research communications
Sr9La2(WO6)4 containing [WO6] octahedra
aInstitute of Multidisciplinary Research for Advanced Materials, Tohoku, University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
*Correspondence e-mail: ray@tohoku.ac.jp
A polycrystalline sample of Sr9La2(WO6)4, nonastrontium dilanthanum tetrakis[orthotungstate(VI)], was prepared by heating a compacted powder mixture of SrCO3, WO3, and La2O3 with an Sr:La:W molar ratio of 9:2:4 at 1473 K. X-ray analysis was performed for a Sr9La2(WO6)4 single-crystal grain grown by reheating the sample at 1673 K. Sr9La2(WO6)4 crystallizes with four formula units in the tetragonal I41/a and is isotypic with Sr11(ReO6)4. Two W sites with site symmetries of are located at the center of isolated [WO6] octahedra, and four mixed (Sr/La) sites are surrounded by eight to twelve O atoms of the [WO6] octahedra. The structure of Sr9La2(WO6)4 can be described on the basis of the double-perovskite structure with [WO6] and [(Sr/La)Ox] polyhedra alternately placed, and a vacancy (□).
Keywords: crystal structure; tungstate; double perovskite.
CCDC reference: 2182445
1. Chemical context
The alkaline-earth (A) rare-earth (Ln) tungstates A9Ln2(WO6)4 have attracted attention as host crystals of phosphors, and various luminescence properties of these tungstates doped with activators such as Eu3+ and Mn4+ have been evaluated. For example, emissions of Eu3+ at ∼615 nm excited by ∼395 nm wavelength light have been reported for Sr9Gd1.5Eu0.5(WO6)4 (Blasse & Kemmler-Sack, 1983), Ca9Gd2–xEux(WO6)4 (Zeng et al., 2013), Ca9Eu2(WO6)4 (Qin et al., 2012; Zeng et al., 2010), Sr9Eu2(WO6)4 (Qin et al., 2012; Blasse & Kemmler-Sack, 1983; Zeng et al., 2010), and Ca9–xSrxEu2(WO6)4 (Zeng et al., 2009). Mn4+-doped Sr9Y2(WO6)4 (Shi et al., 2019) and Mn4+/Mg2+-doped Sr9Y2(WO6)4 (Zhou et al., 2020) were also studied, and deep-red luminescence with broad emission maxima at ∼680 nm were observed under excitation by light with a wavelength of 365 nm.
Unit-cell parameters of a tetragonal cell with a = 11.664 (2) Å, c = 16.335 (4) Å (Smirnov et al., 1987) and a = 16.44 (7) Å, c = 16.32 (3) Å (Kemmler-Sack & Ehmann, 1981) have been reported for Sr9La2(WO6)4. However, details of the including atom positions, have not been clarified up to now. Sr9Ln2(WO6)4 compounds prepared by substituting Ln (a rare-earth element) for La in Sr9La2(WO6)4 have also been reported. These materials have tetragonal symmetry for Ln = La, Pr, and Nd; cubic (high-temperature phase) and tetragonal (low-temperature phase) symmetry for Sm, Eu, and Gd; monoclinic symmetry for Tb and Dy; and cubic symmetry for Ho, Er, Tm, and Y (Kemmler-Sack & Ehmann, 1981). The Sr atoms of Sr9La2(WO6)4 can also be replaced with Ca or Ba. For Ca9Ln2(WO6)4 (Ln = Nd, Sm, Eu, Gd, Tb, Dy), lattice parameters of a tetragonal unit-cell with 11.05 ≤ a ≤ 11.13 Å and 16.37 ≤ c ≤ 16.42 Å and I41/a have been reported (Smirnov et al., 1987). Ba9Ln2(WO6)4 compounds (Ln = La, Nd, Sm, Eu) are cubic (8.50 ≤ a ≤ 8.56 Å; Betz et al., 1982). The crystal structures of Sr9Gd2(WO6)4 [Fm, a = 16.47013 (6) Å] and Ba9La2(WO6)4 [Fm, a = 17.12339 (15) Å] have been fully analyzed (Ijdo et al., 2016). However, atomic positions for the tetragonal structures of Ca9Ln2(WO6)4 (Ln = Nd, Sm, Eu, Gd, Tb, Dy) compounds have not been determined.
Here, we report on synthesis and 9La2(WO6)4.
analysis of Sr2. Structural commentary
The unit-cell parameters of Sr9La2(WO6)4 determined in the present investigation are consistent with those reported in previous studies (Smirnov et al., 1987; Kemmler-Sack & Ehmann, 1981). Fig. 1 displays the principal building units in the of Sr9La2(WO6)4. W1 (multiplicity and Wyckoff letter 8d with ) and W2 (8c, ) each are located at the center of a [WO6] octahedron. The [WO6] octahedra are isolated and surrounded by mixed-occupied (Sr,La) atoms. As detailed in Table 1, the interatomic distances between W and O are 1.901 (4)–1.934 (4) Å (average: 1.922 Å) for W1—O and 1.891 (4)–1.967 (4) Å (average: 1.925 Å) for W2—O. The bond-valence sums (BVS; Brown & Altermatt, 1985) for W1 and W2, as calculated using the parameters for W—O (R0 = 1.921, B = 0.37) (Brese & O'Keeffe, 1991), are 5.994 and 5.957 valence units, respectively. These values are consistent with the valence state +VI for W.
