research communications
N-butyl-2,3-bis(dicyclohexylamino)cyclopropeniminium chloride benzene monosolvate
ofaDepartment of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA 19122, USA
*Correspondence e-mail: mzdilla@temple.edu
N-Butyl-2,3-bis(dicyclohexylamino)cyclopropenimine (1) crystallizes from benzene and hexanes in the presence of HCl as a monobenzene solvate of the hydrochloride salt, [1H]Cl·C6H6 or C31H54N3+·Cl−·C6H6, in the P21/n The protonation of 1 results in the generation of an aromatic structure based upon the delocalization of the cyclopropene double bond around the cyclopropene ring, giving three intermediate C—C bond lengths of ∼1.41 Å, and the delocalization of the imine-type C—N double bond, giving three intermediate C—N bond lengths of ∼1.32 Å. Ion–ion and ion–benzene packing interactions are described and illustrated.
Keywords: crystal structure; cyclopropene; superbases; aromaticity.
CCDC reference: 2200141
1. Chemical context
Pentasubstituted diaminopropenimines are a relatively new class of superbases that operate via the establishment of a stable aromatic electronic delocalization upon protonation. Originally reported as four-electron Lewis donors (Bruns et al., 2010), a more recently exploited application for the use of pentasubstituion is that of a superbase, with one of the six nitrogen coordination sites available for protonation, making these molecules facile initiators of stereoselective Michael (Bandar & Lambert, 2012) and Mannich reactions (Bandar & Lambert, 2013), hydroaminations (Mirabdolbaghi & Dudding, 2015), and (Stukenbroeker et al., 2015; Xu et al., 2018). A number of examples of acid salts of these species have been structurally characterized, permitting direct observation of the aromatized cyclopropeniminium structures (Stukenbroeker et al., 2015; Bruns et al., 2010; Bandar et al., 2015; Belding & Dudding, 2014; Guest et al., 2020; Kozma et al., 2015; Belding et al., 2016; Bandar & Lambert, 2012, 2013; Mirabdolbaghi & Dudding, 2015). Examples of free-base pentasubstituted diaminopropenimines are uncommon, and these are typically only obtained with aromatic substituents at the imine position, which decreases the basicity of the imine by the delocalization of the nitrogen lone pair p-orbital into the aromatic group, facilitating isolation (Guest et al., 2020; Kozma et al., 2015; Bruns et al., 2010). Some of these (Guest et al., 2020; Kozma et al., 2015; Belding & Dudding, 2014) are bis(cylopropenimine) variants of the famous `proton sponge', 1,8-bis(dimethylamino)naphthalene and related classes of bifunctional Lewis superbases (Alder et al., 1968). The only other example, to our knowledge, is an N-aminosubstituted example, which also decreases the basicity of the nitrogen lone pair by induction, a minor resonance structure delocalizing the double bond into the N—N contact, and, in the a nearby hydrogen bond with a water proton (Bruns et al., 2010).
N-Butyl-2,3-bis(dicyclohexylamino)cyclopropenimine (1) is a newer version of superbase with improved basicity, which has been explored as a catalyst for Cyclopropenimines have a conjugate acid pKa of about 27, an improvement over that of the superbase 2-tert-butyl-1,1,3,3-tetramethylguanidine (BTMG), which has a pKa of 23.56 (Bandar & Lambert, 2012). This allows 1 to deprotonate a lactide and initiate polymerization in the synthesis of polylactic acid, as shown in Fig. 1 (Stukenbroeker et al., 2015). Compound 1 can mediate the polymerization of lactic acid to 99% completion in 10 minutes or less. However, no X-ray of the free base, nor an acid salt of this superbase has been reported. In this report we provide the first X-ray crystallographic structure of a benzene solvate of the hydrochloride salt [1H]Cl·C6H6.
2. Structural commentary
[1H]Cl crystallizes in the P21/n on a general position as a closely associated with the protonation site at the n-butyl imine as expected, and one formula unit in the as well as one benzene molecule, also on a general position (Fig. 2). The organic salt and the benzene molecule are generally well ordered, except for the δ methyl carbon of the n-butyl group, which shows a mild wagging disorder. This disorder was treated with a two-site disorder model.
Free-base 1 would be expected to have localized double bonds at the n-butylimine C=N position, and at the opposing cyclopropene position (see scheme). In the isolated free base of 1-mesityl-2,3-bis(diisopropylamino)cyclopropenimine (Bruns et al., 2010), the unprotonated C=N imine bond is 1.2951 (14) Å in length, while the C—N bonds to the tertiary are longer, at an average of 1.3494 (10) Å. The localized cyclopropene double bond is shorter, at 1.3712 (14) Å, than the single bonded C—C cyclopropene contacts at an average of 1.4155 (10) Å. Protonation of the n-butylimine position during crystal growth results in all nitrogen atoms being three-coordinate, leading to delocalization of the imine double-bond character across all three C—N contacts. Correspondingly, the cyclopropene double bond is delocalized around the ring, giving a three-membered aromatic system. In [1H]Cl, the central C3N3 triangle is thus highly planar, with the six atoms exhibiting an r.m.s. deviation of only 0.0052 Å from the best-fit plane of the six atoms. The three C—N bonds are approximately equal in length, with the two tertiary cyclohexylamine positions having C—N lengths of 1.3279 (13) Å on average. The C—N bond to the protonated butyl nitrogen is only slightly shorter at 1.319 (2) Å. The three cyclopropene C—C bonds exhibit lengths consistent with aromaticity; the unique C—C bond opposite the n-butyl group is 1.388 (2) Å, while the other two C—C bonds are similar or slightly shorter at 1.377 (2) and 1.383 (2) Å. Though these latter two bonds are equivalent under molecular their differences are attributed to the asymmetric crystal packing environment of the P21/n The comparable nature of the bond metrics of the three C—N bonds and the three cyclopropenyl C—C bonds is consistent with aromatization, and an analogous aromatization of the C3N3 core of 1-mesityl-2,3-bis(diisopropylamino)cyclopropeniminium tetrafluoroborate was observed in the of this salt (Bruns et al., 2010). See Table 1 for C3N3 bond metrics.
|
The comparison between free-base forms of cyclopropenimine (Bruns et al., 2010) and the protonated forms demonstrate aromatization upon protonation, and explain the behavior of 1 as a superbase. While alkylimines are typically weak bases (pKa of conjugate acid ranges from about 2–5 (Fraser et al., 1983), the pKa of 1H+ is a staggering 27 (Bandar & Lambert, 2012), more on the scale of a C—H bond. The drastic difference in basicity between typical alkylimines and 1 can be explained by the observed aromatization upon protonation. As a result, the 1H resonance of the N—H hydrogen in [1H]Cl is a sharp singlet at 7.4 ppm in deuterated chloroform, suggesting little to no exchange like that typically observed for broad N—H resonances. The stabilization of a molecule by aromatization is quantified by the Dewar Resonance Energy (DRE), which ranges from about 6–25 kJ mol−1 per π electron (Slayden & Liebman, 2001). Thus in the case of 1, aromatic stabilization between 12 and 50 kJ mol−1 upon protonation explains the large reported basicity.
