research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Effect of methyl­ene versus ethyl­ene linkers on structural properties of tert-butyl and mesityl bis­­(imidazolium) bromide salts

crossmark logo

aDepartment of Chemistry & Biochemistry, California State Polytechnic University, Pomona, 3801 W. Temple Ave., Pomona, CA 91768, USA
*Correspondence e-mail: sestieber@cpp.edu

Edited by J. T. Mague, Tulane University, USA (Received 26 April 2022; accepted 8 August 2022; online 16 August 2022)

The crystal structures of ligand precursor bis­(imidazolium) salts 1,1′-methyl­enebis(3-tert-butyl­imidazolium) dibromide monohydrate, C15H26N4+·2Br·H2O or [tBuNHC2Me][Br]2·H2O, 1,1′-(ethane-1,2-di­yl)bis­(3-tert-butyl­imidazolium) dibromide dihydrate, C16H28N4+·2Br·2H2O or [tBuNHC2Et][Br]2·2H2O, 1,1′-methyl­enebis[3-(2,4,6-tri­methyl­phen­yl)imidazolium] dibromide dihydrate, C25H30N42+·2Br·2H2O or [MesNHC2Me][Br]2·2H2O, and 1,1′-(ethane-1,2-di­yl)bis­[3-(2,4,6-tri­methyl­phen­yl)imidazolium] dibromide tetra­hydrate, C26H32N42+·2Br·4H2O or [MesNHC2Et][Br]2·4H2O, are reported. At 293 K, [tBuNHC2Me][Br]2·H2O crystallizes in the P21/c space group, while [tBuNHC2Et][Br]2·2H2O crystallizes in the P21/n space group at 100 K. At 112 K, [MesNHC2Me][Br]2·2H2O crystallizes in the ortho­rhom­bic space group Pccn while [MesNHC2Et][Br]2·4H2O crystallizes in the P21/c space group at 100 K. Bond distances and angles within the imidazolium rings are generally comparable among the four structures. All four bis­(imidazolium) salts co-crystallize with one to four mol­ecules of water.

1. Chemical context

Bis(imidazolium) salts are common precursors for the synthesis of bidentate N-heterocyclic carbene (NHC2) ligands, which can be used to stabilize a variety of metal complexes and catalysts. Bis(imidazolium) salts, [RNHC2R1][X]2 are relatively modular in that modifications can be relatively easily made to exterior groups attached to each NHC (R), the moiety linking the two NHC groups (R1), and the counter-ion (X). One general synthetic approach for synthesizing bis(imidazolium) salts is where two equivalents of an alkyl or aryl imidazole are combined with one equivalent of an organic dihalide reagent and refluxed to afford the final product (Gardiner et al., 1999[Gardiner, M. G., Herrmann, W. A., Reisinger, C.-P., Schwarz, J. & Spiegler, M. (1999). J. Organomet. Chem. 572, 239-247.]). A simplified procedure for a variety of ligand salts using pressure tubes resulting in yields that were generally over 80% was also reported (Scherg et al., 2006[Scherg, T., Schneider, S. K., Frey, G. D., Schwarz, J., Herdtweck, E. & Herrmann, W. A. (2006). Synlett, pp. 2894-2907.]). Some reports have gone even further to minimize solvent in the synthesis of these ligand precursors, including a solvent-free synthesis (Cao et al., 2011[Cao, C., Zhuang, Y., Zhao, J., Pang, G. & Shi, Y. (2011). J. Chem. Res. 35, 320-322.], 2012[Cao, C., Zhuang, Y., Zhao, J., Liu, H., Geng, P., Pang, G. & Shi, Y. (2012). Synth. Commun. 42, 380-387.]). This implies that the exterior R groups can easily be modified by changing the alkyl or aryl group on the starting imidazole. The linking group R1 and counter-ion X can be modified by changing the organic dihalide reagent. In this fashion, a library of bis­(imidazolium) salts can be relatively easily synthesized from alkyl or aryl imidazoles, and some are also commercially available.

Some of the most widely reported bis­(imidazolium) salts are those with tert-butyl (tBu) and mesityl (Mes) exterior R groups and methyl­ene (Me) or ethyl­ene (Et) linking R1 groups. [MesNHC2Et][Br]2 was even reported to be a stand-alone catalyst for the conversion of aryl­aldehydes to carb­oxy­lic acids in combination with water and K2CO3 in DMSO (Yang et al., 2013[Yang, W., Gou, G.-Z., Wang, Y. & Fu, W.-F. (2013). RSC Adv. 3, 6334-6338.]). Methyl­ene linkers are quite commonly used for complexing to metals, and although examples with ethyl­ene linkers are fewer, comparative studies report that changing the linker affects catalysis. For example, shorter methyl­ene linkers (R1) were reported to be more effective for hydro­silylation reactions with RhI complexes than ethyl­ene linkers (Riederer et al., 2010[Riederer, S. K. U., Gigler, P., Högerl, M. P., Herdtweck, E., Bechlars, B., Herrmann, W. A. & Kühn, F. E. (2010). Organometallics, 29, 5681-5692.]).

The bidentate NHC ligand system is highly versatile for stabilizing a range of metals, some of which result in catalytically active systems. For example, [tBuNHC2Me][Br]2 and [tBuNHC2Et][Br]2 were used as precursors for synthesis of rhodium complexes (Leung et al., 2006[Leung, C. H., Incarvito, C. D. & Crabtree, R. H. (2006). Organometallics, 25, 6099-6107.]). [tBuNHC2Et][Cl]2 was used for synthesis of aluminum, gallium, and indium complexes (Baker et al., 2002[Baker, R. J., Cole, M. L., Jones, C. & Mahon, M. F. (2002). J. Chem. Soc. Dalton Trans. pp. 1992-1996.]). [MesNHC2Et][Br]2 was reported for synthesizing rhenium complexes (Hock et al., 2014[Hock, S. J., Schaper, L.-A., Pöthig, A., Drees, M., Herdtweck, E., Hiltner, O., Herrmann, W. A. & Kühn, F. E. (2014). Dalton Trans. 43, 2259-2271.]; Hiltner et al., 2010[Hiltner, O., Boch, F. J., Brewitz, L., Härter, P., Drees, M., Herdtweck, E., Herrmann, W. A. & Kühn, F. E. (2010). Eur. J. Inorg. Chem. pp. 5284-5293.]), palladium complexes via Pd(OAc)2-assisted deprotometalation (Wierenga et al., 2019[Wierenga, T. S., Vanston, C. R., Ariafard, A., Gardiner, M. G. & Ho, C. C. (2019). Organometallics, 38, 3032-3038.]), palladium complexes via silver transmetallation (Sluijter et al., 2013[Sluijter, S. N., Warsink, S., Lutz, M. & Elsevier, C. J. (2013). Dalton Trans. 42, 7365-7372.]), and for palladium catalysts for Suzuki and Heck coupling reactions (Lee et al., 2004[Lee, H. M., Lu, C. Y., Chen, C. Y. C. W. L., Chen, W. L., Lin, H. C., Chiu, P. L. & Cheng, P. Y. (2004). Tetrahedron, 60, 5807-5825.]). Other reported palladium complexes were active for dehalogenation of aryl halides (Viciu et al., 2001[Viciu, M. S., Grasa, G. A. & Nolan, S. P. (2001). Organometallics, 20, 3607-3612.]).

Examples with first row transition metals are fewer, with nickel being the most commonly reported. Nickel carbonato complexes were synthesized with [MesNHC2Me][Cl]2 and [MesNHC2Et][Cl]2 ligand precursors (Guo et al., 2013[Guo, J., Lv, L., Wang, X., Cao, C., Pang, G. & Shi, Y. (2013). Inorg. Chem. Commun. 31, 74-78.]). Iron complexes for use in aryl Grignard-alkyl halide cross-coupling reactions were synthesized using various bis­(imidazolium) salts including [tBuNHC2Me][Cl]2, [tBuNHC2Me][Br]2, [MesNHC2Me][Cl]2, [MesNHC2Me][Br]2, and [MesNHC2Et][Br]2 (Meyer et al., 2011[Meyer, S., Orben, C. M., Demeshko, S., Dechert, S. & Meyer, F. (2011). Organometallics, 30, 6692-6702.]).

When used for stabilizing bimetallic systems, [tBuNHC2Et][Cl]2 and [MesNHC2Et][Cl]2 have been used as precursors for dipalladium complexes for Heck reactions (Li et al., 2013[Li, Y., Liu, G., Cao, C., Wang, S., Li, Y., Pang, G. & Shi, Y. (2013). Tetrahedron, 69, 6241-6250.]; Yang et al., 2012[Yang, L., Zhao, J., Li, Y., Ge, K., Zhuang, Y., Cao, C. & Shi, Y. (2012). Inorg. Chem. Commun. 22, 33-36.]; Cao et al., 2010[Cao, C., Zhuang, Y., Zhao, J., Peng, Y., Li, X., Shi, Z., Pang, G. & Shi, Y. (2010). Inorg. Chim. Acta, 363, 3914-3918.]), while [tBuNHC2Et][Br]2 was a precursor for dimetallic Rh complexes (Wells et al., 2008[Wells, K. D., Ferguson, M. J., McDonald, R. & Cowie, M. (2008). Organometallics, 27, 691-703.]) and mixed-metal Rh/Pd (Zamora et al., 2009[Zamora, M. T., Ferguson, M. J., McDonald, R. & Cowie, M. (2009). Dalton Trans. pp. 7269-7287]) and Ir/Rh (Frey et al., 2006[Frey, G. D., Rentzsch, C. F., von Preysing, D., Scherg, T., Mühlhofer, M., Herdtweck, E. & Herrmann, W. A. (2006). J. Organomet. Chem. 691, 5725-5738.]). Similarly, [MesNHC2Me][Br]2 and [MesNHC2Et][Br]2 were used to synthesize bimetallic gold catalysts for cross-coupling and hydro­amination reactions (Baron et al., 2018[Baron, M., Battistel, E., Tubaro, C., Biffis, A., Armelao, L., Rancan, M. & Graiff, C. (2018). Organometallics, 37, 4213-4223.]).

[Scheme 1]

While bis­(imidazolium) salts are common ligand precursors, few have been structurally characterized (Rheingold, 2019[Rheingold, A. L. (2019). CSD Communication (CCDC 1953445). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc23kqcs]). This work presents structural characterization and a comparison of supra­molecular features for methyl­ene- versus ethyl­ene-linked bis­(imidazolium) salts with tert-butyl and mesityl ancillary groups.

2. Structural commentary

All four bis­(imidazolium) salts were recrystallized from hot methanol and each compound co-crystallizes with one or more mol­ecules of water. Fig. 1[link] depicts [tBuNHC2Me][Br]2·H2O while Fig. 2[link] depicts [tBuNHC2Et][Br]2·2H2O.

[Figure 1]
Figure 1
View of [tBuNHC2Me][Br]2·H2O with 50% probability ellipsoids.
[Figure 2]
Figure 2
View of [tBuNHC2Et][Br]2·2H2O with 50% probability ellipsoids.

Bond distances in the imidazolium rings of [tBuNHC2Me][Br]2·H2O and [tBuNHC2Et][Br]2·2H2O are mostly the same within experimental error, with backbone C2—C3 distances of 1.348 (4) and 1.349 (3) Å, respectively. The N—C distances are also mostly comparable with [tBuNHC2Me][Br]2·H2O having an N1—C2 and an N2—C3 distance of 1.389 (3) Å and N1—C1 and N2—C1 distances both being 1.337 (3) Å, while [tBuNHC2Et][Br]2·2H2O has an N1—C2 distance of 1.388 (3) Å, an N2—C3 distance of 1.384 (3) Å, an N1—C1 distance of 1.327 (3) Å and an N2—C1 distance of 1.331 (3) Å. For the linker, the N2—C7 distance is 1.463 (3) Å for [tBuNHC2Me][Br]2·H2O and 1.468 (3) Å for [tBuNHC2Et][Br]2·2H2O.