The Sr/La occupancies for (Sr/La)1 (16f, 1), (Sr/La)2 (16f, 1), (Sr/La)3 (8e, 2..), and (Sr/La)4 (4a, ..) are 0.6384/0.3616 (19), 0.8913/0.1087 (18), 0.948/0.052 (4), and 0.985/0.015 (7), respectively. The interatomic distances between (Sr/La) and O and the coordination numbers of the cations are 2.333 (4)–2.861 (4) Å (average: 2.611 Å) and 8 for (Sr/La)1—O; 2.470 (4)–2.877 (5) Å (average: 2.660 Å) and 8 for (Sr/La)2—O; 2.557 (4)–3.220 (4) Å (average: 2.761 Å) and 10 for (Sr/La)3—O; and 2.607 (4)–3.131 (4) Å (average: 2.912 Å) and 12 for (Sr/La)4—O. As the La occupancy increases, the (Sr/La)—O interatomic distance decreases.
The crystal structures of alkaline-earth and rare-earth tungstates are often described in relation to the double-perovskite structure type (Kemmler-Sack & Ehmann, 1981; Betz et al., 1982; Blasse & Kemmler-Sack, 1983; King et al., 2010; Ijdo et al., 2016). In the double-perovskite (A2BB′O6) structure, B and B′ atoms alternately occupy the B site of the perovskite (ABO3) structure. The B site is at the center of an octahedron formed by O atoms, and the vertex-sharing [BO6] and [B′O6] octahedra regularly align in the A8 simple cubic lattice frame in the double-perovskite structure. In case of the structure of Sr9La2(WO6)4, a (Sr/La,□)8 distorted simple lattice can be derived by connecting the Sr-rich sites of (Sr/La)2, (Sr/La)3, and (Sr/La)4 and a vacancy site at (1/2, 3/4, 1/8), as shown in Fig. 2. In the distorted lattice, the [WO6] octahedra and the [(Sr/La)1O8] polyhedra are alternately located by sharing four vertices and two edges of the [(Sr/La)1O8] polyhedra (Fig. 2).
The 9La2(WO6)4 is isotypic with those of Sr11(ReO6)4 [a = 11.6779 (1), c = 16.1488 (2); Bramnik et al., 2000], Ba11(OsO6)4 [a = 12.2414 (1), c = 16.6685 (1); Wakeshima & Hinatsu, 2005], La9Sr(IrO6)4 [a = 11.5955 (11), c = 16.2531 (15); Ferreira et al., 2018], and Sr11(MoO6)4 [a = 11.6107 (6), c = 16.4219 (13); Löpez et al., 2016].
of Sr3. Synthesis and crystallization
Raw powdered materials of SrCO3 (Hakushin Chemical Laboratory, 98%), WO3 (Furuuchi Chemical, 99.99%), and La2O3 (FUJIFILM Wako Pure Chemical, 99.99%; calcined at 1273 K in advance) were weighed in a Sr:La:W molar ratio of 9:2:4, mixed in an agate mortar, and pressed into a cylindrical pellet with a diameter of 6 mm. The pellet was placed on a Pt plate in an alumina crucible with a lid (Nikkato, SSA-S) and heated to 1473 K at a rate of 300 K h−1 in a furnace. This temperature was maintained for 10 h, and the power to the heater of the furnace was then shut off. After the sample had cooled to room temperature, the sintered pellet was crushed, pressed into a pellet, and heated again under the same conditions. This procedure was performed three times. Part of the sintered pellet was then placed on a Pt plate in an alumina crucible, heated at 1673 K for 6 h, and cooled to room temperature at a rate of −400 K h−1. The obtained crystalline sample was an aggregate consisting of ∼50 µm single-crystalline grains. A single crystal selected from the aggregate was placed on top of a glass fiber for X-ray structure analysis. Another single crystal was embedded in resin, mirror polished, and carbon coated in preparation for chemical analysis using an electron microprobe analyzer (EPMA; JEOL JXA-8200). The chemical composition determined by EPMA was Sr: 23.2 (4), La: 4.8 (1), W: 10.3 (3), and O: 61.7 (5) wt%. The Sr:La:W:O atomic ratio of 9.1 (1): 1.9 (1): 4.0 (1): 24.0 (2) calculated from the composition is consistent with the chemical formula Sr9La2(WO6)4.
4. Refinement
The results of the . An initial structure model with two W sites, four Sr sites, and six O sites using isotropic displacement parameters showed residual electron density distribution around the four Sr sites. These sites were changed to Sr/La mixed sites, and their occupancies were refined under consideration of full occupancy, resulting in an Sr:La:W:O atomic ratio of 35.6:8.4:16:96. Given the charge balance, the numbers of Sr and La atoms in the was constrained to be 36 and 8, respectively.
analysis are summarized in Table 2
|
Supporting information
CCDC reference: 2182445
https://doi.org/10.1107/S2056989022006648/wm5650sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022006648/wm5650Isup2.hkl
Data collection: APEX3 (Bruker, 2018); cell
SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: VESTA (Momma & Izumi, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).Sr9La2(WO6)4 | Dx = 6.576 Mg m−3 |
Mr = 2185.80 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, I41/a | Cell parameters from 9792 reflections |
a = 11.6365 (3) Å | θ = 3.5–33.2° |
c = 16.3040 (4) Å | µ = 46.16 mm−1 |
V = 2207.69 (13) Å3 | T = 300 K |
Z = 4 | Granular, translucent colourless |
F(000) = 3776 | 0.05 × 0.04 × 0.03 mm |
Bruker D8 QUEST diffractometer | 2106 independent reflections |
Radiation source: sealed X-ray tube | 1972 reflections with I > 2σ(I) |
Detector resolution: 7.3910 pixels mm-1 | Rint = 0.048 |
ω and σcans | θmax = 33.2°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −17→17 |
Tmin = 0.20, Tmax = 0.33 | k = −17→17 |
62981 measured reflections | l = −25→25 |
Refinement on F2 | 1 restraint |
Least-squares matrix: full | w = 1/[σ2(Fo2) + 62.4087P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.025 | (Δ/σ)max = 0.001 |
wR(F2) = 0.046 | Δρmax = 1.14 e Å−3 |
S = 1.37 | Δρmin = −1.50 e Å−3 |
2106 reflections | Extinction correction: SHELXL-2014/7 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
97 parameters | Extinction coefficient: 0.000055 (5) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Sr1 | 0.20878 (3) | 0.22538 (3) | 0.53417 (2) | 0.00769 (8) | 0.6384 (19) |
La1 | 0.20878 (3) | 0.22538 (3) | 0.53417 (2) | 0.00769 (8) | 0.3616 (19) |
Sr2 | 0.23647 (4) | 0.04341 (4) | 0.11357 (3) | 0.00718 (9) | 0.8913 (18) |
La2 | 0.23647 (4) | 0.04341 (4) | 0.11357 (3) | 0.00718 (9) | 0.1087 (18) |
Sr3 | 0.0000 | 0.2500 | 0.36535 (4) | 0.00934 (14) | 0.948 (4) |
La3 | 0.0000 | 0.2500 | 0.36535 (4) | 0.00934 (14) | 0.052 (4) |
Sr4 | 0.0000 | 0.2500 | 0.1250 | 0.0267 (4) | 0.985 (7) |
La4 | 0.0000 | 0.2500 | 0.1250 | 0.0267 (4) | 0.015 (7) |
W1 | 0.0000 | 0.0000 | 0.5000 | 0.00522 (6) | |
W2 | 0.0000 | 0.0000 | 0.0000 | 0.00502 (6) | |
O1 | 0.0101 (3) | 0.0266 (3) | 0.1158 (2) | 0.0093 (7) | |
O2 | 0.0795 (3) | 0.0786 (3) | 0.5877 (2) | 0.0099 (7) | |
O3 | 0.1059 (4) | 0.0651 (4) | 0.4243 (3) | 0.0137 (8) | |
O4 | 0.1383 (4) | 0.1321 (4) | 0.2554 (3) | 0.0148 (8) | |
O5 | 0.3675 (3) | 0.1315 (3) | 0.2308 (2) | 0.0109 (7) | |
O6 | 0.4011 (3) | 0.1285 (3) | 0.0246 (2) | 0.0096 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sr1 | 0.00728 (15) | 0.00640 (15) | 0.00939 (16) | 0.00166 (12) | −0.00049 (12) | 0.00060 (12) |
La1 | 0.00728 (15) | 0.00640 (15) | 0.00939 (16) | 0.00166 (12) | −0.00049 (12) | 0.00060 (12) |
Sr2 | 0.00722 (17) | 0.00602 (17) | 0.00830 (18) | −0.00036 (14) | 0.00015 (14) | −0.00025 (14) |
La2 | 0.00722 (17) | 0.00602 (17) | 0.00830 (18) | −0.00036 (14) | 0.00015 (14) | −0.00025 (14) |
Sr3 | 0.0127 (3) | 0.0080 (3) | 0.0074 (3) | −0.0024 (2) | 0.000 | 0.000 |
La3 | 0.0127 (3) | 0.0080 (3) | 0.0074 (3) | −0.0024 (2) | 0.000 | 0.000 |
Sr4 | 0.0091 (3) | 0.0091 (3) | 0.0620 (10) | 0.000 | 0.000 | 0.000 |
La4 | 0.0091 (3) | 0.0091 (3) | 0.0620 (10) | 0.000 | 0.000 | 0.000 |
W1 | 0.00463 (11) | 0.00540 (11) | 0.00562 (11) | −0.00008 (8) | 0.00033 (8) | 0.00085 (8) |
W2 | 0.00472 (11) | 0.00554 (11) | 0.00480 (11) | 0.00064 (8) | −0.00001 (8) | −0.00041 (8) |
O1 | 0.0062 (14) | 0.0135 (17) | 0.0081 (16) | −0.0004 (12) | −0.0012 (12) | −0.0019 (13) |
O2 | 0.0116 (16) | 0.0106 (16) | 0.0073 (16) | −0.0022 (13) | 0.0000 (13) | −0.0007 (13) |
O3 | 0.0128 (17) | 0.0134 (18) | 0.0149 (19) | 0.0023 (14) | 0.0071 (14) | 0.0062 (14) |
O4 | 0.0184 (19) | 0.0141 (18) | 0.0118 (18) | −0.0098 (15) | 0.0025 (15) | −0.0006 (15) |
O5 | 0.0117 (17) | 0.0112 (17) | 0.0098 (17) | 0.0032 (13) | 0.0018 (13) | 0.0006 (13) |
O6 | 0.0097 (16) | 0.0092 (16) | 0.0098 (16) | 0.0027 (12) | −0.0009 (13) | −0.0005 (13) |
Sr1/La1—O6i | 2.333 (4) | Sr3/La3—O1xi | 3.220 (4) |
Sr1/La1—O2 | 2.438 (4) | Sr3/La3—W2xi | 3.4641 (4) |
Sr1/La1—O2ii | 2.453 (4) | Sr3/La3—W2iii | 3.4641 (4) |
Sr1/La1—O4iii | 2.458 (4) | Sr4/La4—O1 | 2.607 (4) |
Sr1/La1—O5iv | 2.728 (4) | Sr4/La4—O1vii | 2.607 (4) |
Sr1/La1—O3iii | 2.765 (5) | Sr4/La4—O1xii | 2.607 (4) |
Sr1/La1—O3 | 2.849 (5) | Sr4/La4—O1x | 2.607 (4) |
Sr1/La1—O1iii | 2.861 (4) | Sr4/La4—O4 | 2.998 (5) |
Sr1/La1—Sr2/La2v | 3.4446 (6) | Sr4/La4—O4xii | 2.998 (5) |
Sr1/La1—Sr2/La2v | 3.4446 (6) | Sr4/La4—O4x | 2.998 (5) |
Sr1/La1—W1iii | 3.5630 (4) | Sr4/La4—O4vii | 2.998 (5) |
Sr1/La1—W1 | 3.6181 (4) | Sr4/La4—O5i | 3.131 (4) |
Sr2/La2—O3vi | 2.470 (4) | Sr4/La4—O5xiii | 3.131 (4) |
Sr2/La2—O1vii | 2.548 (4) | Sr4/La4—O5vi | 3.131 (4) |
Sr2/La2—O6 | 2.599 (4) | Sr4/La4—O5ix | 3.131 (4) |
Sr2/La2—O2viii | 2.603 (4) | W1—O3 | 1.901 (4) |
Sr2/La2—O1 | 2.642 (4) | W1—O3xiv | 1.901 (4) |
Sr2/La2—O5 | 2.652 (4) | W1—O6ix | 1.930 (4) |
Sr2/La2—O5vi | 2.704 (4) | W1—O6v | 1.930 (4) |
Sr2/La2—O4 | 2.777 (4) | W1—O2 | 1.934 (4) |
Sr2/La2—O4vi | 2.877 (5) | W1—O2xiv | 1.934 (4) |
Sr2/La2—W2iii | 3.2790 (4) | W1—Sr1/La1xv | 3.5629 (4) |
Sr2/La2—W2 | 3.3549 (4) | W1—Sr1/La1vi | 3.5629 (4) |
Sr2/La2—Sr1viii | 3.4446 (6) | W1—Sr2/La2ix | 3.6177 (4) |
Sr3/La3—O6i | 2.557 (4) | W1—Sr2/La2v | 3.6177 (4) |
Sr3/La3—O6ix | 2.557 (4) | W2—O4xii | 1.891 (4) |
Sr3/La3—O5ix | 2.596 (4) | W2—O4vi | 1.891 (4) |
Sr3/La3—O5i | 2.596 (4) | W2—O1xvi | 1.917 (4) |
Sr3/La3—O3 | 2.660 (4) | W2—O1 | 1.917 (4) |
Sr3/La3—O3x | 2.660 (4) | W2—O5xii | 1.967 (4) |
Sr3/La3—O4x | 2.773 (4) | W2—O5vi | 1.967 (4) |
Sr3/La3—O4 | 2.773 (4) | W2—Sr2/La2xii | 3.2790 (4) |
Sr3/La3—O1iii | 3.220 (4) | W2—Sr2/La2vi | 3.2790 (4) |
O6i—Sr1/La1—O2 | 108.65 (13) | W2xi—Sr3/La3—W2iii | 114.236 (19) |
O6i—Sr1/La1—O2ii | 83.84 (13) | O1—Sr4/La4—O1vii | 90.189 (10) |
O2—Sr1/La1—O2ii | 86.10 (14) | O1—Sr4/La4—O1xii | 90.189 (10) |
O6i—Sr1/La1—O4iii | 139.77 (14) | O1vii—Sr4/La4—O1xii | 173.41 (17) |
O2—Sr1/La1—O4iii | 101.40 (14) | O1—Sr4/La4—O1x | 173.41 (17) |
O2ii—Sr1/La1—O4iii | 125.03 (13) | O1vii—Sr4/La4—O1x | 90.189 (10) |
O6i—Sr1/La1—O5iv | 83.02 (13) | O1xii—Sr4/La4—O1x | 90.189 (10) |
O2—Sr1/La1—O5iv | 163.00 (12) | O1—Sr4/La4—O4 | 63.92 (11) |
O2ii—Sr1/La1—O5iv | 82.86 (13) | O1vii—Sr4/La4—O4 | 56.25 (11) |
O4iii—Sr1/La1—O5iv | 74.87 (14) | O1xii—Sr4/La4—O4 | 118.30 (11) |
O6i—Sr1/La1—O3iii | 146.51 (13) | O1x—Sr4/La4—O4 | 121.40 (11) |
O2—Sr1/La1—O3iii | 74.94 (12) | O1—Sr4/La4—O4xii | 56.25 (11) |
O2ii—Sr1/La1—O3iii | 62.93 (12) | O1vii—Sr4/La4—O4xii | 121.40 (11) |
O4iii—Sr1/La1—O3iii | 66.83 (13) | O1xii—Sr4/La4—O4xii | 63.92 (11) |
O5iv—Sr1/La1—O3iii | 88.51 (12) | O1x—Sr4/La4—O4xii | 118.30 (11) |
O6i—Sr1/La1—O3 | 89.34 (13) | O4—Sr4/La4—O4xii | 120.17 (10) |
O2—Sr1/La1—O3 | 60.49 (12) | O1—Sr4/La4—O4x | 121.40 (11) |
O2ii—Sr1/La1—O3 | 141.63 (12) | O1vii—Sr4/La4—O4x | 118.30 (11) |
O4iii—Sr1/La1—O3 | 82.66 (13) | O1xii—Sr4/La4—O4x | 56.25 (11) |
O5iv—Sr1/La1—O3 | 133.77 (12) | O1x—Sr4/La4—O4x | 63.92 (11) |
O3iii—Sr1/La1—O3 | 118.90 (13) | O4—Sr4/La4—O4x | 89.71 (17) |
O6i—Sr1/La1—O1iii | 73.37 (12) | O4xii—Sr4/La4—O4x | 120.17 (10) |
O2—Sr1/La1—O1iii | 123.73 (12) | O1—Sr4/La4—O4vii | 118.30 (11) |
O2ii—Sr1/La1—O1iii | 146.75 (12) | O1vii—Sr4/La4—O4vii | 63.92 (11) |
O4iii—Sr1/La1—O1iii | 67.80 (12) | O1xii—Sr4/La4—O4vii | 121.40 (11) |
O5iv—Sr1/La1—O1iii | 70.80 (11) | O1x—Sr4/La4—O4vii | 56.25 (11) |
O3iii—Sr1/La1—O1iii | 133.60 (11) | O4—Sr4/La4—O4vii | 120.17 (10) |
O3—Sr1/La1—O1iii | 63.35 (11) | O4xii—Sr4/La4—O4vii | 89.71 (17) |
Sr2/La2v—Sr1/La1—W1 | 61.565 (10) | O4x—Sr4/La4—O4vii | 120.17 (10) |
W1iii—Sr1/La1—W1 | 107.502 (10) | O1—Sr4/La4—O5i | 117.41 (11) |
O3vi—Sr2/La2—O1vii | 143.76 (14) | O1vii—Sr4/La4—O5i | 56.35 (11) |
O3vi—Sr2/La2—O6 | 137.69 (13) | O1xii—Sr4/La4—O5i | 117.90 (11) |
O1vii—Sr2/La2—O6 | 74.95 (12) | O1x—Sr4/La4—O5i | 68.03 (11) |
O3vi—Sr2/La2—O2viii | 77.47 (13) | O4—Sr4/La4—O5i | 53.49 (10) |
O1vii—Sr2/La2—O2viii | 127.58 (12) | O4xii—Sr4/La4—O5i | 173.65 (10) |
O6—Sr2/La2—O2viii | 60.75 (12) | O4x—Sr4/La4—O5i | 62.02 (10) |
O3vi—Sr2/La2—O1 | 71.74 (13) | O4vii—Sr4/La4—O5i | 94.03 (11) |
O1vii—Sr2/La2—O1 | 90.70 (17) | O1—Sr4/La4—O5xiii | 117.90 (11) |
O6—Sr2/La2—O1 | 140.44 (12) | O1vii—Sr4/La4—O5xiii | 117.41 (11) |
O2viii—Sr2/La2—O1 | 141.44 (12) | O1xii—Sr4/La4—O5xiii | 68.03 (11) |
O3vi—Sr2/La2—O5 | 101.06 (13) | O1x—Sr4/La4—O5xiii | 56.35 (11) |
O1vii—Sr2/La2—O5 | 63.69 (12) | O4—Sr4/La4—O5xiii | 173.65 (10) |
O6—Sr2/La2—O5 | 80.29 (12) | O4xii—Sr4/La4—O5xiii | 62.02 (10) |
O2viii—Sr2/La2—O5 | 81.63 (12) | O4x—Sr4/La4—O5xiii | 94.03 (11) |
O1—Sr2/La2—O5 | 126.30 (12) | O4vii—Sr4/La4—O5xiii | 53.49 (10) |
O3vi—Sr2/La2—O5vi | 118.64 (12) | O5i—Sr4/La4—O5xiii | 124.29 (9) |
O1vii—Sr2/La2—O5vi | 76.11 (12) | O1—Sr4/La4—O5vi | 56.35 (11) |
O6—Sr2/La2—O5vi | 78.82 (12) | O1vii—Sr4/La4—O5vi | 68.03 (11) |
O2viii—Sr2/La2—O5vi | 117.51 (12) | O1xii—Sr4/La4—O5vi | 117.41 (11) |
O1—Sr2/La2—O5vi | 61.87 (12) | O1x—Sr4/La4—O5vi | 117.90 (11) |
O5—Sr2/La2—O5vi | 138.23 (9) | O4—Sr4/La4—O5vi | 94.03 (11) |
O3vi—Sr2/La2—O4 | 83.96 (13) | O4xii—Sr4/La4—O5vi | 53.49 (10) |
O1vii—Sr2/La2—O4 | 59.86 (12) | O4x—Sr4/La4—O5vi | 173.65 (10) |
O6—Sr2/La2—O4 | 128.74 (12) | O4vii—Sr4/La4—O5vi | 62.02 (10) |
O2viii—Sr2/La2—O4 | 132.50 (13) | O5i—Sr4/La4—O5vi | 124.29 (9) |
O1—Sr2/La2—O4 | 66.80 (12) | O5xiii—Sr4/La4—O5vi | 82.71 (14) |
O5—Sr2/La2—O4 | 59.51 (12) | O1—Sr4/La4—O5ix | 68.03 (11) |
O5vi—Sr2/La2—O4 | 109.81 (13) | O1vii—Sr4/La4—O5ix | 117.90 (11) |
O3vi—Sr2/La2—O4vi | 64.87 (13) | O1xii—Sr4/La4—O5ix | 56.35 (11) |
O1vii—Sr2/La2—O4vi | 132.31 (11) | O1x—Sr4/La4—O5ix | 117.41 (11) |
O6—Sr2/La2—O4vi | 104.51 (12) | O4—Sr4/La4—O5ix | 62.02 (10) |
O2viii—Sr2/La2—O4vi | 87.33 (12) | O4xii—Sr4/La4—O5ix | 94.03 (11) |
O1—Sr2/La2—O4vi | 58.90 (11) | O4x—Sr4/La4—O5ix | 53.49 (10) |
O5—Sr2/La2—O4vi | 163.87 (12) | O4vii—Sr4/La4—O5ix | 173.65 (10) |
O5vi—Sr2/La2—O4vi | 57.69 (11) | O5i—Sr4/La4—O5ix | 82.71 (14) |
O4—Sr2/La2—O4vi | 123.12 (9) | O5xiii—Sr4/La4—O5ix | 124.29 (9) |
W2iii—Sr2/La2—W2 | 121.613 (13) | O5vi—Sr4/La4—O5ix | 124.29 (9) |
W2iii—Sr2/La2—Sr1/La1viii | 155.754 (16) | O3—W1—O3xiv | 180.0 |
W2—Sr2/La2—Sr1/La1viii | 78.905 (11) | O3—W1—O6ix | 86.73 (17) |
O6i—Sr3/La3—O6ix | 90.91 (18) | O3xiv—W1—O6ix | 93.27 (17) |
O6i—Sr3/La3—O5ix | 169.96 (12) | O3—W1—O6v | 93.27 (17) |
O6ix—Sr3/La3—O5ix | 82.12 (12) | O3xiv—W1—O6v | 86.73 (17) |
O6i—Sr3/La3—O5i | 82.12 (12) | O6ix—W1—O6v | 180.0 (2) |
O6ix—Sr3/La3—O5i | 169.96 (12) | O3—W1—O2 | 88.94 (18) |
O5ix—Sr3/La3—O5i | 105.66 (18) | O3xiv—W1—O2 | 91.06 (18) |
O6i—Sr3/La3—O3 | 89.14 (13) | O6ix—W1—O2 | 94.18 (16) |
O6ix—Sr3/La3—O3 | 60.52 (12) | O6v—W1—O2 | 85.82 (16) |
O5ix—Sr3/La3—O3 | 93.66 (13) | O3—W1—O2xiv | 91.07 (18) |
O5i—Sr3/La3—O3 | 111.89 (12) | O3xiv—W1—O2xiv | 88.93 (18) |
O6i—Sr3/La3—O3x | 60.52 (12) | O6ix—W1—O2xiv | 85.82 (16) |
O6ix—Sr3/La3—O3x | 89.14 (13) | O6v—W1—O2xiv | 94.18 (16) |
O5ix—Sr3/La3—O3x | 111.89 (12) | O2—W1—O2xiv | 180.0 |
O5i—Sr3/La3—O3x | 93.66 (13) | Sr1/La1xv—W1—Sr1/La1vi | 180.0 |
O3—Sr3/La3—O3x | 137.62 (19) | Sr1/La1vi—W1—Sr1/La1vi | 0.0 |
O6i—Sr3/La3—O4x | 116.21 (12) | Sr1/La1xv—W1—Sr1/La1xv | 0.0 |
O6ix—Sr3/La3—O4x | 117.76 (12) | Sr1/La1vi—W1—Sr1/La1xv | 180.0 |
O5ix—Sr3/La3—O4x | 61.78 (12) | Sr1/La1xv—W1—Sr2/La2ix | 114.745 (9) |
O5i—Sr3/La3—O4x | 72.02 (12) | Sr1/La1vi—W1—Sr2/La2ix | 65.255 (9) |
O3—Sr3/La3—O4x | 154.56 (13) | Sr1/La1xv—W1—Sr2/La2ix | 114.745 (9) |
O3x—Sr3/La3—O4x | 64.19 (13) | Sr1/La1xv—W1—Sr2/La2v | 65.255 (9) |
O6i—Sr3/La3—O4 | 117.76 (12) | Sr1/La1vi—W1—Sr2/La2v | 114.745 (9) |
O6ix—Sr3/La3—O4 | 116.21 (12) | Sr2/La2ix—W1—Sr2/La2v | 180.000 (12) |
O5ix—Sr3/La3—O4 | 72.02 (12) | O4xii—W2—O4vi | 180.0 (3) |
O5i—Sr3/La3—O4 | 61.78 (12) | O4xii—W2—O1xvi | 91.21 (17) |
O3—Sr3/La3—O4 | 64.19 (13) | O4vi—W2—O1xvi | 88.79 (17) |
O3x—Sr3/La3—O4 | 154.56 (13) | O4xii—W2—O1 | 88.80 (17) |
O4x—Sr3/La3—O4 | 99.40 (19) | O4vi—W2—O1 | 91.20 (17) |
O6i—Sr3/La3—O1iii | 64.45 (11) | O1xvi—W2—O1 | 180.0 |
O6ix—Sr3/La3—O1iii | 115.34 (11) | O4xii—W2—O5xii | 88.65 (18) |
O5ix—Sr3/La3—O1iii | 125.14 (11) | O4vi—W2—O5xii | 91.35 (18) |
O5i—Sr3/La3—O1iii | 55.05 (11) | O1xvi—W2—O5xii | 90.08 (16) |
O3—Sr3/La3—O1iii | 60.43 (11) | O1—W2—O5xii | 89.92 (16) |
O3x—Sr3/La3—O1iii | 119.46 (11) | O4xii—W2—O5vi | 91.35 (18) |
O4x—Sr3/La3—O1iii | 126.84 (11) | O4vi—W2—O5vi | 88.65 (18) |
O4—Sr3/La3—O1iii | 53.37 (11) | O1xvi—W2—O5vi | 89.92 (16) |
O6i—Sr3/La3—O1xi | 115.34 (11) | O1—W2—O5vi | 90.08 (16) |
O6ix—Sr3/La3—O1xi | 64.45 (11) | O5xii—W2—O5vi | 180.0 (3) |
O5ix—Sr3/La3—O1xi | 55.05 (11) | Sr2/La2xii—W2—Sr2/La2vi | 180.0 |
O5i—Sr3/La3—O1xi | 125.14 (11) | Sr2/La2xii—W2—Sr2/La2xii | 0.0 |
O3—Sr3/La3—O1xi | 119.46 (11) | Sr2/La2vi—W2—Sr2/La2xii | 180.00 (2) |
O3x—Sr3/La3—O1xi | 60.43 (11) | Sr2/La2vi—W2—Sr2/La2vi | 0.000 (11) |
O4x—Sr3/La3—O1xi | 53.37 (11) | Sr2/La2xii—W2—Sr2/La2 | 102.7 |
O4—Sr3/La3—O1xi | 126.84 (11) | Sr2/La2vi—W2—Sr2/La2 | 77.309 (8) |
O1iii—Sr3/La3—O1xi | 179.73 (14) | Sr2/La2xii—W2—Sr2/La2 | 102.691 (8) |
Symmetry codes: (i) −x+1/2, −y+1/2, −z+1/2; (ii) −y+1/4, x+1/4, −z+5/4; (iii) y+1/4, −x+1/4, z+1/4; (iv) y+1/4, −x+3/4, −z+3/4; (v) −x+1/2, −y, z+1/2; (vi) −y+1/4, x−1/4, z−1/4; (vii) −y+1/4, x+1/4, −z+1/4; (viii) −x+1/2, −y, z−1/2; (ix) x−1/2, y, −z+1/2; (x) −x, −y+1/2, z; (xi) −y−1/4, x+1/4, z+1/4; (xii) y−1/4, −x+1/4, −z+1/4; (xiii) y−1/4, −x+3/4, z−1/4; (xiv) −x, −y, −z+1; (xv) y−1/4, −x+1/4, −z+5/4; (xvi) −x, −y, −z. |
Acknowledgements
We thank Mr I. Narita (Institute for Materials Research, Tohoku University) for carrying out the EPMA under the following cooperative research grant (No. 202112-CRKEQ-0208).
Funding information
Funding for this research was provided by: JSPS KAKENHI (grant No. JP20K20363); the Cooperative Research of the Development Center for Advanced Materials, Institute for Materials Research, Tohoku University (grant No. 202112-CRKEQ-0208); the Tohoku University Center for Gender Equality Promotion Support Project.
References
Betz, B., Schittenhelm, H. J. & Kemmler-Sack, S. (1982). Z. Anorg. Allg. Chem. 484, 177–186. CrossRef ICSD CAS Web of Science Google Scholar
Blasse, G. & Kemmler-Sack, S. (1983). Ber. Bunsenges. Phys. Chem. 87, 698–701. CrossRef CAS Web of Science Google Scholar
Bramnik, K. G., Miehe, G., Ehrenberg, H., Fuess, H., Abakumov, A. M., Shpanchenko, R. V., Pomjakushin, V. Y. & Balagurov, A. M. (2000). J. Solid State Chem. 149, 49–55. Web of Science CrossRef ICSD CAS Google Scholar
Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197. CrossRef CAS Web of Science IUCr Journals Google Scholar
Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Ferreira, T., Smith, M. D. & zur Loye, H.-C. (2018). Inorg. Chem. 57, 7797–7804. Web of Science CrossRef ICSD CAS PubMed Google Scholar
Ijdo, D. J. W., Fu, W. T. & Akerboom, S. (2016). J. Solid State Chem. 238, 236–240. Web of Science CrossRef ICSD CAS Google Scholar
Kemmler-Sack, S. & Ehmann, A. (1981). Z. Anorg. Allg. Chem. 479, 184–190. CAS Google Scholar
King, G., Abakumov, A. M., Hadermann, J., Alekseeva, A. M., Rozova, M. G., Perkisas, T., Woodward, P., Van Tendeloo, G. & Antipov, E. V. (2010). Inorg. Chem. 49, 6058–6065. Web of Science CrossRef ICSD CAS PubMed Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
López, C. A., Pedregosa, J. C., Fernández-Díaz, M. T. & Alonso, J. A. (2016). J. Appl. Cryst. 49, 78–84. Web of Science CrossRef ICSD IUCr Journals Google Scholar
Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276. Web of Science CrossRef CAS IUCr Journals Google Scholar
Qin, C., Huang, Y. & Seo, H. J. (2012). J. Alloys Compd. 534, 86–92. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shi, L., Han, Y.-J., Wang, H.-X., Shi, D.-C., Geng, X.-Y. & Zhang, Z.-W. (2019). J. Lumin. 208, 307–312. Web of Science CrossRef CAS Google Scholar
Smirnov, S. A., Evdokimov, A. A. & Kovba, L. M. (1987). Dokl. Akad. Nauk SSSR, 292, 99–102. CAS Google Scholar
Wakeshima, M. & Hinatsu, Y. (2005). Solid State Commun. 136, 499–503. Web of Science CrossRef ICSD CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zeng, Q., He, P., Zhang, X., Liang, H., Gong, M. & Su, Q. (2009). Chem. Lett. 38, 1172–1173. Web of Science CrossRef CAS Google Scholar
Zeng, Q., Liang, H. & Gong, M. (2013). Asian J. Chem. 25, 5971–5974. Web of Science CrossRef CAS Google Scholar
Zeng, Q.-H., Zhang, X.-G., He, P., Liang, H.-B. & Gong, M.-L. (2010). J. Inorg. Mater. 25, 1009–1014. Web of Science CrossRef CAS Google Scholar
Zhou, F., Gao, M., Shi, Y., Li, Z., Zhu, G., Xin, S. & Wang, C. (2020). J. Lumin. 223, 117235. Web of Science CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.