3. Supramolecular features
Interionic/molecular interactions were examined using packing diagrams, and by the determination of partial atomic charge from Hirshfeld analysis. In the following discussion Hirshfeld charges are presented in parenthesis. The proton of the butylimine group (+0.121) interacts strongly with the chloride ion (−0.666) at a short H⋯Cl distance of 2.26 (2) Å. The chloride is positioned in a pocket surrounded by hydrogen atoms. In addition to the strong interaction with the acidic N—H proton, the chloride resides 2.8152 (7) Å from a benzene proton, H6AA (+0.046), and 2.7169 (6) Å from an intramolecular axial cyclohexyl proton, H29A (+0.050). The crystal packing demonstrates that the C3N3 planes of all molecules pack parallel to each other (as required by the space-group symmetry), with a normal slightly oblique to the (101) plane (see Fig. 3). The molecular planes stack in a staggered fashion via intervening inversion centers at the origin (Fig. 3, red) and at the center of the a edge (Fig. 3, teal). One face of the benzene solvent molecule interacts distally with the cyclohexyl group of one 1H+ ion [closest atomic C⋯C distance: 3.829 (3) Å, Fig. 3, green line], while the other face interacts distally with the disordered methyl group of the n-butyl chain [closest atomic C⋯C distance: 4.29 (3) Å, Fig. 3, orange line]. The benzene interacts weakly with two chloride ions approximately along its equatorial plane (Fig. 3, blue lines), one via H6S (+0.069) with H⋯Cl = 2.8152 (7) Å, also shown in Fig. 2, and the other via H3S (+0.062) with H⋯Cl = 2.8365 (7) Å. These benzene–chlorine interactions form a channel along the (101) plane, each channel situated 1/4 of the way along the b axis (Fig. 4, top). Viewed from 90° along the [101] direction, the benzene solvent molecules sit along a second channel, with the chloride ions sitting at the intersections of both channels, providing ionic bonds to the surrounding 1H+ cations (Fig. 4, bottom). In this latter view, it is apparent that along the [101] direction, the chloride ions are positioned between the axial protons H26 (+0.058) and H29B (+0.059) of the flanking cyclohexyl groups. In summary, the 1H+ cations interact with each other and through the benzene solvent molecule via their and the chloride counter-ion is situated in a pocket of cyclohexyl and benzene C—H contacts, with the proximal N—H interaction on one side.
4. Database survey
In addition to the pentasubstituted examples discussed above, a survey of the Cambridge Structural Database (CSD, Version 5.34, November 2021; Groom et al., 2016) for cyclopropenimines reveals a number of other relevant structures. The parent (unsubstituted) diaminopropeniminium cation has been structurally characterized with chloride and iodide counter-cations (UJAVEI and UJAVIM; Mishiro et al., 2016). Aprotic hexasubstituted examples are reported, and represent planar polyatomic cations (AHUVEH, Holthoff et al., 2020; DOSRUB, Abdelbassit et al., 2019; FURCIH, Clark et al., 1995; GAXYEJ, Radhakrishnan et al., 1987b; GERXUX02, Butchard et al., 2012; GUNDUR, Curnow & Senthooran, 2020; IFAGUU, Curnow et al., 2018; LAYYOC01, Jin et al., 2018; NUYBOB, Guest et al., 2020; SERVIW, Kniep et al., 2013; TUSDOD, Radhakrishnan et al., 1987a; UGITIQ, Barthes et al., 2020, XIKYAT01, ZABFUG, Wallace et al., 2015, XOSTIL, XOSTOR, XOSTUX, XOSVAF, XOSVEJ, Abdelbassit & Curnow, 2019, YUVRAK, YUWJOR, Jungbauer et al., 2015). Another class of variants includes cyclopropenemines tethered to ferrocene nuclei (TURNUQ, Bruns et al., 2010; BEBPIK, BEBRAE, BEBREI, BEBRIM, BEBROS, Jess et al., 2017). There are a few structural studies of Lewis complexes with metal ions (BEBRIM, Jess et al., 2017; UGITOW, UGITUC, Barthes et al., 2020; YOQPOM, Chen et al., 2019; TURNOK, Bruns et al., 2010) or other boron-based Lewis acids (NUYBOB, Guest et al., 2020; TURPOM, Bruns et al., 2010). One structural report of a trisubstituted cyclopropenimine is noted (XEXGEP; Xu et al., 2018), as well as several types of oligomeric versions (OGOLUT, OGORAF, OGOWOY, OGOWUE, OGOXAL, OGOXEP, OGOXIT, OGOXOZ, OGOXUF, OGOYAM, Kozma et al., 2015; SUSWAG, SUSWOU, Nacsa & Lambert, 2015).
5. Synthesis and crystallization
Initially, crystals of [1H]Cl·C6H6 were obtained from the commercial sample of 1 via a double-vial apparatus by dissolution of N-butyl-2,3-bis(dicyclohexylamino)cyclopropenimine (1) in benzene in an inner vial, and charging the outer vial with hexanes. After diffusion for a few days at room temperature, powdery solid and a few colorless crystals of [1H]Cl·C6H6 were observed inside. The yield of crystalline [1H]Cl·C6H6 was significantly improved by the addition of HCl. To a glass shell vial containing 7.2 mg of N-butyl-2,3-bis(dicyclohexylamino)cyclopropenimine, 2 mL of benzene were added. A drop of dilute HCl (0.730 M) was added. This was diffused with 3 mL of hexanes in the outer vial for 2–3 days. Crystallization works best when the drop is not in contact with the walls of the vial where the crystals grow. Crystals were isolated by decanting the liquid from the inner vial using a disposable pipette, and taking care to remove the visible aqueous HCl droplet with the first pipette draw. After removing the mother liquor, the crystals were rinsed with hexanes. Yield 6.3 mg (70%). Yields in this small-scale preparation ranged from 22% to 70% across multiple attempts. 1H NMR (ppm) 400 MHz, CDCl3): δ(ppm): 0.97 (t, 3H, Me), 1.62–1.82 (m, 14H, Cy and Bu), 1.62–1.76 (m, 14H, Cy and Bu), 1.80 (d, 8H, Cy-β-H), 1.96 (d, 8H, Cy-β-H), 3.34 (tt, 4H, Cy-α-H), 3.56 (t, 2H, Bu-α-H), 7.4 (s, 1H, NH). 13C NMR (ppm) (400 MHz, CDCl3): δ(ppm): 13.97, 19.94, 24.58, 25.84, 32.34, 33.79, 46.15, 59.55, 114.01, 128.35. FTIR (cm−1): 2926 (m), 2851 (m), 1503 (s), 1445 (m), 1383 (w), 1374 (w), 1345 (w), 1324 (w), 1253 (w), 1188 (w), 1180 (w), 1102 (w), 1092 (w), 1004 (w), 895 (w), 696 (m). Analysis calculated for C31H53N3·0.5 C6H6 (%): C, 76.31; H, 10.38; N, 7.22. Found: C, 75.873; H, 10.83; N, 7.24. M.p. 353–356 K (decomposes).
6. Refinement
Crystal data, data collection and structure . A disordered methyl group was treated with a two-site disorder model, with atom positions freely refined, and relative occupancies refined using Free Variable 2 with a final ratio of 0.71 (3): 0.29 (3). RIGU/SIMU restraints were applied to the wagging methyl group. C—H hydrogen atoms were treated using a standard riding model. The imine proton was located as a peak in the Fourier difference map and was freely refined.
details are summarized in Table 2Hirshfeld charge was determined at the 3-21G/B3LYP level of theory by iterative computation of electronic structure of [1H]Cl·C6H6 using ORCA (Neese, 2018) followed by rerefinement of the structure using non-spherical form factors computed using NoSpherA2 (Kleemiss et al., 2021), and repeating the process until the structure converged. Hirshfeld charges resulting from this approach are given in Table 3.
|
Supporting information
CCDC reference: 2200141
https://doi.org/10.1107/S2056989022008076/jq2013sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022008076/jq2013Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989022008076/jq2013Isup3.cdx
Data collection: COSMO and XPREP (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C31H54N3+·Cl−·C6H6 | Dx = 1.113 Mg m−3 |
Mr = 582.33 | Melting point: 356 K |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71076 Å |
a = 12.253 (3) Å | Cell parameters from 9959 reflections |
b = 22.699 (7) Å | θ = 2.6–29.6° |
c = 12.884 (3) Å | µ = 0.14 mm−1 |
β = 104.164 (7)° | T = 100 K |
V = 3474.6 (16) Å3 | Chunk, colourless |
Z = 4 | 0.55 × 0.53 × 0.16 mm |
F(000) = 1280 |
Bruker D8 Quest Photon 100 diffractometer | 8072 independent reflections |
Radiation source: sealed tube | 6516 reflections with I > 2σ(I) |
Detector resolution: 10.417 pixels mm-1 | Rint = 0.044 |
φ and ω scans | θmax = 27.9°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −16→14 |
Tmin = 0.662, Tmax = 0.746 | k = −29→29 |
48756 measured reflections | l = −16→16 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.055 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.136 | w = 1/[σ2(Fo2) + (0.0605P)2 + 2.3777P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.001 |
8072 reflections | Δρmax = 0.55 e Å−3 |
385 parameters | Δρmin = −0.40 e Å−3 |
6 restraints | Extinction correction: SHELXL2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: dual | Extinction coefficient: 0.0081 (7) |
Experimental. Single-crystal X-ray crystallographic data were obtained on a Bruker D8 Quest PHOTON 100 diffractometer with an Oxford Cryostream 700 low-temperature device. The radiation was from a sealed-tube molybdenum Kα source with a TRIUMPH monochromator. Crystals were typically multiple, and a single piece was cut away with a razor blade, mounted on a MiTeGen loop with paratone-N oil, and collected at 100K in ω/φ scansets. Integration was performed using SAINT, and data were reduced and absorption-corrected using SADABS (Bruker, 2008). Space group determination was performed using XPREP (Sheldrick, 2008), and the structure was solved using intrinsic phasing using SHELXT (Sheldrick,The structural model of [1H]Cl·C6H6 was refined using the least-squares approach with the ShelX package (Sheldrick, 2015a) with Olex2 as a GUI (Dolomanov et al., 2009). 2015b). |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cl1 | 0.44296 (4) | 0.74552 (2) | 0.69373 (3) | 0.03152 (13) | |
N1 | 0.36809 (13) | 0.61997 (7) | 0.64021 (11) | 0.0287 (3) | |
N2 | 0.28059 (11) | 0.47671 (6) | 0.52228 (11) | 0.0214 (3) | |
N3 | 0.16710 (10) | 0.61804 (5) | 0.38294 (10) | 0.0153 (3) | |
C1 | 0.30625 (12) | 0.58844 (7) | 0.56140 (12) | 0.0187 (3) | |
C2 | 0.27226 (12) | 0.53505 (7) | 0.51360 (11) | 0.0161 (3) | |
C3 | 0.23000 (12) | 0.58703 (6) | 0.46257 (11) | 0.0152 (3) | |
C4 | 0.42658 (14) | 0.59655 (8) | 0.74386 (13) | 0.0258 (4) | |
H4A | 0.482194 | 0.625847 | 0.781488 | 0.031* | |
H4B | 0.468020 | 0.560497 | 0.733256 | 0.031* | |
C5 | 0.34533 (15) | 0.58187 (9) | 0.81298 (14) | 0.0297 (4) | |
H5A | 0.299691 | 0.617193 | 0.818508 | 0.036* | |
H5B | 0.293374 | 0.550454 | 0.777551 | 0.036* | |
C6 | 0.40470 (18) | 0.56176 (11) | 0.92421 (15) | 0.0417 (5) | |
H6AA | 0.453690 | 0.528001 | 0.917569 | 0.050* | 0.71 (3) |
H6AB | 0.454139 | 0.594103 | 0.959793 | 0.050* | 0.71 (3) |
H6BC | 0.463745 | 0.589993 | 0.959547 | 0.050* | 0.29 (3) |
H6BD | 0.438414 | 0.522186 | 0.923334 | 0.050* | 0.29 (3) |
C7 | 0.3303 (10) | 0.5437 (7) | 0.9956 (7) | 0.053 (2) | 0.71 (3) |
H7A | 0.376946 | 0.531504 | 1.065397 | 0.079* | 0.71 (3) |
H7B | 0.282871 | 0.577033 | 1.005181 | 0.079* | 0.71 (3) |
H7C | 0.282420 | 0.510733 | 0.962831 | 0.079* | 0.71 (3) |
C7A | 0.302 (2) | 0.5607 (13) | 0.980 (2) | 0.052 (3) | 0.29 (3) |
H7AA | 0.329164 | 0.548113 | 1.055049 | 0.079* | 0.29 (3) |
H7AB | 0.269538 | 0.600292 | 0.978288 | 0.079* | 0.29 (3) |
H7AC | 0.244456 | 0.533150 | 0.942430 | 0.079* | 0.29 (3) |
C8 | 0.36221 (13) | 0.45256 (7) | 0.61774 (12) | 0.0217 (3) | |
H8 | 0.381382 | 0.485489 | 0.670631 | 0.026* | |
C9 | 0.47084 (15) | 0.43290 (10) | 0.59447 (16) | 0.0353 (4) | |
H9A | 0.502862 | 0.465328 | 0.559880 | 0.042* | |
H9B | 0.456679 | 0.398984 | 0.544653 | 0.042* | |
C10 | 0.55473 (15) | 0.41505 (11) | 0.69901 (17) | 0.0402 (5) | |
H10A | 0.624144 | 0.399694 | 0.682382 | 0.048* | |
H10B | 0.575268 | 0.450269 | 0.744965 | 0.048* | |
C11 | 0.50711 (16) | 0.36903 (8) | 0.75884 (15) | 0.0304 (4) | |
H11A | 0.560159 | 0.362242 | 0.829220 | 0.036* | |
H11B | 0.499093 | 0.331562 | 0.718347 | 0.036* | |
C12 | 0.39465 (16) | 0.38660 (12) | 0.77577 (17) | 0.0443 (6) | |
H12A | 0.404691 | 0.420050 | 0.826542 | 0.053* | |
H12B | 0.362632 | 0.353219 | 0.807993 | 0.053* | |
C13 | 0.31273 (15) | 0.40433 (13) | 0.67130 (17) | 0.0502 (7) | |
H13A | 0.295939 | 0.369777 | 0.623135 | 0.060* | |
H13B | 0.241307 | 0.418020 | 0.686061 | 0.060* | |
C14 | 0.22900 (14) | 0.43733 (7) | 0.43423 (12) | 0.0228 (3) | |
H14 | 0.251060 | 0.396403 | 0.459615 | 0.027* | |
C15 | 0.10137 (15) | 0.43961 (8) | 0.40904 (14) | 0.0294 (4) | |
H15A | 0.075663 | 0.480402 | 0.389687 | 0.035* | |
H15B | 0.075736 | 0.428155 | 0.473345 | 0.035* | |
C16 | 0.04928 (19) | 0.39800 (10) | 0.31628 (16) | 0.0421 (5) | |
H16A | 0.065028 | 0.356690 | 0.339859 | 0.051* | |
H16B | −0.033395 | 0.403439 | 0.296143 | 0.051* | |
C17 | 0.09633 (19) | 0.40960 (8) | 0.21891 (15) | 0.0388 (5) | |
H17A | 0.064423 | 0.380550 | 0.162311 | 0.047* | |
H17B | 0.073038 | 0.449374 | 0.190386 | 0.047* | |
C18 | 0.2230 (2) | 0.40551 (9) | 0.24633 (15) | 0.0404 (5) | |
H18A | 0.250416 | 0.415061 | 0.182158 | 0.048* | |
H18B | 0.246121 | 0.364657 | 0.268072 | 0.048* | |
C19 | 0.27602 (15) | 0.44745 (8) | 0.33640 (13) | 0.0281 (4) | |
H19A | 0.261060 | 0.488590 | 0.311459 | 0.034* | |
H19B | 0.358567 | 0.441498 | 0.356404 | 0.034* | |
C20 | 0.10054 (12) | 0.59000 (6) | 0.28437 (11) | 0.0154 (3) | |
H20 | 0.121932 | 0.547404 | 0.287367 | 0.018* | |
C21 | −0.02557 (12) | 0.59316 (7) | 0.27777 (12) | 0.0208 (3) | |
H21A | −0.048940 | 0.634910 | 0.277906 | 0.025* | |
H21B | −0.041475 | 0.573704 | 0.341256 | 0.025* | |
C22 | −0.09312 (14) | 0.56299 (8) | 0.17598 (14) | 0.0270 (4) | |
H22A | −0.076043 | 0.520300 | 0.179794 | 0.032* | |
H22B | −0.174555 | 0.567825 | 0.170890 | 0.032* | |
C23 | −0.06516 (14) | 0.58893 (8) | 0.07659 (13) | 0.0273 (4) | |
H23A | −0.106868 | 0.567204 | 0.012491 | 0.033* | |
H23B | −0.089479 | 0.630630 | 0.068675 | 0.033* | |
C24 | 0.06045 (14) | 0.58532 (8) | 0.08384 (12) | 0.0232 (3) | |
H24A | 0.076785 | 0.604027 | 0.019878 | 0.028* | |
H24B | 0.083535 | 0.543480 | 0.085098 | 0.028* | |
C25 | 0.12775 (12) | 0.61616 (7) | 0.18448 (12) | 0.0188 (3) | |
H25A | 0.109634 | 0.658734 | 0.180255 | 0.023* | |
H25B | 0.209217 | 0.611798 | 0.189237 | 0.023* | |
C26 | 0.15551 (12) | 0.68225 (6) | 0.39646 (12) | 0.0155 (3) | |
H26 | 0.099398 | 0.696644 | 0.331400 | 0.019* | |
C27 | 0.10861 (13) | 0.69733 (7) | 0.49275 (12) | 0.0198 (3) | |
H27A | 0.037198 | 0.675821 | 0.487607 | 0.024* | |
H27B | 0.162771 | 0.684987 | 0.559541 | 0.024* | |
C28 | 0.08784 (14) | 0.76347 (7) | 0.49579 (14) | 0.0235 (3) | |
H28A | 0.028444 | 0.774989 | 0.432041 | 0.028* | |
H28B | 0.060970 | 0.773161 | 0.560235 | 0.028* | |
C29 | 0.19481 (14) | 0.79815 (7) | 0.49779 (14) | 0.0258 (3) | |
H29A | 0.251074 | 0.790334 | 0.565857 | 0.031* | |
H29B | 0.177627 | 0.840825 | 0.494357 | 0.031* | |
C30 | 0.24396 (14) | 0.78122 (7) | 0.40405 (14) | 0.0236 (3) | |
H30A | 0.315816 | 0.802469 | 0.410204 | 0.028* | |
H30B | 0.191359 | 0.793486 | 0.336272 | 0.028* | |
C31 | 0.26484 (12) | 0.71506 (7) | 0.40078 (12) | 0.0190 (3) | |
H31A | 0.292722 | 0.705234 | 0.336957 | 0.023* | |
H31B | 0.322722 | 0.703020 | 0.465293 | 0.023* | |
C1S | 0.68908 (19) | 0.74647 (9) | 0.54411 (18) | 0.0396 (5) | |
H1S | 0.696225 | 0.738475 | 0.617844 | 0.048* | |
C2S | 0.78338 (18) | 0.74472 (10) | 0.5024 (2) | 0.0445 (5) | |
H2S | 0.855070 | 0.735644 | 0.547561 | 0.053* | |
C3S | 0.77266 (19) | 0.75618 (10) | 0.3953 (2) | 0.0430 (5) | |
H3S | 0.836697 | 0.754721 | 0.366155 | 0.052* | |
C4S | 0.6681 (2) | 0.76980 (9) | 0.33078 (18) | 0.0414 (5) | |
H4S | 0.660378 | 0.777832 | 0.256966 | 0.050* | |
C5S | 0.57486 (18) | 0.77183 (9) | 0.37275 (18) | 0.0390 (5) | |
H5S | 0.503360 | 0.781612 | 0.327955 | 0.047* | |
C6S | 0.58513 (17) | 0.75981 (8) | 0.47859 (18) | 0.0367 (4) | |
H6S | 0.520582 | 0.760638 | 0.507068 | 0.044* | |
H1 | 0.3710 (18) | 0.6567 (11) | 0.6337 (18) | 0.035 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0369 (2) | 0.0277 (2) | 0.0232 (2) | −0.01656 (17) | −0.00559 (16) | −0.00049 (16) |
N1 | 0.0371 (8) | 0.0193 (7) | 0.0193 (7) | −0.0048 (6) | −0.0128 (6) | 0.0002 (6) |
N2 | 0.0270 (7) | 0.0164 (6) | 0.0174 (6) | 0.0060 (5) | −0.0013 (5) | −0.0020 (5) |
N3 | 0.0169 (6) | 0.0138 (6) | 0.0123 (6) | 0.0014 (5) | −0.0021 (5) | −0.0010 (5) |
C1 | 0.0179 (7) | 0.0185 (7) | 0.0166 (7) | 0.0012 (6) | −0.0017 (6) | 0.0013 (6) |
C2 | 0.0153 (6) | 0.0185 (7) | 0.0129 (6) | 0.0028 (5) | 0.0003 (5) | −0.0009 (5) |
C3 | 0.0142 (6) | 0.0168 (7) | 0.0138 (7) | −0.0005 (5) | 0.0017 (5) | −0.0023 (5) |
C4 | 0.0286 (8) | 0.0260 (8) | 0.0159 (7) | −0.0020 (7) | −0.0081 (6) | 0.0003 (6) |
C5 | 0.0251 (8) | 0.0343 (10) | 0.0262 (9) | 0.0035 (7) | −0.0007 (7) | −0.0116 (7) |
C6 | 0.0414 (11) | 0.0616 (14) | 0.0217 (9) | −0.0093 (10) | 0.0068 (8) | −0.0050 (9) |
C7 | 0.044 (4) | 0.091 (6) | 0.026 (3) | −0.019 (3) | 0.012 (2) | −0.012 (3) |
C7A | 0.047 (7) | 0.085 (8) | 0.029 (5) | −0.024 (5) | 0.016 (5) | −0.017 (5) |
C8 | 0.0245 (8) | 0.0200 (7) | 0.0167 (7) | 0.0071 (6) | −0.0023 (6) | −0.0010 (6) |
C9 | 0.0238 (8) | 0.0507 (12) | 0.0337 (10) | 0.0075 (8) | 0.0112 (7) | 0.0191 (9) |
C10 | 0.0218 (8) | 0.0586 (13) | 0.0395 (11) | 0.0113 (8) | 0.0063 (8) | 0.0230 (10) |
C11 | 0.0353 (9) | 0.0249 (9) | 0.0254 (9) | 0.0039 (7) | −0.0033 (7) | 0.0046 (7) |
C12 | 0.0296 (9) | 0.0728 (16) | 0.0298 (10) | 0.0027 (10) | 0.0060 (8) | 0.0271 (10) |
C13 | 0.0189 (8) | 0.102 (2) | 0.0284 (10) | −0.0030 (10) | 0.0027 (7) | 0.0339 (12) |
C14 | 0.0334 (8) | 0.0158 (7) | 0.0166 (7) | −0.0001 (6) | 0.0011 (6) | −0.0021 (6) |
C15 | 0.0323 (9) | 0.0330 (9) | 0.0198 (8) | −0.0072 (7) | 0.0003 (7) | 0.0049 (7) |
C16 | 0.0522 (12) | 0.0348 (10) | 0.0292 (10) | −0.0185 (9) | −0.0096 (9) | 0.0069 (8) |
C17 | 0.0635 (13) | 0.0220 (9) | 0.0205 (8) | −0.0053 (9) | −0.0096 (8) | −0.0035 (7) |
C18 | 0.0667 (14) | 0.0304 (10) | 0.0201 (8) | 0.0127 (9) | 0.0030 (9) | −0.0075 (7) |
C19 | 0.0349 (9) | 0.0287 (9) | 0.0205 (8) | 0.0107 (7) | 0.0063 (7) | −0.0022 (7) |
C20 | 0.0157 (6) | 0.0151 (7) | 0.0127 (6) | 0.0023 (5) | −0.0013 (5) | −0.0021 (5) |
C21 | 0.0162 (7) | 0.0268 (8) | 0.0178 (7) | −0.0023 (6) | 0.0007 (6) | −0.0062 (6) |
C22 | 0.0175 (7) | 0.0349 (9) | 0.0251 (8) | −0.0024 (7) | −0.0015 (6) | −0.0099 (7) |
C23 | 0.0243 (8) | 0.0332 (9) | 0.0182 (8) | 0.0062 (7) | −0.0069 (6) | −0.0058 (7) |
C24 | 0.0270 (8) | 0.0277 (8) | 0.0129 (7) | 0.0058 (7) | 0.0010 (6) | −0.0021 (6) |
C25 | 0.0172 (7) | 0.0231 (8) | 0.0151 (7) | 0.0043 (6) | 0.0019 (6) | 0.0003 (6) |
C26 | 0.0170 (6) | 0.0125 (7) | 0.0152 (7) | 0.0013 (5) | 0.0005 (5) | −0.0006 (5) |
C27 | 0.0213 (7) | 0.0195 (7) | 0.0185 (7) | −0.0010 (6) | 0.0046 (6) | −0.0036 (6) |
C28 | 0.0232 (8) | 0.0216 (8) | 0.0248 (8) | 0.0012 (6) | 0.0042 (6) | −0.0067 (6) |
C29 | 0.0271 (8) | 0.0170 (7) | 0.0295 (9) | −0.0017 (6) | −0.0001 (7) | −0.0053 (6) |
C30 | 0.0243 (8) | 0.0164 (7) | 0.0281 (8) | −0.0035 (6) | 0.0024 (6) | 0.0031 (6) |
C31 | 0.0188 (7) | 0.0183 (7) | 0.0191 (7) | −0.0014 (6) | 0.0032 (6) | 0.0014 (6) |
C1S | 0.0548 (12) | 0.0281 (10) | 0.0371 (11) | −0.0012 (9) | 0.0135 (9) | 0.0017 (8) |
C2S | 0.0348 (10) | 0.0405 (12) | 0.0554 (14) | 0.0020 (9) | 0.0056 (10) | 0.0035 (10) |
C3S | 0.0394 (11) | 0.0378 (11) | 0.0574 (14) | −0.0094 (9) | 0.0229 (10) | −0.0042 (10) |
C4S | 0.0584 (13) | 0.0277 (10) | 0.0389 (11) | −0.0127 (9) | 0.0137 (10) | −0.0011 (8) |
C5S | 0.0381 (10) | 0.0241 (9) | 0.0500 (12) | −0.0007 (8) | 0.0010 (9) | −0.0026 (9) |
C6S | 0.0341 (10) | 0.0261 (9) | 0.0532 (13) | −0.0018 (7) | 0.0171 (9) | −0.0077 (8) |
N1—C1 | 1.319 (2) | C16—C17 | 1.526 (3) |
N1—C4 | 1.453 (2) | C17—H17A | 0.9900 |
N1—H1 | 0.84 (2) | C17—H17B | 0.9900 |
N2—C2 | 1.331 (2) | C17—C18 | 1.507 (3) |
N2—C8 | 1.4872 (19) | C18—H18A | 0.9900 |
N2—C14 | 1.461 (2) | C18—H18B | 0.9900 |
N3—C3 | 1.3247 (19) | C18—C19 | 1.519 (3) |
N3—C20 | 1.4752 (18) | C19—H19A | 0.9900 |
N3—C26 | 1.4789 (19) | C19—H19B | 0.9900 |
C1—C2 | 1.377 (2) | C20—H20 | 1.0000 |
C1—C3 | 1.383 (2) | C20—C21 | 1.528 (2) |
C2—C3 | 1.388 (2) | C20—C25 | 1.527 (2) |
C4—H4A | 0.9900 | C21—H21A | 0.9900 |
C4—H4B | 0.9900 | C21—H21B | 0.9900 |
C4—C5 | 1.526 (3) | C21—C22 | 1.531 (2) |
C5—H5A | 0.9900 | C22—H22A | 0.9900 |
C5—H5B | 0.9900 | C22—H22B | 0.9900 |
C5—C6 | 1.510 (3) | C22—C23 | 1.523 (3) |
C6—H6AA | 0.9900 | C23—H23A | 0.9900 |
C6—H6AB | 0.9900 | C23—H23B | 0.9900 |
C6—H6BC | 0.9900 | C23—C24 | 1.521 (2) |
C6—H6BD | 0.9900 | C24—H24A | 0.9900 |
C6—C7 | 1.502 (9) | C24—H24B | 0.9900 |
C6—C7A | 1.60 (2) | C24—C25 | 1.526 (2) |
C7—H7A | 0.9800 | C25—H25A | 0.9900 |
C7—H7B | 0.9800 | C25—H25B | 0.9900 |
C7—H7C | 0.9800 | C26—H26 | 1.0000 |
C7A—H7AA | 0.9800 | C26—C27 | 1.528 (2) |
C7A—H7AB | 0.9800 | C26—C31 | 1.522 (2) |
C7A—H7AC | 0.9800 | C27—H27A | 0.9900 |
C8—H8 | 1.0000 | C27—H27B | 0.9900 |
C8—C9 | 1.502 (2) | C27—C28 | 1.525 (2) |
C8—C13 | 1.499 (3) | C28—H28A | 0.9900 |
C9—H9A | 0.9900 | C28—H28B | 0.9900 |
C9—H9B | 0.9900 | C28—C29 | 1.524 (2) |
C9—C10 | 1.535 (3) | C29—H29A | 0.9900 |
C10—H10A | 0.9900 | C29—H29B | 0.9900 |
C10—H10B | 0.9900 | C29—C30 | 1.525 (2) |
C10—C11 | 1.499 (3) | C30—H30A | 0.9900 |
C11—H11A | 0.9900 | C30—H30B | 0.9900 |
C11—H11B | 0.9900 | C30—C31 | 1.526 (2) |
C11—C12 | 1.501 (3) | C31—H31A | 0.9900 |
C12—H12A | 0.9900 | C31—H31B | 0.9900 |
C12—H12B | 0.9900 | C1S—H1S | 0.9500 |
C12—C13 | 1.523 (3) | C1S—C2S | 1.389 (3) |
C13—H13A | 0.9900 | C1S—C6S | 1.379 (3) |
C13—H13B | 0.9900 | C2S—H2S | 0.9500 |
C14—H14 | 1.0000 | C2S—C3S | 1.378 (4) |
C14—C15 | 1.518 (2) | C3S—H3S | 0.9500 |
C14—C19 | 1.526 (2) | C3S—C4S | 1.381 (3) |
C15—H15A | 0.9900 | C4S—H4S | 0.9500 |
C15—H15B | 0.9900 | C4S—C5S | 1.379 (3) |
C15—C16 | 1.535 (3) | C5S—H5S | 0.9500 |
C16—H16A | 0.9900 | C5S—C6S | 1.366 (3) |
C16—H16B | 0.9900 | C6S—H6S | 0.9500 |
C1—N1—C4 | 124.75 (15) | C16—C17—H17A | 109.3 |
C1—N1—H1 | 119.5 (16) | C16—C17—H17B | 109.3 |
C4—N1—H1 | 115.5 (16) | H17A—C17—H17B | 107.9 |
C2—N2—C8 | 117.30 (13) | C18—C17—C16 | 111.77 (16) |
C2—N2—C14 | 122.26 (13) | C18—C17—H17A | 109.3 |
C14—N2—C8 | 119.49 (13) | C18—C17—H17B | 109.3 |
C3—N3—C20 | 122.13 (12) | C17—C18—H18A | 109.4 |
C3—N3—C26 | 119.14 (12) | C17—C18—H18B | 109.4 |
C20—N3—C26 | 118.54 (11) | C17—C18—C19 | 111.36 (16) |
N1—C1—C2 | 151.11 (15) | H18A—C18—H18B | 108.0 |
N1—C1—C3 | 148.47 (15) | C19—C18—H18A | 109.4 |
C2—C1—C3 | 60.37 (11) | C19—C18—H18B | 109.4 |
N2—C2—C1 | 146.06 (14) | C14—C19—H19A | 109.4 |
N2—C2—C3 | 153.88 (14) | C14—C19—H19B | 109.4 |
C1—C2—C3 | 60.04 (11) | C18—C19—C14 | 111.05 (16) |
N3—C3—C1 | 146.57 (14) | C18—C19—H19A | 109.4 |
N3—C3—C2 | 153.84 (14) | C18—C19—H19B | 109.4 |
C1—C3—C2 | 59.59 (11) | H19A—C19—H19B | 108.0 |
N1—C4—H4A | 109.3 | N3—C20—H20 | 107.4 |
N1—C4—H4B | 109.3 | N3—C20—C21 | 111.47 (12) |
N1—C4—C5 | 111.76 (15) | N3—C20—C25 | 111.67 (12) |
H4A—C4—H4B | 107.9 | C21—C20—H20 | 107.4 |
C5—C4—H4A | 109.3 | C25—C20—H20 | 107.4 |
C5—C4—H4B | 109.3 | C25—C20—C21 | 111.18 (12) |
C4—C5—H5A | 109.0 | C20—C21—H21A | 109.5 |
C4—C5—H5B | 109.0 | C20—C21—H21B | 109.5 |
H5A—C5—H5B | 107.8 | C20—C21—C22 | 110.73 (13) |
C6—C5—C4 | 112.84 (15) | H21A—C21—H21B | 108.1 |
C6—C5—H5A | 109.0 | C22—C21—H21A | 109.5 |
C6—C5—H5B | 109.0 | C22—C21—H21B | 109.5 |
C5—C6—H6AA | 108.3 | C21—C22—H22A | 109.4 |
C5—C6—H6AB | 108.3 | C21—C22—H22B | 109.4 |
C5—C6—H6BC | 111.6 | H22A—C22—H22B | 108.0 |
C5—C6—H6BD | 111.6 | C23—C22—C21 | 111.21 (14) |
C5—C6—C7A | 100.6 (11) | C23—C22—H22A | 109.4 |
H6AA—C6—H6AB | 107.4 | C23—C22—H22B | 109.4 |
H6BC—C6—H6BD | 109.4 | C22—C23—H23A | 109.4 |
C7—C6—C5 | 116.1 (5) | C22—C23—H23B | 109.4 |
C7—C6—H6AA | 108.3 | H23A—C23—H23B | 108.0 |
C7—C6—H6AB | 108.3 | C24—C23—C22 | 111.10 (13) |
C7A—C6—H6BC | 111.6 | C24—C23—H23A | 109.4 |
C7A—C6—H6BD | 111.6 | C24—C23—H23B | 109.4 |
C6—C7—H7A | 109.5 | C23—C24—H24A | 109.5 |
C6—C7—H7B | 109.5 | C23—C24—H24B | 109.5 |
C6—C7—H7C | 109.5 | C23—C24—C25 | 110.84 (13) |
H7A—C7—H7B | 109.5 | H24A—C24—H24B | 108.1 |
H7A—C7—H7C | 109.5 | C25—C24—H24A | 109.5 |
H7B—C7—H7C | 109.5 | C25—C24—H24B | 109.5 |
C6—C7A—H7AA | 109.5 | C20—C25—H25A | 109.5 |
C6—C7A—H7AB | 109.5 | C20—C25—H25B | 109.5 |
C6—C7A—H7AC | 109.5 | C24—C25—C20 | 110.73 (13) |
H7AA—C7A—H7AB | 109.5 | C24—C25—H25A | 109.5 |
H7AA—C7A—H7AC | 109.5 | C24—C25—H25B | 109.5 |
H7AB—C7A—H7AC | 109.5 | H25A—C25—H25B | 108.1 |
N2—C8—H8 | 106.6 | N3—C26—H26 | 106.8 |
N2—C8—C9 | 113.20 (14) | N3—C26—C27 | 112.48 (12) |
N2—C8—C13 | 112.58 (14) | N3—C26—C31 | 112.18 (12) |
C9—C8—H8 | 106.6 | C27—C26—H26 | 106.8 |
C13—C8—H8 | 106.6 | C31—C26—H26 | 106.8 |
C13—C8—C9 | 110.67 (16) | C31—C26—C27 | 111.30 (12) |
C8—C9—H9A | 109.7 | C26—C27—H27A | 109.7 |
C8—C9—H9B | 109.7 | C26—C27—H27B | 109.7 |
C8—C9—C10 | 109.82 (15) | H27A—C27—H27B | 108.2 |
H9A—C9—H9B | 108.2 | C28—C27—C26 | 109.86 (13) |
C10—C9—H9A | 109.7 | C28—C27—H27A | 109.7 |
C10—C9—H9B | 109.7 | C28—C27—H27B | 109.7 |
C9—C10—H10A | 109.2 | C27—C28—H28A | 109.4 |
C9—C10—H10B | 109.2 | C27—C28—H28B | 109.4 |
H10A—C10—H10B | 107.9 | H28A—C28—H28B | 108.0 |
C11—C10—C9 | 111.95 (16) | C29—C28—C27 | 111.15 (13) |
C11—C10—H10A | 109.2 | C29—C28—H28A | 109.4 |
C11—C10—H10B | 109.2 | C29—C28—H28B | 109.4 |
C10—C11—H11A | 109.2 | C28—C29—H29A | 109.4 |
C10—C11—H11B | 109.2 | C28—C29—H29B | 109.4 |
C10—C11—C12 | 112.11 (16) | C28—C29—C30 | 111.18 (13) |
H11A—C11—H11B | 107.9 | H29A—C29—H29B | 108.0 |
C12—C11—H11A | 109.2 | C30—C29—H29A | 109.4 |
C12—C11—H11B | 109.2 | C30—C29—H29B | 109.4 |
C11—C12—H12A | 109.3 | C29—C30—H30A | 109.3 |
C11—C12—H12B | 109.3 | C29—C30—H30B | 109.3 |
C11—C12—C13 | 111.82 (17) | C29—C30—C31 | 111.80 (13) |
H12A—C12—H12B | 107.9 | H30A—C30—H30B | 107.9 |
C13—C12—H12A | 109.3 | C31—C30—H30A | 109.3 |
C13—C12—H12B | 109.3 | C31—C30—H30B | 109.3 |
C8—C13—C12 | 110.27 (17) | C26—C31—C30 | 109.30 (12) |
C8—C13—H13A | 109.6 | C26—C31—H31A | 109.8 |
C8—C13—H13B | 109.6 | C26—C31—H31B | 109.8 |
C12—C13—H13A | 109.6 | C30—C31—H31A | 109.8 |
C12—C13—H13B | 109.6 | C30—C31—H31B | 109.8 |
H13A—C13—H13B | 108.1 | H31A—C31—H31B | 108.3 |
N2—C14—H14 | 106.5 | C2S—C1S—H1S | 120.0 |
N2—C14—C15 | 111.86 (14) | C6S—C1S—H1S | 120.0 |
N2—C14—C19 | 111.73 (14) | C6S—C1S—C2S | 120.1 (2) |
C15—C14—H14 | 106.5 | C1S—C2S—H2S | 120.1 |
C15—C14—C19 | 113.31 (14) | C3S—C2S—C1S | 119.8 (2) |
C19—C14—H14 | 106.5 | C3S—C2S—H2S | 120.1 |
C14—C15—H15A | 109.5 | C2S—C3S—H3S | 120.3 |
C14—C15—H15B | 109.5 | C2S—C3S—C4S | 119.5 (2) |
C14—C15—C16 | 110.85 (17) | C4S—C3S—H3S | 120.3 |
H15A—C15—H15B | 108.1 | C3S—C4S—H4S | 119.8 |
C16—C15—H15A | 109.5 | C5S—C4S—C3S | 120.4 (2) |
C16—C15—H15B | 109.5 | C5S—C4S—H4S | 119.8 |
C15—C16—H16A | 109.3 | C4S—C5S—H5S | 119.9 |
C15—C16—H16B | 109.3 | C6S—C5S—C4S | 120.1 (2) |
H16A—C16—H16B | 108.0 | C6S—C5S—H5S | 119.9 |
C17—C16—C15 | 111.41 (16) | C1S—C6S—H6S | 120.0 |
C17—C16—H16A | 109.3 | C5S—C6S—C1S | 120.05 (19) |
C17—C16—H16B | 109.3 | C5S—C6S—H6S | 120.0 |
N1—C1—C2—N2 | 4.0 (5) | C11—C12—C13—C8 | −55.7 (3) |
N1—C1—C2—C3 | −177.3 (3) | C13—C8—C9—C10 | −58.7 (2) |
N1—C1—C3—N3 | −2.2 (5) | C14—N2—C2—C1 | −173.4 (2) |
N1—C1—C3—C2 | 177.5 (3) | C14—N2—C2—C3 | 9.2 (4) |
N1—C4—C5—C6 | −175.67 (16) | C14—N2—C8—C9 | 68.4 (2) |
N2—C2—C3—N3 | −2.0 (6) | C14—N2—C8—C13 | −58.1 (2) |
N2—C2—C3—C1 | 178.3 (4) | C14—C15—C16—C17 | −52.9 (2) |
N2—C8—C9—C10 | 173.80 (16) | C15—C14—C19—C18 | −53.5 (2) |
N2—C8—C13—C12 | −172.96 (18) | C15—C16—C17—C18 | 55.6 (2) |
N2—C14—C15—C16 | 179.90 (14) | C16—C17—C18—C19 | −56.5 (2) |
N2—C14—C19—C18 | 179.06 (14) | C17—C18—C19—C14 | 54.6 (2) |
N3—C20—C21—C22 | −179.07 (13) | C19—C14—C15—C16 | 52.51 (19) |
N3—C20—C25—C24 | 178.39 (12) | C20—N3—C3—C1 | 175.9 (2) |
N3—C26—C27—C28 | −174.43 (12) | C20—N3—C3—C2 | −3.7 (4) |
N3—C26—C31—C30 | 174.66 (12) | C20—N3—C26—C27 | 117.46 (14) |
C1—N1—C4—C5 | −73.7 (2) | C20—N3—C26—C31 | −116.15 (14) |
C1—C2—C3—N3 | 179.7 (3) | C20—C21—C22—C23 | −55.36 (18) |
C2—N2—C8—C9 | −100.70 (18) | C21—C20—C25—C24 | −56.42 (16) |
C2—N2—C8—C13 | 132.84 (18) | C21—C22—C23—C24 | 56.07 (19) |
C2—N2—C14—C15 | −67.2 (2) | C22—C23—C24—C25 | −56.65 (19) |
C2—N2—C14—C19 | 61.1 (2) | C23—C24—C25—C20 | 56.72 (17) |
C2—C1—C3—N3 | −179.8 (3) | C25—C20—C21—C22 | 55.63 (18) |
C3—N3—C20—C21 | 109.43 (15) | C26—N3—C3—C1 | −9.3 (3) |
C3—N3—C20—C25 | −125.54 (14) | C26—N3—C3—C2 | 171.2 (3) |
C3—N3—C26—C27 | −57.58 (17) | C26—N3—C20—C21 | −65.46 (17) |
C3—N3—C26—C31 | 68.81 (17) | C26—N3—C20—C25 | 59.57 (16) |
C3—C1—C2—N2 | −178.7 (3) | C26—C27—C28—C29 | −56.36 (17) |
C4—N1—C1—C2 | −15.3 (4) | C27—C26—C31—C30 | −58.31 (16) |
C4—N1—C1—C3 | 169.1 (2) | C27—C28—C29—C30 | 54.94 (18) |
C4—C5—C6—C7 | −177.2 (6) | C28—C29—C30—C31 | −55.23 (18) |
C4—C5—C6—C7A | 170.9 (10) | C29—C30—C31—C26 | 56.37 (17) |
C8—N2—C2—C1 | −4.6 (3) | C31—C26—C27—C28 | 58.71 (16) |
C8—N2—C2—C3 | 178.0 (3) | C1S—C2S—C3S—C4S | 0.5 (3) |
C8—N2—C14—C15 | 124.29 (15) | C2S—C1S—C6S—C5S | −0.6 (3) |
C8—N2—C14—C19 | −107.48 (16) | C2S—C3S—C4S—C5S | −0.2 (3) |
C8—C9—C10—C11 | 55.2 (2) | C3S—C4S—C5S—C6S | −0.6 (3) |
C9—C8—C13—C12 | 59.2 (3) | C4S—C5S—C6S—C1S | 1.0 (3) |
C9—C10—C11—C12 | −52.4 (3) | C6S—C1S—C2S—C3S | −0.2 (3) |
C10—C11—C12—C13 | 52.5 (3) |
Divided entries refer to separate, related pairs of atoms and their associated metrics, e.g., 1.3450 (14)/1.3539 (14) denotes two distances for the two C—N(amine) contacts. |
Mes(C3N3)iPr4 | [Mes(C3N3H)iPr4]BF4 | [Bu(C3N3H)Cy4]Cl([1H]Cl) | |
C—N(imine) | 1.2951 (14) | 1.3342 (16) | 1.319 (2) |
C—N(amine) | 1.3450 (14)/1.3539 (14) | 1.3205 (15)/1.3286 (16) | 1.3248 (17)/1.331 (2) |
C—C(para) | 1.3712 (14) | 1.3984 (17) | 1.388 (2) |
C—C(meta) | 1.4202 (14)/1.4108 (14) | 1.3792 (16)/1.3827 (16) | 1.377 (2)/1.3831 (19) |
Cl1 | -0.666 | N1 | -0.048 | N2 | -0.027 |
N3 | -0.018 | C1 | 0.026 | C2 | 0.014 |
C3 | 0.024 | C4 | -0.036 | C5 | -0.102 |
C6 | -0.095 | C7 | -0.133 | C8 | -0.011 |
C9 | -0.103 | C10 | -0.093 | C11 | -0.097 |
C12 | -0.088 | C13 | -0.093 | C14 | -0.008 |
C15 | -0.097 | C16 | -0.094 | C17 | -0.098 |
C18 | -0.098 | C19 | -0.101 | C20 | -0.005 |
C21 | -0.094 | C22 | -0.093 | C23 | -0.093 |
C24 | -0.091 | C25 | -0.093 | C26 | -0.002 |
C27 | -0.096 | C28 | -0.094 | C29 | -0.099 |
C30 | -0.093 | C31 | -0.097 | C1S | -0.058 |
C2S | -0.071 | C3S | -0.078 | C4S | -0.084 |
C5S | -0.082 | C6S | -0.064 | H1S | 0.071 |
H6S | 0.069 | H5S | 0.065 | H4S | 0.062 |
H3S | 0.062 | H2S | 0.056 | H4A | 0.051 |
H4B | 0.075 | H5A | 0.061 | H5b | 0.042 |
H6AA | 0.046 | H6AB | 0.055 | H7A | 0.050 |
H7B | 0.039 | H7C | 0.051 | H8 | 0.072 |
H9A | 0.050 | H9B | 0.060 | H10A | 0.061 |
H10B | 0.061 | H11A | 0.061 | H11B | 0.049 |
H12A | 0.057 | H12B | 0.053 | H13A | 0.059 |
H13B | 0.049 | H14 | 0.066 | H15A | 0.057 |
H15B | 0.062 | H16A | 0.051 | H16B | 0.052 |
H17A | 0.055 | H17B | 0.051 | H18A | 0.056 |
H18B | 0.062 | H19A | 0.055 | H19B | 0.065 |
H20 | 0.060 | H21A | 0.055 | H21B | 0.055 |
H22A | 0.050 | H22B | 0.056 | H23A | 0.056 |
H23B | 0.052 | H24A | 0.051 | H24B | 0.056 |
H25A | 0.057 | H25B | 0.057 | H26 | 0.058 |
H27A | 0.049 | H27B | 0.062 | H28A | 0.044 |
H28B | 0.057 | H29A | 0.050 | H29B | 0.059 |
H30A | 0.061 | H30B | 0.039 | H31A | 0.047 |
H31B | 0.064 | H1 | 0.121 |
Acknowledgements
The National Science Foundation under award 1800105, is gratefully acknowledged for support of this work. GMS acknowledges the Temple University Minority Access to Research Careers (MARC) program and its support from the National Institutes of Health under NIH/NIGMS award 5 T34 GM136494 for an undergraduate research fellowship.
Funding information
Funding for this research was provided by: National Science Foundation (grant No. 1800105 to Michael J. Zdilla); National Institutes of Health, National Institute of General Medical Sciences (grant No. 5T34 GM136494 to Gaby Muñoz Sanchez).
References
Abdelbassit, M. S. & Curnow, O. J. (2019). Chem. Eur. J. 25, 13294–13298. CSD CrossRef CAS PubMed Google Scholar
Abdelbassit, M. S., Curnow, O. J., Dixon, M. K. & Waterland, M. R. (2019). Chem. Eur. J. 25, 11650–11658. CSD CrossRef CAS PubMed Google Scholar
Alder, R. W., Bowman, P. S., Steele, W. R. S. & Winterman, D. R. (1968). Chem. Commun. pp. 723–724. Google Scholar
Bandar, J. S., Barthelme, A., Mazori, A. Y. & Lambert, T. H. (2015). Chem. Sci. 6, 1537–1547. CSD CrossRef CAS PubMed Google Scholar
Bandar, J. S. & Lambert, T. H. (2012). J. Am. Chem. Soc. 134, 5552–5555. CSD CrossRef CAS PubMed Google Scholar
Bandar, J. S. & Lambert, T. H. (2013). J. Am. Chem. Soc. 135, 11799–11802. CrossRef CAS PubMed Google Scholar
Barthes, C., Duhayon, C., Canac, Y. & César, V. (2020). Chem. Commun. 56, 3305–3308. CSD CrossRef CAS Google Scholar
Belding, L. & Dudding, T. (2014). Chem. Eur. J. 20, 1032–1037. CSD CrossRef CAS PubMed Google Scholar
Belding, L., Stoyanov, P. & Dudding, T. (2016). J. Org. Chem. 81, 6–13. CSD CrossRef CAS PubMed Google Scholar
Bruker (2008). COSMO, SAINT, and XPREP. Bruker AXS Inc, Madison, Wisconsin, USA. Google Scholar
Bruns, H., Patil, M., Carreras, J., Vázquez, A., Thiel, W., Goddard, R. & Alcarazo, M. (2010). Angew. Chem. Int. Ed. 49, 3680–3683. CSD CrossRef CAS Google Scholar
Butchard, J. R., Curnow, O. J., Garrett, D. J., Maclagan, R. G. A. R., Libowitzky, E., Piccoli, P. M. B. & Schultz, A. J. (2012). Dalton Trans. 41, 11765–11775. CSD CrossRef CAS PubMed Google Scholar
Chen, W., Zhao, Y., Xu, W., Su, J.-H., Shen, L., Liu, L., Wu, B. & Yang, X.-J. (2019). Chem. Commun. 55, 9452–9455. Web of Science CSD CrossRef CAS Google Scholar
Clark, G. R., Surman, P. W. J. & Taylor, M. J. (1995). Faraday Trans. 91, 1523–1528. CSD CrossRef CAS Google Scholar
Curnow, O. J., Polson, M. I. J., Walst, K. J. & Yunis, R. (2018). RSC Adv. 8, 28313–28322. CSD CrossRef CAS PubMed Google Scholar
Curnow, O. J. & Senthooran, R. (2020). Dalton Trans. 49, 9579–9582. CSD CrossRef CAS PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fraser, R. R., Bresse, M., Chuaqui-Offermanns, N., Houk, K. N. & Rondan, N. G. (1983). Can. J. Chem. 61, 2729–2734. CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Guest, M., Le Sueur, R., Pilkington, M. & Dudding, T. (2020). Chem. Eur. J. 26, 8608–8620. CSD CrossRef CAS PubMed Google Scholar
Holthoff, J. M., Engelage, E., Weiss, R. & Huber, S. M. (2020). Angew. Chem. Int. Ed. 59, 11150–11157. CSD CrossRef CAS Google Scholar
Jess, K., Baabe, D., Freytag, M., Jones, P. G. & Tamm, M. (2017). Eur. J. Inorg. Chem. pp. 412–423. CSD CrossRef Google Scholar
Jin, Y., Wang, B., Zhang, W., Huang, S., Wang, K., Qi, X. & Zhang, Q. (2018). Chem. Eur. J. 24, 4620–4627. CSD CrossRef CAS PubMed Google Scholar
Jungbauer, S. H., Schindler, S., Herdtweck, E., Keller, S. & Huber, S. M. (2015). Chem. Eur. J. 21, 13625–13636. CSD CrossRef CAS PubMed Google Scholar
Kleemiss, F., Dolomanov, O. V., Bodensteiner, M., Peyerimhoff, N., Midgley, L., Bourhis, L. J., Genoni, A., Malaspina, L. A., Jayatilaka, D., Spencer, J. L., White, F., Grundkötter-Stock, B., Steinhauer, S., Lentz, D., Puschmann, H. & Grabowsky, S. (2021). Chem. Sci. 12, 1675–1692. Web of Science CSD CrossRef CAS Google Scholar
Kniep, F., Jungbauer, S. H., Zhang, Q., Walter, S. M., Schindler, S., Schnapperelle, I., Herdtweck, E. & Huber, S. M. (2013). Angew. Chem. Int. Ed. 52, 7028–7032. Web of Science CSD CrossRef CAS Google Scholar
Kozma, Á., Rust, J. & Alcarazo, M. (2015). Chem. Eur. J. 21, 10829–10834. CSD CrossRef CAS PubMed Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Mirabdolbaghi, R. & Dudding, T. (2015). Org. Lett. 17, 1930–1933. CSD CrossRef CAS PubMed Google Scholar
Mishiro, K., Hu, F., Paley, D. W., Min, W. & Lambert, T. H. (2016). Eur. J. Org. Chem. pp. 1655–1659. CSD CrossRef Google Scholar
Nacsa, E. D. & Lambert, T. H. (2015). J. Am. Chem. Soc. 137, 10246–10253. CSD CrossRef CAS PubMed Google Scholar
Neese, F. (2018). WIREs Comput. Mol. Sci. 8, e1327. Google Scholar
Radhakrishnan, T. P., Van Engen, D. & Soos, Z. G. (1987a). J. Phys. Chem. 91, 3273–3277. CSD CrossRef CAS Google Scholar
Radhakrishnan, T. P., Van Engen, D. & Soos, Z. G. (1987b). Mol. Cryst. Liq. Cryst. 150b, 473–492. CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Slayden, S. W. & Liebman, J. F. (2001). Chem. Rev. 101, 1541–1566. CrossRef PubMed CAS Google Scholar
Stukenbroeker, T. S., Bandar, J. S., Zhang, X., Lambert, T. H. & Waymouth, R. M. (2015). ACS Macro Lett. 4, 853-856. CrossRef CAS PubMed Google Scholar
Wallace, A. J., Jayasinghe, C. D., Polson, M. I. J., Curnow, O. J. & Crittenden, D. L. (2015). J. Am. Chem. Soc. 137, 15528–15532. CSD CrossRef CAS PubMed Google Scholar
Xu, J., Liu, J., Li, Z., Xu, S., Wang, H., Guo, T., Gao, Y., Zhang, L., Zhang, C. & Guo, K. (2018). Polym. Chem. 9, 2183–2192. CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.