Bond angles in the imidazolium rings are also quite similar in [tBuNHC2Me][Br]2·H2O and [tBuNHC2Et][Br]2·2H2O. For [tBuNHC2Me][Br]2·H2O, bond angles include C1—N1—C2 at 108.2 (2)°, N1—C2—C3 at 107.6 (2)°, C2—C3—N2 at 106.9 (2)°, C3—N2—C1 at 108.6 (2)°, and N2—C1—N1 at 108.7 (2)°. For [tBuNHC2Et][Br]2·H2O, bond angles include C1—N1—C2 at 108.21 (19)°, N1—C2—C3 at 107.3 (2)°, C2—C3—N2 at 106.9 (2)°, C3—N2—C1 at 108.54 (19)°, and N2—C1—N1 at 109.02 (19)°.

Fig. 3[link] depicts [MesNHC2Me][Br]2·2H2O while Fig. 4[link] depicts [MesNHC2Et][Br]2·4H2O. Notably, [MesNHC2Et][Br]2·4H2O is the only compound of the four for which the asymmetric unit contains only half of the mol­ecule.

[Figure 3]
Figure 3
View of [MesNHC2Me][Br]2·2H2O with 50% probability ellipsoids.
[Figure 4]
Figure 4
View of [MesNHC2Et][Br]2·4H2O with 50% probability ellipsoids.

Bond distances in the imidazolium rings of [MesNHC2Me][Br]2·2H2O and [MesNHC2Et][Br]2·4H2O are mostly the same within experimental error, with backbone C2—C3 distances of 1.344 (3) and 1.3506 (19) Å, respectively. N—C distances are also mostly the same with [MesNHC2Me][Br]2·2H2O having an N1—C2 distance of 1.387 (3) Å, an N2—C3 distance of 1.380 (3) Å, an N1—C1 distance of 1.326 (3) Å, and an N2—C1 distance of 1.341 (3) Å. Similarly, [MesNHC2Et][Br]2·4H2O has an N1—C2 distance of 1.3872 (16) Å, an N2—C3 distance of 1.3841 (16) Å, an N1—C1 distance of 1.3322 (16) Å and an N2—C1 distance of 1.3314 (16) Å. For the linker, the N2—C7 distance is 1.457 (3) Å for [MesNHC2Me][Br]2·2H2O and 1.4653 (16) Å for [MesNHC2Et][Br]2·4H2O.

Bond angles in the imidazolium rings are also mostly the same for [MesNHC2Me][Br]2·2H2O and [MesNHC2Et][Br]2·4H2O. For [MesNHC2Me][Br]2·2H2O, bond angles include C1—N1—C2 at 108.92 (17)°, N1—C2—C3 at 107.20 (19)°, C2—C3—N2 at 106.95 (19)°, C3—N2—C1 at 108.96 (17)°, and N2—C1—N1 at 107.96 (18)°. For [MesNHC2Et][Br]2·4H2O, bond angles include C1—N1—C2 at 108.51 (11)°, N1—C2—C3 at 107.19 (11)°, C2—C3—N2 at 106.87 (11)°, C3—N2—C1 at 108.89 (11)°, and N2—C1—N1 at 108.54 (11)°. Overall, these data support that changing the linker R1 group from methyl­ene to ethyl­ene does not significantly affect the imidazolium ring structures.

3. Supra­molecular features

The supra­molecular structure of [tBuNHC2Me][Br]2·H2O is stabilized by hydrogen bonding (Fig. 5[link], Table 1[link]). Distances between centroids of neighboring imidazoles are greater than 5 Å, suggesting no π-stacking inter­actions (Janiak, 2000[Janiak, D. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]). Hydrogen bonding between one bromide atom and one water mol­ecule is found with Br1⋯H1D having a distance of 2.575 (4) Å. One tert-butyl group has positional disorder.

Table 1
Inter­molecular distances (Å) in the unit cells of [RNHC2R1][X]2·nH2O

Standard deviations for distances including some H atoms are omitted where H atoms were positionally fixed.

Compound Atoms Distance
[tBuNHC2Me][Br]2·H2O Br1⋯H1D 2.575 (4)
[tBuNHC2Et][Br]2·2H2O Br1⋯H1A 2.398
  Br2⋯H1B 2.439
[MesNHC2Me][Br]2·2H2O Br1⋯H2A 2.413
  Br2⋯H1A 2.463
  O1A⋯H2B 2.125
[MesNHC2Et][Br]2·4H2O O1⋯H2B 1.994 (2)
  O2⋯H1E 2.001 (3)
  Br1⋯H1D 2.585 (2)
[Figure 5]
Figure 5
View of four mol­ecules of [tBuNHC2Me][Br]2·H2O with 50% probability ellipsoids, highlighting inter­molecular distances. Disordered tert-butyl groups are omitted for clarity.

The supra­molecular structure of [tBuNHC2Et][Br]2·2H2O is stabilized by extensive hydrogen bonding (Fig. 6[link], Table 1[link]). Distances between centroids of neighboring imidazoles are greater than 5 Å, suggesting no π-stacking inter­actions (Janiak, 2000[Janiak, D. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]). Several hydrogen-bonding inter­actions are found between bromide ions and water mol­ecules, including Br2⋯H1B (2.439 Å) and Br1⋯H1A (2.398 Å).

[Figure 6]
Figure 6
View of four mol­ecules of [tBuNHC2Et][Br]2·2H2O with 50% probability ellipsoids, highlighting inter­molecular distances.

The supra­molecular structure of [MesNHC2Me][Br]2·2H2O is also stabilized by hydrogen bonding (Fig. 7[link], Table 1[link]). No π-stacking inter­actions were found as distances between centroids of aromatic rings of neighboring mol­ecules are greater than 5 Å (Janiak, 2000[Janiak, D. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]). Several hydrogen-bonding inter­actions are observed between bromide ions and water mol­ecules as well as neighboring water mol­ecules, including Br1⋯H2A at 2.413 Å, Br2⋯H1A at 2.463 Å, and O1A⋯H2B at 2.125 Å.

[Figure 7]
Figure 7
View of eight mol­ecules of [MesNHC2Me][Br]2·2H2O with 50% probability ellipsoids, highlighting inter­molecular distances.

The supra­molecular structure of [MesNHC2Et][Br]2·4H2O is also stabilized by hydrogen bonding (Fig. 8[link], Table 1[link]). No π-stacking is observed between mesityl groups, similar to [MesNHC2Me][Br]2·2H2O as the distance between centroids of the mesityl groups of neighboring fragments is greater than 4.5 Å (Janiak, 2000[Janiak, D. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]). Hydrogen-bonding inter­actions include O1⋯H2B at 1.994 (2) Å, O2⋯H1E at 2.001 (3) Å, and Br1⋯H1D at 2.585 (2) Å.

[Figure 8]
Figure 8
View of eight mol­ecules of [MesNHC2Et][Br]2·4H2O with 50% probability ellipsoids, highlighting inter­molecular distances.

4. Database survey

A survey of the Cambridge Structural Database (Web accessed March 24, 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) and SciFinder (SciFinder, 2022[SciFinder (2022). Chemical Abstracts Service: Colombus, OH, 2010; RN 58-08-2 (accessed March 24, 2022). https://www.cas.org/products/scifinder]) yielded no exact matches for the unit cells of [tBuNHC2Me][Br]2·H2O, [tBuNHC2Et][Br]2·2H2O, or [MesNHC2Et][Br]2·4H2O. A deposited dataset for [MesNHC2Me][Br]2·2H2O was found (Rheingold, 2019[Rheingold, A. L. (2019). CSD Communication (CCDC 1953445). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc23kqcs]) with a slightly higher R1 of 3.94% and data collection at a higher temperature of 150 K, as compared to R1 of 3.18% and temperature of 112 K in the current report. As discussed in the introduction, the syntheses of all of the reported structures are reported based on the SciFinder search; however, no additional structural data were found.

5. Synthesis and crystallization

General considerations. All reagents were purchased from commercial suppliers and used without further purification. 1H NMR data were collected on a Varian 400 MHz spectrometer and referenced to residual CHCl3.

Synthesis of 1-tert-butyl-1H-imidazole, (tBuIm). The procedure was adapted from a literature procedure (Liu et al., 2003[Liu, J., Chen, J., Zhao, J., Zhao, Y., Li, L. & Zhang, H. (2003). Synthesis, pp. 2661-2666.]). A round-bottom flask was charged with 10.0 mL (95 mmol, 1 eq.) of tert-butyl­amine, 11.0 mL of 40% glyoxal (95 mmol, 1 eq.), approximately 100 mL of methanol, and approximately 25 mL of deionized water and a stir bar, then heated to 343 K under reflux. 7.81 mL of 37% formaldehyde (95 mmol, 1 eq.) were added, followed by 3.70 mL of ammonium hydroxide (95 mmol, 1 eq.) added dropwise over 5 minutes while stirring. The solution was refluxed at 343 K for 5 h, resulting in a light red–orange solution. Excess solvent was removed in vacuo, and the resulting product was diluted with approximately 150 mL of di­chloro­methane and washed twice with 50 mL of deionized H2O until the aqueous layers ran clear. The product was vacuum distilled at ∼373 K, yielding a clear liquid, which was weighed in a tared vial, resulting in 7.95 g (34% yield) of tBuIm, and characterized by 1H NMR spectroscopy in CDCl3.

Synthesis of 1-(2,4,6-tri­methyl­phen­yl)-1H-imidazole, (MesIm). The procedure was adapted from a literature procedure (Liu et al., 2003; Gardiner et al., 1999[Gardiner, M. G., Herrmann, W. A., Reisinger, C.-P., Schwarz, J. & Spiegler, M. (1999). J. Organomet. Chem. 572, 239-247.]). A 250 mL three-neck round-bottom flask was charged with 15.000 g (110.9 mmol, 1 eq.) of 2,4,6-tri­methyl­aniline, 16.090 g (110.9 mmol, 1 eq) of 40% glyoxal, and ∼75 mL of methanol and stirred for 24 h after which the solution turned orange with a yellow precipitate. 11.86 g (221.8 mmol, 2 eq.) of ammonium chloride, 18.00 g (221.8 mmol, 2 eq.) of 37% formaldehyde, and 300 mL of methanol were added, and the solution was refluxed for 24 h at 373 K, at which point the solution was deep brown. After being cooled to room temperature, 25.57 g (221.8 mmol, 2 eq.) of 85% phospho­ric acid were added dropwise over ten minutes and the solution was refluxed for 16 h at 368 K. Excess solvent was removed in vacuo at 313 K, and the viscous brown residue was poured over ∼300 g of ice and neutralized to pH 10 with a saturated solution of potassium hydroxide, resulting in a clear solution with a chunky brown precipitate. The product was taken into diethyl ether by washing the solution three times with ∼100 mL of diethyl ether. The diethyl ether solution was washed thrice with ∼100 mL of water, thrice with ∼100 mL of brine, and dried overnight over sodium sulfate. Sodium sulfate solids were gravity filtered from the solution and the solvent was removed in vacuo resulting in a brown solid. The product was recrystallized from hot ethyl acetate, resulting in 9.49 g (46% yield) of tan crystals, which were characterized by 1H NMR spectroscopy and identified as MesIm.

Synthesis of 1,1′-di(tert-but­yl)-3,3′-methyl­ene-diimidazolium dibromide, [tBuNHC2Me][Br]2. 1.850 g (14.9 mmol, 2.5 eq.) of tbuIm and 0.4194 mL (5.9 mmol, 1 eq.) of di­bromo­methane, a stir bar, and ∼20 mL of toluene were stirred in a 50 mL round-bottomed flask. The solution was then heated to 423 K and refluxed for 46 h, resulting in the formation of a dark orange–brown solution. The solution was cooled in an ice bath, resulting in a fine white precipitate which was collected via vacuum filtration, washed twice with ∼5 mL of cold toluene, filtered and dried. 1.120 g (78.02% yield) of a fine white solid identified as [tBuNHC2Me][Br]2 were isolated. Crystals suitable for X-ray diffraction were obtained by recrystallization from hot methanol. The product was characterized by 1H NMR spectroscopy. The 1H NMR data were consistent with those previously reported (Scherg et al., 2006[Scherg, T., Schneider, S. K., Frey, G. D., Schwarz, J., Herdtweck, E. & Herrmann, W. A. (2006). Synlett, pp. 2894-2907.]).

Synthesis of 1,1′-di(tert-but­yl)-3,3′-ethyl­ene-diimidazolium dibromide [tBuNHC2Et][Br]2. A 250 mL round-bottomed flask was charged with 2.017 g (16.2 mmol, 2.5 eq.) of tbuIm, 0.562 mL (6.45 mmol, 1 eq.) of di­bromo­ethane, a stir bar, and ∼20 mL of toluene. The mixture was refluxed at 423 K and stirred for 46 h, at which point the solution was a rusty brown color. The flask was then placed in an ice bath, and the resulting precipitate was collected via vacuum filtration and washed twice with ∼5 mL of cold toluene. The resulting solids were dried and weighed, yielding 1.727 g (61% yield) of [tBuNHC2Et][Br]2 and single crystals suitable for X-ray diffraction were obtained via recrystallization from hot methanol. 1H NMR data were consistent with those previously reported (Scherg et al., 2006[Scherg, T., Schneider, S. K., Frey, G. D., Schwarz, J., Herdtweck, E. & Herrmann, W. A. (2006). Synlett, pp. 2894-2907.]).

Synthesis of 1,1′-di(mesit­yl)-3,3′-methyl­ene-diimidazolium dibromide, [MesNHC2Me][Br]2. The procedure was adapted from a literature procedure (Gardiner et al., 1999[Gardiner, M. G., Herrmann, W. A., Reisinger, C.-P., Schwarz, J. & Spiegler, M. (1999). J. Organomet. Chem. 572, 239-247.]). 5.00 g (26.8 mmol, 2.5 eq.) of MesIm we added to a 50 mL round-bottomed flask with a stir bar and ∼20 mL of toluene. 0.754 mL (10.72 mmol, 1 eq.) of di­bromo­methane were added and the solution was refluxed at 423 K for 20 h. The solution was cooled in an ice bath, resulting in a white precipitate. The white solid was recrystallized from ∼12 mL of hot methanol. The product was obtained in 17% yield (1.10 g) as tan crystals identified as [MesNHC2Me][Br]2 suitable for X-ray diffraction and characterized by 1H NMR.

Synthesis of 1,1′-di(mesit­yl)-3,3′-ethyl­ene-diimidazolium dibromide, [MesNHC2Et][Br]2. A 250 mL three-neck round-bottom flask was charged with 4.438 g (23.8 mmol, 2.5 eq.) of MesIm, 0.824 mL (9.52 mmol, 1 eq.) of 1,2-di­bromo­ethane, and ∼20 mL of toluene. The reaction mixture was heated to 423 K and refluxed for 19 h, resulting in a cloudy yellow solution. The solution was cooled in an ice bath and the precipitate was collected and recrystallized from ∼25 mL of hot methanol, resulting in 2.962 g (55% yield) of tan crystals which were analyzed via 1H NMR spectroscopy and identified as [MesNHC2Et][Br]2.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Most hydrogen atoms were placed in calculated positions using the AFIX commands of SHELXL and included as riding contributions with distances of 0.95 Å for C—H, 0.99 Å for CH2 and 0.98 Å for CH3. Methyl H atoms were allowed to rotate but not to tip to best fit the experimental electron density. Uiso values of riding H atoms were set to 1.2 times Ueq(C) for CH and CH2, and 1.5 times Ueq(C) for CH3 and H2O. For [tBuNHC2Me][Br]2, the SADI command of SHELX was used to model disorder in one of the tert-butyl moieties for N4—C0AA and N4—C12, C0AA—C00N and C14—C12, and C1AA—C0AA and C13—C12 to restrain distances within a sigma of 0.02 Å. The population parameters for the disordered tert-butyl groups are 0.54019 for C12–C14, and 0.45981 for C00N, C0AA, and C1AA. The highest peak and deepest hole are both near a heavy atom Br1 with a distance of 0.88 Å from the highest peak of 1.49 e Å−3 and a distance of 0.73 Å from the deepest hole of −1.10 e Å−3.

Table 2
Experimental details

  [MesNHC2Me][Br]2·2H2O [tBuNHC2Me][Br]2·H2O [tBuNHC2Et][Br]2·2H2O [MesNHC2Et][Br]2·4H2O
Crystal data
Chemical formula C25H30N42+·2Br·2H2O C15H26N4+·2Br·H2O C16H28N42+·2Br·2H2O C26H32N42+·2Br·4H2O
Mr 582.38 440.23 472.27 632.42
Crystal system, space group Orthorhombic, Pccn Monoclinic, P21/c Monoclinic, P21/n Monoclinic, P21/c
Temperature (K) 112 293 100 100
a, b, c (Å) 21.5695 (6), 28.3385 (6), 8.9401 (2) 7.211 (5), 18.311 (17), 15.409 (5) 17.1577 (6), 7.3180 (2), 18.2712 (6) 12.4230 (3), 13.1447 (3), 9.2780 (2)
α, β, γ (°) 90, 90, 90 90, 101.35 (3), 90 90, 112.786 (1), 90 90, 108.379 (1), 90
V3) 5464.6 (2) 1995 (2) 2115.09 (12) 1437.78 (6)
Z 8 4 4 2
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 2.99 4.07 3.85 2.86
Crystal size (mm) 0.4 × 0.3 × 0.25 0.3 × 0.15 × 0.1 0.2 × 0.1 × 0.05 0.15 × 0.15 × 0.05
 
Data collection
Diffractometer Bruker Venture D8 Kappa Bruker APEXII CCD Bruker Venture D8 Kappa Bruker Venture D8 Kappa
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.386, 0.748 0.544, 0.747 0.496, 0.748 0.544, 0.750
No. of measured, independent and observed [I > 2σ(I)] reflections 39085, 5954, 5530 33565, 4402, 3780 31474, 4664, 4168 28199, 3165, 3028
Rint 0.035 0.043 0.059 0.025
(sin θ/λ)max−1) 0.641 0.641 0.641 0.641
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.066, 1.19 0.035, 0.068, 1.08 0.031, 0.066, 1.11 0.018, 0.044, 1.10
No. of reflections 5954 4402 4664 3165
No. of parameters 338 259 253 194
No. of restraints 0 3 0 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.42, −0.54 1.49, −1.10 0.60, −0.61 0.33, −0.29
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), olex2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For all structures, data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016). Program(s) used to solve structure: SHELXT (Sheldrick, 2015a) for sces01006_0m, est01043_0m, est01041d_0ma; olex2.solve (Bourhis et al., 2015) for at01019_0ma. For all structures, program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

1,1'-Methylenebis(3-tert-butylimidazolium) dibromide monohydrate (sces01006_0m) top
Crystal data top
C15H26N4+·2Br·H2OF(000) = 896
Mr = 440.23Dx = 1.466 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.211 (5) ÅCell parameters from 9889 reflections
b = 18.311 (17) Åθ = 2.6–30.2°
c = 15.409 (5) ŵ = 4.07 mm1
β = 101.35 (3)°T = 293 K
V = 1995 (2) Å3Prism, clear colourless
Z = 40.3 × 0.15 × 0.1 mm
Data collection top
Bruker APEXII CCD
diffractometer
3780 reflections with I > 2σ(I)
φ and ω scansRint = 0.043
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 27.1°, θmin = 2.7°
Tmin = 0.544, Tmax = 0.747h = 98
33565 measured reflectionsk = 2323
4402 independent reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0006P)2 + 4.1194P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
4402 reflectionsΔρmax = 1.49 e Å3
259 parametersΔρmin = 1.10 e Å3
3 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br20.83773 (4)0.86331 (2)0.55378 (2)0.03323 (9)
Br11.05299 (4)0.61882 (2)0.35706 (2)0.03727 (10)
N30.4514 (3)0.71177 (11)0.18236 (13)0.0175 (4)
N10.5823 (3)0.48054 (11)0.16964 (13)0.0162 (4)
O10.8362 (4)0.78047 (16)0.35775 (17)0.0419 (6)
N20.4742 (3)0.58205 (11)0.21324 (13)0.0170 (4)
N40.5288 (3)0.80162 (12)0.10500 (14)0.0225 (5)
C10.6311 (4)0.54357 (13)0.21172 (16)0.0181 (5)
H50.7538520.5582280.2359430.022*
C50.2905 (4)0.73014 (14)0.12095 (18)0.0221 (5)
C40.5935 (4)0.75572 (14)0.17061 (16)0.0211 (5)
H90.7166740.7542450.2030410.025*
C70.4681 (4)0.65531 (14)0.25048 (16)0.0212 (5)
H8A0.3612010.6586860.2798900.025*
H8B0.5823720.6635730.2944340.025*
C80.7152 (4)0.42139 (14)0.15085 (18)0.0207 (5)
C60.3396 (4)0.78602 (15)0.07277 (19)0.0251 (6)
C20.3869 (4)0.47957 (15)0.14242 (18)0.0216 (5)
C30.3195 (4)0.54263 (15)0.16910 (19)0.0239 (6)
C130.5981 (4)0.86039 (16)0.02694 (18)0.0290 (6)
H15A0.6130850.8128840.0509910.043*0.54 (3)
H15B0.6745620.8950070.0508840.043*0.54 (3)
H15C0.4677610.8747890.0421710.043*0.54 (3)
H15D0.6413280.8127470.0397730.043*0.46 (3)
H15E0.6742900.8968910.0478470.043*0.46 (3)
H15F0.4684750.8663700.0559520.043*0.46 (3)
C120.6629 (17)0.8579 (5)0.0781 (8)0.014 (2)0.54 (3)
C110.6634 (5)0.35011 (16)0.1920 (2)0.0402 (8)
H3A0.6767300.3562940.2548150.060*
H3B0.7460680.3118410.1802780.060*
H3C0.5348970.3374620.1668250.060*
C100.9155 (4)0.44460 (17)0.1903 (3)0.0408 (8)
H1A0.9442820.4891500.1628800.061*
H1B1.0020170.4071210.1803000.061*
H1C0.9273480.4522560.2527990.061*
C90.6908 (5)0.4157 (2)0.0510 (2)0.0399 (8)
H4A0.5642990.4001220.0263050.060*
H4B0.7792990.3808510.0363600.060*
H4C0.7133830.4625470.0270480.060*
C150.8712 (15)0.8362 (6)0.1050 (8)0.0245 (19)0.54 (3)
H13A0.9062810.8341920.1683810.037*0.54 (3)
H13B0.9481840.8716110.0827750.037*0.54 (3)
H13C0.8898020.7890670.0807370.037*0.54 (3)
C140.6197 (18)0.9291 (5)0.1206 (7)0.025 (2)0.54 (3)
H14A0.4873060.9399080.1032350.038*0.54 (3)
H14B0.6920550.9678910.1016030.038*0.54 (3)
H14C0.6524540.9246410.1838590.038*0.54 (3)
H1D0.905 (6)0.746 (2)0.365 (3)0.061 (15)*
C14A0.530 (3)0.9398 (5)0.0928 (10)0.034 (3)0.46 (3)
H00A0.3985300.9426030.0648310.050*0.46 (3)
H00B0.5967180.9802300.0740070.050*0.46 (3)
H00C0.5409220.9415010.1559170.050*0.46 (3)
C12A0.614 (2)0.8681 (6)0.0668 (11)0.021 (3)0.46 (3)
C15A0.823 (2)0.8614 (11)0.1096 (10)0.038 (3)0.46 (3)
H1AA0.8376240.8665290.1726220.057*0.46 (3)
H1AB0.8931030.8989470.0870720.057*0.46 (3)
H1AC0.8687550.8143800.0960760.057*0.46 (3)
H1E0.839 (5)0.800 (2)0.399 (3)0.041 (12)*
H60.331 (4)0.4388 (16)0.1108 (19)0.023 (7)*
H110.270 (5)0.8115 (18)0.027 (2)0.035 (9)*
H100.175 (5)0.7062 (18)0.118 (2)0.037 (9)*
H70.201 (5)0.5612 (17)0.164 (2)0.034 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br20.02663 (15)0.03928 (17)0.02985 (16)0.01469 (13)0.00401 (11)0.00144 (13)
Br10.02382 (15)0.0520 (2)0.03702 (18)0.01154 (13)0.00837 (12)0.02086 (14)
N30.0203 (11)0.0185 (10)0.0146 (10)0.0049 (8)0.0058 (8)0.0011 (8)
N10.0134 (10)0.0203 (11)0.0140 (10)0.0024 (8)0.0008 (8)0.0046 (8)
O10.0559 (17)0.0417 (15)0.0233 (13)0.0041 (13)0.0040 (11)0.0034 (11)
N20.0182 (11)0.0207 (11)0.0125 (10)0.0039 (8)0.0040 (8)0.0026 (8)
N40.0315 (13)0.0209 (11)0.0153 (11)0.0117 (9)0.0053 (9)0.0034 (8)
C10.0149 (12)0.0223 (13)0.0156 (12)0.0039 (10)0.0009 (9)0.0041 (10)
C50.0210 (14)0.0194 (13)0.0241 (14)0.0026 (10)0.0002 (11)0.0025 (10)
C40.0243 (14)0.0283 (14)0.0106 (12)0.0092 (11)0.0035 (10)0.0022 (10)
C70.0285 (14)0.0233 (13)0.0135 (12)0.0036 (11)0.0083 (10)0.0014 (10)
C80.0176 (13)0.0180 (12)0.0271 (14)0.0015 (10)0.0060 (11)0.0024 (10)
C60.0304 (15)0.0196 (13)0.0227 (14)0.0033 (11)0.0010 (12)0.0013 (11)
C20.0126 (12)0.0246 (14)0.0266 (14)0.0068 (10)0.0016 (10)0.0013 (11)
C30.0136 (13)0.0256 (14)0.0328 (16)0.0051 (11)0.0053 (11)0.0022 (11)
C130.0353 (16)0.0344 (16)0.0195 (14)0.0012 (13)0.0109 (12)0.0030 (12)
C120.023 (5)0.011 (3)0.008 (4)0.003 (3)0.002 (4)0.000 (3)
C110.0429 (19)0.0235 (15)0.060 (2)0.0033 (13)0.0254 (17)0.0115 (14)
C100.0166 (15)0.0285 (16)0.072 (2)0.0027 (12)0.0039 (15)0.0055 (16)
C90.0406 (19)0.050 (2)0.0316 (17)0.0052 (15)0.0133 (14)0.0072 (15)
C150.014 (4)0.028 (5)0.031 (3)0.009 (3)0.003 (3)0.000 (3)
C140.032 (5)0.020 (3)0.028 (4)0.006 (3)0.014 (3)0.002 (3)
C14A0.066 (9)0.011 (3)0.030 (5)0.003 (4)0.026 (6)0.000 (3)
C12A0.025 (6)0.022 (5)0.014 (4)0.005 (4)0.004 (4)0.008 (3)
C15A0.028 (6)0.047 (8)0.032 (5)0.018 (5)0.010 (5)0.022 (5)
Geometric parameters (Å, º) top
N3—C51.387 (3)C13—H15D0.9600
N3—C41.343 (3)C13—H15E0.9600
N3—C71.461 (3)C13—H15F0.9600
N1—C11.337 (3)C13—C121.595 (13)
N1—C81.512 (3)C13—C12A1.434 (16)
N1—C21.389 (3)C12—C151.530 (10)
O1—H1D0.80 (4)C12—C141.519 (10)
O1—H1E0.73 (4)C11—H3A0.9600
N2—C11.337 (3)C11—H3B0.9600
N2—C71.463 (3)C11—H3C0.9600
N2—C31.389 (3)C10—H1A0.9600
N4—C41.327 (3)C10—H1B0.9600
N4—C61.387 (4)C10—H1C0.9600
N4—C121.525 (9)C9—H4A0.9600
N4—C12A1.531 (11)C9—H4B0.9600
C1—H50.9300C9—H4C0.9600
C5—C61.352 (4)C15—H13A0.9600
C5—H100.94 (3)C15—H13B0.9600
C4—H90.9300C15—H13C0.9600
C7—H8A0.9700C14—H14A0.9600
C7—H8B0.9700C14—H14B0.9600
C8—C111.529 (4)C14—H14C0.9600
C8—C101.514 (4)C14A—H00A0.9600
C8—C91.518 (4)C14A—H00B0.9600
C6—H110.91 (3)C14A—H00C0.9600
C2—C31.348 (4)C14A—C12A1.531 (12)
C2—H60.94 (3)C12A—C15A1.527 (11)
C3—H70.91 (3)C15A—H1AA0.9600
C13—H15A0.9600C15A—H1AB0.9600
C13—H15B0.9600C15A—H1AC0.9600
C13—H15C0.9600
C5—N3—C7127.0 (2)C12A—C13—H15F109.5
C4—N3—C5108.7 (2)N4—C12—C13102.7 (7)
C4—N3—C7124.3 (2)N4—C12—C15113.1 (8)
C1—N1—C8126.5 (2)C15—C12—C13111.0 (8)
C1—N1—C2108.2 (2)C14—C12—N4105.6 (7)
C2—N1—C8125.2 (2)C14—C12—C13111.6 (6)
H1D—O1—H1E112 (4)C14—C12—C15112.4 (7)
C1—N2—C7125.5 (2)C8—C11—H3A109.5
C1—N2—C3108.6 (2)C8—C11—H3B109.5
C3—N2—C7125.8 (2)C8—C11—H3C109.5
C4—N4—C6108.4 (2)H3A—C11—H3B109.5
C4—N4—C12119.2 (6)H3A—C11—H3C109.5
C4—N4—C12A133.6 (7)H3B—C11—H3C109.5
C6—N4—C12132.4 (6)C8—C10—H1A109.5
C6—N4—C12A117.7 (7)C8—C10—H1B109.5
N1—C1—N2108.7 (2)C8—C10—H1C109.5
N1—C1—H5125.6H1A—C10—H1B109.5
N2—C1—H5125.6H1A—C10—H1C109.5
N3—C5—H10123 (2)H1B—C10—H1C109.5
C6—C5—N3106.5 (2)C8—C9—H4A109.5
C6—C5—H10131 (2)C8—C9—H4B109.5
N3—C4—H9125.7C8—C9—H4C109.5
N4—C4—N3108.6 (2)H4A—C9—H4B109.5
N4—C4—H9125.7H4A—C9—H4C109.5
N3—C7—N2111.8 (2)H4B—C9—H4C109.5
N3—C7—H8A109.3C12—C15—H13A109.5
N3—C7—H8B109.3C12—C15—H13B109.5
N2—C7—H8A109.3C12—C15—H13C109.5
N2—C7—H8B109.3H13A—C15—H13B109.5
H8A—C7—H8B107.9H13A—C15—H13C109.5
N1—C8—C11108.4 (2)H13B—C15—H13C109.5
N1—C8—C10108.2 (2)C12—C14—H14A109.5
N1—C8—C9107.0 (2)C12—C14—H14B109.5
C10—C8—C11111.4 (3)C12—C14—H14C109.5
C10—C8—C9109.7 (3)H14A—C14—H14B109.5
C9—C8—C11111.9 (3)H14A—C14—H14C109.5
N4—C6—H11122 (2)H14B—C14—H14C109.5
C5—C6—N4107.7 (2)H00A—C14A—H00B109.5
C5—C6—H11131 (2)H00A—C14A—H00C109.5
N1—C2—H6118.1 (18)H00B—C14A—H00C109.5
C3—C2—N1107.6 (2)C12A—C14A—H00A109.5
C3—C2—H6134.3 (18)C12A—C14A—H00B109.5
N2—C3—H7120 (2)C12A—C14A—H00C109.5
C2—C3—N2106.9 (2)N4—C12A—C14A111.9 (9)
C2—C3—H7133 (2)C13—C12A—N4110.5 (9)
H15A—C13—H15B109.5C13—C12A—C14A113.1 (8)
H15A—C13—H15C109.5C13—C12A—C15A107.5 (10)
H15B—C13—H15C109.5C15A—C12A—N4101.8 (9)
H15D—C13—H15E109.5C15A—C12A—C14A111.4 (10)
H15D—C13—H15F109.5C12A—C15A—H1AA109.5
H15E—C13—H15F109.5C12A—C15A—H1AB109.5
C12—C13—H15A109.5C12A—C15A—H1AC109.5
C12—C13—H15B109.5H1AA—C15A—H1AB109.5
C12—C13—H15C109.5H1AA—C15A—H1AC109.5
C12A—C13—H15D109.5H1AB—C15A—H1AC109.5
C12A—C13—H15E109.5
N3—C5—C6—N40.3 (3)C7—N2—C1—N1177.6 (2)
N1—C2—C3—N20.4 (3)C7—N2—C3—C2177.5 (2)
C1—N1—C8—C11122.5 (3)C8—N1—C1—N2178.4 (2)
C1—N1—C8—C101.6 (3)C8—N1—C2—C3177.9 (2)
C1—N1—C8—C9116.6 (3)C6—N4—C4—N30.8 (3)
C1—N1—C2—C30.3 (3)C6—N4—C12—C1336.8 (9)
C1—N2—C7—N397.2 (3)C6—N4—C12—C15156.5 (6)
C1—N2—C3—C20.9 (3)C6—N4—C12—C1480.3 (8)
C5—N3—C4—N40.6 (3)C6—N4—C12A—C1359.5 (11)
C5—N3—C7—N275.7 (3)C6—N4—C12A—C14A67.4 (12)
C4—N3—C5—C60.2 (3)C6—N4—C12A—C15A173.5 (9)
C4—N3—C7—N2105.5 (3)C2—N1—C1—N20.8 (3)
C4—N4—C6—C50.7 (3)C2—N1—C8—C1160.3 (3)
C4—N4—C12—C13142.2 (5)C2—N1—C8—C10178.8 (3)
C4—N4—C12—C1522.6 (10)C2—N1—C8—C960.6 (3)
C4—N4—C12—C14100.7 (6)C3—N2—C1—N11.0 (3)
C4—N4—C12A—C13127.1 (8)C3—N2—C7—N378.8 (3)
C4—N4—C12A—C14A105.9 (8)C12—N4—C4—N3179.9 (5)
C4—N4—C12A—C15A13.1 (14)C12—N4—C6—C5179.8 (6)
C7—N3—C5—C6178.7 (2)C12A—N4—C4—N3173.0 (8)
C7—N3—C4—N4178.3 (2)C12A—N4—C6—C5174.3 (7)
1,1'-(Ethane-1,2-diyl)bis(3-tert-butylimidazolium) dibromide dihydrate (est01043_0m) top
Crystal data top
C16H28N42+·2Br·2H2OF(000) = 968
Mr = 472.27Dx = 1.483 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 17.1577 (6) ÅCell parameters from 9074 reflections
b = 7.3180 (2) Åθ = 2.4–38.4°
c = 18.2712 (6) ŵ = 3.85 mm1
β = 112.786 (1)°T = 100 K
V = 2115.09 (12) Å3Prism, clear colourless
Z = 40.2 × 0.1 × 0.05 mm
Data collection top
Bruker Venture D8 Kappa
diffractometer
4168 reflections with I > 2σ(I)
φ and ω scansRint = 0.059
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 27.1°, θmin = 2.6°
Tmin = 0.496, Tmax = 0.748h = 2121
31474 measured reflectionsk = 99
4664 independent reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.013P)2 + 2.745P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
4664 reflectionsΔρmax = 0.60 e Å3
253 parametersΔρmin = 0.61 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br20.42021 (2)1.06846 (3)0.17436 (2)0.01794 (7)
Br10.64204 (2)1.22356 (3)0.46410 (2)0.01716 (7)
O20.60635 (11)0.9669 (3)0.30798 (12)0.0253 (4)
H2C0.6121981.0482040.3444580.038*
H2D0.5567280.9889240.2713980.038*
O10.84726 (12)1.2201 (3)0.50226 (12)0.0273 (4)
H1C0.8745191.2602820.5502690.041*
H1D0.7932291.2221320.4913690.041*
N10.63968 (11)0.5405 (3)0.63652 (11)0.0097 (4)
N20.70265 (12)0.7072 (3)0.57816 (11)0.0111 (4)
N30.79306 (12)0.7383 (3)0.42286 (12)0.0113 (4)
N40.86030 (11)0.8912 (2)0.36416 (11)0.0103 (4)
C10.70549 (14)0.5497 (3)0.61555 (13)0.0100 (4)
C90.61678 (14)0.3834 (3)0.67751 (14)0.0119 (5)
C70.76212 (14)0.7620 (3)0.54214 (14)0.0123 (5)
H1A0.8186440.7098900.5729870.015*
H1B0.7672850.8967750.5430920.015*
C40.79441 (14)0.8939 (3)0.38544 (13)0.0108 (4)
C30.63152 (15)0.8025 (3)0.57441 (15)0.0152 (5)
C100.68416 (16)0.2364 (3)0.69468 (15)0.0165 (5)
H9A0.6882850.1980670.6449130.025*
H9B0.6688750.1311130.7195240.025*
H9C0.7387500.2851980.7306820.025*
C20.59238 (15)0.6988 (3)0.61096 (15)0.0154 (5)
C80.73079 (14)0.6942 (3)0.45708 (14)0.0133 (5)
H2A0.7219680.5603360.4558080.016*
H2B0.6760380.7527010.4253490.016*
C110.61411 (16)0.4549 (3)0.75498 (15)0.0176 (5)
H7A0.6701720.5002290.7892050.026*
H7B0.5975270.3558340.7820540.026*
H7C0.5729210.5545730.7434100.026*
C50.86096 (15)0.6322 (3)0.42626 (15)0.0155 (5)
C120.53083 (15)0.3119 (4)0.62096 (16)0.0196 (5)
H8A0.4881670.4078250.6115300.029*
H8B0.5150780.2051990.6446080.029*
H8C0.5341440.2769430.5704660.029*
C160.81928 (16)1.1913 (3)0.30107 (15)0.0170 (5)
H16A0.7648541.1404220.2657700.025*
H16B0.8353441.2911110.2739540.025*
H16C0.8143741.2382040.3493520.025*
C130.88640 (14)1.0428 (3)0.32301 (14)0.0126 (5)
C150.89362 (16)0.9645 (3)0.24873 (15)0.0186 (5)
H15A0.9357720.8663400.2637060.028*
H15B0.9110201.0610990.2211250.028*
H15C0.8386990.9154980.2135420.028*
C60.90270 (15)0.7277 (3)0.38943 (15)0.0157 (5)
C140.97108 (15)1.1159 (4)0.38186 (16)0.0195 (5)
H14A0.9646571.1570670.4302640.029*
H14B0.9891841.2188010.3578870.029*
H14C1.0136211.0187340.3951120.029*
H50.7461 (15)0.464 (3)0.6249 (15)0.006 (6)*
H40.5430 (18)0.717 (4)0.6210 (17)0.023 (8)*
H120.7552 (15)0.985 (3)0.3754 (14)0.003 (6)*
H110.9505 (17)0.698 (4)0.3796 (16)0.018 (7)*
H30.6180 (17)0.910 (4)0.5485 (17)0.018 (7)*
H100.8680 (18)0.521 (4)0.4505 (18)0.028 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br20.01224 (11)0.01866 (13)0.02260 (14)0.00149 (9)0.00642 (10)0.00053 (10)
Br10.02064 (13)0.01617 (12)0.01448 (13)0.00222 (9)0.00658 (10)0.00156 (9)
O20.0199 (9)0.0299 (11)0.0227 (11)0.0067 (8)0.0046 (8)0.0070 (8)
O10.0261 (10)0.0346 (11)0.0234 (11)0.0008 (9)0.0120 (8)0.0035 (9)
N10.0115 (9)0.0117 (9)0.0082 (9)0.0001 (7)0.0063 (7)0.0017 (7)
N20.0120 (9)0.0141 (9)0.0088 (10)0.0008 (7)0.0059 (8)0.0006 (8)
N30.0135 (9)0.0113 (9)0.0118 (10)0.0022 (7)0.0078 (8)0.0015 (7)
N40.0129 (9)0.0103 (9)0.0098 (10)0.0010 (7)0.0068 (8)0.0018 (7)
C10.0114 (10)0.0116 (11)0.0084 (11)0.0009 (9)0.0054 (9)0.0002 (8)
C90.0148 (11)0.0132 (11)0.0103 (11)0.0025 (9)0.0078 (9)0.0027 (9)
C70.0146 (11)0.0155 (11)0.0094 (11)0.0034 (9)0.0075 (9)0.0031 (9)
C40.0125 (10)0.0127 (11)0.0087 (11)0.0010 (9)0.0056 (9)0.0005 (9)
C30.0170 (12)0.0142 (12)0.0157 (13)0.0041 (9)0.0079 (10)0.0038 (10)
C100.0214 (12)0.0145 (11)0.0168 (13)0.0004 (9)0.0110 (10)0.0029 (10)
C20.0150 (11)0.0157 (12)0.0182 (13)0.0048 (9)0.0094 (10)0.0032 (10)
C80.0135 (11)0.0177 (12)0.0121 (12)0.0047 (9)0.0085 (9)0.0008 (9)
C110.0228 (12)0.0200 (12)0.0166 (13)0.0004 (10)0.0149 (10)0.0027 (10)
C50.0192 (12)0.0108 (11)0.0182 (13)0.0020 (9)0.0092 (10)0.0024 (9)
C120.0157 (12)0.0218 (13)0.0207 (14)0.0074 (10)0.0065 (10)0.0012 (10)
C160.0217 (12)0.0160 (12)0.0179 (13)0.0024 (10)0.0127 (10)0.0053 (10)
C130.0143 (11)0.0132 (11)0.0133 (12)0.0032 (9)0.0085 (9)0.0034 (9)
C150.0240 (13)0.0212 (13)0.0166 (13)0.0010 (10)0.0144 (11)0.0019 (10)
C60.0173 (12)0.0140 (11)0.0200 (13)0.0027 (9)0.0120 (10)0.0014 (10)
C140.0164 (12)0.0215 (13)0.0199 (13)0.0055 (10)0.0063 (10)0.0031 (10)
Geometric parameters (Å, º) top
O2—H2C0.8695C10—H9B0.9800
O2—H2D0.8698C10—H9C0.9800
O1—H1C0.8699C2—H40.94 (3)
O1—H1D0.8697C8—H2A0.9900
N1—C11.327 (3)C8—H2B0.9900
N1—C91.505 (3)C11—H7A0.9800
N1—C21.388 (3)C11—H7B0.9800
N2—C11.331 (3)C11—H7C0.9800
N2—C71.468 (3)C5—C61.352 (3)
N2—C31.384 (3)C5—H100.91 (3)
N3—C41.333 (3)C12—H8A0.9800
N3—C81.468 (3)C12—H8B0.9800
N3—C51.381 (3)C12—H8C0.9800
N4—C41.330 (3)C16—H16A0.9800
N4—C131.503 (3)C16—H16B0.9800
N4—C61.384 (3)C16—H16C0.9800
C1—H50.91 (2)C16—C131.520 (3)
C9—C101.520 (3)C13—C151.522 (3)
C9—C111.526 (3)C13—C141.531 (3)
C9—C121.528 (3)C15—H15A0.9800
C7—H1A0.9900C15—H15B0.9800
C7—H1B0.9900C15—H15C0.9800
C7—C81.518 (3)C6—H110.93 (3)
C4—H120.91 (2)C14—H14A0.9800
C3—C21.349 (3)C14—H14B0.9800
C3—H30.90 (3)C14—H14C0.9800
C10—H9A0.9800
H2C—O2—H2D104.5N3—C8—H2B109.7
H1C—O1—H1D109.5C7—C8—H2A109.7
C1—N1—C9126.71 (19)C7—C8—H2B109.7
C1—N1—C2108.21 (19)H2A—C8—H2B108.2
C2—N1—C9125.02 (18)C9—C11—H7A109.5
C1—N2—C7124.95 (19)C9—C11—H7B109.5
C1—N2—C3108.54 (19)C9—C11—H7C109.5
C3—N2—C7126.4 (2)H7A—C11—H7B109.5
C4—N3—C8124.51 (19)H7A—C11—H7C109.5
C4—N3—C5108.75 (19)H7B—C11—H7C109.5
C5—N3—C8126.7 (2)N3—C5—H10118.4 (19)
C4—N4—C13125.94 (19)C6—C5—N3106.7 (2)
C4—N4—C6108.16 (19)C6—C5—H10134.9 (19)
C6—N4—C13125.85 (19)C9—C12—H8A109.5
N1—C1—N2109.02 (19)C9—C12—H8B109.5
N1—C1—H5126.1 (16)C9—C12—H8C109.5
N2—C1—H5124.9 (16)H8A—C12—H8B109.5
N1—C9—C10108.60 (18)H8A—C12—H8C109.5
N1—C9—C11107.87 (18)H8B—C12—H8C109.5
N1—C9—C12107.13 (18)H16A—C16—H16B109.5
C10—C9—C11110.2 (2)H16A—C16—H16C109.5
C10—C9—C12110.8 (2)H16B—C16—H16C109.5
C11—C9—C12112.13 (19)C13—C16—H16A109.5
N2—C7—H1A109.7C13—C16—H16B109.5
N2—C7—H1B109.7C13—C16—H16C109.5
N2—C7—C8109.74 (18)N4—C13—C16108.52 (18)
H1A—C7—H1B108.2N4—C13—C15108.11 (19)
C8—C7—H1A109.7N4—C13—C14107.00 (19)
C8—C7—H1B109.7C16—C13—C15110.4 (2)
N3—C4—H12124.6 (15)C16—C13—C14110.6 (2)
N4—C4—N3108.8 (2)C15—C13—C14112.0 (2)
N4—C4—H12126.5 (15)C13—C15—H15A109.5
N2—C3—H3120.5 (17)C13—C15—H15B109.5
C2—C3—N2106.9 (2)C13—C15—H15C109.5
C2—C3—H3132.5 (17)H15A—C15—H15B109.5
C9—C10—H9A109.5H15A—C15—H15C109.5
C9—C10—H9B109.5H15B—C15—H15C109.5
C9—C10—H9C109.5N4—C6—H11121.8 (17)
H9A—C10—H9B109.5C5—C6—N4107.6 (2)
H9A—C10—H9C109.5C5—C6—H11130.7 (17)
H9B—C10—H9C109.5C13—C14—H14A109.5
N1—C2—H4120.4 (18)C13—C14—H14B109.5
C3—C2—N1107.3 (2)C13—C14—H14C109.5
C3—C2—H4132.3 (17)H14A—C14—H14B109.5
N3—C8—C7109.68 (18)H14A—C14—H14C109.5
N3—C8—H2A109.7H14B—C14—H14C109.5
N2—C7—C8—N3176.23 (18)C4—N4—C6—C50.0 (3)
N2—C3—C2—N10.2 (3)C3—N2—C1—N10.5 (3)
N3—C5—C6—N40.2 (3)C3—N2—C7—C886.8 (3)
C1—N1—C9—C102.3 (3)C2—N1—C1—N20.4 (3)
C1—N1—C9—C11121.7 (2)C2—N1—C9—C10179.3 (2)
C1—N1—C9—C12117.4 (2)C2—N1—C9—C1161.3 (3)
C1—N1—C2—C30.1 (3)C2—N1—C9—C1259.6 (3)
C1—N2—C7—C888.3 (3)C8—N3—C4—N4178.2 (2)
C1—N2—C3—C20.5 (3)C8—N3—C5—C6178.1 (2)
C9—N1—C1—N2177.7 (2)C5—N3—C4—N40.4 (3)
C9—N1—C2—C3177.5 (2)C5—N3—C8—C788.4 (3)
C7—N2—C1—N1176.37 (19)C13—N4—C4—N3177.8 (2)
C7—N2—C3—C2176.3 (2)C13—N4—C6—C5177.6 (2)
C4—N3—C8—C788.9 (3)C6—N4—C4—N30.3 (3)
C4—N3—C5—C60.4 (3)C6—N4—C13—C16176.4 (2)
C4—N4—C13—C166.5 (3)C6—N4—C13—C1556.6 (3)
C4—N4—C13—C15126.3 (2)C6—N4—C13—C1464.3 (3)
C4—N4—C13—C14112.8 (2)
1,1'-Methylenebis[3-(2,4,6-trimethylphenyl)imidazolium] dibromide dihydrate (at01019_0ma) top
Crystal data top
C25H30N42+·2Br·2H2ODx = 1.416 Mg m3
Mr = 582.38Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PccnCell parameters from 9959 reflections
a = 21.5695 (6) Åθ = 2.6–39.4°
b = 28.3385 (6) ŵ = 2.99 mm1
c = 8.9401 (2) ÅT = 112 K
V = 5464.6 (2) Å3Prism, clear colourless
Z = 80.4 × 0.3 × 0.25 mm
F(000) = 2384
Data collection top
Bruker Venture Kappa D
diffractometer
5530 reflections with I > 2σ(I)
φ and ω scansRint = 0.035
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 27.1°, θmin = 2.6°
Tmin = 0.386, Tmax = 0.748h = 2427
39085 measured reflectionsk = 3136
5954 independent reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0149P)2 + 6.9269P]
where P = (Fo2 + 2Fc2)/3
S = 1.19(Δ/σ)max = 0.002
5954 reflectionsΔρmax = 0.42 e Å3
338 parametersΔρmin = 0.54 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.32147 (2)0.59206 (2)0.51936 (2)0.01792 (6)
Br20.33241 (2)0.42996 (2)0.77256 (2)0.01874 (6)
N20.14868 (8)0.40218 (6)0.76624 (19)0.0134 (3)
N30.17753 (8)0.54615 (6)0.5774 (2)0.0167 (4)
N10.17956 (8)0.47256 (6)0.7130 (2)0.0158 (4)
N40.14048 (8)0.61532 (6)0.53485 (19)0.0151 (3)
C40.17963 (9)0.42757 (7)0.6667 (2)0.0165 (4)
H40.1985540.4159430.5781460.020*
C160.17313 (9)0.59006 (7)0.6302 (2)0.0154 (4)
H160.1905880.6012140.7211170.018*
C170.12153 (9)0.66386 (7)0.5581 (2)0.0146 (4)
C50.13900 (9)0.35172 (7)0.7556 (2)0.0141 (4)
O2A0.4650 (10)0.5643 (7)0.601 (3)0.037 (3)0.47 (9)
H2AA0.4827020.5633110.5136090.055*0.47 (9)
H2AB0.4275860.5740620.5827660.055*0.47 (9)
C120.22444 (10)0.34048 (8)0.9479 (2)0.0201 (4)
H12A0.2564400.3571560.8907800.030*
H12B0.2433240.3141061.0022260.030*
H12C0.2052400.3622701.0193140.030*
C140.14765 (13)0.54398 (8)0.4406 (3)0.0275 (5)
C180.07474 (9)0.67224 (7)0.6624 (2)0.0150 (4)
C220.15021 (10)0.69938 (7)0.4754 (2)0.0179 (4)
C60.17572 (9)0.32189 (7)0.8424 (2)0.0153 (4)
C240.04581 (10)0.63259 (7)0.7507 (2)0.0190 (4)
H24A0.0372770.6059390.6839160.028*
H24B0.0069670.6435180.7957450.028*
H24C0.0744010.6225430.8296930.028*
C30.12848 (12)0.43164 (8)0.8801 (3)0.0244 (5)
C100.09279 (10)0.33558 (7)0.6589 (2)0.0163 (4)
C150.12434 (13)0.58713 (8)0.4143 (3)0.0272 (5)
C10.21637 (10)0.50965 (7)0.6432 (3)0.0231 (5)
H1A0.2438910.5240430.7191940.028*
H1B0.2428430.4956380.5644010.028*
C190.05623 (10)0.71864 (7)0.6822 (2)0.0174 (4)
H190.0244200.7254490.7524520.021*
C110.05222 (11)0.36931 (8)0.5741 (3)0.0242 (5)
H11A0.0363470.3934870.6424520.036*
H11B0.0173930.3520600.5297240.036*
H11C0.0764450.3844060.4946170.036*
O1A0.47220 (10)0.47135 (8)0.6838 (4)0.0715 (9)
H1AA0.4878240.4505970.6225610.107*
H1AB0.4367510.4593860.7105740.107*
C70.16563 (9)0.27361 (7)0.8269 (2)0.0175 (4)
H70.1896420.2523450.8851770.021*
C20.14808 (12)0.47542 (8)0.8472 (3)0.0245 (5)
C200.08292 (10)0.75565 (7)0.6021 (2)0.0182 (4)
C230.20108 (11)0.68858 (8)0.3644 (3)0.0263 (5)
H23A0.2365520.6747190.4169630.040*
H23B0.2140170.7177880.3147400.040*
H23C0.1856620.6662120.2895230.040*
C80.12146 (10)0.25546 (7)0.7288 (2)0.0184 (4)
C90.08556 (10)0.28686 (7)0.6465 (2)0.0179 (4)
H90.0551810.2747540.5798450.021*
C130.11192 (11)0.20288 (7)0.7166 (3)0.0243 (5)
H13A0.1520680.1868330.7234250.036*
H13B0.0924770.1954700.6203600.036*
H13C0.0850120.1921600.7981490.036*
C210.12978 (10)0.74543 (7)0.5009 (2)0.0197 (4)
H210.1485770.7705740.4472030.024*
C250.06032 (11)0.80563 (7)0.6251 (3)0.0256 (5)
H25A0.0204080.8098020.5744120.038*
H25B0.0906400.8277840.5834740.038*
H25C0.0552610.8116960.7323240.038*
H20.1460 (13)0.5020 (10)0.892 (3)0.031*
H150.1018 (13)0.5989 (9)0.332 (3)0.031*
H30.1080 (13)0.4191 (10)0.963 (3)0.031*
H140.1479 (13)0.5182 (10)0.388 (3)0.031*
O20.4729 (8)0.5614 (8)0.556 (4)0.043 (5)0.53 (9)
H2A0.438 (4)0.569 (4)0.542 (11)0.064*0.53 (9)
H2B0.465 (4)0.542 (3)0.606 (11)0.064*0.53 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01793 (11)0.01900 (10)0.01682 (11)0.00262 (8)0.00203 (8)0.00139 (8)
Br20.02215 (11)0.01532 (10)0.01876 (11)0.00184 (8)0.00044 (8)0.00160 (8)
N20.0173 (8)0.0108 (8)0.0120 (8)0.0006 (6)0.0010 (6)0.0006 (6)
N30.0177 (9)0.0101 (8)0.0222 (9)0.0009 (6)0.0016 (7)0.0035 (7)
N10.0145 (8)0.0116 (8)0.0213 (9)0.0005 (6)0.0008 (7)0.0025 (7)
N40.0207 (9)0.0114 (8)0.0133 (8)0.0006 (6)0.0008 (7)0.0006 (7)
C40.0157 (10)0.0147 (9)0.0190 (10)0.0021 (8)0.0023 (8)0.0000 (8)
C160.0150 (10)0.0125 (9)0.0186 (10)0.0017 (7)0.0002 (8)0.0012 (8)
C170.0179 (10)0.0113 (9)0.0147 (10)0.0014 (7)0.0043 (8)0.0008 (8)
C50.0186 (10)0.0101 (9)0.0135 (10)0.0020 (7)0.0038 (8)0.0000 (7)
O2A0.026 (5)0.040 (4)0.045 (6)0.008 (4)0.005 (4)0.005 (5)
C120.0208 (11)0.0196 (10)0.0200 (11)0.0019 (8)0.0023 (9)0.0016 (9)
C140.0443 (15)0.0135 (10)0.0248 (12)0.0035 (10)0.0058 (11)0.0070 (9)
C180.0174 (10)0.0128 (9)0.0148 (10)0.0008 (7)0.0047 (8)0.0020 (8)
C220.0198 (11)0.0149 (10)0.0192 (10)0.0008 (8)0.0009 (8)0.0011 (8)
C60.0135 (10)0.0168 (9)0.0157 (10)0.0010 (7)0.0034 (8)0.0016 (8)
C240.0206 (11)0.0157 (10)0.0205 (11)0.0016 (8)0.0014 (9)0.0045 (8)
C30.0376 (14)0.0183 (11)0.0174 (11)0.0000 (9)0.0088 (10)0.0005 (9)
C100.0177 (10)0.0163 (10)0.0150 (10)0.0026 (8)0.0008 (8)0.0027 (8)
C150.0446 (15)0.0182 (11)0.0188 (11)0.0055 (10)0.0107 (11)0.0043 (9)
C10.0170 (11)0.0122 (10)0.0402 (14)0.0011 (8)0.0022 (10)0.0103 (9)
C190.0182 (10)0.0151 (10)0.0188 (10)0.0023 (8)0.0018 (8)0.0007 (8)
C110.0257 (12)0.0202 (11)0.0266 (12)0.0037 (9)0.0083 (10)0.0042 (9)
O1A0.0296 (12)0.0545 (14)0.130 (3)0.0055 (10)0.0180 (14)0.0468 (16)
C70.0168 (10)0.0147 (9)0.0208 (10)0.0018 (8)0.0026 (8)0.0041 (8)
C20.0364 (14)0.0154 (10)0.0216 (12)0.0015 (9)0.0050 (10)0.0040 (9)
C200.0212 (11)0.0107 (9)0.0227 (11)0.0007 (8)0.0062 (9)0.0007 (8)
C230.0283 (13)0.0216 (11)0.0291 (13)0.0004 (9)0.0091 (10)0.0042 (10)
C80.0202 (10)0.0147 (10)0.0201 (10)0.0028 (8)0.0083 (8)0.0002 (8)
C90.0203 (11)0.0170 (10)0.0164 (10)0.0057 (8)0.0002 (8)0.0013 (8)
C130.0267 (12)0.0148 (10)0.0313 (13)0.0033 (8)0.0054 (10)0.0026 (9)
C210.0225 (11)0.0125 (9)0.0242 (11)0.0027 (8)0.0021 (9)0.0036 (9)
C250.0283 (12)0.0120 (10)0.0366 (14)0.0028 (9)0.0002 (10)0.0008 (10)
O20.023 (4)0.045 (5)0.060 (13)0.013 (3)0.006 (5)0.026 (7)
Geometric parameters (Å, º) top
N2—C41.325 (3)C3—C21.343 (3)
N2—C51.448 (2)C3—H30.93 (3)
N2—C31.387 (3)C10—C111.502 (3)
N3—C161.334 (3)C10—C91.394 (3)
N3—C141.384 (3)C15—H150.94 (3)
N3—C11.455 (3)C1—H1A0.9900
N1—C41.340 (3)C1—H1B0.9900
N1—C11.458 (3)C19—H190.9500
N1—C21.380 (3)C19—C201.394 (3)
N4—C161.317 (3)C11—H11A0.9800
N4—C171.450 (2)C11—H11B0.9800
N4—C151.386 (3)C11—H11C0.9800
C4—H40.9500O1A—H1AA0.8712
C16—H160.9500O1A—H1AB0.8701
C17—C181.394 (3)C7—H70.9500
C17—C221.394 (3)C7—C81.394 (3)
C5—C61.394 (3)C2—H20.86 (3)
C5—C101.396 (3)C20—C211.387 (3)
O2A—H2AA0.8694C20—C251.512 (3)
O2A—H2AB0.8679C23—H23A0.9800
C12—H12A0.9800C23—H23B0.9800
C12—H12B0.9800C23—H23C0.9800
C12—H12C0.9800C8—C91.390 (3)
C12—C61.507 (3)C8—C131.508 (3)
C14—C151.343 (3)C9—H90.9500
C14—H140.87 (3)C13—H13A0.9800
C18—C241.508 (3)C13—H13B0.9800
C18—C191.386 (3)C13—H13C0.9800
C22—C231.511 (3)C21—H210.9500
C22—C211.396 (3)C25—H25A0.9800
C6—C71.392 (3)C25—H25B0.9800
C24—H24A0.9800C25—H25C0.9800
C24—H24B0.9800O2—H2A0.79 (9)
C24—H24C0.9800O2—H2B0.74 (11)
C4—N2—C5124.39 (17)C14—C15—N4107.1 (2)
C4—N2—C3108.93 (17)C14—C15—H15130.8 (17)
C3—N2—C5126.68 (17)N3—C1—N1111.83 (17)
C16—N3—C14108.72 (18)N3—C1—H1A109.3
C16—N3—C1124.13 (19)N3—C1—H1B109.3
C14—N3—C1126.41 (19)N1—C1—H1A109.3
C4—N1—C1123.56 (19)N1—C1—H1B109.3
C4—N1—C2108.94 (18)H1A—C1—H1B107.9
C2—N1—C1126.71 (19)C18—C19—H19119.0
C16—N4—C17124.98 (17)C18—C19—C20122.0 (2)
C16—N4—C15108.91 (17)C20—C19—H19119.0
C15—N4—C17126.00 (18)C10—C11—H11A109.5
N2—C4—N1107.98 (18)C10—C11—H11B109.5
N2—C4—H4126.0C10—C11—H11C109.5
N1—C4—H4126.0H11A—C11—H11B109.5
N3—C16—H16125.8H11A—C11—H11C109.5
N4—C16—N3108.43 (19)H11B—C11—H11C109.5
N4—C16—H16125.8H1AA—O1A—H1AB104.5
C18—C17—N4117.50 (17)C6—C7—H7118.9
C22—C17—N4118.93 (18)C6—C7—C8122.13 (19)
C22—C17—C18123.56 (18)C8—C7—H7118.9
C6—C5—N2118.71 (18)N1—C2—H2119.2 (19)
C6—C5—C10123.44 (18)C3—C2—N1106.9 (2)
C10—C5—N2117.85 (18)C3—C2—H2133.8 (19)
H2AA—O2A—H2AB104.6C19—C20—C25120.1 (2)
H12A—C12—H12B109.5C21—C20—C19118.61 (19)
H12A—C12—H12C109.5C21—C20—C25121.3 (2)
H12B—C12—H12C109.5C22—C23—H23A109.5
C6—C12—H12A109.5C22—C23—H23B109.5
C6—C12—H12B109.5C22—C23—H23C109.5
C6—C12—H12C109.5H23A—C23—H23B109.5
N3—C14—H14121.0 (18)H23A—C23—H23C109.5
C15—C14—N3106.8 (2)H23B—C23—H23C109.5
C15—C14—H14132.2 (19)C7—C8—C13120.2 (2)
C17—C18—C24121.48 (18)C9—C8—C7118.53 (19)
C19—C18—C17117.11 (19)C9—C8—C13121.2 (2)
C19—C18—C24121.41 (19)C10—C9—H9119.0
C17—C22—C23121.64 (19)C8—C9—C10122.0 (2)
C17—C22—C21116.6 (2)C8—C9—H9119.0
C21—C22—C23121.72 (19)C8—C13—H13A109.5
C5—C6—C12122.16 (18)C8—C13—H13B109.5
C7—C6—C5116.87 (19)C8—C13—H13C109.5
C7—C6—C12120.96 (19)H13A—C13—H13B109.5
C18—C24—H24A109.5H13A—C13—H13C109.5
C18—C24—H24B109.5H13B—C13—H13C109.5
C18—C24—H24C109.5C22—C21—H21118.9
H24A—C24—H24B109.5C20—C21—C22122.1 (2)
H24A—C24—H24C109.5C20—C21—H21118.9
H24B—C24—H24C109.5C20—C25—H25A109.5
N2—C3—H3120.2 (17)C20—C25—H25B109.5
C2—C3—N2107.2 (2)C20—C25—H25C109.5
C2—C3—H3132.4 (17)H25A—C25—H25B109.5
C5—C10—C11121.33 (18)H25A—C25—H25C109.5
C9—C10—C5116.98 (19)H25B—C25—H25C109.5
C9—C10—C11121.68 (19)H2A—O2—H2B94 (10)
N4—C15—H15122.0 (17)
N2—C5—C6—C120.8 (3)C18—C17—C22—C23179.6 (2)
N2—C5—C6—C7178.95 (18)C18—C17—C22—C210.1 (3)
N2—C5—C10—C112.9 (3)C18—C19—C20—C210.7 (3)
N2—C5—C10—C9177.94 (18)C18—C19—C20—C25178.7 (2)
N2—C3—C2—N10.5 (3)C22—C17—C18—C24179.1 (2)
N3—C14—C15—N40.3 (3)C22—C17—C18—C190.4 (3)
N4—C17—C18—C241.4 (3)C6—C5—C10—C11176.7 (2)
N4—C17—C18—C19178.99 (18)C6—C5—C10—C92.5 (3)
N4—C17—C22—C231.0 (3)C6—C7—C8—C91.5 (3)
N4—C17—C22—C21179.30 (18)C6—C7—C8—C13179.6 (2)
C4—N2—C5—C6101.6 (2)C24—C18—C19—C20179.5 (2)
C4—N2—C5—C1078.8 (3)C3—N2—C4—N10.4 (2)
C4—N2—C3—C20.1 (3)C3—N2—C5—C677.5 (3)
C4—N1—C1—N3116.6 (2)C3—N2—C5—C10102.1 (3)
C4—N1—C2—C30.8 (3)C10—C5—C6—C12178.8 (2)
C16—N3—C14—C151.2 (3)C10—C5—C6—C71.5 (3)
C16—N3—C1—N1110.9 (2)C15—N4—C16—N31.4 (2)
C16—N4—C17—C1872.6 (3)C15—N4—C17—C18103.3 (3)
C16—N4—C17—C22108.0 (2)C15—N4—C17—C2276.2 (3)
C16—N4—C15—C140.7 (3)C1—N3—C16—N4172.30 (18)
C17—N4—C16—N3175.03 (18)C1—N3—C14—C15171.6 (2)
C17—N4—C15—C14175.7 (2)C1—N1—C4—N2171.14 (19)
C17—C18—C19—C200.0 (3)C1—N1—C2—C3170.8 (2)
C17—C22—C21—C200.6 (3)C19—C20—C21—C221.0 (3)
C5—N2—C4—N1179.63 (18)C11—C10—C9—C8177.7 (2)
C5—N2—C3—C2179.1 (2)C7—C8—C9—C100.4 (3)
C5—C6—C7—C80.6 (3)C2—N1—C4—N20.7 (2)
C5—C10—C9—C81.5 (3)C2—N1—C1—N374.7 (3)
C12—C6—C7—C8179.16 (19)C23—C22—C21—C20179.7 (2)
C14—N3—C16—N41.6 (2)C13—C8—C9—C10178.5 (2)
C14—N3—C1—N180.1 (3)C25—C20—C21—C22178.4 (2)
1,1'-(Ethane-1,2-diyl)bis[3-(2,4,6-trimethylphenyl)imidazolium] dibromide tetrahydrate (est01041d_0ma) top
Crystal data top
C26H32N42+·2Br·4H2OF(000) = 652
Mr = 632.42Dx = 1.461 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.4230 (3) ÅCell parameters from 9565 reflections
b = 13.1447 (3) Åθ = 2.3–44.6°
c = 9.2780 (2) ŵ = 2.86 mm1
β = 108.379 (1)°T = 100 K
V = 1437.78 (6) Å3Prism, clear colourless
Z = 20.15 × 0.15 × 0.05 mm
Data collection top
Bruker Venture D8 Kappa
diffractometer
3028 reflections with I > 2σ(I)
φ and ω scansRint = 0.025
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 27.1°, θmin = 2.8°
Tmin = 0.544, Tmax = 0.750h = 1515
28199 measured reflectionsk = 1616
3165 independent reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.018H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.044 w = 1/[σ2(Fo2) + (0.0151P)2 + 0.8539P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
3165 reflectionsΔρmax = 0.33 e Å3
194 parametersΔρmin = 0.29 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br010.19328 (2)0.01828 (2)0.22033 (2)0.01558 (5)
O10.07000 (10)0.23627 (9)0.37843 (13)0.0268 (2)
H1D0.1073 (18)0.1876 (18)0.340 (2)0.036 (5)*
H1E0.0360 (18)0.2528 (17)0.326 (3)0.039 (6)*
N10.28176 (8)0.55577 (8)0.81318 (11)0.0117 (2)
N20.12491 (9)0.48768 (8)0.67428 (12)0.0123 (2)
O20.04964 (10)0.29104 (10)0.18398 (14)0.0276 (2)
H2A0.0823 (18)0.3420 (18)0.200 (2)0.036 (6)*
H2B0.016 (2)0.2902 (19)0.096 (3)0.051 (7)*
C120.71245 (12)0.75891 (11)0.97675 (18)0.0250 (3)
H1A0.7363860.7666170.8862910.037*
H1B0.7685420.7180941.0526940.037*
H1C0.7062720.8261521.0190870.037*
C60.59853 (11)0.70628 (10)0.93381 (15)0.0166 (3)
C100.51141 (11)0.74146 (10)0.98445 (14)0.0166 (3)
H30.5239200.8003611.0469050.020*
C80.40605 (11)0.69326 (10)0.94673 (14)0.0148 (2)
C90.39084 (10)0.60639 (9)0.85679 (13)0.0117 (2)
C10.21894 (10)0.53490 (9)0.67103 (14)0.0126 (2)
H60.2362 (13)0.5503 (13)0.5832 (19)0.015 (4)*
C70.03385 (10)0.45390 (10)0.53959 (14)0.0132 (2)
H7A0.0166890.4060140.5698180.016*
H7B0.0665790.4180890.4692550.016*
C40.47678 (10)0.56704 (10)0.80436 (13)0.0128 (2)
C50.57920 (10)0.61949 (10)0.84337 (14)0.0147 (2)
H90.6379280.5952390.8070440.018*
C130.46334 (11)0.47141 (10)0.71025 (16)0.0183 (3)
H10A0.4185930.4864470.6049220.027*
H10B0.4243900.4195060.7512550.027*
H10C0.5382910.4461860.7134600.027*
C110.31461 (12)0.73712 (11)1.00412 (16)0.0225 (3)
H11A0.2402630.7264810.9279450.034*
H11B0.3277390.8101681.0226620.034*
H11C0.3165680.7031411.0989300.034*
C30.12649 (11)0.47941 (11)0.82365 (15)0.0166 (3)
H120.0660 (15)0.4502 (14)0.8469 (19)0.023 (4)*
C20.22470 (11)0.52150 (11)0.91051 (15)0.0162 (3)
H130.2517 (15)0.5293 (13)1.016 (2)0.022 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br010.01802 (7)0.01898 (8)0.01231 (7)0.00240 (5)0.00847 (5)0.00121 (5)
O10.0320 (6)0.0288 (6)0.0207 (5)0.0124 (5)0.0100 (5)0.0066 (5)
N10.0124 (5)0.0137 (5)0.0093 (5)0.0009 (4)0.0037 (4)0.0012 (4)
N20.0122 (5)0.0141 (5)0.0108 (5)0.0002 (4)0.0039 (4)0.0020 (4)
O20.0332 (6)0.0284 (6)0.0201 (6)0.0086 (5)0.0068 (5)0.0010 (5)
C120.0165 (6)0.0195 (7)0.0338 (8)0.0033 (5)0.0007 (6)0.0009 (6)
C60.0159 (6)0.0141 (6)0.0158 (6)0.0007 (5)0.0005 (5)0.0031 (5)
C100.0206 (6)0.0125 (6)0.0133 (6)0.0006 (5)0.0003 (5)0.0027 (5)
C80.0168 (6)0.0150 (6)0.0112 (5)0.0045 (5)0.0024 (4)0.0008 (5)
C90.0116 (5)0.0134 (6)0.0087 (5)0.0002 (4)0.0012 (4)0.0018 (4)
C10.0141 (6)0.0132 (6)0.0109 (6)0.0006 (4)0.0046 (5)0.0007 (4)
C70.0125 (5)0.0136 (6)0.0120 (5)0.0024 (5)0.0021 (4)0.0005 (5)
C40.0153 (6)0.0127 (6)0.0094 (5)0.0015 (5)0.0027 (4)0.0008 (5)
C50.0136 (5)0.0161 (6)0.0140 (6)0.0018 (5)0.0036 (4)0.0020 (5)
C130.0178 (6)0.0179 (7)0.0200 (6)0.0004 (5)0.0070 (5)0.0070 (5)
C110.0222 (7)0.0238 (7)0.0219 (7)0.0057 (5)0.0076 (5)0.0074 (6)
C30.0155 (6)0.0228 (7)0.0127 (6)0.0005 (5)0.0064 (5)0.0050 (5)
C20.0164 (6)0.0224 (7)0.0109 (6)0.0025 (5)0.0059 (5)0.0036 (5)
Geometric parameters (Å, º) top
O1—H1D0.80 (2)C8—C111.5126 (17)
O1—H1E0.77 (2)C9—C41.4042 (17)
N1—C91.4481 (15)C1—H60.928 (17)
N1—C11.3322 (16)C7—C7i1.525 (2)
N1—C21.3872 (16)C7—H7A0.9900
N2—C11.3314 (16)C7—H7B0.9900
N2—C71.4653 (16)C4—C51.3909 (17)
N2—C31.3841 (16)C4—C131.5095 (17)
O2—H2A0.77 (2)C5—H90.9500
O2—H2B0.79 (3)C13—H10A0.9800
C12—H1A0.9800C13—H10B0.9800
C12—H1B0.9800C13—H10C0.9800
C12—H1C0.9800C11—H11A0.9800
C12—C61.5114 (18)C11—H11B0.9800
C6—C101.3880 (19)C11—H11C0.9800
C6—C51.3915 (18)C3—H120.928 (18)
C10—H30.9500C3—C21.3506 (19)
C10—C81.3959 (18)C2—H130.932 (19)
C8—C91.3915 (18)
H1D—O1—H1E107 (2)N2—C7—H7A109.8
C1—N1—C9125.15 (10)N2—C7—H7B109.8
C1—N1—C2108.51 (11)C7i—C7—H7A109.8
C2—N1—C9126.34 (10)C7i—C7—H7B109.8
C1—N2—C7124.67 (11)H7A—C7—H7B108.3
C1—N2—C3108.89 (11)C9—C4—C13123.34 (11)
C3—N2—C7126.41 (11)C5—C4—C9117.41 (11)
H2A—O2—H2B106 (2)C5—C4—C13119.25 (11)
H1A—C12—H1B109.5C6—C5—H9118.9
H1A—C12—H1C109.5C4—C5—C6122.21 (12)
H1B—C12—H1C109.5C4—C5—H9118.9
C6—C12—H1A109.5C4—C13—H10A109.5
C6—C12—H1B109.5C4—C13—H10B109.5
C6—C12—H1C109.5C4—C13—H10C109.5
C10—C6—C12121.57 (12)H10A—C13—H10B109.5
C10—C6—C5118.20 (12)H10A—C13—H10C109.5
C5—C6—C12120.23 (12)H10B—C13—H10C109.5
C6—C10—H3118.9C8—C11—H11A109.5
C6—C10—C8122.24 (12)C8—C11—H11B109.5
C8—C10—H3118.9C8—C11—H11C109.5
C10—C8—C11119.19 (12)H11A—C11—H11B109.5
C9—C8—C10117.53 (12)H11A—C11—H11C109.5
C9—C8—C11123.28 (12)H11B—C11—H11C109.5
C8—C9—N1118.87 (11)N2—C3—H12120.6 (11)
C8—C9—C4122.39 (11)C2—C3—N2106.87 (11)
C4—C9—N1118.73 (11)C2—C3—H12132.6 (11)
N1—C1—H6126.8 (10)N1—C2—H13123.8 (11)
N2—C1—N1108.54 (11)C3—C2—N1107.19 (11)
N2—C1—H6124.6 (10)C3—C2—H13129.0 (11)
N2—C7—C7i109.28 (13)
N1—C9—C4—C5177.64 (10)C1—N1—C9—C453.80 (17)
N1—C9—C4—C132.91 (18)C1—N1—C2—C30.17 (15)
N2—C3—C2—N10.44 (15)C1—N2—C7—C7i73.94 (17)
C12—C6—C10—C8179.51 (12)C1—N2—C3—C20.90 (15)
C12—C6—C5—C4178.27 (12)C7—N2—C1—N1179.04 (11)
C6—C10—C8—C90.85 (19)C7—N2—C3—C2178.88 (12)
C6—C10—C8—C11179.00 (12)C5—C6—C10—C80.48 (19)
C10—C6—C5—C40.78 (19)C13—C4—C5—C6177.92 (12)
C10—C8—C9—N1178.79 (11)C11—C8—C9—N11.04 (18)
C10—C8—C9—C40.00 (18)C11—C8—C9—C4179.84 (12)
C8—C9—C4—C51.16 (18)C3—N2—C1—N11.01 (14)
C8—C9—C4—C13178.30 (12)C3—N2—C7—C7i103.73 (16)
C9—N1—C1—N2179.64 (11)C2—N1—C9—C854.53 (17)
C9—N1—C2—C3179.79 (12)C2—N1—C9—C4126.64 (13)
C9—C4—C5—C61.56 (18)C2—N1—C1—N20.73 (14)
C1—N1—C9—C8125.04 (13)
Symmetry code: (i) x, y+1, z+1.
Intermolecular distances (Å) in the unit cells of [RNHC2R1][X]2·nH2O top
Standard deviations for distances including some H atoms are omitted where H atoms were positionally fixed.
CompoundAtomsDistance
[tBuNHC2Me][Br]2·H2OBr1···H1D2.575 (4)
[tBuNHC2Et][Br]2·2H2OBr1···H1A2.398
Br2···H1B2.439
[MesNHC2Me][Br]2·2H2OBr1···H2A2.413
Br2···H1A2.463
O1A···H2B2.125
[MesNHC2Et][Br]2·4H2OO1···H2B1.994 (2)
O2···H1E2.001 (3)
Br1···H1D2.585 (2)
 

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (award No. 1847926 to S. Chantal E. Stieber); National Science Foundation, Directorate for Education and Human Resources (scholarship No. 1834186 to Elisa M. Olivas; scholarship No. 1826490 to Emily S. Thompson, Adrian Torres, Briana C. Arreaga, Hector L. Alarcon); U.S. Department of Defense, U.S. Army (award No. W911NF-17-1-0537 to S. Chantal E. Stieber); National Institutes of Health, National Institute of General Medical Sciences (scholarship No. 5R25GM113748-03 to Briana C. Arreaga).

References

First citationBaker, R. J., Cole, M. L., Jones, C. & Mahon, M. F. (2002). J. Chem. Soc. Dalton Trans. pp. 1992–1996.  Web of Science CSD CrossRef Google Scholar
First citationBaron, M., Battistel, E., Tubaro, C., Biffis, A., Armelao, L., Rancan, M. & Graiff, C. (2018). Organometallics, 37, 4213–4223.  Web of Science CSD CrossRef CAS Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, C., Zhuang, Y., Zhao, J., Liu, H., Geng, P., Pang, G. & Shi, Y. (2012). Synth. Commun. 42, 380–387.  Web of Science CrossRef CAS Google Scholar
First citationCao, C., Zhuang, Y., Zhao, J., Pang, G. & Shi, Y. (2011). J. Chem. Res. 35, 320–322.  Web of Science CrossRef CAS Google Scholar
First citationCao, C., Zhuang, Y., Zhao, J., Peng, Y., Li, X., Shi, Z., Pang, G. & Shi, Y. (2010). Inorg. Chim. Acta, 363, 3914–3918.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrey, G. D., Rentzsch, C. F., von Preysing, D., Scherg, T., Mühlhofer, M., Herdtweck, E. & Herrmann, W. A. (2006). J. Organomet. Chem. 691, 5725–5738.  Web of Science CSD CrossRef CAS Google Scholar
First citationGardiner, M. G., Herrmann, W. A., Reisinger, C.-P., Schwarz, J. & Spiegler, M. (1999). J. Organomet. Chem. 572, 239–247.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuo, J., Lv, L., Wang, X., Cao, C., Pang, G. & Shi, Y. (2013). Inorg. Chem. Commun. 31, 74–78.  Web of Science CSD CrossRef Google Scholar
First citationHiltner, O., Boch, F. J., Brewitz, L., Härter, P., Drees, M., Herdtweck, E., Herrmann, W. A. & Kühn, F. E. (2010). Eur. J. Inorg. Chem. pp. 5284–5293.  Web of Science CSD CrossRef Google Scholar
First citationHock, S. J., Schaper, L.-A., Pöthig, A., Drees, M., Herdtweck, E., Hiltner, O., Herrmann, W. A. & Kühn, F. E. (2014). Dalton Trans. 43, 2259–2271.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationJaniak, D. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationLee, H. M., Lu, C. Y., Chen, C. Y. C. W. L., Chen, W. L., Lin, H. C., Chiu, P. L. & Cheng, P. Y. (2004). Tetrahedron, 60, 5807–5825.  Web of Science CSD CrossRef CAS Google Scholar
First citationLeung, C. H., Incarvito, C. D. & Crabtree, R. H. (2006). Organometallics, 25, 6099–6107.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, Y., Liu, G., Cao, C., Wang, S., Li, Y., Pang, G. & Shi, Y. (2013). Tetrahedron, 69, 6241–6250.  Web of Science CrossRef CAS Google Scholar
First citationLiu, J., Chen, J., Zhao, J., Zhao, Y., Li, L. & Zhang, H. (2003). Synthesis, pp. 2661–2666.  Google Scholar
First citationMeyer, S., Orben, C. M., Demeshko, S., Dechert, S. & Meyer, F. (2011). Organometallics, 30, 6692–6702.  Web of Science CSD CrossRef CAS Google Scholar
First citationRheingold, A. L. (2019). CSD Communication (CCDC 1953445). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc23kqcs  Google Scholar
First citationRiederer, S. K. U., Gigler, P., Högerl, M. P., Herdtweck, E., Bechlars, B., Herrmann, W. A. & Kühn, F. E. (2010). Organometallics, 29, 5681–5692.  Web of Science CSD CrossRef CAS Google Scholar
First citationScherg, T., Schneider, S. K., Frey, G. D., Schwarz, J., Herdtweck, E. & Herrmann, W. A. (2006). Synlett, pp. 2894–2907.  Google Scholar
First citationSciFinder (2022). Chemical Abstracts Service: Colombus, OH, 2010; RN 58-08-2 (accessed March 24, 2022). https://www.cas.org/products/scifinder  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSluijter, S. N., Warsink, S., Lutz, M. & Elsevier, C. J. (2013). Dalton Trans. 42, 7365–7372.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationViciu, M. S., Grasa, G. A. & Nolan, S. P. (2001). Organometallics, 20, 3607–3612.  Web of Science CrossRef CAS Google Scholar
First citationWells, K. D., Ferguson, M. J., McDonald, R. & Cowie, M. (2008). Organometallics, 27, 691–703.  Web of Science CSD CrossRef CAS Google Scholar
First citationWierenga, T. S., Vanston, C. R., Ariafard, A., Gardiner, M. G. & Ho, C. C. (2019). Organometallics, 38, 3032–3038.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, L., Zhao, J., Li, Y., Ge, K., Zhuang, Y., Cao, C. & Shi, Y. (2012). Inorg. Chem. Commun. 22, 33–36.  Web of Science CSD CrossRef Google Scholar
First citationYang, W., Gou, G.-Z., Wang, Y. & Fu, W.-F. (2013). RSC Adv. 3, 6334–6338.  Web of Science CSD CrossRef CAS Google Scholar
First citationZamora, M. T., Ferguson, M. J., McDonald, R. & Cowie, M. (2009). Dalton Trans. pp. 7269–7287  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds