research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Sr9La2(WO6)4 containing [WO6] octa­hedra

crossmark logo

aInstitute of Multidisciplinary Research for Advanced Materials, Tohoku, University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
*Correspondence e-mail: ray@tohoku.ac.jp

Edited by M. Weil, Vienna University of Technology, Austria (Received 28 May 2022; accepted 28 June 2022; online 5 July 2022)

A polycrystalline sample of Sr9La2(WO6)4, nona­strontium dilanthanum tetra­kis­[orthotungstate(VI)], was prepared by heating a compacted powder mixture of SrCO3, WO3, and La2O3 with an Sr:La:W molar ratio of 9:2:4 at 1473 K. X-ray crystal structure analysis was performed for a Sr9La2(WO6)4 single-crystal grain grown by reheating the sample at 1673 K. Sr9La2(WO6)4 crystallizes with four formula units in the tetra­gonal space group I41/a and is isotypic with Sr11(ReO6)4. Two W sites with site symmetries of [\overline{1}] are located at the center of isolated [WO6] octa­hedra, and four mixed (Sr/La) sites are surrounded by eight to twelve O atoms of the [WO6] octa­hedra. The structure of Sr9La2(WO6)4 can be described on the basis of the double-perovskite structure with [WO6] and [(Sr/La)Ox] polyhedra alternately placed, and a vacancy (□).

1. Chemical context

The alkaline-earth (A) rare-earth (Ln) tungstates A9Ln2(WO6)4 have attracted attention as host crystals of phosphors, and various luminescence properties of these tungstates doped with activators such as Eu3+ and Mn4+ have been evaluated. For example, emissions of Eu3+ at ∼615 nm excited by ∼395 nm wavelength light have been reported for Sr9Gd1.5Eu0.5(WO6)4 (Blasse & Kemmler-Sack, 1983[Blasse, G. & Kemmler-Sack, S. (1983). Ber. Bunsenges. Phys. Chem. 87, 698-701.]), Ca9Gd2–xEux(WO6)4 (Zeng et al., 2013[Zeng, Q., Liang, H. & Gong, M. (2013). Asian J. Chem. 25, 5971-5974.]), Ca9Eu2(WO6)4 (Qin et al., 2012[Qin, C., Huang, Y. & Seo, H. J. (2012). J. Alloys Compd. 534, 86-92.]; Zeng et al., 2010[Zeng, Q.-H., Zhang, X.-G., He, P., Liang, H.-B. & Gong, M.-L. (2010). J. Inorg. Mater. 25, 1009-1014.]), Sr9Eu2(WO6)4 (Qin et al., 2012[Qin, C., Huang, Y. & Seo, H. J. (2012). J. Alloys Compd. 534, 86-92.]; Blasse & Kemmler-Sack, 1983[Blasse, G. & Kemmler-Sack, S. (1983). Ber. Bunsenges. Phys. Chem. 87, 698-701.]; Zeng et al., 2010[Zeng, Q.-H., Zhang, X.-G., He, P., Liang, H.-B. & Gong, M.-L. (2010). J. Inorg. Mater. 25, 1009-1014.]), and Ca9–xSrxEu2(WO6)4 (Zeng et al., 2009[Zeng, Q., He, P., Zhang, X., Liang, H., Gong, M. & Su, Q. (2009). Chem. Lett. 38, 1172-1173.]). Mn4+-doped Sr9Y2(WO6)4 (Shi et al., 2019[Shi, L., Han, Y.-J., Wang, H.-X., Shi, D.-C., Geng, X.-Y. & Zhang, Z.-W. (2019). J. Lumin. 208, 307-312.]) and Mn4+/Mg2+-doped Sr9Y2(WO6)4 (Zhou et al., 2020[Zhou, F., Gao, M., Shi, Y., Li, Z., Zhu, G., Xin, S. & Wang, C. (2020). J. Lumin. 223, 117235.]) were also studied, and deep-red luminescence with broad emission maxima at ∼680 nm were observed under excitation by light with a wavelength of 365 nm.

Unit-cell parameters of a tetra­gonal cell with a = 11.664 (2) Å, c = 16.335 (4) Å (Smirnov et al., 1987[Smirnov, S. A., Evdokimov, A. A. & Kovba, L. M. (1987). Dokl. Akad. Nauk SSSR, 292, 99-102.]) and a = 16.44 (7) Å, c = 16.32 (3) Å (Kemmler-Sack & Ehmann, 1981[Kemmler-Sack, S. & Ehmann, A. (1981). Z. Anorg. Allg. Chem. 479, 184-190.]) have been reported for Sr9La2(WO6)4. However, details of the crystal structure, including atom positions, have not been clarified up to now. Sr9Ln2(WO6)4 compounds prepared by substituting Ln (a rare-earth element) for La in Sr9La2(WO6)4 have also been reported. These materials have tetra­gonal symmetry for Ln = La, Pr, and Nd; cubic (high-temperature phase) and tetra­gonal (low-temperature phase) symmetry for Sm, Eu, and Gd; monoclinic symmetry for Tb and Dy; and cubic symmetry for Ho, Er, Tm, and Y (Kemmler-Sack & Ehmann, 1981[Kemmler-Sack, S. & Ehmann, A. (1981). Z. Anorg. Allg. Chem. 479, 184-190.]). The Sr atoms of Sr9La2(WO6)4 can also be replaced with Ca or Ba. For Ca9Ln2(WO6)4 (Ln = Nd, Sm, Eu, Gd, Tb, Dy), lattice parameters of a tetra­gonal unit-cell with 11.05 ≤ a ≤ 11.13 Å and 16.37 ≤ c ≤ 16.42 Å and space group I41/a have been reported (Smirnov et al., 1987[Smirnov, S. A., Evdokimov, A. A. & Kovba, L. M. (1987). Dokl. Akad. Nauk SSSR, 292, 99-102.]). Ba9Ln2(WO6)4 compounds (Ln = La, Nd, Sm, Eu) are cubic (8.50 ≤ a ≤ 8.56 Å; Betz et al., 1982[Betz, B., Schittenhelm, H. J. & Kemmler-Sack, S. (1982). Z. Anorg. Allg. Chem. 484, 177-186.]). The crystal structures of Sr9Gd2(WO6)4 [Fm[\overline{3}], a = 16.47013 (6) Å] and Ba9La2(WO6)4 [Fm[\overline{3}], a = 17.12339 (15) Å] have been fully analyzed (Ijdo et al., 2016[Ijdo, D. J. W., Fu, W. T. & Akerboom, S. (2016). J. Solid State Chem. 238, 236-240.]). However, atomic positions for the tetra­gonal structures of Ca9Ln2(WO6)4 (Ln = Nd, Sm, Eu, Gd, Tb, Dy) compounds have not been determined.

Here, we report on synthesis and crystal structure analysis of Sr9La2(WO6)4.

2. Structural commentary

The unit-cell parameters of Sr9La2(WO6)4 determined in the present investigation are consistent with those reported in previous studies (Smirnov et al., 1987[Smirnov, S. A., Evdokimov, A. A. & Kovba, L. M. (1987). Dokl. Akad. Nauk SSSR, 292, 99-102.]; Kemmler-Sack & Ehmann, 1981[Kemmler-Sack, S. & Ehmann, A. (1981). Z. Anorg. Allg. Chem. 479, 184-190.]). Fig. 1[link] displays the principal building units in the crystal structure of Sr9La2(WO6)4. W1 (multiplicity and Wyckoff letter 8d with site symmetry [\overline{1}]) and W2 (8c, [\overline{1}]) each are located at the center of a [WO6] octa­hedron. The [WO6] octa­hedra are isolated and surrounded by mixed-occupied (Sr,La) atoms. As detailed in Table 1[link], the inter­atomic distances between W and O are 1.901 (4)–1.934 (4) Å (average: 1.922 Å) for W1—O and 1.891 (4)–1.967 (4) Å (average: 1.925 Å) for W2—O. The bond-valence sums (BVS; Brown & Altermatt, 1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]) for W1 and W2, as calculated using the parameters for W—O (R0 = 1.921, B = 0.37) (Brese & O'Keeffe, 1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]), are 5.994 and 5.957 valence units, respectively. These values are consistent with the valence state +VI for W.

Table 1
Selected bond lengths (Å)

Sr1/La1—O6i 2.333 (4) Sr3/La3—O1x 3.220 (4)
Sr1/La1—O2 2.438 (4) Sr4/La4—O1 2.607 (4)
Sr1/La1—O2ii 2.453 (4) Sr4/La4—O1vi 2.607 (4)
Sr1/La1—O4iii 2.458 (4) Sr4/La4—O1xi 2.607 (4)
Sr1/La1—O5iv 2.728 (4) Sr4/La4—O1ix 2.607 (4)
Sr1/La1—O3iii 2.765 (5) Sr4/La4—O4 2.998 (5)
Sr1/La1—O3 2.849 (5) Sr4/La4—O4xi 2.998 (5)
Sr1/La1—O1iii 2.861 (4) Sr4/La4—O4ix 2.998 (5)
Sr2/La2—O3v 2.470 (4) Sr4/La4—O4vi 2.998 (5)
Sr2/La2—O1vi 2.548 (4) Sr4/La4—O5i 3.131 (4)
Sr2/La2—O6 2.599 (4) Sr4/La4—O5xii 3.131 (4)
Sr2/La2—O2vii 2.603 (4) Sr4/La4—O5v 3.131 (4)
Sr2/La2—O1 2.642 (4) Sr4/La4—O5viii 3.131 (4)
Sr2/La2—O5 2.652 (4) W1—O3 1.901 (4)
Sr2/La2—O5v 2.704 (4) W1—O3xiii 1.901 (4)
Sr2/La2—O4 2.777 (4) W1—O6viii 1.930 (4)
Sr2/La2—O4v 2.877 (5) W1—O6xiv 1.930 (4)
Sr3/La3—O6i 2.557 (4) W1—O2 1.934 (4)
Sr3/La3—O6viii 2.557 (4) W1—O2xiii 1.934 (4)
Sr3/La3—O5viii 2.596 (4) W2—O4xi 1.891 (4)
Sr3/La3—O5i 2.596 (4) W2—O4v 1.891 (4)
Sr3/La3—O3 2.660 (4) W2—O1xv 1.917 (4)
Sr3/La3—O3ix 2.660 (4) W2—O1 1.917 (4)
Sr3/La3—O4ix 2.773 (4) W2—O5xi 1.967 (4)
Sr3/La3—O4 2.773 (4) W2—O5v 1.967 (4)
Sr3/La3—O1iii 3.220 (4)    
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-y+{\script{1\over 4}}, x+{\script{1\over 4}}, -z+{\script{5\over 4}}]; (iii) [y+{\script{1\over 4}}, -x+{\script{1\over 4}}, z+{\script{1\over 4}}]; (iv) [y+{\script{1\over 4}}, -x+{\script{3\over 4}}, -z+{\script{3\over 4}}]; (v) [-y+{\script{1\over 4}}, x-{\script{1\over 4}}, z-{\script{1\over 4}}]; (vi) [-y+{\script{1\over 4}}, x+{\script{1\over 4}}, -z+{\script{1\over 4}}]; (vii) [-x+{\script{1\over 2}}, -y, z-{\script{1\over 2}}]; (viii) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (ix) [-x, -y+{\script{1\over 2}}, z]; (x) [-y-{\script{1\over 4}}, x+{\script{1\over 4}}, z+{\script{1\over 4}}]; (xi) [y-{\script{1\over 4}}, -x+{\script{1\over 4}}, -z+{\script{1\over 4}}]; (xii) [y-{\script{1\over 4}}, -x+{\script{3\over 4}}, z-{\script{1\over 4}}]; (xiii) [-x, -y, -z+1]; (xiv) [-x+{\script{1\over 2}}, -y, z+{\script{1\over 2}}]; (xv) [-x, -y, -z].
[Figure 1]
Figure 1
The principal building units in the crystal structure of Sr9La2(WO6)4 with displacement ellipsoids drawn at the 99% probability level. Symmetry codes refer to Table 1[link].

The Sr/La occupancies for (Sr/La)1 (16f, 1), (Sr/La)2 (16f, 1), (Sr/La)3 (8e, 2..), and (Sr/La)4 (4a, [\overline{4}]..) are 0.6384/0.3616 (19), 0.8913/0.1087 (18), 0.948/0.052 (4), and 0.985/0.015 (7), respectively. The inter­atomic distances between (Sr/La) and O and the coordination numbers of the cations are 2.333 (4)–2.861 (4) Å (average: 2.611 Å) and 8 for (Sr/La)1—O; 2.470 (4)–2.877 (5) Å (average: 2.660 Å) and 8 for (Sr/La)2—O; 2.557 (4)–3.220 (4) Å (average: 2.761 Å) and 10 for (Sr/La)3—O; and 2.607 (4)–3.131 (4) Å (average: 2.912 Å) and 12 for (Sr/La)4—O. As the La occupancy increases, the (Sr/La)—O inter­atomic distance decreases.

The crystal structures of alkaline-earth and rare-earth tungstates are often described in relation to the double-perovskite structure type (Kemmler-Sack & Ehmann, 1981[Kemmler-Sack, S. & Ehmann, A. (1981). Z. Anorg. Allg. Chem. 479, 184-190.]; Betz et al., 1982[Betz, B., Schittenhelm, H. J. & Kemmler-Sack, S. (1982). Z. Anorg. Allg. Chem. 484, 177-186.]; Blasse & Kemmler-Sack, 1983[Blasse, G. & Kemmler-Sack, S. (1983). Ber. Bunsenges. Phys. Chem. 87, 698-701.]; King et al., 2010[King, G., Abakumov, A. M., Hadermann, J., Alekseeva, A. M., Rozova, M. G., Perkisas, T., Woodward, P., Van Tendeloo, G. & Antipov, E. V. (2010). Inorg. Chem. 49, 6058-6065.]; Ijdo et al., 2016[Ijdo, D. J. W., Fu, W. T. & Akerboom, S. (2016). J. Solid State Chem. 238, 236-240.]). In the double-perovskite (A2BB′O6) structure, B and B′ atoms alternately occupy the B site of the perovskite (ABO3) structure. The B site is at the center of an octa­hedron formed by O atoms, and the vertex-sharing [BO6] and [B′O6] octa­hedra regularly align in the A8 simple cubic lattice frame in the double-perovskite structure. In case of the structure of Sr9La2(WO6)4, a (Sr/La,□)8 distorted simple lattice can be derived by connecting the Sr-rich sites of (Sr/La)2, (Sr/La)3, and (Sr/La)4 and a vacancy site at (1/2, 3/4, 1/8), as shown in Fig. 2[link]. In the distorted lattice, the [WO6] octa­hedra and the [(Sr/La)1O8] polyhedra are alternately located by sharing four vertices and two edges of the [(Sr/La)1O8] polyhedra (Fig. 2[link]).

[Figure 2]
Figure 2
[WO6] octa­hedra and [(Sr/La)1O8] polyhedra alternately distributed in the distorted (Sr/La2–4,□)8 lattice as illustrated for the planes parallel to (001) in (a) and (110) in (b). Note that [WO6] octa­hedra and [(Sr/La)1O8] polyhedra are connected to each other by vertex- or edge-sharing.

The crystal structure of Sr9La2(WO6)4 is isotypic with those of Sr11(ReO6)4 [a = 11.6779 (1), c = 16.1488 (2); Bramnik et al., 2000[Bramnik, K. G., Miehe, G., Ehrenberg, H., Fuess, H., Abakumov, A. M., Shpanchenko, R. V., Pomjakushin, V. Y. & Balagurov, A. M. (2000). J. Solid State Chem. 149, 49-55.]], Ba11(OsO6)4 [a = 12.2414 (1), c = 16.6685 (1); Wakeshima & Hinatsu, 2005[Wakeshima, M. & Hinatsu, Y. (2005). Solid State Commun. 136, 499-503.]], La9Sr(IrO6)4 [a = 11.5955 (11), c = 16.2531 (15); Ferreira et al., 2018[Ferreira, T., Smith, M. D. & zur Loye, H.-C. (2018). Inorg. Chem. 57, 7797-7804.]], and Sr11(MoO6)4 [a = 11.6107 (6), c = 16.4219 (13); Löpez et al., 2016[López, C. A., Pedregosa, J. C., Fernández-Díaz, M. T. & Alonso, J. A. (2016). J. Appl. Cryst. 49, 78-84.]].

3. Synthesis and crystallization

Raw powdered materials of SrCO3 (Hakushin Chemical Laboratory, 98%), WO3 (Furuuchi Chemical, 99.99%), and La2O3 (FUJIFILM Wako Pure Chemical, 99.99%; calcined at 1273 K in advance) were weighed in a Sr:La:W molar ratio of 9:2:4, mixed in an agate mortar, and pressed into a cylindrical pellet with a diameter of 6 mm. The pellet was placed on a Pt plate in an alumina crucible with a lid (Nikkato, SSA-S) and heated to 1473 K at a rate of 300 K h−1 in a furnace. This temperature was maintained for 10 h, and the power to the heater of the furnace was then shut off. After the sample had cooled to room temperature, the sintered pellet was crushed, pressed into a pellet, and heated again under the same conditions. This procedure was performed three times. Part of the sintered pellet was then placed on a Pt plate in an alumina crucible, heated at 1673 K for 6 h, and cooled to room temperature at a rate of −400 K h−1. The obtained crystalline sample was an aggregate consisting of ∼50 µm single-crystalline grains. A single crystal selected from the aggregate was placed on top of a glass fiber for X-ray structure analysis. Another single crystal was embedded in resin, mirror polished, and carbon coated in preparation for chemical analysis using an electron microprobe analyzer (EPMA; JEOL JXA-8200). The chemical composition determined by EPMA was Sr: 23.2 (4), La: 4.8 (1), W: 10.3 (3), and O: 61.7 (5) wt%. The Sr:La:W:O atomic ratio of 9.1 (1): 1.9 (1): 4.0 (1): 24.0 (2) calculated from the composition is consistent with the chemical formula Sr9La2(WO6)4.

4. Refinement

The results of the crystal structure analysis are summarized in Table 2[link]. An initial structure model with two W sites, four Sr sites, and six O sites using isotropic displacement parameters showed residual electron density distribution around the four Sr sites. These sites were changed to Sr/La mixed sites, and their occupancies were refined under consideration of full occupancy, resulting in an Sr:La:W:O atomic ratio of 35.6:8.4:16:96. Given the charge balance, the numbers of Sr and La atoms in the unit cell was constrained to be 36 and 8, respectively.

Table 2
Experimental details

Crystal data
Chemical formula Sr9La2(WO6)4
Mr 2185.80
Crystal system, space group Tetragonal, I41/a
Temperature (K) 300
a, c (Å) 11.6365 (3), 16.3040 (4)
V3) 2207.69 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 46.16
Crystal size (mm) 0.05 × 0.04 × 0.03
 
Data collection
Diffractometer Bruker D8 QUEST
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.20, 0.33
No. of measured, independent and observed [I > 2σ(I)] reflections 62981, 2106, 1972
Rint 0.048
(sin θ/λ)max−1) 0.770
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.046, 1.37
No. of reflections 2106
No. of parameters 97
No. of restraints 1
Δρmax, Δρmin (e Å−3) 1.14, −1.50
Computer programs: APEX3 and SAINT (Bruker, 2018[Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), VESTA (Momma & Izumi, 2011[Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: VESTA (Momma & Izumi, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).

Nonastrontium dilanthanum tetrakis[orthotungstate(VI)] top
Crystal data top
Sr9La2(WO6)4Dx = 6.576 Mg m3
Mr = 2185.80Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 9792 reflections
a = 11.6365 (3) Åθ = 3.5–33.2°
c = 16.3040 (4) ŵ = 46.16 mm1
V = 2207.69 (13) Å3T = 300 K
Z = 4Granular, translucent colourless
F(000) = 37760.05 × 0.04 × 0.03 mm
Data collection top
Bruker D8 QUEST
diffractometer
2106 independent reflections
Radiation source: sealed X-ray tube1972 reflections with I > 2σ(I)
Detector resolution: 7.3910 pixels mm-1Rint = 0.048
ω and σcansθmax = 33.2°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1717
Tmin = 0.20, Tmax = 0.33k = 1717
62981 measured reflectionsl = 2525
Refinement top
Refinement on F21 restraint
Least-squares matrix: full w = 1/[σ2(Fo2) + 62.4087P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.025(Δ/σ)max = 0.001
wR(F2) = 0.046Δρmax = 1.14 e Å3
S = 1.37Δρmin = 1.50 e Å3
2106 reflectionsExtinction correction: SHELXL-2014/7 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
97 parametersExtinction coefficient: 0.000055 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sr10.20878 (3)0.22538 (3)0.53417 (2)0.00769 (8)0.6384 (19)
La10.20878 (3)0.22538 (3)0.53417 (2)0.00769 (8)0.3616 (19)
Sr20.23647 (4)0.04341 (4)0.11357 (3)0.00718 (9)0.8913 (18)
La20.23647 (4)0.04341 (4)0.11357 (3)0.00718 (9)0.1087 (18)
Sr30.00000.25000.36535 (4)0.00934 (14)0.948 (4)
La30.00000.25000.36535 (4)0.00934 (14)0.052 (4)
Sr40.00000.25000.12500.0267 (4)0.985 (7)
La40.00000.25000.12500.0267 (4)0.015 (7)
W10.00000.00000.50000.00522 (6)
W20.00000.00000.00000.00502 (6)
O10.0101 (3)0.0266 (3)0.1158 (2)0.0093 (7)
O20.0795 (3)0.0786 (3)0.5877 (2)0.0099 (7)
O30.1059 (4)0.0651 (4)0.4243 (3)0.0137 (8)
O40.1383 (4)0.1321 (4)0.2554 (3)0.0148 (8)
O50.3675 (3)0.1315 (3)0.2308 (2)0.0109 (7)
O60.4011 (3)0.1285 (3)0.0246 (2)0.0096 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.00728 (15)0.00640 (15)0.00939 (16)0.00166 (12)0.00049 (12)0.00060 (12)
La10.00728 (15)0.00640 (15)0.00939 (16)0.00166 (12)0.00049 (12)0.00060 (12)
Sr20.00722 (17)0.00602 (17)0.00830 (18)0.00036 (14)0.00015 (14)0.00025 (14)
La20.00722 (17)0.00602 (17)0.00830 (18)0.00036 (14)0.00015 (14)0.00025 (14)
Sr30.0127 (3)0.0080 (3)0.0074 (3)0.0024 (2)0.0000.000
La30.0127 (3)0.0080 (3)0.0074 (3)0.0024 (2)0.0000.000
Sr40.0091 (3)0.0091 (3)0.0620 (10)0.0000.0000.000
La40.0091 (3)0.0091 (3)0.0620 (10)0.0000.0000.000
W10.00463 (11)0.00540 (11)0.00562 (11)0.00008 (8)0.00033 (8)0.00085 (8)
W20.00472 (11)0.00554 (11)0.00480 (11)0.00064 (8)0.00001 (8)0.00041 (8)
O10.0062 (14)0.0135 (17)0.0081 (16)0.0004 (12)0.0012 (12)0.0019 (13)
O20.0116 (16)0.0106 (16)0.0073 (16)0.0022 (13)0.0000 (13)0.0007 (13)
O30.0128 (17)0.0134 (18)0.0149 (19)0.0023 (14)0.0071 (14)0.0062 (14)
O40.0184 (19)0.0141 (18)0.0118 (18)0.0098 (15)0.0025 (15)0.0006 (15)
O50.0117 (17)0.0112 (17)0.0098 (17)0.0032 (13)0.0018 (13)0.0006 (13)
O60.0097 (16)0.0092 (16)0.0098 (16)0.0027 (12)0.0009 (13)0.0005 (13)
Geometric parameters (Å, º) top
Sr1/La1—O6i2.333 (4)Sr3/La3—O1xi3.220 (4)
Sr1/La1—O22.438 (4)Sr3/La3—W2xi3.4641 (4)
Sr1/La1—O2ii2.453 (4)Sr3/La3—W2iii3.4641 (4)
Sr1/La1—O4iii2.458 (4)Sr4/La4—O12.607 (4)
Sr1/La1—O5iv2.728 (4)Sr4/La4—O1vii2.607 (4)
Sr1/La1—O3iii2.765 (5)Sr4/La4—O1xii2.607 (4)
Sr1/La1—O32.849 (5)Sr4/La4—O1x2.607 (4)
Sr1/La1—O1iii2.861 (4)Sr4/La4—O42.998 (5)
Sr1/La1—Sr2/La2v3.4446 (6)Sr4/La4—O4xii2.998 (5)
Sr1/La1—Sr2/La2v3.4446 (6)Sr4/La4—O4x2.998 (5)
Sr1/La1—W1iii3.5630 (4)Sr4/La4—O4vii2.998 (5)
Sr1/La1—W13.6181 (4)Sr4/La4—O5i3.131 (4)
Sr2/La2—O3vi2.470 (4)Sr4/La4—O5xiii3.131 (4)
Sr2/La2—O1vii2.548 (4)Sr4/La4—O5vi3.131 (4)
Sr2/La2—O62.599 (4)Sr4/La4—O5ix3.131 (4)
Sr2/La2—O2viii2.603 (4)W1—O31.901 (4)
Sr2/La2—O12.642 (4)W1—O3xiv1.901 (4)
Sr2/La2—O52.652 (4)W1—O6ix1.930 (4)
Sr2/La2—O5vi2.704 (4)W1—O6v1.930 (4)
Sr2/La2—O42.777 (4)W1—O21.934 (4)
Sr2/La2—O4vi2.877 (5)W1—O2xiv1.934 (4)
Sr2/La2—W2iii3.2790 (4)W1—Sr1/La1xv3.5629 (4)
Sr2/La2—W23.3549 (4)W1—Sr1/La1vi3.5629 (4)
Sr2/La2—Sr1viii3.4446 (6)W1—Sr2/La2ix3.6177 (4)
Sr3/La3—O6i2.557 (4)W1—Sr2/La2v3.6177 (4)
Sr3/La3—O6ix2.557 (4)W2—O4xii1.891 (4)
Sr3/La3—O5ix2.596 (4)W2—O4vi1.891 (4)
Sr3/La3—O5i2.596 (4)W2—O1xvi1.917 (4)
Sr3/La3—O32.660 (4)W2—O11.917 (4)
Sr3/La3—O3x2.660 (4)W2—O5xii1.967 (4)
Sr3/La3—O4x2.773 (4)W2—O5vi1.967 (4)
Sr3/La3—O42.773 (4)W2—Sr2/La2xii3.2790 (4)
Sr3/La3—O1iii3.220 (4)W2—Sr2/La2vi3.2790 (4)
O6i—Sr1/La1—O2108.65 (13)W2xi—Sr3/La3—W2iii114.236 (19)
O6i—Sr1/La1—O2ii83.84 (13)O1—Sr4/La4—O1vii90.189 (10)
O2—Sr1/La1—O2ii86.10 (14)O1—Sr4/La4—O1xii90.189 (10)
O6i—Sr1/La1—O4iii139.77 (14)O1vii—Sr4/La4—O1xii173.41 (17)
O2—Sr1/La1—O4iii101.40 (14)O1—Sr4/La4—O1x173.41 (17)
O2ii—Sr1/La1—O4iii125.03 (13)O1vii—Sr4/La4—O1x90.189 (10)
O6i—Sr1/La1—O5iv83.02 (13)O1xii—Sr4/La4—O1x90.189 (10)
O2—Sr1/La1—O5iv163.00 (12)O1—Sr4/La4—O463.92 (11)
O2ii—Sr1/La1—O5iv82.86 (13)O1vii—Sr4/La4—O456.25 (11)
O4iii—Sr1/La1—O5iv74.87 (14)O1xii—Sr4/La4—O4118.30 (11)
O6i—Sr1/La1—O3iii146.51 (13)O1x—Sr4/La4—O4121.40 (11)
O2—Sr1/La1—O3iii74.94 (12)O1—Sr4/La4—O4xii56.25 (11)
O2ii—Sr1/La1—O3iii62.93 (12)O1vii—Sr4/La4—O4xii121.40 (11)
O4iii—Sr1/La1—O3iii66.83 (13)O1xii—Sr4/La4—O4xii63.92 (11)
O5iv—Sr1/La1—O3iii88.51 (12)O1x—Sr4/La4—O4xii118.30 (11)
O6i—Sr1/La1—O389.34 (13)O4—Sr4/La4—O4xii120.17 (10)
O2—Sr1/La1—O360.49 (12)O1—Sr4/La4—O4x121.40 (11)
O2ii—Sr1/La1—O3141.63 (12)O1vii—Sr4/La4—O4x118.30 (11)
O4iii—Sr1/La1—O382.66 (13)O1xii—Sr4/La4—O4x56.25 (11)
O5iv—Sr1/La1—O3133.77 (12)O1x—Sr4/La4—O4x63.92 (11)
O3iii—Sr1/La1—O3118.90 (13)O4—Sr4/La4—O4x89.71 (17)
O6i—Sr1/La1—O1iii73.37 (12)O4xii—Sr4/La4—O4x120.17 (10)
O2—Sr1/La1—O1iii123.73 (12)O1—Sr4/La4—O4vii118.30 (11)
O2ii—Sr1/La1—O1iii146.75 (12)O1vii—Sr4/La4—O4vii63.92 (11)
O4iii—Sr1/La1—O1iii67.80 (12)O1xii—Sr4/La4—O4vii121.40 (11)
O5iv—Sr1/La1—O1iii70.80 (11)O1x—Sr4/La4—O4vii56.25 (11)
O3iii—Sr1/La1—O1iii133.60 (11)O4—Sr4/La4—O4vii120.17 (10)
O3—Sr1/La1—O1iii63.35 (11)O4xii—Sr4/La4—O4vii89.71 (17)
Sr2/La2v—Sr1/La1—W161.565 (10)O4x—Sr4/La4—O4vii120.17 (10)
W1iii—Sr1/La1—W1107.502 (10)O1—Sr4/La4—O5i117.41 (11)
O3vi—Sr2/La2—O1vii143.76 (14)O1vii—Sr4/La4—O5i56.35 (11)
O3vi—Sr2/La2—O6137.69 (13)O1xii—Sr4/La4—O5i117.90 (11)
O1vii—Sr2/La2—O674.95 (12)O1x—Sr4/La4—O5i68.03 (11)
O3vi—Sr2/La2—O2viii77.47 (13)O4—Sr4/La4—O5i53.49 (10)
O1vii—Sr2/La2—O2viii127.58 (12)O4xii—Sr4/La4—O5i173.65 (10)
O6—Sr2/La2—O2viii60.75 (12)O4x—Sr4/La4—O5i62.02 (10)
O3vi—Sr2/La2—O171.74 (13)O4vii—Sr4/La4—O5i94.03 (11)
O1vii—Sr2/La2—O190.70 (17)O1—Sr4/La4—O5xiii117.90 (11)
O6—Sr2/La2—O1140.44 (12)O1vii—Sr4/La4—O5xiii117.41 (11)
O2viii—Sr2/La2—O1141.44 (12)O1xii—Sr4/La4—O5xiii68.03 (11)
O3vi—Sr2/La2—O5101.06 (13)O1x—Sr4/La4—O5xiii56.35 (11)
O1vii—Sr2/La2—O563.69 (12)O4—Sr4/La4—O5xiii173.65 (10)
O6—Sr2/La2—O580.29 (12)O4xii—Sr4/La4—O5xiii62.02 (10)
O2viii—Sr2/La2—O581.63 (12)O4x—Sr4/La4—O5xiii94.03 (11)
O1—Sr2/La2—O5126.30 (12)O4vii—Sr4/La4—O5xiii53.49 (10)
O3vi—Sr2/La2—O5vi118.64 (12)O5i—Sr4/La4—O5xiii124.29 (9)
O1vii—Sr2/La2—O5vi76.11 (12)O1—Sr4/La4—O5vi56.35 (11)
O6—Sr2/La2—O5vi78.82 (12)O1vii—Sr4/La4—O5vi68.03 (11)
O2viii—Sr2/La2—O5vi117.51 (12)O1xii—Sr4/La4—O5vi117.41 (11)
O1—Sr2/La2—O5vi61.87 (12)O1x—Sr4/La4—O5vi117.90 (11)
O5—Sr2/La2—O5vi138.23 (9)O4—Sr4/La4—O5vi94.03 (11)
O3vi—Sr2/La2—O483.96 (13)O4xii—Sr4/La4—O5vi53.49 (10)
O1vii—Sr2/La2—O459.86 (12)O4x—Sr4/La4—O5vi173.65 (10)
O6—Sr2/La2—O4128.74 (12)O4vii—Sr4/La4—O5vi62.02 (10)
O2viii—Sr2/La2—O4132.50 (13)O5i—Sr4/La4—O5vi124.29 (9)
O1—Sr2/La2—O466.80 (12)O5xiii—Sr4/La4—O5vi82.71 (14)
O5—Sr2/La2—O459.51 (12)O1—Sr4/La4—O5ix68.03 (11)
O5vi—Sr2/La2—O4109.81 (13)O1vii—Sr4/La4—O5ix117.90 (11)
O3vi—Sr2/La2—O4vi64.87 (13)O1xii—Sr4/La4—O5ix56.35 (11)
O1vii—Sr2/La2—O4vi132.31 (11)O1x—Sr4/La4—O5ix117.41 (11)
O6—Sr2/La2—O4vi104.51 (12)O4—Sr4/La4—O5ix62.02 (10)
O2viii—Sr2/La2—O4vi87.33 (12)O4xii—Sr4/La4—O5ix94.03 (11)
O1—Sr2/La2—O4vi58.90 (11)O4x—Sr4/La4—O5ix53.49 (10)
O5—Sr2/La2—O4vi163.87 (12)O4vii—Sr4/La4—O5ix173.65 (10)
O5vi—Sr2/La2—O4vi57.69 (11)O5i—Sr4/La4—O5ix82.71 (14)
O4—Sr2/La2—O4vi123.12 (9)O5xiii—Sr4/La4—O5ix124.29 (9)
W2iii—Sr2/La2—W2121.613 (13)O5vi—Sr4/La4—O5ix124.29 (9)
W2iii—Sr2/La2—Sr1/La1viii155.754 (16)O3—W1—O3xiv180.0
W2—Sr2/La2—Sr1/La1viii78.905 (11)O3—W1—O6ix86.73 (17)
O6i—Sr3/La3—O6ix90.91 (18)O3xiv—W1—O6ix93.27 (17)
O6i—Sr3/La3—O5ix169.96 (12)O3—W1—O6v93.27 (17)
O6ix—Sr3/La3—O5ix82.12 (12)O3xiv—W1—O6v86.73 (17)
O6i—Sr3/La3—O5i82.12 (12)O6ix—W1—O6v180.0 (2)
O6ix—Sr3/La3—O5i169.96 (12)O3—W1—O288.94 (18)
O5ix—Sr3/La3—O5i105.66 (18)O3xiv—W1—O291.06 (18)
O6i—Sr3/La3—O389.14 (13)O6ix—W1—O294.18 (16)
O6ix—Sr3/La3—O360.52 (12)O6v—W1—O285.82 (16)
O5ix—Sr3/La3—O393.66 (13)O3—W1—O2xiv91.07 (18)
O5i—Sr3/La3—O3111.89 (12)O3xiv—W1—O2xiv88.93 (18)
O6i—Sr3/La3—O3x60.52 (12)O6ix—W1—O2xiv85.82 (16)
O6ix—Sr3/La3—O3x89.14 (13)O6v—W1—O2xiv94.18 (16)
O5ix—Sr3/La3—O3x111.89 (12)O2—W1—O2xiv180.0
O5i—Sr3/La3—O3x93.66 (13)Sr1/La1xv—W1—Sr1/La1vi180.0
O3—Sr3/La3—O3x137.62 (19)Sr1/La1vi—W1—Sr1/La1vi0.0
O6i—Sr3/La3—O4x116.21 (12)Sr1/La1xv—W1—Sr1/La1xv0.0
O6ix—Sr3/La3—O4x117.76 (12)Sr1/La1vi—W1—Sr1/La1xv180.0
O5ix—Sr3/La3—O4x61.78 (12)Sr1/La1xv—W1—Sr2/La2ix114.745 (9)
O5i—Sr3/La3—O4x72.02 (12)Sr1/La1vi—W1—Sr2/La2ix65.255 (9)
O3—Sr3/La3—O4x154.56 (13)Sr1/La1xv—W1—Sr2/La2ix114.745 (9)
O3x—Sr3/La3—O4x64.19 (13)Sr1/La1xv—W1—Sr2/La2v65.255 (9)
O6i—Sr3/La3—O4117.76 (12)Sr1/La1vi—W1—Sr2/La2v114.745 (9)
O6ix—Sr3/La3—O4116.21 (12)Sr2/La2ix—W1—Sr2/La2v180.000 (12)
O5ix—Sr3/La3—O472.02 (12)O4xii—W2—O4vi180.0 (3)
O5i—Sr3/La3—O461.78 (12)O4xii—W2—O1xvi91.21 (17)
O3—Sr3/La3—O464.19 (13)O4vi—W2—O1xvi88.79 (17)
O3x—Sr3/La3—O4154.56 (13)O4xii—W2—O188.80 (17)
O4x—Sr3/La3—O499.40 (19)O4vi—W2—O191.20 (17)
O6i—Sr3/La3—O1iii64.45 (11)O1xvi—W2—O1180.0
O6ix—Sr3/La3—O1iii115.34 (11)O4xii—W2—O5xii88.65 (18)
O5ix—Sr3/La3—O1iii125.14 (11)O4vi—W2—O5xii91.35 (18)
O5i—Sr3/La3—O1iii55.05 (11)O1xvi—W2—O5xii90.08 (16)
O3—Sr3/La3—O1iii60.43 (11)O1—W2—O5xii89.92 (16)
O3x—Sr3/La3—O1iii119.46 (11)O4xii—W2—O5vi91.35 (18)
O4x—Sr3/La3—O1iii126.84 (11)O4vi—W2—O5vi88.65 (18)
O4—Sr3/La3—O1iii53.37 (11)O1xvi—W2—O5vi89.92 (16)
O6i—Sr3/La3—O1xi115.34 (11)O1—W2—O5vi90.08 (16)
O6ix—Sr3/La3—O1xi64.45 (11)O5xii—W2—O5vi180.0 (3)
O5ix—Sr3/La3—O1xi55.05 (11)Sr2/La2xii—W2—Sr2/La2vi180.0
O5i—Sr3/La3—O1xi125.14 (11)Sr2/La2xii—W2—Sr2/La2xii0.0
O3—Sr3/La3—O1xi119.46 (11)Sr2/La2vi—W2—Sr2/La2xii180.00 (2)
O3x—Sr3/La3—O1xi60.43 (11)Sr2/La2vi—W2—Sr2/La2vi0.000 (11)
O4x—Sr3/La3—O1xi53.37 (11)Sr2/La2xii—W2—Sr2/La2102.7
O4—Sr3/La3—O1xi126.84 (11)Sr2/La2vi—W2—Sr2/La277.309 (8)
O1iii—Sr3/La3—O1xi179.73 (14)Sr2/La2xii—W2—Sr2/La2102.691 (8)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) y+1/4, x+1/4, z+5/4; (iii) y+1/4, x+1/4, z+1/4; (iv) y+1/4, x+3/4, z+3/4; (v) x+1/2, y, z+1/2; (vi) y+1/4, x1/4, z1/4; (vii) y+1/4, x+1/4, z+1/4; (viii) x+1/2, y, z1/2; (ix) x1/2, y, z+1/2; (x) x, y+1/2, z; (xi) y1/4, x+1/4, z+1/4; (xii) y1/4, x+1/4, z+1/4; (xiii) y1/4, x+3/4, z1/4; (xiv) x, y, z+1; (xv) y1/4, x+1/4, z+5/4; (xvi) x, y, z.
 

Acknowledgements

We thank Mr I. Narita (Institute for Materials Research, Tohoku University) for carrying out the EPMA under the following cooperative research grant (No. 202112-CRKEQ-0208).

Funding information

Funding for this research was provided by: JSPS KAKENHI (grant No. JP20K20363); the Cooperative Research of the Development Center for Advanced Materials, Institute for Materials Research, Tohoku University (grant No. 202112-CRKEQ-0208); the Tohoku University Center for Gender Equality Promotion Support Project.

References

First citationBetz, B., Schittenhelm, H. J. & Kemmler-Sack, S. (1982). Z. Anorg. Allg. Chem. 484, 177–186.  CrossRef ICSD CAS Web of Science Google Scholar
First citationBlasse, G. & Kemmler-Sack, S. (1983). Ber. Bunsenges. Phys. Chem. 87, 698–701.  CrossRef CAS Web of Science Google Scholar
First citationBramnik, K. G., Miehe, G., Ehrenberg, H., Fuess, H., Abakumov, A. M., Shpanchenko, R. V., Pomjakushin, V. Y. & Balagurov, A. M. (2000). J. Solid State Chem. 149, 49–55.  Web of Science CrossRef ICSD CAS Google Scholar
First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFerreira, T., Smith, M. D. & zur Loye, H.-C. (2018). Inorg. Chem. 57, 7797–7804.  Web of Science CrossRef ICSD CAS PubMed Google Scholar
First citationIjdo, D. J. W., Fu, W. T. & Akerboom, S. (2016). J. Solid State Chem. 238, 236–240.  Web of Science CrossRef ICSD CAS Google Scholar
First citationKemmler-Sack, S. & Ehmann, A. (1981). Z. Anorg. Allg. Chem. 479, 184–190.  CAS Google Scholar
First citationKing, G., Abakumov, A. M., Hadermann, J., Alekseeva, A. M., Rozova, M. G., Perkisas, T., Woodward, P., Van Tendeloo, G. & Antipov, E. V. (2010). Inorg. Chem. 49, 6058–6065.  Web of Science CrossRef ICSD CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLópez, C. A., Pedregosa, J. C., Fernández-Díaz, M. T. & Alonso, J. A. (2016). J. Appl. Cryst. 49, 78–84.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationMomma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationQin, C., Huang, Y. & Seo, H. J. (2012). J. Alloys Compd. 534, 86–92.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, L., Han, Y.-J., Wang, H.-X., Shi, D.-C., Geng, X.-Y. & Zhang, Z.-W. (2019). J. Lumin. 208, 307–312.  Web of Science CrossRef CAS Google Scholar
First citationSmirnov, S. A., Evdokimov, A. A. & Kovba, L. M. (1987). Dokl. Akad. Nauk SSSR, 292, 99–102.  CAS Google Scholar
First citationWakeshima, M. & Hinatsu, Y. (2005). Solid State Commun. 136, 499–503.  Web of Science CrossRef ICSD CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZeng, Q., He, P., Zhang, X., Liang, H., Gong, M. & Su, Q. (2009). Chem. Lett. 38, 1172–1173.  Web of Science CrossRef CAS Google Scholar
First citationZeng, Q., Liang, H. & Gong, M. (2013). Asian J. Chem. 25, 5971–5974.  Web of Science CrossRef CAS Google Scholar
First citationZeng, Q.-H., Zhang, X.-G., He, P., Liang, H.-B. & Gong, M.-L. (2010). J. Inorg. Mater. 25, 1009–1014.  Web of Science CrossRef CAS Google Scholar
First citationZhou, F., Gao, M., Shi, Y., Li, Z., Zhu, G., Xin, S. & Wang, C. (2020). J. Lumin. 223, 117235.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds