2)0.0010 (2)0.0004 (2)
C10'0.0331 (4)0.0148 (3)0.0148 (3)0.0099 (3)0.0004 (3)0.0017 (2)
C11'0.0400 (4)0.0200 (3)0.0153 (3)0.0195 (3)0.0056 (3)0.0022 (2)
C12'0.0300 (4)0.0217 (3)0.0226 (3)0.0175 (3)0.0122 (3)0.0076 (3)
C13'0.0199 (3)0.0152 (3)0.0208 (3)0.0094 (2)0.0068 (2)0.0051 (2)
C14'0.0190 (3)0.0113 (2)0.0133 (2)0.0057 (2)0.0020 (2)0.00160 (19)
N1'0.0184 (2)0.0086 (2)0.0109 (2)0.00621 (18)0.00355 (17)0.00196 (16)
N2'0.0235 (3)0.0116 (2)0.0138 (2)0.0093 (2)0.0063 (2)0.00122 (17)
N3'0.0277 (3)0.0133 (2)0.0168 (2)0.0098 (2)0.0017 (2)0.00329 (19)
N4'0.0300 (3)0.0178 (3)0.0148 (2)0.0079 (2)0.0039 (2)0.0045 (2)
N5'0.0239 (3)0.0105 (2)0.0146 (2)0.0085 (2)0.0047 (2)0.00454 (18)
O1'0.0286 (3)0.0125 (2)0.0116 (2)0.00763 (18)0.00628 (18)0.00403 (15)
Geometric parameters (Å, º) top
C2—O11.2330 (8)C2'—O1'1.2376 (7)
C2—N11.4044 (8)C2'—N1'1.3992 (8)
C2—C31.4412 (9)C2'—C3'1.4296 (8)
C3—C41.3925 (9)C3'—C4'1.3939 (9)
C3—C71.4300 (9)C3'—C7'1.4204 (9)
C4—C51.4117 (9)C4'—C5'1.3954 (8)
C4—C81.4872 (9)C4'—C8'1.4843
C5—C61.4172 (9)C5'—C6'1.4167 (8)
C5—C141.4243 (9)C5'—C14'1.4251 (9)
C6—N51.3268 (8)C6'—N5'1.3266 (8)
C6—N11.3672 (8)C6'—N1'1.3617 (8)
C7—N31.1545 (9)C7'—N3'1.1558 (8)
C8—C91.3982 (9)C8'—C9'1.3900
C8—C131.3999 (9)C8'—C13'1.3900
C9—C101.3935 (10)C9'—C10'1.3900
C9—H90.9500C9'—H9'0.9500
C10—C111.3928 (12)C10'—C11'1.3900
C10—H100.9500C10'—H10'0.9500
C11—C121.3887 (11)C11'—C12'1.3900
C11—H110.9500C11'—H11'0.9500
C12—C131.3907 (9)C12'—C13'1.3900
C12—H120.9500C12'—H12'0.9500
C13—H130.9500C13'—H13'0.9500
C14—N41.1595 (9)C14'—N4'1.1561 (9)
N1—N21.4151 (8)N1'—N2'1.4132 (7)
N2—H2A0.913 (13)N2'—H2A'0.898 (13)
N2—H2B0.916 (14)N2'—H2B'0.902 (15)
N5—H5A0.897 (14)N5'—H5A'0.887 (15)
N5—H5B0.930 (14)N5'—H5B'0.889 (12)
O1—C2—N1118.98 (6)O1'—C2'—N1'118.89 (6)
O1—C2—C3125.76 (6)O1'—C2'—C3'125.90 (6)
N1—C2—C3115.25 (5)N1'—C2'—C3'115.20 (5)
C4—C3—C7123.26 (6)C4'—C3'—C7'122.09 (6)
C4—C3—C2121.92 (6)C4'—C3'—C2'122.48 (5)
C7—C3—C2114.77 (5)C7'—C3'—C2'115.42 (5)
C3—C4—C5118.58 (6)C3'—C4'—C5'118.84 (5)
C3—C4—C8120.96 (6)C3'—C4'—C8'119.79 (5)
C5—C4—C8120.46 (5)C5'—C4'—C8'121.35 (5)
C4—C5—C6120.81 (6)C4'—C5'—C6'120.19 (5)
C4—C5—C14121.79 (6)C4'—C5'—C14'122.74 (6)
C6—C5—C14117.38 (6)C6'—C5'—C14'116.82 (5)
N5—C6—N1117.80 (6)N5'—C6'—N1'117.96 (6)
N5—C6—C5124.17 (6)N5'—C6'—C5'123.20 (6)
N1—C6—C5118.01 (6)N1'—C6'—C5'118.83 (5)
N3—C7—C3176.29 (7)N3'—C7'—C3'177.41 (7)
C9—C8—C13119.10 (6)C9'—C8'—C13'120.0
C9—C8—C4120.01 (6)C9'—C8'—C4'119.3
C13—C8—C4120.89 (6)C13'—C8'—C4'120.7
C10—C9—C8120.16 (7)C8'—C9'—C10'120.0
C10—C9—H9119.9C8'—C9'—H9'120.0
C8—C9—H9119.9C10'—C9'—H9'120.0
C11—C10—C9120.37 (7)C11'—C10'—C9'120.0
C11—C10—H10119.8C11'—C10'—H10'120.0
C9—C10—H10119.8C9'—C10'—H10'120.0
C12—C11—C10119.63 (6)C10'—C11'—C12'120.0
C12—C11—H11120.2C10'—C11'—H11'120.0
C10—C11—H11120.2C12'—C11'—H11'120.0
C11—C12—C13120.31 (7)C13'—C12'—C11'120.0
C11—C12—H12119.8C13'—C12'—H12'120.0
C13—C12—H12119.8C11'—C12'—H12'120.0
C12—C13—C8120.42 (6)C12'—C13'—C8'120.0
C12—C13—H13119.8C12'—C13'—H13'120.0
C8—C13—H13119.8C8'—C13'—H13'120.0
N4—C14—C5176.96 (7)N4'—C14'—C5'175.70 (7)
C6—N1—C2124.55 (5)C6'—N1'—C2'124.25 (5)
C6—N1—N2116.97 (5)C6'—N1'—N2'116.70 (5)
C2—N1—N2118.46 (5)C2'—N1'—N2'118.98 (5)
N1—N2—H2A103.6 (8)N1'—N2'—H2A'107.0 (8)
N1—N2—H2B107.6 (8)N1'—N2'—H2B'104.9 (9)
H2A—N2—H2B108.0 (11)H2A'—N2'—H2B'110.0 (12)
C6—N5—H5A117.0 (9)C6'—N5'—H5A'120.0 (10)
C6—N5—H5B119.9 (8)C6'—N5'—H5B'121.0 (8)
H5A—N5—H5B122.0 (12)H5A'—N5'—H5B'118.9 (12)
O1—C2—C3—C4171.43 (7)O1'—C2'—C3'—C4'179.57 (7)
N1—C2—C3—C49.53 (10)N1'—C2'—C3'—C4'0.40 (10)
O1—C2—C3—C76.26 (10)O1'—C2'—C3'—C7'1.41 (10)
N1—C2—C3—C7172.78 (6)N1'—C2'—C3'—C7'178.62 (6)
C7—C3—C4—C5179.14 (6)C7'—C3'—C4'—C5'175.94 (6)
C2—C3—C4—C53.36 (10)C2'—C3'—C4'—C5'3.01 (10)
C7—C3—C4—C80.34 (10)C7'—C3'—C4'—C8'5.56 (10)
C2—C3—C4—C8177.16 (6)C2'—C3'—C4'—C8'175.49 (6)
C3—C4—C5—C64.87 (10)C3'—C4'—C5'—C6'1.73 (10)
C8—C4—C5—C6174.61 (6)C8'—C4'—C5'—C6'176.75 (5)
C3—C4—C5—C14176.52 (6)C3'—C4'—C5'—C14'175.69 (6)
C8—C4—C5—C143.99 (10)C8'—C4'—C5'—C14'2.79 (10)
C4—C5—C6—N5174.96 (6)C4'—C5'—C6'—N5'179.18 (6)
C14—C5—C6—N53.70 (10)C14'—C5'—C6'—N5'6.51 (10)
C4—C5—C6—N16.35 (9)C4'—C5'—C6'—N1'2.15 (10)
C14—C5—C6—N1174.99 (6)C14'—C5'—C6'—N1'172.16 (6)
C3—C4—C8—C950.86 (9)C3'—C4'—C8'—C9'56.14 (7)
C5—C4—C8—C9128.61 (7)C5'—C4'—C8'—C9'122.33 (6)
C3—C4—C8—C13129.66 (7)C3'—C4'—C8'—C13'123.55 (6)
C5—C4—C8—C1350.87 (9)C5'—C4'—C8'—C13'57.99 (7)
C13—C8—C9—C100.27 (10)C13'—C8'—C9'—C10'0.0
C4—C8—C9—C10179.76 (6)C4'—C8'—C9'—C10'179.7
C8—C9—C10—C110.08 (11)C8'—C9'—C10'—C11'0.0
C9—C10—C11—C120.60 (12)C9'—C10'—C11'—C12'0.0
C10—C11—C12—C130.77 (11)C10'—C11'—C12'—C13'0.0
C11—C12—C13—C80.43 (11)C11'—C12'—C13'—C8'0.0
C9—C8—C13—C120.10 (10)C9'—C8'—C13'—C12'0.0
C4—C8—C13—C12179.58 (6)C4'—C8'—C13'—C12'179.7
N5—C6—N1—C2178.25 (6)N5'—C6'—N1'—C2'176.16 (6)
C5—C6—N1—C20.53 (10)C5'—C6'—N1'—C2'5.10 (10)
N5—C6—N1—N20.09 (9)N5'—C6'—N1'—N2'0.78 (9)
C5—C6—N1—N2178.69 (6)C5'—C6'—N1'—N2'177.97 (6)
O1—C2—N1—C6172.72 (7)O1'—C2'—N1'—C6'176.24 (6)
C3—C2—N1—C68.16 (10)C3'—C2'—N1'—C6'3.79 (10)
O1—C2—N1—N25.41 (10)O1'—C2'—N1'—N2'0.63 (10)
C3—C2—N1—N2173.70 (6)C3'—C2'—N1'—N2'179.34 (6)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C8–C13 phenyl ring.
D—H···AD—HH···AD···AD—H···A
N2—H2A···N4i0.913 (13)2.541 (13)3.3713 (9)151.6 (11)
N2—H2B···N4ii0.916 (14)2.495 (14)3.2404 (10)138.7 (11)
N2—H2B···O1iii0.916 (14)2.381 (13)3.0650 (8)131.5 (11)
N5—H5A···N3ii0.897 (14)2.525 (14)3.1431 (9)126.6 (11)
N5—H5B···O1ii0.930 (14)1.986 (14)2.8853 (8)162.3 (12)
N2—H2A···O1iv0.898 (13)2.186 (13)3.0608 (8)164.4 (11)
N2—H2B···N2iii0.902 (15)2.681 (14)3.1829 (8)116.1 (10)
N2—H2B···O10.902 (15)2.250 (15)3.1373 (9)167.5 (12)
N5—H5A···N3i0.887 (15)2.102 (15)2.9314 (8)155.2 (13)
C9—H9···Cg20.952.933.7972 (5)153
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1; (iv) x+2, y, z+1.
Summary of short interatomic contacts (Å) in compound (I) top
ContactDistanceSymmetry operation
Br1A···H2A2.73x, 2 - y, -1/2 + z
O1···H2C2.091 - x, y, 1/2 - z
O1···H192.40x, -1 + y, z
N3···H2B2.243/2 - x, 5/2 - y, 1 - z
H12···N32.653/2 - x, 3/2 - y, 1 - z
N3···H162.623/2 - x, 1/2 + y, 1/2 - z
H8···O22.49x, 1 + y, z
H9···C182.691 - x, y, 1/2 - z
O2···O12.871 - x, y, 1/2 - z
Summary of short interatomic contacts (Å) in compound (II) top
ContactDistanceSymmetry operation
O1···H2B'2.25x, y, z
H2A···N42.54x, -1 + y, z
H2B···O12.381 - x, -y, 1 - z
H13···H5A2.461 - x, 1 - y, 1 - z
N2···H2B'2.681 - x, -y, 1 - z
H10···H12'2.462 - x, 1 - y, -z
N4···H2A'2.82-1 + x, 1 + y, z
H5B···O1'1.991 - x, 1 - y, 1 - z
H9···C12'2.83-1 + x, y, z
H12···N5'2.89x, 1 + y, z
H2A'···O1'2.192 - x, -y, 1 - z
N3'···H5A'2.101 + x, y, z
H10'···N4'2.552 - x, 1 - y, -z
H12'···H12'2.363 - x, 1 - y, -z
Percentage contributions of interatomic contacts to the Hirshfeld surface for compound (I) top
ContactPercentage contribution
H···H37.9
C···H/H···C18.4
Br···H/H···Br13.3
N···H/H···N11.5
O···H/H···O10.0
Br···C/C···Br4.2
C···C1.5
N···C/C···N1.3
N···N0.8
Br···Br0.6
C···O/O···C0.5
Percentage contributions of interatomic contacts to the Hirshfeld surface for compound (II) top
ContactPercentage contribution for IIAPercentage contribution for IIB
H···H27.623.1
N···H/H···N25.228.3
C···H/H···C15.221.2
O···H/H···O11.48.8
N···C/C···N8.66.7
C···C6.87.5
N···N2.12.8
N···O/O···N1.70.6
C···O/O···C1.30.9
 

Acknowledgements

The authors' contributions are as follows. Conceptualization, ANK, FNN and IGM; methodology, ANK and IGM; investigation, ANK, MA, NUV and TAT; writing (original draft), MA and ANK; writing (review and editing of the manuscript), MA and ANK; visualization, MA, ANK and IGM; funding acquisition, VNK, AB and ANK; resources, AB, VNK, NUV and TAT; supervision, ANK and MA.

Funding information

This paper was supported by Baku State University and the Ministry of Science and Higher Education of the Russian Federation [award No. 075–03–2020-223 (0770–2020–0017)].

References

First citationAl-Said, M. S., Ghorab, M. M., Ghabbour, H. A., Arshad, S. & Fun, H.-K. (2012). Acta Cryst. E68, o1679.  CSD CrossRef IUCr Journals Google Scholar
First citationBattye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271–281.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDoyle, R. A. (2011). Marccd software manual. Rayonix L.L.C., Evanston, IL 60201, USA.  Google Scholar
First citationEvans, P. (2006). Acta Cryst. D62, 72–82.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEyduran, F., Özyürek, C., Dilek, N., Ocak Iskeleli, N. & Şendil, K. (2007). Acta Cryst. E63, o2415–o2417.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020). CrystEngComm, 22, 628–633.  Web of Science CSD CrossRef CAS Google Scholar
First citationJia, R. & Tu, S. J. (2008). Acta Cryst. E64, o1578.  CSD CrossRef IUCr Journals Google Scholar
First citationKhalilov, A. N., Khrustalev, V. N., Tereshina, T. A., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2022). Acta Cryst. E78, 525–529.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMamedov, I., Naghiyev, F., Maharramov, A., Uwangue, O., Farewell, A., Sunnerhagen, P. & Erdelyi, M. (2020). Mendeleev Commun. 30, 498–499.  Web of Science CrossRef CAS Google Scholar
First citationMamedov, I. G., Khrustalev, V. N., Akkurt, M., Novikov, A. P., Asgarova, A. R., Aliyeva, K. N. & Akobirshoeva, A. A. (2022). Acta Cryst. E78, 291–296.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohamed, S. K., Akkurt, M., Singh, K., Hussein, B. R. M. & Albayati, M. R. (2014). Acta Cryst. E70, o993–o994.  CSD CrossRef IUCr Journals Google Scholar
First citationMohana, M., Thomas Muthiah, P. & Butcher, R. J. (2017). Acta Cryst. C73, 536–540.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020a). Acta Cryst. E76, 720–723.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A. & Brito, I. (2020b). Molecules, 25, 2235.  Web of Science CSD CrossRef Google Scholar
First citationNaghiyev, F. N., Khrustalev, V. N., Novikov, A. P., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, I. G. (2022). Acta Cryst. E78, 554–558.  CSD CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Pavlova, A. V., Khrustalev, V. N., Akkurt, M., Khalilov, A. N., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 930–934.  CSD CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021a). Acta Cryst. E77, 516–521.  CSD CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021b). Acta Cryst. E77, 516–521.  CSD CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSangwan, S., Yadav, N., Kumar, R., Chauhan, S., Dhanda, V., Walia, P. & Duhan, A. (2022). Eur. J. Med. Chem. 232, 114199.  Web of Science CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038.  Web of Science CSD CrossRef CAS Google Scholar
First citationSośnicki, J. G. & Idzik, T. J. (2019). Synthesis, 51, 3369–3396.  Google Scholar
First citationSoto, J. L., Seoane, C., Zamorano, P. & Cuadrado, F. J. (1981). Synthesis, pp. 529–530.  CrossRef Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSuresh, J., Suresh Kumar, R., Perumal, S., Mostad, A. & Natarajan, S. (2007). Acta Cryst. C63, o141–o144.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationViswanathan, A., Kute, D., Musa, A., Konda Mani, S., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291–303.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds