research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The structures of eleven (4-phen­yl)piperazinium salts containing organic anions

crossmark logo

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore-570 006, India, bInstitute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Strasse 2, D-64287 Darmstadt, Germany, and cDepartment of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA
*Correspondence e-mail: yathirajan@hotmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 5 August 2022; accepted 10 September 2022; online 22 September 2022)

Eleven (4-phen­yl)piperazinium salts containing organic anions have been prepared and structurally characterized, namely, 4-phenyl­piperazin-1-ium 4-fluoro­benzoate monohydrate, C10H15N2+·C7H4FO2·H2O, 1; 4-phenyl­piperazin-1-ium 4-bromo­benzoate monohydrate, C10H15N2+·C7H4BrO2·H2O, 3; 4-phenyl­piperazin-1-ium 4-iodo­benzoate, C10H15N2+·C7H4IO2, 4; 4-phenyl­piperazin-1-ium 4-nitro­benzoate, C10H15N2+·C7H4NO4, 5; 4-phenyl­piperazin-1-ium 3,5-di­nitro­salicylate, C10H15N2+·C7H3N2O7, 6; 4-phenyl­piperazin-1-ium 3,5-di­nitro­benzoate, C10H15N2+·C7H3N2O6, 7; 4-phenyl­piperazin-1-ium picrate, C10H15N2+·C6H2N3O7, 8; 4-phenyl­piperazin-1-ium benzoate monohydrate, C10H15N2+·C7H5O2·H2O, 9; 4-phenyl­piperazin-1-ium p-toluene­sulfonate, C10H15N2+·C7H7O3S, 10; 4-phenyl­piperazin-1-ium tartarate monohydrate, C10H15N2+·C4H5O6·H2O, 11; and 4-phenyl­piperazin-1-ium fumarate, C10H15N2+·C4H3O4, 12. Compounds 1 and 312 are all 1:1 salts with the acid proton transferred to the phenyl­piperaizine basic N atom (the secondary amine) with the exception of 3 where there is disorder in the proton position with it being 68% attached to the base and 32% attached to the acid. Of the structures with similar stoichiometries only 3 and 9 are isomorphous. The 4-phenyl substituent in all cases occupies an equatorial position except for 12 where it is in an axial position. The crystal chosen for structure 7 was refined as a non-merohedral twin. There is disorder in 5, 6, 10 and 11. For both 5 and 6, a nitro group is disordered and was modeled with two equivalent orientations with occupancies of 0.62 (3)/0.38 (3) and 0.690 (11)/0.310 (11), respectively. For 6, 10 and 11, this disorder is associated with the phenyl ring of the phenyl­piperazinium cation with occupancies of 0.687 (10)/0.313 (10), 0.51 (7)/0.49 (7) and 0.611 (13)/389 (13), respectively. For all salts, the packing is dominated by the N—H⋯O hydrogen bonds formed by the cation and anion. In addition, several structures contain C—H⋯π (1, 3, 4, 8, 9, 10, and 12) and aromatic ππ stacking inter­actions (6 and 8) and one structure (5) contains a –NO2π inter­action. For all structures, the Hirshfeld surface fingerprint plots show the expected prominent spikes as a result of the N—H⋯O and O—H⋯O hydrogen bonds.

1. Chemical context

The pharmacological properties of phenyl­piperazines and their derivatives have been described by various researchers (Cohen et al. 1982[Cohen, M. R., Hinsch, E., Palkoski, Z., Vergona, R., Urbano, S. & Sztokalo, J. (1982). J. Pharmacol. Exp. Ther. 223, 110-119.]; Conrado et al. 2010[Conrado, D. J., Verli, H., Neves, G., Fraga, C. A., Barreiro, E. J., Rates, S. M. & Costa, T. D. (2010). J. Pharm. Pharmacol. 60, 699-707.]; Neves et al. 2003[Neves, G., Fenner, R., Heckler, A. P., Viana, A. F., Tasso, L., Menegatti, R., Fraga, C. A. M., Barreiro, E. J., Dalla-Costa, T. & Rates, S. M. K. (2003). Braz. J. Med. Biol. Res. 36, 625-629.]; Hanano et al. 2000[Hanano, T., Adachi, K., Aoki, Y., Morimoto, H., Naka, Y., Hisadome, M., Fukuda, T. & Sumichika, H. (2000). Bioorg. Med. Chem. Lett. 10, 875-879.]). The design and synthesis of phenyl­piperazine derivatives as potent anti­cancer agents for prostate cancer have been reported (Demirci et al., 2019[Demirci, S., Hayal, T. B., Kıratlı, B., Şişli, H. B., Demirci, S., Şahin, F. & Doğan, A. (2019). Chem. Biol. Drug Des. 94, 1584-1595.]). Many pharmaceutical compounds are derived from 1-phenyl­piperazine, including oxypertine (Archer et al., 1962[Archer, S., Wylie, D. W., Harris, L. S., Lewis, T. R., Schulenberg, J. W., Bell, M. R., Kullnig, R. K. & Arnold, A. (1962). J. Am. Chem. Soc. 84, 1306-1307.]), trazodone (Alhaider, 1992[Alhaider, A. A. (1992). J. Pharm. Sci. 81, 99-103.]) and nefazodone. Derivatives of 1-phenyl­piperazine have shown other inter­esting properties, such as (C10H15N2)+4(Pb3Cl10)4– where dielectric relaxation spectroscopy has shown different mol­ecular motions and measurements of AC conductivity as a function of frequency at different temperatures indicated a hopping conduction mechanism (Mathlouthi et al., 2017[Mathlouthi, M., Dhieb, A. C., Valkonen, A., Rzaigui, M. & Smirani, W. (2017). J. Clust Sci. 28, 3159-3174.]) and new organic–inorganic hybrid materials of formula (C10H15N2)7(Sb2Cl10)(Sb2Cl9)(SbCl5)2(SbCl4)2Cl·7H2O (Lah­bib et al., 2017[Lahbib, I., Valkonen, A., Rzaigui, M. & Smirani, W. (2017). J. Clust Sci. 28, 2239-2252.]).

[Scheme 1]

As part of our ongoing studies of hydrogen-bonding patterns in mol­ecular salts (Sagar et al., 2017[Sagar, B. K., Girisha, M., Yathirajan, H. S., Rathore, R. S. & Glidewell, C. (2017). Acta Cryst. E73, 1320-1325.]; Kiran Kumar et al., 2019a[Kiran Kumar, H., Yathirajan, H. S., Foro, S. & Glidewell, C. (2019a). Acta Cryst. E75, 1494-1506.],b[Kiran Kumar, H., Yathirajan, H. S., Sagar, B. K., Foro, S. & Glidewell, C. (2019b). Acta Cryst. E75, 1253-1260.], 2020[Kiran Kumar, H., Yathirajan, H. S., Harish Chinthal, C., Foro, S. & Glidewell, C. (2020). Acta Cryst. E76, 488-495.], Harish Chinthal et al., 2020[Harish Chinthal, C., Kavitha, C. N., Yathirajan, H. S., Foro, S., Rathore, R. S. & Glidewell, C. (2020). Acta Cryst. E76, 1779-1793.]), the present paper reports the syntheses and crystal structures of eleven mol­ecular salts of 1-phenyl­piperazine, C10H14N2, viz.: 4-phen­yl­piperazin-1-ium 4-fluoro­benzoate monohydrate, C10H15N2+·C7H4FO2·H2O, 1; phenyl­piperazin-1-ium 4-bro­mo­benzoate monohydrate, C10H15N2+·C7H4BrO2·H2O, 3; phenyl­piperazin-1-ium 4-iodo­benzoate, C10H15N2+·C7H4IO2, 4; phenyl­piperazin-1-ium 4-nitro­benzoate, C10H15N2+·C7H4NO4, 5; phenyl­piperazin-1-ium 3,5-di­nitro­salicylate, C10H15N2+·C7H3N2O7, 6; phenyl­piperazin-1-ium 3,5-di­nitro­benzoate, C10H15N2+·C7H3N2O6, 7; phenyl­piperazin-1-ium picrate, C10H15N2+·C6H2N3O7, 8; phenyl­piperazin-1-ium benzoate monohydrate, C10H15N2+·C7H5O2·H2O, 9; phenyl­piperazin-1-ium p-toluene­sulfonate, C10H15N2+·C7H7O3S, 10; phenyl­piperazin-1-ium tartarate monohydrate, C10H15N2+·C4H5O6·H2O, 11; and phenyl­piperazin-1-ium fumarate, C10H15N2+·C4H3O4, 12.

2. Structural commentary

Compounds 1 and 312 (Figs. 1[link]–11[link][link][link][link][link][link][link][link][link][link]) are all 1:1 mol­ecular salts with the acid proton transferred to the secondary N atom of the phenyl­piperaizine base with the exception of 3 where there is disorder in the proton position with it being 68% attached to the base and 32% attached to the acid. Compounds 1, 3 and 9 crystallize as mono-hydrates but the remaining crystals are solvent free. In compounds 1, 3, 4, 5 and 9, the anions are all benzoate ions or p-substituted benzoates but only 3 and 9 are isomorphous. Compounds 6, 7 and 8 contain picrate or nitrated benzoate anions while 10 contains a tosyl­ate anion and 11 and 12 contain hydrogen tartarate and hydrogen fumarate mono-anions. Apart from the disorder in the acidic proton position mentioned above, there is disorder in 5, 6, 10 and 11. For 5 this disorder is confined to the nitro substituent on the benzoate anion, which is disordered over two orientations with occupancies of 0.62 (3)/0.38 (2). For 6, 10 and 11 the disorder is associated with the phenyl ring of the phenyl­piperazinium cation, with occupancies of 0.687 (10)/0.313 (10), 0.51 (7)/0.49 (7) and 0.611 (13)/389 (13), respectively. This is a common feature of this moiety as shown in a recent study (Kiran Kumar et al., 2019a[Kiran Kumar, H., Yathirajan, H. S., Foro, S. & Glidewell, C. (2019a). Acta Cryst. E75, 1494-1506.]) of 12 salts of the 4-meth­oxy­phenyl­piperazinium cation, of which four were found to contain similar disorder of the phenyl ring.

[Figure 1]
Figure 1
The mol­ecular structure of 1 with hydrogen bonds shown as dashed lines. Atomic displacement parameters are at the 30% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of 3 with hydrogen bonds shown as dashed lines. Atomic displacement parameters are at the 30% probability level.
[Figure 3]
Figure 3
The mol­ecular structure of 4 with hydrogen bonds shown as dashed lines. Atomic displacement parameters are at the 30% probability level.
[Figure 4]
Figure 4
The mol­ecular structure of 5 with hydrogen bonds shown as dashed lines and disorder of the nitro group indicated. Atomic displacement parameters are at the 30% probability level.
[Figure 5]
Figure 5
The mol­ecular structure of 6 with hydrogen bonds shown as dashed lines and disorder of the phenyl ring and one nitro group indicated. Atomic displacement parameters are at the 30% probability level.
[Figure 6]
Figure 6
The mol­ecular structure of 7 with hydrogen bonds shown as dashed lines. Atomic displacement parameters are at the 30% probability level.
[Figure 7]
Figure 7
The mol­ecular structure of 8 with hydrogen bonds shown as dashed lines. Atomic displacement parameters are at the 30% probability level.
[Figure 8]
Figure 8
The mol­ecular structure of 9 with hydrogen bonds shown as dashed lines. Atomic displacement parameters are at the 30% probability level.
[Figure 9]
Figure 9
The mol­ecular structure of 10 with hydrogen bonds shown as dashed lines and disorder of the phenyl rings indicated. Atomic displacement parameters are at the 30% probability level.
[Figure 10]
Figure 10
The mol­ecular structure of 11 with hydrogen bonds shown as dashed lines and disorder of the phenyl ring indicated. Atomic displacement parameters are at the 30% probability level.
[Figure 11]
Figure 11
The mol­ecular structure of 12 with hydrogen bonds shown as dashed lines. Atomic displacement parameters are at the 30% probability level. Note the axial conformation of the phenyl ring.

For the structures containing benzoate or p-substituted benzoate anions, the C—O distances fall into two groups. In one group (3, 5), these distances are the same within experimental error at 2.246 (4) Å, while in the second group (1, 4, and 9) these are substanti­ally different and average 2.235 (4) and 2.255 (4) Å.

For the structures containing the 3,5-di­nitro­salicylic (6), 3,5-di­nitro­benzoate (7) and 2,3,5-tri­nitro­phenolate ions (8), some inter­esting patterns emerge. In the anion of compound 6, the carboxyl group is unionized, with C—O distances of 1.211 (4) and 1.309 (4) Å and it is the phenolic H atom that has been lost (Fig. 5[link]). The C12—O3 distance, 1.283 (4) Å, is closer to that normally found in ketones than to that typical of phenols or phenolates (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). In addition, the C11—C12 and C12—C13 distances, 1.428 (4) and 1.449 (5) Å, respectively, are significantly larger than the other C—C distances in this ring, which lie in the rather narrow range 1.370 (4)–1.398 (4) Å, but the C—N and N—O distances of the nitro substituents are all typical of their types. These observations indicate that the negative charge in this anion is delocalized over the five atoms C11, C13, C14, C15 and C16, but without any significant delocalization onto the nitro groups, as has been observed in tri­nitro­phenolate (picrate) anions (Kavitha et al., 2006[Kavitha, S. J., Panchanatheswaran, K., Low, J. N., Ferguson, G. & Glidewell, C. (2006). Acta Cryst. C62, o165-o169.]; Sagar et al., 2017[Sagar, B. K., Girisha, M., Yathirajan, H. S., Rathore, R. S. & Glidewell, C. (2017). Acta Cryst. E73, 1320-1325.]; Shaibah et al., 2017a[Shaibah, M. A. E., Sagar, B. K., Yathirajan, H. S., Kumar, S. M. & Glidewell, C. (2017a). Acta Cryst. E73, 1513-1516.],b[Shaibah, M. A. E., Yathirajan, H. S., Kumar, S. M., Byrappa, K. & Glidewell, C. (2017b). Acta Cryst. E73, 1488-1492.]). The carboxyl­ate anion in 7 contains similar C—O distances [C17—O1 = 1.251 (14); C17—O2 = 1.256 (14) Å]. Structure 8 contains a picrate anion. Here the situation is similar to that of 6 in that the C—O distance is even shorter at 1.244 (3) Å and in the phenyl ring the C—C bonds are not equal with C11—C12 and C11—C16 being 1.443 (3) and 1.445 (3) Å, respectively, while the remaining C—C bonds range from 1.360 (3) to 1.386 (3) Å. For the nitro groups the C—N distances range from 1.441 (3) to 1.456 (3) Å, indicating that the negative charge in this anion is also delocalized over the five atoms C11, C13, C14, C15 and C16, but without any significant delocalization onto the nitro groups.

Structure 10 contains the tosyl­ate anion. There are two formula units in the asymmetric unit and in both anions the S—O distances are almost equal within experimental error ranging from 1.448 (12) to 1.462 (11) Å and 1.430 (13) to 1.473 (11) Å. Structures 11 and 12 contain the mono-anions of the di-carb­oxy­lic acids tartaric acid and fumaric acid. For both structures the metrical parameters of both cation and anion are in the normal range for such species. It notable that in 1 and 311, the phenyl substituent occupies an equatorial position in the piperazinium cation, but for 12 this substituent occupies an axial position.

3. Supra­molecular features

In discussing the supra­molecular features of these eleven mol­ecular salts it is convenient to break these up into four groups based on the nature of the anion and the stoichiometry of the resulting salt. In the first group are structures 1, 3, 4, 5, and 9, which contain benzoate and substituted benzoate anions. In the second group are 6, 7, and 8 in which the anions contain nitrated phenyl rings. In the third group, 10 contains a tosyl­ate anion, and in the fourth group, 11 and 12 contain the mono-deprotonated di­carboxyl­ate anions hydrogen tartarate and hydrogen fumarate. The hydrogen bonds for 1 and 312 are listed in Tables 1[link]–11[link][link][link][link][link][link][link][link][link][link].

Table 1
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H21⋯O1 0.90 (2) 2.65 (4) 3.215 (6) 122 (3)
N2—H21⋯O2 0.90 (2) 1.89 (2) 2.791 (5) 175 (4)
N2—H22⋯O3i 0.88 (2) 1.96 (2) 2.812 (5) 163 (4)
C8—H8A⋯O2ii 0.97 2.53 3.481 (6) 168
C8—H8B⋯O3 0.97 2.60 3.341 (5) 133
C9—H9A⋯O3iii 0.97 2.59 3.416 (6) 143
O3—H31⋯O1iv 0.83 (2) 1.79 (2) 2.619 (5) 176 (6)
O3—H32⋯O2 0.83 (2) 1.96 (2) 2.773 (5) 167 (6)
Symmetry codes: (i) [-x+1, -y+2, -z+1]; (ii) [-x+1, -y+1, -z+1]; (iii) [x-1, y, z]; (iv) x+1, y, z.

Table 2
Hydrogen-bond geometry (Å, °) for 3[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N1⋯O2 0.89 1.90 2.780 (11) 170
N2—H2N2⋯O3 0.89 1.94 2.803 (12) 164
C8—H8A⋯O3i 0.97 2.64 3.377 (14) 133
C8—H8B⋯O2ii 0.97 2.53 3.475 (14) 166
C9—H9B⋯O3iii 0.97 2.59 3.403 (14) 142
O2—H2O⋯N2 0.82 2.00 2.780 (11) 159
O3—H31⋯O2i 0.81 (2) 1.98 (2) 2.782 (12) 170 (7)
Symmetry codes: (i) [-x+2, -y+1, -z+1]; (ii) [-x+2, -y+1, -z]; (iii) [-x+1, -y+1, -z+1].

Table 3
Hydrogen-bond geometry (Å, °) for 4[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯O3 0.97 2.63 3.218 (4) 119
N2—H21N⋯O1i 0.88 (2) 1.94 (2) 2.780 (4) 160 (3)
N2—H22N⋯O4 0.90 (2) 1.74 (2) 2.627 (4) 173 (3)
N4—H41N⋯O1 0.87 (2) 2.63 (3) 3.285 (4) 133 (3)
N4—H41N⋯O2 0.87 (2) 1.78 (2) 2.643 (4) 169 (3)
N4—H42N⋯O3ii 0.85 (2) 1.97 (2) 2.809 (4) 169 (4)
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [x-1, y, z].

Table 4
Hydrogen-bond geometry (Å, °) for 5[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H21⋯O2i 0.90 (1) 1.96 (2) 2.846 (2) 173 (2)
N2—H22⋯O1 0.93 (1) 1.78 (2) 2.7135 (19) 179 (2)
N2—H22⋯O2 0.93 (1) 2.49 (2) 3.057 (2) 120 (1)
C8—H8B⋯O1ii 0.97 2.50 3.468 (2) 176
C10—H10B⋯O4Aiii 0.97 2.61 3.276 (15) 126
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [x-1, y, z-1].

Table 5
Hydrogen-bond geometry (Å, °) for 6[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O3 0.84 (2) 1.69 (2) 2.487 (3) 156 (4)
N2—H21⋯O3 0.88 (2) 2.03 (2) 2.873 (4) 159 (3)
N2—H21⋯O4 0.88 (2) 2.37 (3) 2.950 (6) 123 (3)
N2—H21⋯O4A 0.88 (2) 2.40 (4) 2.966 (10) 122 (3)
N2—H22⋯O1i 0.87 (2) 2.10 (2) 2.947 (4) 164 (4)
N2—H22⋯O2i 0.87 (2) 2.62 (3) 3.270 (4) 132 (3)
C8—H8A⋯O7ii 0.97 2.36 3.134 (5) 137
C8—H8B⋯O4 0.97 2.44 3.000 (6) 116
C9—H9A⋯O4A 0.97 2.60 3.166 (8) 118
C9—H9B⋯O5iii 0.97 2.58 3.311 (8) 132
C9—H9B⋯O5Aiii 0.97 2.29 3.040 (13) 133
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [-x, -y+1, -z+1]; (iii) x+1, y, z.

Table 6
Hydrogen-bond geometry (Å, °) for 7[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O3i 0.97 2.43 3.250 (14) 142
C10—H10B⋯O5ii 0.97 2.58 3.366 (16) 138
N2—H21⋯O2 0.87 (3) 1.81 (4) 2.672 (13) 172 (13)
N2—H22⋯O1iii 0.87 (3) 1.94 (4) 2.792 (13) 166 (12)
Symmetry codes: (i) [-x+1, -y, -z+1]; (ii) [-x, -y+1, -z+1]; (iii) x+1, y, z.

Table 7
Hydrogen-bond geometry (Å, °) for 8[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8B⋯O4i 0.97 2.42 3.265 (4) 145
C9—H9A⋯O4ii 0.97 2.60 3.353 (4) 134
C9—H9A⋯O6iii 0.97 2.61 3.455 (4) 146
N2—H21⋯O2 0.83 (3) 2.06 (3) 2.871 (3) 166 (3)
N2—H21⋯O7iv 0.83 (3) 2.60 (3) 2.985 (3) 110 (2)
N2—H22⋯O1iv 0.98 (3) 1.74 (3) 2.705 (3) 168 (3)
Symmetry codes: (i) [-x+1, -y, -z+1]; (ii) [-x+1, -y+1, -z+1]; (iii) [-x, -y+1, -z+1]; (iv) x+1, y, z.

Table 8
Hydrogen-bond geometry (Å, °) for 9[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H21⋯O1 0.90 (2) 1.92 (2) 2.813 (3) 173 (2)
N2—H21⋯O2 0.90 (2) 2.56 (2) 3.112 (4) 121 (2)
N2—H22⋯O3i 0.89 (2) 1.92 (2) 2.812 (3) 173 (2)
C9—H9A⋯O1ii 0.97 2.48 3.420 (4) 164
C9—H9B⋯O3iii 0.97 2.60 3.340 (4) 133
O3—H31⋯O1iv 0.83 (2) 1.96 (2) 2.772 (3) 166 (4)
O3—H32⋯O2 0.83 (2) 1.77 (2) 2.599 (3) 179 (4)
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [-x, -y+1, -z+2]; (iii) [x-1, y, z]; (iv) x+1, y, z.

Table 9
Hydrogen-bond geometry (Å, °) for 10[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H21N⋯O6 0.89 2.07 2.884 (18) 151
N2—H22N⋯O4i 0.89 1.92 2.774 (17) 161
C9—H9B⋯O1ii 0.97 2.64 3.534 (19) 154
N4—H41N⋯O3ii 0.89 1.92 2.788 (16) 163
N4—H42N⋯O1 0.89 2.09 2.890 (18) 149
N4—H42N⋯O5 0.89 2.43 2.865 (18) 111
C25—H25A⋯O6iii 0.97 2.63 3.520 (18) 153
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z]; (ii) [-x, y-{\script{1\over 2}}, -z]; (iii) [-x+1, y+{\script{1\over 2}}, -z].

Table 10
Hydrogen-bond geometry (Å, °) for 11[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H21⋯O7i 0.88 (2) 1.95 (2) 2.808 (5) 164 (4)
N2—H22⋯O1ii 0.86 (2) 2.52 (3) 3.069 (4) 122 (3)
N2—H22⋯O5 0.86 (2) 2.22 (3) 2.820 (3) 127 (3)
N2—H22⋯O6iii 0.86 (2) 2.41 (3) 2.992 (3) 125 (3)
C9—H9B⋯O2iv 0.97 2.61 3.276 (4) 126
O3—H3O⋯O2 0.83 (2) 2.17 (3) 2.614 (3) 114 (3)
O3—H3O⋯O4ii 0.83 (2) 2.04 (2) 2.789 (3) 150 (3)
O4—H4O⋯O1ii 0.79 (2) 2.06 (3) 2.773 (3) 151 (3)
O6—H6O⋯O2v 0.83 (2) 1.67 (2) 2.501 (3) 174 (3)
O7—H71O⋯O3 0.84 (2) 1.95 (2) 2.780 (3) 171 (4)
O7—H72O⋯O1vi 0.85 (2) 1.97 (2) 2.821 (3) 178 (4)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iv) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (v) [x, y-1, z]; (vi) [x-1, y, z].

Table 11
Hydrogen-bond geometry (Å, °) for 12[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H21⋯O4 0.87 (2) 1.88 (2) 2.741 (2) 168 (2)
N2—H22⋯O1i 0.89 (2) 1.89 (2) 2.775 (2) 172 (2)
C7—H7A⋯O2ii 0.97 2.51 3.317 (3) 141
C8—H8B⋯O3iii 0.97 2.55 3.203 (3) 124
C9—H9A⋯O2iv 0.97 2.66 3.318 (3) 126
O2—H2O⋯O3v 0.92 (2) 1.54 (2) 2.4610 (18) 174 (2)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-1, z+{\script{1\over 2}}]; (ii) [x, y-1, z+1]; (iii) [-x+{\script{1\over 2}}, y, z+{\script{1\over 2}}]; (iv) [x, y-1, z]; (v) x, y+1, z.

Even though 1, 3, 4, 5, and 9 contain similar anions, only 3 and 9 are isomorphous. For 1 (Fig. 12[link]), which contains a water mol­ecule of crystallization, there are R63(12) rings (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]) made up of N—H⋯O and O—H⋯O hydrogen bonds, which involve the water mol­ecule, and R42(10) rings made up of N—H⋯O hydrogen bonds, which do not involve the water mol­ecule. This combination of R63(12) and R42(10) rings form ribbons propagating in the a-axis direction. In addition, there is a C—H⋯π inter­action involving C2—H2 and the C11–C16 phenyl ring (Cg1) [C2⋯Cg1 = 3.610 (6) Å; C2—H2⋯Cg1 = 133°; symmetry operationx, 1 − y, 1 − z]. In the packing arrangement for 3 shown in Fig. 13[link], both R44(12) rings exhibit N—H⋯O and O—H⋯O hydrogen bonds involving the cation, anion and water mol­ecule as well as R42(10) rings showing O—H⋯O hydrogen bonds just associated with the cation and anion. These link the cations, anions and water mol­ecules into ribbons propagating in the [101] direction. In addition there is a C—H⋯π inter­action involving C2—H2 and the C11–C16 phenyl ring (Cg1) [C2⋯Cg1 = 3.6040 (14) Å; C2—H2⋯Cg1 = 133°; symmetry operation 1 − x, 1 − y, 1 − z].

[Figure 12]
Figure 12
Packing diagram for 1 viewed along the a axis showing the R63(12) rings made up of N—H⋯O and O—H⋯O hydrogen bonds, which involve the water mol­ecule, and R42(10) rings made up of N—H⋯O hydrogen bonds, which do not involve the water mol­ecule. This combination of R63(12) and R42(10) rings form ribbons propagating in the a-axis direction.
[Figure 13]
Figure 13
Packing diagram for 3 viewed along the [101] direction showing both R44(12) rings demonstrating N—H⋯O and O—H⋯O hydrogen bonds involving the cations, anions and water mol­ecule as well as R42(10) rings showing O—H⋯O hydrogen bonds just associated with the cations and anions. These link the cations, anions and water mol­ecules into ribbons propagating in the [101] direction.

In 4, there is no water mol­ecule of crystallization. In this case there is an R88(24) ring with a topology analogous to the seam of a tennis ball (Fig. 14[link]) involving N—H⋯O hydrogen bonds. These collections of cations and anions linked by R88(24) rings pack in the a-axis direction (Fig. 15[link]). In addition there is a C—H⋯π inter­action involving C19—H19 and the C21–C26 phenyl ring (Cg1) [C19⋯Cg1 = 3.750 (4) Å; C19—H19BCg1 = 154°; symmetry operation 1 − x, 1 − y, 1 − z]. In 5, R44(12) rings link the cations and anions via N—H⋯O hydrogen bonds and this collection forms ribbons in the b-axis direction (Fig. 16[link]). In addition, the –NO2 group accepts an N—H⋯(O,O) bifurcated hydrogen bond. There is a further inter­action with a phenyl ring (C11–C16, Cg1) involving the nitro substituent [N3⋯Cg1 = 3.530 (14) Å; N3—O3⋯Cg1 = 140.6 (13)°, symmetry operation x, [{3\over 2}] − y, [{1\over 2}] + z].

[Figure 14]
Figure 14
Partial packing diagram for 4 showing the R88(24) ring with a topology analogous to the seam of a tennis ball involving N—H⋯O hydrogen bonds.
[Figure 15]
Figure 15
Packing diagram for 4 viewed along the c axis showing how the R88(24) rings pack in the a-axis direction.
[Figure 16]
Figure 16
Packing diagram for 5 showing how the R44(12) rings link the cation and anion via N—H⋯O hydrogen bonds and this collection forms ribbons propagating in the b-axis direction.

In 6, there are R44(16) loops linking the phenyl­piperazinium cations and the 3,5-dintrosalicylate anions via N—H⋯O hydrogen bonds (Fig. 17[link]). In addition, there are ππ inter­actions involving the phenyl ring (C11–C16, Cg1) of the 3,5-dintrosalicylate anions, which form offset stacks (slippages of 1.580 and 1.900 Å) in the [110] direction [Cg1⋯Cg1 = 3.3600 (15) Å; symmetry operationx, 1 − y, 1 − z; Cg1⋯Cg1 = 3.3690 (15) Å; symmetry operationx, 2 − y, 1 − z].

[Figure 17]
Figure 17
Packing diagram for 6 showing R44(16) loops linking the phenyl­piperazinium cations and the 3,5-dintrosalicylate anions via N—H⋯O and O—H⋯O hydrogen bonds.

The packing of 7 is composed of R44(22) rings in the (101) plane made up of N—H⋯O hydrogen bonds involving the phenyl­piperazinium cation and carboxyl­ate group of the 3,5-di­nitro­benzoate anion (Fig. 18[link]). These planes are linked in the [111] direction by C22(6) chains also involving N—H⋯O hydrogen-bonding inter­actions involving the phenyl­piperazinium cation and carboxyl­ate group of the 3,5-di­nitro­benzoate anion and weak C—H⋯O inter­actions (Fig. 19[link]). In this structure there are no C—H⋯π or ππ inter­actions.

[Figure 18]
Figure 18
Partial packing diagram for 7 showing R44(22) rings in the (101) plane made up of N—H⋯O hydrogen-bonding inter­actions involving the phenyl­piperazinium cation and carboxyl­ate group of the 3,5-di­nitro­benzoate anion.
[Figure 19]
Figure 19
Packing diagram for 7 showing how the R44(22) rings shown in the previous figure are linked in the [111] direction by C22(6) chains also involving N—H⋯O hydrogen bonds involving the phenyl­piperazinium cation and carboxyl­ate group of the 3,5-di­nitro­benzoate anion and weak C—H⋯O inter­actions.

In 8 there are C22(8) chains made up of N—H⋯O hydrogen bonds involving the phenyl­piperazinium cation and a nitro group of the picrate anion (Fig. 20[link]). In addition, the picrate anions form strong ππ inter­actions (C1–C6, Cg1) in the a-axis direction [Cg1⋯Cg1 = 3.4395 (5) Å; symmetry operation 2 − x, 1 − y, −z; Cg1⋯Cg1 = 3.4223 (5) Å; symmetry operation 2 − x, −y, −z] (Fig. 21[link]). Furthermore, there are C—H⋯π inter­actions involving the phenyl ring (C1–C6, Cg1) of the phenyl­piperazinium cation [C3⋯Cg1 = 3.683 (3) Å, C3—H3⋯Cg1 = 134°, symmetry operation 2 − x, [{1\over 2}] + y, [{1\over 2}] − z; C8⋯Cg1 = 3.512 (3) Å, C8—H8ACg1 = 160°, symmetry operation 1 − x, −[{1\over 2}] + y, [{1\over 2}] − z] (one example shown in Fig. 22[link]).

[Figure 20]
Figure 20
Partial packing diagram for 8 showing the C22(8) chains made up of N—H⋯O hydrogen bonds involving the phenyl­piperazinium cation and a nitro group of the picrate anion. Hydrogen-bonding inter­actions are shown by dashed lines.
[Figure 21]
Figure 21
Packing diagram for 8 viewed along the b axis showing how the picrate anions form ππ inter­actions in the a-axis direction.
[Figure 22]
Figure 22
Partial packing diagram for 8 showing one of the C—H⋯π inter­actions involving the phenyl ring of the phenyl­piperazinium cation.

In the case of 9 there are two anti-parallel C22(6) chains linked by N—H⋯O hydrogen bonds as well as C—H⋯O inter­actions involving the water oxygen atom, which combine to form ribbons propagating in the a-axis direction (Fig. 23[link]). In addition, there are C—H⋯π inter­actions (C11–C16, Cg1) involving the benzoate phenyl ring [C2⋯Cg1 = 3.710 (4) Å, C2—H2⋯Cg1 = 141°, symmetry operationx, 1 − y, 1 − z; C6⋯Cg1 = 3.656 (4) Å, C6—H6⋯Cg1 = 142°, symmetry operation 1 − x, 1 − y, 2 − z]. The overall packing is shown in Fig. 24[link].

[Figure 23]
Figure 23
Partial packing diagram for 9 showing one of the two anti-parallel C22(6) chains linked by N—H⋯O hydrogen bonds and C—H⋯O inter­actions propagating in the a-axis direction.
[Figure 24]
Figure 24
Packing diagram for 9 viewed along the c-axis direction showing the two anti-parallel C22(6) chains linked by N—H⋯O and C—H⋯O inter­actions involving the water oxygen atom, which combine to form ribbons in the a-axis direction.

The structure of 10 contains the tosyl­ate anion, which contains the non-planar –SO3 group. This results in a packing arrangement in which N—H⋯O hydrogen bonds involving the phenyl­piperazinium cations and tosyl­ate anions are arranged such that there are hydro­philic and hydro­phobic (110) planes (Fig. 25[link]). This structure also contains C—H⋯π inter­actions involving one of the phenyl­piperazinium cations (C18–C23, Cg1) and tosyl­ate anions [C30⋯Cg1 = 3.74 (3) Å, C30—H30⋯Cg1 = 144°, symmetry operation 1 − x, −[{1\over 2}] + y, −z].

[Figure 25]
Figure 25
Packing diagram for 10 viewed down the b axis showing the three-dimensional network of N—H⋯O hydrogen bonds involving phenyl­piperazinium cations and tosyl­ate anions, which arrange the ions such that there are hydro­philic and hydro­phobic (110) planes in the a-axis direction.

Structure 11 has a complicated packing arrangement as in addition to the phenyl­piperazinium NH2 group, the flexible tartarate anion contains four OH groups and there is a water mol­ecule of crystallization. Multiple N—H⋯O and O—H⋯O hydrogen-bonding inter­actions combine to form a three-dimensional array (Fig. 26[link]).

[Figure 26]
Figure 26
Packing diagram for 11 viewed along the a axis where multiple N—H⋯O and O—H⋯O hydrogen bonds involving the phenyl­piperazinium NH2 group, the tartarate anion and water mol­ecule of crystallization combine to form a three-dimensional network.

Structure 12 contains a phenyl­piperazinium cation and the monoanion of fumaric acid. In the packing of this structure, there are two C11(7) chains in the b-axis direction involving the fumarate anions and composed of O—H⋯O hydrogen bonds. These chains are in turn cross-linked by both N—H⋯O hydrogen bonds and C—H⋯O inter­actions (Fig. 27[link]). There are also C—H⋯π inter­actions involving the phenyl ring (C1–C6, Cg1) of the phenyl­piperazinium cation [C5⋯Cg1 = 3.723 (3) Å, C5—H5⋯Cg1 =144°, symmetry operationx, 1 − y, [{1\over 2}] + z; C10⋯Cg1 = 3.608 (3) Å, C10—H10ACg1 = 145°, symmetry operationx, −y, −[{1\over 2}] + z].

[Figure 27]
Figure 27
Packing diagram for 12 viewed along the c-axis direction showing the two C11(7) chains propagating in the b-axis direction involving the fumarate anions and composed of O—H⋯O hydrogen bonds which are in turn cross-linked by both N—H⋯O hydrogen bonds and C—H⋯O inter­actions.

The Hirshfeld surface fingerprint plots for 1 and 312 generated using CrystalExplorer are available in the supporting information. All of them show the distinctive `pincer spikes' associated with the N—H⋯O and/or O—H⋯O hydrogen bonds (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]).

4. Database survey

The structural versatility of the 1-phenyl­piperazine moiety itself is shown by its involvement in many structural forms, including as neutral co-crystals [Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) refcodes HINQUR and HINRAY, Müller-Buschbaum & Zurawski, 2007[Müller-Buschbaum, K. & Zurawski, A. (2007). Z. Anorg. Allg. Chem. 633, 2300-2304.]], as neutral ligands (HIWJAY, Stocker et al., 1999[Stocker, F. B., Staeva, T. B., Rienstra, C. M. & Britton, D. (1999). Inorg. Chem. 38, 984-991.]; HIWJAY01, VIYPIE, VIYPOK, VIYPUQ; Pike et al., 2014[Pike, R. D., Dziura, T. M., deButts, J. C., Murray, C. A., Kerr, A. T. & Cahill, C. L. (2014). J. Chem. Crystallogr. 44, 42-50.]), as simultaneously both neutral ligands and co-crystals (FITTEI and FITTIM, Quitmann & Müller-Buschbaum, 2005[Quitmann, C. C. & Müller-Buschbaum, K. (2005). Z. Anorg. Allg. Chem. 631, 350-354.]; HOCBEH, HOCBIL, PIYXEB, Zurawski & Müller-Buschbaum, 2008[Zurawski, A. & Müller-Buschbaum, K. (2008). Z. Anorg. Allg. Chem. 634, 1427-1433.]). In addition, there have been many structural investigations of 1-phenyl­piperazine as a cation, combined with simple anions (DMPIPZ, Cho­thia & Pauling, 1978[Chothia, C. & Pauling, P. (1978). Acta Cryst. B34, 2986-2989.]; JEHXIE, Batsanov et al., 2006[Batsanov, A. S., Anderson, C. E. & Dyer, P. W. (2006). Private Communication (refcode JEHXIE). CCDC, Cambridge, England.]; KUZWUY, Marouani et al., 2010[Marouani, H., Rzaigui, M. & Al-Deyab, S. S. (2010). Acta Cryst. E66, o2613.]; LOHQIL, Oueslati et al., 2019[Oueslati, Y., Kansız, S., Valkonen, A., Sahbani, T., Dege, N. & Smirani, W. (2019). J. Mol. Struct. 1196, 499-507.]; QORVEB, Marouani et al., 2012[Marouani, H., Raouafi, N., Akriche, S. T., Al-Deyab, S. S. & Rzaigui, M. (2012). E-J. Chem. 9, 772-779.]; SUYXEQ, Essid et al., 2010[Essid, M., Marouani, H., Rzaigui, M. & Al-Deyab, S. S. (2010). Acta Cryst. E66, o2244-o2245.]), with simple anionic metal salts (BEBKAX, Lahbib et al., 2017[Lahbib, I., Valkonen, A., Rzaigui, M. & Smirani, W. (2017). J. Clust Sci. 28, 2239-2252.]; CEBHIB, Garbia et al., 2005[Garbia, I. B., Kefi, R., Rayes, A. & Nasr, C. B. (2005). Z. Kristallogr. New Cryst. Struct. 220, 333-334.]; PENWAJ, Mathlouthi et al., 2017[Mathlouthi, M., Dhieb, A. C., Valkonen, A., Rzaigui, M. & Smirani, W. (2017). J. Clust Sci. 28, 3159-3174.]; PHPIPZ, Battaglia et al., 1979[Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L. & Pellacani, G. C. (1979). Inorg. Chem. 18, 148-152.]; QIZPIA, Dhieb et al., 2014[Dhieb, A. C., Janzen, D. E., Rzaigui, M. & Smirani Sta, W. (2014). Acta Cryst. E70, m139.]; SUKKAM, Dhieb et al., 2015[Dhieb, A. C., Valkonen, A., Rzaigui, M. & Smirani, W. (2015). J. Mol. Struct. 1102, 50-56.]; ZAMHUQ, Zouari et al., 1995[Zouari, F., Ben Salah, A. & Hovestreydt, E. R. (1995). Acta Cryst. C51, 1563-1565.]), combined with anionic carboxyl­ates (IGOGUI, Pang et al., 2015[Pang, Y., Xing, P., Geng, X., Zhu, Y., Liu, F. & Wang, L. (2015). RSC Adv. 5, 40912-40923.]; VAKCIW, Zong et al., 2016[Zong, Y., Shao, H., Pang, Y., Wang, D., Liu, K. & Wang, L. (2016). J. Mol. Struct. 1115, 187-198.]; Mahesha et al., 2022[Mahesha, N., Kumar, H. K., Akkurt, M., Yathirajan, H. S., Foro, S., Abdelbaky, M. S. M. & Garcia-Granda, S. (2022). Acta Cryst. E78, 709-715.]), combined with anionic pyrimidines (DUPMUY, DUPNAF, Al-Alshaikh et al., 2015[Al-Alshaikh, M. A., El-Emam, A. A., Al-Deeb, O. A., Abdelbaky, M. S. M. & Garcia-Granda, S. (2015). Acta Cryst. E71, 956-959.]), combined with anionic ligands (WOVKAW, Lo et al., 2019[Lo, K. M., Lee, S. M. & Tiekink, E. R. T. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1309-1311.]), combined with a clathrate (GUBHOB, Wu et al., 2009[Wu, X., Meng, X. & Cheng, G. (2009). J. Incl Phenom. Macrocycl Chem. 64, 325-329.]), and combined with anionic metal complexes (DUJPIK, Shin et al., 2020[Shin, J., Kang, J., Ok, K. M. & Do, J. (2020). Z. Kristallogr. New Cryst. Struct. 235, 511-513.]; SICGUJ, Nasr et al., 2018[Nasr, C. B., Kaminsky, W., Khediri, L., Hamdi, A. & Lefebvre, F. (2018). CSD Communication (recode SICGUJ). CCDC, Cambridge, England.]; SICGUJ01, Khedhiri et al. 2018[Khedhiri, L., Hamdi, A., Soudani, S., Kaminsky, W., Lefebvre, F., Jelsch, C., Wojtaś, M. & Ben Nasr, C. (2018). J. Mol. Struct. 1171, 429-437.]).

5. Synthesis and crystallization

For the synthesis of salts 112, a solution of commercially available 1-phenyl­piperazine (100 mg, 0.62 mol) (from Sigma-Aldrich) in methanol (10 ml) was mixed with an equimolar solution of (1) 4-fluoro­benzoic acid (87 mg, 0.62 mol), (2) 4-chloro­benzoic acid (97 mg, 0.62 mol), (3) 4-bromo­benzoic acid (125 mg, 0.62 mol), (4) 4-iodo­benzoic acid (154 mg, 0.62 mol), (5) 4-nitro­benzoic acid (104 mg, 0.62 mol), (6) 3,5-di­nitro­salicylic acid (104 mg, 0.62 mol), (7) 3,5-di­nitro­benzoic acid (132 mg, 0.62 mol), (8) picric acid (142 mg, 0.62 mol), (9) benzoic acid (76 mg, 0.62 mol), (10) p-toluene­sulfonic acid (107 mg, 0.62 mol), (11) tartaric acid (93 mg, 0.62 mol) and (12) fumaric acid (72 mg, 0.62 mol). The resulting mixture was stirred for 30 min at 323 K and allowed to stand at room temperature. X-ray quality crystals of 1 and 312 were formed on slow evaporation after one week (m.p.: 381–384 K (1), 382–387 K (3), 413–418 K (4), 423–428 K (5), 431–436 K (6), 427–429 K (7), 430–433 K (8), 455–457 K (9), 377–380 K (10), 416–420 K (11) and 438–440 K (12). No crystals of (2) (m.p. 488–490 K) suitable for X-ray diffraction were obtained.

6. Refinement

Crystal data, data collection and structure refinement details for structures 1 and 312 are summarized in Table 12[link]. All hydrogen atoms were positioned geometrically with their Uiso values 1.2 times that of their attached atoms. For some structures (6, 10, and 11), the phenyl ring of the piperazinium cation was disordered over two orientations in ratios of 0.687 (10)/0.313 (10); 0.51 (7)/0.49 (7), and 0.611 (13)/0.389 (13) for 6, 10, and 11, respectively. For both 5 and 6, a nitro group was disordered and modeled with two orientations with occupancies of 0.62 (3)/0.38 (3) and 0.690 (11)/0.310 (11), respectively.

Table 12
Experimental details

  1 3 4 5
Crystal data
Chemical formula C10H15N2+·C7H4FO2·H2O C10H15N2+·C7H4BrO2·H2O C10H15N2+·C7H4IO2 C10H15N2+·C7H4NO4
Mr 320.36 381.27 410.24 329.35
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/c Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 293 293 293 293
a, b, c (Å) 6.239 (1), 7.496 (1), 17.817 (3) 6.183 (2), 37.748 (7), 7.506 (2) 10.8507 (4), 23.4045 (7), 13.3019 (4) 13.0683 (9), 15.7868 (9), 7.9255 (5)
α, β, γ (°) 93.55 (2), 92.94 (2), 94.87 (2) 90, 93.69 (4), 90 90, 102.491 (4), 90 90, 95.137 (6), 90
V3) 827.3 (2) 1748.2 (8) 3298.13 (19) 1628.52 (18)
Z 2 4 8 4
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.10 2.37 1.95 0.10
Crystal size (mm) 0.44 × 0.32 × 0.16 0.46 × 0.20 × 0.12 0.48 × 0.48 × 0.40 0.48 × 0.44 × 0.16
 
Data collection
Diffractometer Oxford Diffraction Xcalibur with Sapphire CCD Oxford Diffraction Xcalibur with Sapphire CCD Oxford Diffraction Xcalibur with Sapphire CCD Oxford Diffraction Xcalibur with Sapphire CCD
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.])
Tmin, Tmax 0.613, 1.000 0.613, 1.000 0.575, 1.000 0.790, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 4669, 3013, 1611 6103, 3170, 1374 14154, 7079, 4641 11699, 3587, 2088
Rint 0.033 0.061 0.024 0.035
(sin θ/λ)max−1) 0.602 0.602 0.657 0.660
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.090, 0.226, 1.10 0.138, 0.375, 1.03 0.037, 0.084, 1.02 0.054, 0.117, 1.10
No. of reflections 3013 3170 7079 3587
No. of parameters 220 215 409 251
No. of restraints 4 7 4 83
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.27, −0.20 0.49, −0.61 0.77, −1.25 0.15, −0.13
Absolute structure
Absolute structure parameter
  6 7 8 9
Crystal data
Chemical formula C10H15N2+·C7H3N2O7 C10H15N2+·C7H3N2O6 C10H15N2+·C6H2N3O7 C10H15N2+·C7H5O2·H2O
Mr 390.35 374.35 391.34 302.36
Crystal system, space group Monoclinic, P21/c Triclinic, P[\overline{1}] Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 293 293 293 293
a, b, c (Å) 7.779 (3), 7.411 (3), 31.357 (9) 5.707 (2), 12.505 (3), 13.116 (3) 8.517 (1), 6.825 (1), 30.265 (4) 6.202 (2), 34.573 (9), 7.596 (2)
α, β, γ (°) 90, 96.82 (3), 90 97.41 (2), 93.28 (2), 102.82 (2) 90, 95.33 (1), 90 90, 93.83 (2), 90
V3) 1794.9 (11) 901.5 (4) 1751.7 (4) 1625.1 (8)
Z 4 2 4 4
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.11 0.11 0.12 0.09
Crystal size (mm) 0.20 × 0.18 × 0.12 0.48 × 0.08 × 0.04 0.50 × 0.36 × 0.20 0.32 × 0.20 × 0.16
 
Data collection
Diffractometer Oxford Diffraction Xcalibur with Sapphire CCD Oxford Diffraction Xcalibur with Sapphire CCD Oxford Diffraction Xcalibur with Sapphire CCD Oxford Diffraction Xcalibur with Sapphire CCD
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.])
Tmin, Tmax 0.959, 1.000 0.647, 1.000 0.835, 1.000 0.985, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 7737, 3882, 1590 7800, 7800, 2647 12427, 3893, 2389 6075, 3492, 1387
Rint 0.055 0.087 0.076 0.039
(sin θ/λ)max−1) 0.661 0.663 0.660 0.656
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.085, 0.155, 1.03 0.147, 0.297, 1.13 0.064, 0.149, 1.05 0.065, 0.144, 0.95
No. of reflections 3882 7800 3893 3492
No. of parameters 321 251 260 211
No. of restraints 288 2 0 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.18, −0.20 0.28, −0.30 0.26, −0.20 0.24, −0.16
Absolute structure
Absolute structure parameter
  10 11 12
Crystal data
Chemical formula C10H15N2+·C7H7O3S C10H15N2+·C4H5O6·H2O C10H15N2+·C4H3O4
Mr 334.42 330.33 278.30
Crystal system, space group Monoclinic, P21 Orthorhombic, P212121 Orthorhombic, Pca21
Temperature (K) 293 293 293
a, b, c (Å) 8.325 (1), 10.949 (2), 18.418 (4) 7.1185 (7), 7.5255 (8), 29.955 (3) 26.702 (1), 7.9626 (3), 6.7571 (3)
α, β, γ (°) 90, 92.67 (2), 90 90, 90, 90 90, 90, 90
V3) 1677.0 (5) 1604.7 (3) 1436.68 (10)
Z 4 4 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.21 0.11 0.10
Crystal size (mm) 0.50 × 0.36 × 0.14 0.42 × 0.32 × 0.24 0.48 × 0.44 × 0.40
 
Data collection
Diffractometer Oxford Diffraction Xcalibur with Sapphire CCD Oxford Diffraction Xcalibur with Sapphire CCD Oxford Diffraction Xcalibur with Sapphire CCD
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.])
Tmin, Tmax 0.696, 1.000 0.883, 1.000 0.894, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 6123, 4918, 2767 6773, 3354, 2808 9534, 3127, 2770
Rint 0.044 0.019 0.018
(sin θ/λ)max−1) 0.654 0.657 0.657
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.126, 0.298, 1.12 0.045, 0.100, 1.09 0.034, 0.077, 1.06
No. of reflections 4918 3354 3127
No. of parameters 480 260 191
No. of restraints 853 211 4
H-atom treatment H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.08, −0.41 0.20, −0.16 0.17, −0.13
Absolute structure Flack x determined using 597 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Flack x determined using 912 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Flack x determined using 1130 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.00 (11) −0.2 (5) 0.3 (3)
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

For all structures, data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007). Program(s) used to solve structure: SHELXT (Sheldrick, 2015a) for (1), (3), (4), (5), (6), (7), (8), (9), (10), (11); SHELXT2014 (Sheldrick, 2015a) for (12). Program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b) for (1), (3), (4), (5), (6), (7), (8), (9), (10); SHELXL2014/6 (Sheldrick, 2015b) for (11), (12). For all structures, molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

4-Phenylpiperazin-1-ium 4-fluorobenzoate monohydrate (1) top
Crystal data top
C10H15N2+·C7H4FO2·H2OZ = 2
Mr = 320.36F(000) = 340
Triclinic, P1Dx = 1.286 Mg m3
a = 6.239 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.496 (1) ÅCell parameters from 1437 reflections
c = 17.817 (3) Åθ = 2.8–27.7°
α = 93.55 (2)°µ = 0.10 mm1
β = 92.94 (2)°T = 293 K
γ = 94.87 (2)°Rod, colourless
V = 827.3 (2) Å30.44 × 0.32 × 0.16 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
1611 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.033
ω and φ scansθmax = 25.3°, θmin = 2.9°
Absorption correction: multi-scan
(CrysalisRED; Oxford Diffraction, 2007)
h = 77
Tmin = 0.613, Tmax = 1.000k = 98
4669 measured reflectionsl = 2120
3013 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.090Hydrogen site location: mixed
wR(F2) = 0.226H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0717P)2 + 0.6694P]
where P = (Fo2 + 2Fc2)/3
3013 reflections(Δ/σ)max < 0.001
220 parametersΔρmax = 0.27 e Å3
4 restraintsΔρmin = 0.20 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1673 (5)0.6916 (4)0.28754 (18)0.0488 (8)
N20.2637 (6)0.7578 (5)0.4474 (2)0.0582 (10)
H210.321 (6)0.736 (6)0.4932 (14)0.070*
H220.222 (6)0.867 (3)0.453 (2)0.070*
C10.1054 (6)0.7113 (5)0.2116 (2)0.0517 (10)
C20.0937 (8)0.6442 (7)0.1796 (3)0.0795 (15)
H20.1931590.5898260.2100920.095*
C30.1510 (9)0.6546 (8)0.1045 (3)0.1007 (19)
H30.2853880.6045460.0849970.121*
C40.0122 (11)0.7376 (9)0.0585 (3)0.1030 (19)
H40.0499090.7451920.0076490.124*
C50.1822 (10)0.8090 (10)0.0887 (3)0.122 (3)
H50.2787230.8658140.0578920.147*
C60.2409 (9)0.7997 (8)0.1637 (3)0.0979 (19)
H60.3739780.8535920.1828090.117*
C70.3620 (6)0.8019 (6)0.3177 (2)0.0608 (11)
H7A0.3325580.9270340.3208380.073*
H7B0.4760700.7886230.2833010.073*
C80.4378 (7)0.7509 (6)0.3946 (2)0.0616 (12)
H8A0.4843380.6305720.3906720.074*
H8B0.5600500.8325230.4137310.074*
C90.0695 (7)0.6398 (6)0.4170 (2)0.0599 (11)
H9A0.0459740.6495970.4510270.072*
H9B0.1036790.5157810.4134170.072*
C100.0033 (6)0.6933 (6)0.3403 (2)0.0558 (11)
H10A0.1245680.6115130.3203780.067*
H10B0.0517860.8128790.3450740.067*
F10.5316 (7)0.7684 (6)0.94599 (18)0.1434 (15)
O10.1448 (6)0.8383 (6)0.6190 (2)0.1136 (14)
O20.4185 (6)0.6849 (4)0.59104 (18)0.0761 (10)
C110.3677 (6)0.7628 (5)0.7197 (2)0.0519 (10)
C120.5515 (7)0.6900 (6)0.7457 (2)0.0605 (11)
H120.6391440.6387310.7112190.073*
C130.6074 (8)0.6918 (7)0.8214 (3)0.0777 (14)
H130.7315130.6424350.8381820.093*
C140.4782 (10)0.7668 (8)0.8711 (3)0.0885 (16)
C150.2959 (10)0.8423 (8)0.8486 (3)0.0890 (16)
H150.2105800.8943210.8836270.107*
C160.2416 (7)0.8393 (6)0.7725 (3)0.0723 (13)
H160.1175630.8897260.7563360.087*
C170.3049 (7)0.7617 (6)0.6375 (3)0.0609 (12)
O30.7825 (5)0.8718 (5)0.5423 (2)0.0747 (10)
H310.898 (5)0.857 (8)0.565 (3)0.112*
H320.674 (6)0.829 (8)0.562 (3)0.112*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0464 (19)0.0462 (19)0.053 (2)0.0029 (14)0.0061 (15)0.0075 (14)
N20.072 (2)0.048 (2)0.055 (2)0.0064 (18)0.0066 (19)0.0061 (17)
C10.058 (3)0.048 (2)0.048 (3)0.0003 (19)0.005 (2)0.0056 (18)
C20.079 (3)0.094 (4)0.060 (3)0.022 (3)0.005 (3)0.017 (3)
C30.104 (4)0.118 (5)0.070 (4)0.036 (4)0.021 (3)0.017 (3)
C40.129 (5)0.120 (5)0.056 (3)0.015 (4)0.006 (3)0.014 (3)
C50.116 (5)0.185 (7)0.059 (4)0.045 (5)0.008 (3)0.029 (4)
C60.088 (4)0.141 (5)0.058 (3)0.039 (4)0.003 (3)0.020 (3)
C70.049 (2)0.072 (3)0.059 (3)0.009 (2)0.004 (2)0.009 (2)
C80.053 (3)0.065 (3)0.065 (3)0.000 (2)0.002 (2)0.003 (2)
C90.064 (3)0.056 (3)0.058 (3)0.008 (2)0.005 (2)0.007 (2)
C100.049 (2)0.058 (3)0.060 (3)0.0019 (19)0.006 (2)0.006 (2)
F10.180 (4)0.187 (4)0.060 (2)0.003 (3)0.002 (2)0.004 (2)
O10.090 (3)0.140 (4)0.114 (3)0.037 (3)0.027 (2)0.029 (3)
O20.097 (2)0.069 (2)0.061 (2)0.0018 (18)0.0046 (18)0.0101 (16)
C110.049 (2)0.041 (2)0.066 (3)0.0054 (18)0.007 (2)0.0126 (19)
C120.062 (3)0.056 (3)0.062 (3)0.004 (2)0.001 (2)0.006 (2)
C130.082 (3)0.083 (4)0.067 (3)0.009 (3)0.009 (3)0.010 (3)
C140.105 (4)0.098 (4)0.059 (3)0.005 (3)0.002 (3)0.004 (3)
C150.097 (4)0.093 (4)0.079 (4)0.004 (3)0.031 (3)0.001 (3)
C160.057 (3)0.066 (3)0.096 (4)0.002 (2)0.012 (3)0.018 (3)
C170.056 (3)0.049 (3)0.076 (3)0.012 (2)0.009 (2)0.020 (2)
O30.071 (2)0.065 (2)0.088 (3)0.0124 (18)0.0088 (18)0.0039 (17)
Geometric parameters (Å, º) top
N1—C11.408 (5)C8—H8B0.9700
N1—C101.456 (5)C9—C101.507 (5)
N1—C71.468 (5)C9—H9A0.9700
N2—C81.475 (5)C9—H9B0.9700
N2—C91.495 (5)C10—H10A0.9700
N2—H210.904 (19)C10—H10B0.9700
N2—H220.881 (19)F1—C141.358 (6)
C1—C21.381 (6)O1—C171.235 (5)
C1—C61.389 (6)O2—C171.261 (5)
C2—C31.377 (6)C11—C121.382 (5)
C2—H20.9300C11—C161.386 (6)
C3—C41.361 (8)C11—C171.496 (6)
C3—H30.9300C12—C131.375 (6)
C4—C51.355 (8)C12—H120.9300
C4—H40.9300C13—C141.356 (7)
C5—C61.375 (7)C13—H130.9300
C5—H50.9300C14—C151.366 (7)
C6—H60.9300C15—C161.377 (7)
C7—C81.509 (5)C15—H150.9300
C7—H7A0.9700C16—H160.9300
C7—H7B0.9700O3—H310.83 (2)
C8—H8A0.9700O3—H320.83 (2)
C1—N1—C10116.2 (3)C7—C8—H8B109.5
C1—N1—C7115.9 (3)H8A—C8—H8B108.1
C10—N1—C7111.5 (3)N2—C9—C10110.4 (3)
C8—N2—C9110.3 (3)N2—C9—H9A109.6
C8—N2—H21107 (3)C10—C9—H9A109.6
C9—N2—H21117 (3)N2—C9—H9B109.6
C8—N2—H22111 (3)C10—C9—H9B109.6
C9—N2—H22106 (3)H9A—C9—H9B108.1
H21—N2—H22105 (4)N1—C10—C9112.3 (3)
C2—C1—C6115.5 (4)N1—C10—H10A109.1
C2—C1—N1122.4 (4)C9—C10—H10A109.1
C6—C1—N1122.2 (4)N1—C10—H10B109.1
C3—C2—C1122.7 (5)C9—C10—H10B109.1
C3—C2—H2118.7H10A—C10—H10B107.9
C1—C2—H2118.7C12—C11—C16117.8 (4)
C4—C3—C2120.5 (5)C12—C11—C17121.9 (4)
C4—C3—H3119.8C16—C11—C17120.2 (4)
C2—C3—H3119.8C13—C12—C11121.4 (4)
C5—C4—C3118.2 (5)C13—C12—H12119.3
C5—C4—H4120.9C11—C12—H12119.3
C3—C4—H4120.9C14—C13—C12118.8 (5)
C4—C5—C6121.8 (5)C14—C13—H13120.6
C4—C5—H5119.1C12—C13—H13120.6
C6—C5—H5119.1C13—C14—F1119.2 (6)
C5—C6—C1121.3 (5)C13—C14—C15122.3 (5)
C5—C6—H6119.4F1—C14—C15118.5 (6)
C1—C6—H6119.4C14—C15—C16118.3 (5)
N1—C7—C8112.4 (3)C14—C15—H15120.9
N1—C7—H7A109.1C16—C15—H15120.9
C8—C7—H7A109.1C15—C16—C11121.4 (5)
N1—C7—H7B109.1C15—C16—H16119.3
C8—C7—H7B109.1C11—C16—H16119.3
H7A—C7—H7B107.9O1—C17—O2123.6 (5)
N2—C8—C7110.8 (3)O1—C17—C11117.7 (5)
N2—C8—H8A109.5O2—C17—C11118.7 (4)
C7—C8—H8A109.5H31—O3—H32115 (6)
N2—C8—H8B109.5
C10—N1—C1—C233.4 (6)C1—N1—C10—C9170.1 (3)
C7—N1—C1—C2167.2 (4)C7—N1—C10—C954.1 (4)
C10—N1—C1—C6146.6 (5)N2—C9—C10—N155.9 (4)
C7—N1—C1—C612.8 (6)C16—C11—C12—C130.5 (6)
C6—C1—C2—C33.5 (8)C17—C11—C12—C13180.0 (4)
N1—C1—C2—C3176.4 (5)C11—C12—C13—C140.0 (7)
C1—C2—C3—C41.9 (9)C12—C13—C14—F1179.7 (4)
C2—C3—C4—C50.0 (10)C12—C13—C14—C150.7 (8)
C3—C4—C5—C60.2 (11)C13—C14—C15—C160.8 (9)
C4—C5—C6—C12.1 (11)F1—C14—C15—C16179.6 (4)
C2—C1—C6—C53.6 (8)C14—C15—C16—C110.3 (8)
N1—C1—C6—C5176.4 (6)C12—C11—C16—C150.4 (6)
C1—N1—C7—C8170.5 (3)C17—C11—C16—C15179.9 (4)
C10—N1—C7—C853.5 (5)C12—C11—C17—O1176.1 (4)
C9—N2—C8—C756.3 (4)C16—C11—C17—O13.4 (6)
N1—C7—C8—N255.1 (5)C12—C11—C17—O23.2 (6)
C8—N2—C9—C1056.6 (4)C16—C11—C17—O2177.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···O10.90 (2)2.65 (4)3.215 (6)122 (3)
N2—H21···O20.90 (2)1.89 (2)2.791 (5)175 (4)
N2—H22···O3i0.88 (2)1.96 (2)2.812 (5)163 (4)
C8—H8A···O2ii0.972.533.481 (6)168
C8—H8B···O30.972.603.341 (5)133
C9—H9A···O3iii0.972.593.416 (6)143
O3—H31···O1iv0.83 (2)1.79 (2)2.619 (5)176 (6)
O3—H32···O20.83 (2)1.96 (2)2.773 (5)167 (6)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z+1; (iii) x1, y, z; (iv) x+1, y, z.
4-Phenylpiperazin-1-ium 4-bromobenzoate monohydrate (3) top
Crystal data top
C10H15N2+·C7H4BrO2·H2OF(000) = 784
Mr = 381.27Dx = 1.449 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.183 (2) ÅCell parameters from 1437 reflections
b = 37.748 (7) Åθ = 2.8–27.7°
c = 7.506 (2) ŵ = 2.37 mm1
β = 93.69 (4)°T = 293 K
V = 1748.2 (8) Å3Rod, colourless
Z = 40.46 × 0.20 × 0.12 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
1374 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.061
ω and φ scansθmax = 25.4°, θmin = 2.8°
Absorption correction: multi-scan
(CrysalisRED; Oxford Diffraction, 2007)
h = 47
Tmin = 0.613, Tmax = 1.000k = 4524
6103 measured reflectionsl = 89
3170 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.138Hydrogen site location: mixed
wR(F2) = 0.375H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.1282P)2 + 10.0601P]
where P = (Fo2 + 2Fc2)/3
3170 reflections(Δ/σ)max = 0.003
215 parametersΔρmax = 0.49 e Å3
7 restraintsΔρmin = 0.61 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.7034 (12)0.4002 (2)0.2295 (10)0.047 (2)
N20.7744 (14)0.4754 (2)0.2661 (11)0.057 (2)
H2N10.8169480.4959830.2219410.068*0.68 (16)
H2N20.7343250.4792260.3762440.068*
C10.6526 (17)0.3649 (3)0.2644 (14)0.052 (3)
C20.4510 (19)0.3499 (3)0.2008 (17)0.077 (4)
H20.3479950.3641770.1406530.092*
C30.406 (2)0.3151 (4)0.226 (2)0.095 (4)
H30.2753650.3057370.1790240.114*
C40.552 (3)0.2938 (4)0.320 (2)0.101 (5)
H40.5188550.2701180.3402720.122*
C50.745 (3)0.3071 (4)0.385 (2)0.109 (5)
H50.8462620.2925100.4449570.131*
C60.790 (2)0.3418 (3)0.361 (2)0.091 (4)
H60.9198740.3506440.4116150.109*
C70.8936 (15)0.4148 (3)0.3321 (15)0.056 (3)
H7A0.8632660.4160600.4571610.067*
H7B1.0156260.3989720.3218990.067*
C80.9530 (18)0.4502 (3)0.2711 (16)0.066 (3)
H8A1.0706110.4593060.3499950.080*
H8B1.0055440.4483220.1525050.080*
C90.5886 (17)0.4613 (3)0.1532 (15)0.063 (3)
H9A0.6280830.4594350.0306160.075*
H9B0.4668230.4774830.1562180.075*
C100.5255 (17)0.4260 (3)0.2189 (14)0.057 (3)
H10A0.4711370.4286890.3365120.069*
H10B0.4083950.4167740.1400700.069*
Br10.9708 (5)0.72340 (4)0.1736 (4)0.1674 (14)
O10.6289 (16)0.5558 (3)0.3222 (15)0.114 (4)
O20.9081 (15)0.5426 (2)0.1687 (11)0.077 (2)
H2O0.8536280.5228210.1707380.093*0.32 (16)
C110.8325 (17)0.6031 (3)0.2219 (13)0.053 (3)
C121.0163 (19)0.6155 (3)0.1465 (14)0.063 (3)
H121.1154090.5995570.1040780.076*
C131.053 (2)0.6508 (3)0.1343 (16)0.072 (3)
H131.1777070.6583670.0832580.086*
C140.919 (3)0.6747 (4)0.1911 (19)0.088 (4)
C150.741 (3)0.6638 (4)0.277 (2)0.097 (5)
H150.6506570.6805500.3247960.116*
C160.694 (2)0.6281 (4)0.2929 (17)0.080 (4)
H160.5727700.6207850.3499920.096*
C170.787 (2)0.5643 (4)0.2376 (14)0.062 (3)
O30.7207 (13)0.4796 (2)0.6335 (11)0.073 (2)
H310.830 (14)0.4755 (18)0.696 (17)0.109*
H320.697 (5)0.5004 (5)0.635 (5)0.109*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.044 (5)0.050 (5)0.046 (5)0.003 (4)0.002 (4)0.005 (4)
N20.063 (6)0.056 (5)0.052 (5)0.003 (5)0.011 (4)0.000 (4)
C10.054 (6)0.053 (6)0.048 (6)0.007 (5)0.001 (5)0.010 (5)
C20.066 (8)0.085 (9)0.076 (8)0.005 (7)0.021 (7)0.021 (7)
C30.092 (10)0.077 (9)0.113 (12)0.021 (8)0.018 (9)0.004 (9)
C40.119 (13)0.067 (9)0.116 (12)0.010 (9)0.015 (10)0.016 (9)
C50.127 (13)0.062 (9)0.134 (14)0.012 (9)0.021 (11)0.010 (9)
C60.085 (9)0.068 (8)0.117 (12)0.004 (7)0.015 (8)0.000 (8)
C70.039 (6)0.060 (7)0.068 (7)0.003 (5)0.000 (5)0.003 (6)
C80.056 (7)0.084 (9)0.061 (7)0.004 (6)0.010 (6)0.004 (6)
C90.054 (7)0.068 (7)0.066 (7)0.003 (6)0.005 (6)0.006 (6)
C100.065 (7)0.060 (7)0.045 (6)0.004 (6)0.012 (5)0.003 (5)
Br10.266 (3)0.0626 (11)0.169 (2)0.0154 (13)0.020 (2)0.0006 (12)
O10.091 (7)0.131 (9)0.123 (8)0.028 (6)0.036 (7)0.037 (7)
O20.098 (6)0.063 (5)0.072 (6)0.005 (5)0.015 (5)0.005 (4)
C110.052 (6)0.074 (7)0.033 (5)0.004 (6)0.006 (5)0.005 (5)
C120.069 (7)0.074 (8)0.047 (6)0.004 (6)0.008 (6)0.003 (6)
C130.085 (9)0.069 (8)0.060 (8)0.015 (7)0.003 (6)0.000 (7)
C140.128 (13)0.067 (8)0.071 (9)0.011 (9)0.012 (9)0.006 (7)
C150.110 (12)0.090 (11)0.089 (10)0.036 (9)0.006 (10)0.016 (9)
C160.079 (9)0.102 (11)0.060 (7)0.006 (8)0.010 (6)0.009 (8)
C170.058 (7)0.089 (9)0.037 (6)0.009 (7)0.013 (5)0.008 (6)
O30.081 (6)0.073 (5)0.064 (5)0.015 (4)0.010 (4)0.006 (4)
Geometric parameters (Å, º) top
N1—C11.398 (12)C9—C101.483 (14)
N1—C101.467 (12)C9—H9A0.9700
N1—C71.471 (12)C9—H9B0.9700
N2—C81.456 (13)C10—H10A0.9700
N2—C91.481 (13)C10—H10B0.9700
N2—H2N10.8900Br1—C141.872 (14)
N2—H2N20.8900O1—C171.242 (13)
C1—C61.387 (16)O2—C171.244 (14)
C1—C21.424 (15)O2—H2O0.8200
C2—C31.356 (17)C11—C121.384 (14)
C2—H20.9300C11—C161.402 (16)
C3—C41.38 (2)C11—C171.495 (16)
C3—H30.9300C12—C131.354 (16)
C4—C51.35 (2)C12—H120.9300
C4—H40.9300C13—C141.312 (18)
C5—C61.352 (17)C13—H130.9300
C5—H50.9300C14—C151.38 (2)
C6—H60.9300C15—C161.385 (19)
C7—C81.467 (14)C15—H150.9300
C7—H7A0.9700C16—H160.9300
C7—H7B0.9700O3—H310.81 (2)
C8—H8A0.9700O3—H320.796 (19)
C8—H8B0.9700
C1—N1—C10117.8 (8)C7—C8—H8B108.9
C1—N1—C7116.2 (8)H8A—C8—H8B107.7
C10—N1—C7110.5 (7)N2—C9—C10110.1 (9)
C8—N2—C9109.8 (8)N2—C9—H9A109.6
C8—N2—H2N1109.7C10—C9—H9A109.6
C9—N2—H2N1109.7N2—C9—H9B109.6
C8—N2—H2N2109.7C10—C9—H9B109.6
C9—N2—H2N2109.7H9A—C9—H9B108.2
H2N1—N2—H2N2108.2N1—C10—C9113.8 (9)
C6—C1—N1124.0 (10)N1—C10—H10A108.8
C6—C1—C2114.6 (10)C9—C10—H10A108.8
N1—C1—C2121.3 (9)N1—C10—H10B108.8
C3—C2—C1121.5 (11)C9—C10—H10B108.8
C3—C2—H2119.3H10A—C10—H10B107.7
C1—C2—H2119.3C17—O2—H2O109.5
C2—C3—C4120.3 (13)C12—C11—C16117.6 (11)
C2—C3—H3119.8C12—C11—C17121.9 (10)
C4—C3—H3119.8C16—C11—C17120.4 (11)
C5—C4—C3120.0 (14)C13—C12—C11120.4 (11)
C5—C4—H4120.0C13—C12—H12119.8
C3—C4—H4120.0C11—C12—H12119.8
C6—C5—C4119.8 (15)C14—C13—C12123.0 (13)
C6—C5—H5120.1C14—C13—H13118.5
C4—C5—H5120.1C12—C13—H13118.5
C5—C6—C1123.7 (13)C13—C14—C15119.1 (13)
C5—C6—H6118.2C13—C14—Br1122.7 (13)
C1—C6—H6118.2C15—C14—Br1118.1 (12)
C8—C7—N1112.7 (9)C14—C15—C16120.5 (13)
C8—C7—H7A109.0C14—C15—H15119.7
N1—C7—H7A109.0C16—C15—H15119.7
C8—C7—H7B109.0C15—C16—C11119.2 (12)
N1—C7—H7B109.0C15—C16—H16120.4
H7A—C7—H7B107.8C11—C16—H16120.4
N2—C8—C7113.5 (9)O1—C17—O2123.8 (12)
N2—C8—H8A108.9O1—C17—C11116.9 (12)
C7—C8—H8A108.9O2—C17—C11119.3 (10)
N2—C8—H8B108.9H31—O3—H32109 (4)
C10—N1—C1—C6147.2 (11)C1—N1—C10—C9170.7 (9)
C7—N1—C1—C612.7 (15)C7—N1—C10—C952.4 (11)
C10—N1—C1—C233.1 (14)N2—C9—C10—N155.9 (12)
C7—N1—C1—C2167.6 (10)C16—C11—C12—C133.5 (15)
C6—C1—C2—C33.4 (18)C17—C11—C12—C13180.0 (10)
N1—C1—C2—C3176.3 (12)C11—C12—C13—C140.2 (19)
C1—C2—C3—C43 (2)C12—C13—C14—C154 (2)
C2—C3—C4—C52 (3)C12—C13—C14—Br1180.0 (9)
C3—C4—C5—C62 (3)C13—C14—C15—C164 (2)
C4—C5—C6—C13 (3)Br1—C14—C15—C16179.6 (11)
N1—C1—C6—C5175.8 (14)C14—C15—C16—C111 (2)
C2—C1—C6—C54 (2)C12—C11—C16—C153.2 (17)
C1—N1—C7—C8172.4 (9)C17—C11—C16—C15179.7 (11)
C10—N1—C7—C850.0 (11)C12—C11—C17—O1173.4 (10)
C9—N2—C8—C755.9 (12)C16—C11—C17—O13.0 (15)
N1—C7—C8—N253.6 (12)C12—C11—C17—O25.8 (15)
C8—N2—C9—C1055.7 (11)C16—C11—C17—O2177.8 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N1···O20.891.902.780 (11)170
N2—H2N2···O30.891.942.803 (12)164
C8—H8A···O3i0.972.643.377 (14)133
C8—H8B···O2ii0.972.533.475 (14)166
C9—H9B···O3iii0.972.593.403 (14)142
O2—H2O···N20.822.002.780 (11)159
O3—H31···O2i0.81 (2)1.98 (2)2.782 (12)170 (7)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y+1, z; (iii) x+1, y+1, z+1.
4-Phenylpiperazin-1-ium 4-iodobenzoate (4) top
Crystal data top
C10H15N2+·C7H4IO2F(000) = 1632
Mr = 410.24Dx = 1.652 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.8507 (4) ÅCell parameters from 6801 reflections
b = 23.4045 (7) Åθ = 2.6–27.8°
c = 13.3019 (4) ŵ = 1.95 mm1
β = 102.491 (4)°T = 293 K
V = 3298.13 (19) Å3Prism, colourless
Z = 80.48 × 0.48 × 0.40 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
4641 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.024
Rotation method data acquisition using ω scans.θmax = 27.8°, θmin = 2.8°
Absorption correction: multi-scan
(CrysalisRED; Oxford Diffraction, 2007)
h = 713
Tmin = 0.575, Tmax = 1.000k = 3015
14154 measured reflectionsl = 1717
7079 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: mixed
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0402P)2]
where P = (Fo2 + 2Fc2)/3
7079 reflections(Δ/σ)max = 0.002
409 parametersΔρmax = 0.77 e Å3
4 restraintsΔρmin = 1.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6237 (3)0.57603 (14)0.0843 (2)0.0363 (8)
C20.4969 (3)0.58795 (15)0.0505 (3)0.0431 (9)
H20.4378680.5686380.0791600.052*
C30.4565 (4)0.62827 (17)0.0255 (3)0.0535 (10)
H30.3706930.6355480.0478480.064*
C40.5422 (4)0.65774 (17)0.0684 (3)0.0587 (11)
H40.5149440.6850860.1190180.070*
C50.6689 (4)0.64613 (17)0.0351 (3)0.0578 (11)
H50.7277100.6658690.0633500.069*
C60.7087 (3)0.60578 (16)0.0390 (3)0.0488 (9)
H60.7945470.5980150.0597280.059*
C70.5780 (3)0.49980 (14)0.1955 (2)0.0399 (8)
H7A0.5222730.4827270.1362090.048*
H7B0.5274350.5236720.2305380.048*
C80.6407 (3)0.45316 (15)0.2676 (3)0.0461 (9)
H8A0.5769210.4313220.2919390.055*
H8B0.6856190.4273870.2310770.055*
C90.8241 (3)0.51415 (16)0.3220 (3)0.0506 (10)
H9A0.8752900.4903800.2873770.061*
H9B0.8793340.5315710.3811650.061*
C100.7615 (3)0.56009 (15)0.2497 (3)0.0437 (9)
H10A0.7167020.5860200.2861260.052*
H10B0.8252240.5818260.2251870.052*
C110.1383 (3)0.57882 (14)0.0931 (3)0.0378 (8)
C120.0736 (3)0.62745 (16)0.1107 (3)0.0500 (10)
H120.0606840.6346740.1764040.060*
C130.0276 (4)0.66576 (16)0.0312 (3)0.0604 (11)
H130.0144180.6986380.0443100.072*
C140.0443 (4)0.65500 (19)0.0669 (3)0.0609 (12)
H140.0127080.6803040.1201260.073*
C150.1071 (3)0.60727 (17)0.0854 (3)0.0519 (10)
H150.1179680.6000610.1517080.062*
C160.1549 (3)0.56928 (15)0.0072 (3)0.0435 (9)
H160.1985470.5370800.0212490.052*
C170.1510 (4)0.48047 (15)0.1505 (3)0.0540 (10)
H17A0.1547300.4708090.0803230.065*
H17B0.0643390.4761530.1574800.065*
C180.2346 (4)0.44063 (16)0.2238 (3)0.0516 (10)
H18A0.2038710.4018370.2104970.062*
H18B0.3193850.4422440.2114510.062*
C190.1817 (3)0.55429 (15)0.2758 (3)0.0441 (9)
H19A0.0949170.5500030.2825890.053*
H19B0.2060220.5938650.2897940.053*
C200.2659 (3)0.51623 (15)0.3526 (3)0.0480 (9)
H20A0.3532380.5237240.3505400.058*
H20B0.2549040.5254060.4212360.058*
C210.5418 (3)0.35843 (13)0.5875 (2)0.0330 (7)
C220.6116 (3)0.31980 (14)0.5442 (3)0.0403 (8)
H220.6098820.3216990.4740750.048*
C230.6838 (3)0.27831 (14)0.6037 (3)0.0421 (9)
H230.7307300.2526380.5738770.050*
C240.6857 (3)0.27537 (14)0.7075 (3)0.0378 (8)
C250.6173 (3)0.31365 (15)0.7525 (3)0.0422 (9)
H250.6187420.3117070.8225870.051*
C260.5467 (3)0.35490 (15)0.6916 (3)0.0439 (9)
H260.5010840.3810140.7217850.053*
C270.4575 (3)0.40162 (15)0.5219 (3)0.0393 (8)
C281.0539 (3)0.35016 (13)0.5371 (2)0.0332 (7)
C291.0084 (3)0.32960 (15)0.6197 (3)0.0435 (9)
H290.9272880.3394300.6257760.052*
C301.0812 (3)0.29473 (14)0.6934 (3)0.0436 (9)
H301.0503190.2820460.7494310.052*
C311.2002 (3)0.27904 (13)0.6825 (3)0.0365 (8)
C321.2455 (3)0.29675 (14)0.5995 (3)0.0411 (8)
H321.3244810.2847290.5913710.049*
C331.1730 (3)0.33275 (14)0.5275 (3)0.0413 (8)
H331.2046600.3454270.4717740.050*
C340.9773 (3)0.39127 (14)0.4615 (3)0.0419 (9)
I10.78561 (3)0.21027 (2)0.79917 (2)0.05702 (10)
I21.31203 (3)0.22704 (2)0.79616 (2)0.05455 (10)
N10.6722 (2)0.53483 (12)0.1613 (2)0.0367 (7)
N20.7303 (3)0.47858 (13)0.3568 (2)0.0450 (8)
H21N0.684 (3)0.4978 (14)0.392 (2)0.054*
H22N0.771 (3)0.4508 (12)0.397 (2)0.054*
N30.1911 (2)0.53973 (11)0.1718 (2)0.0367 (7)
N40.2388 (3)0.45488 (14)0.3322 (2)0.0460 (8)
H41N0.300 (3)0.4353 (14)0.370 (2)0.055*
H42N0.170 (2)0.4466 (15)0.350 (3)0.055*
O10.4122 (2)0.44040 (11)0.56598 (19)0.0571 (7)
O20.4359 (2)0.39436 (11)0.42592 (19)0.0561 (7)
O31.0238 (2)0.41261 (12)0.3931 (2)0.0644 (8)
O40.8680 (2)0.40136 (11)0.4733 (2)0.0645 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.043 (2)0.033 (2)0.0308 (18)0.0001 (16)0.0052 (16)0.0052 (15)
C20.039 (2)0.046 (2)0.041 (2)0.0046 (17)0.0016 (17)0.0035 (17)
C30.051 (2)0.056 (3)0.047 (2)0.003 (2)0.0029 (19)0.004 (2)
C40.071 (3)0.055 (3)0.046 (2)0.009 (2)0.004 (2)0.0126 (19)
C50.059 (3)0.062 (3)0.055 (3)0.001 (2)0.018 (2)0.016 (2)
C60.045 (2)0.053 (2)0.047 (2)0.0058 (19)0.0084 (19)0.0039 (19)
C70.039 (2)0.040 (2)0.038 (2)0.0020 (16)0.0033 (16)0.0034 (16)
C80.049 (2)0.043 (2)0.047 (2)0.0008 (18)0.0116 (19)0.0044 (18)
C90.051 (2)0.045 (2)0.047 (2)0.0004 (19)0.0076 (19)0.0001 (18)
C100.045 (2)0.040 (2)0.041 (2)0.0041 (17)0.0035 (17)0.0029 (17)
C110.0287 (18)0.034 (2)0.045 (2)0.0064 (15)0.0052 (16)0.0021 (16)
C120.052 (2)0.041 (2)0.052 (2)0.0060 (18)0.0013 (19)0.0017 (18)
C130.055 (3)0.038 (2)0.079 (3)0.0053 (19)0.007 (2)0.008 (2)
C140.055 (3)0.056 (3)0.063 (3)0.005 (2)0.006 (2)0.025 (2)
C150.047 (2)0.055 (3)0.050 (2)0.011 (2)0.0033 (19)0.015 (2)
C160.038 (2)0.042 (2)0.048 (2)0.0036 (16)0.0020 (18)0.0056 (17)
C170.068 (3)0.036 (2)0.047 (2)0.0018 (19)0.011 (2)0.0027 (17)
C180.069 (3)0.035 (2)0.045 (2)0.0006 (18)0.001 (2)0.0045 (17)
C190.047 (2)0.042 (2)0.040 (2)0.0026 (17)0.0040 (18)0.0009 (17)
C200.054 (2)0.048 (2)0.037 (2)0.0068 (19)0.0002 (18)0.0008 (17)
C210.0347 (18)0.0315 (19)0.0323 (18)0.0013 (15)0.0060 (15)0.0008 (15)
C220.042 (2)0.045 (2)0.0341 (19)0.0010 (17)0.0088 (16)0.0007 (16)
C230.050 (2)0.035 (2)0.043 (2)0.0115 (16)0.0121 (18)0.0007 (16)
C240.0397 (19)0.0293 (19)0.0396 (19)0.0034 (15)0.0018 (16)0.0035 (15)
C250.051 (2)0.045 (2)0.0300 (18)0.0019 (18)0.0073 (17)0.0025 (16)
C260.049 (2)0.043 (2)0.040 (2)0.0125 (17)0.0076 (17)0.0043 (17)
C270.037 (2)0.038 (2)0.041 (2)0.0022 (16)0.0039 (17)0.0011 (16)
C280.0345 (18)0.0255 (18)0.0378 (19)0.0007 (15)0.0040 (16)0.0040 (14)
C290.040 (2)0.038 (2)0.057 (2)0.0005 (17)0.0202 (18)0.0016 (18)
C300.056 (2)0.034 (2)0.046 (2)0.0014 (18)0.0232 (19)0.0025 (17)
C310.049 (2)0.0234 (18)0.0368 (19)0.0023 (15)0.0091 (17)0.0032 (14)
C320.0384 (19)0.041 (2)0.045 (2)0.0062 (16)0.0121 (17)0.0039 (17)
C330.047 (2)0.040 (2)0.039 (2)0.0017 (17)0.0147 (17)0.0038 (16)
C340.043 (2)0.032 (2)0.048 (2)0.0049 (16)0.0022 (19)0.0041 (17)
I10.0741 (2)0.03693 (15)0.05275 (17)0.00927 (12)0.00227 (14)0.00844 (12)
I20.07106 (19)0.04819 (17)0.04096 (15)0.00624 (13)0.00451 (13)0.00842 (11)
N10.0384 (16)0.0353 (17)0.0340 (15)0.0029 (13)0.0024 (13)0.0008 (13)
N20.055 (2)0.039 (2)0.0394 (18)0.0156 (15)0.0074 (16)0.0050 (14)
N30.0403 (16)0.0308 (16)0.0344 (15)0.0016 (13)0.0020 (13)0.0011 (12)
N40.0415 (19)0.050 (2)0.0430 (19)0.0044 (16)0.0021 (16)0.0144 (15)
O10.0706 (18)0.0487 (17)0.0495 (16)0.0268 (14)0.0076 (14)0.0019 (13)
O20.0652 (18)0.0619 (18)0.0362 (15)0.0221 (14)0.0001 (13)0.0015 (13)
O30.0583 (18)0.074 (2)0.0632 (18)0.0164 (15)0.0181 (15)0.0297 (16)
O40.0441 (16)0.0659 (19)0.085 (2)0.0157 (14)0.0169 (15)0.0297 (16)
Geometric parameters (Å, º) top
C1—C21.380 (4)C18—N41.472 (4)
C1—C61.393 (5)C18—H18A0.9700
C1—N11.422 (4)C18—H18B0.9700
C2—C31.383 (5)C19—N31.450 (4)
C2—H20.9300C19—C201.506 (5)
C3—C41.376 (5)C19—H19A0.9700
C3—H30.9300C19—H19B0.9700
C4—C51.377 (5)C20—N41.479 (5)
C4—H40.9300C20—H20A0.9700
C5—C61.367 (5)C20—H20B0.9700
C5—H50.9300C21—C261.377 (4)
C6—H60.9300C21—C221.382 (4)
C7—N11.458 (4)C21—C271.509 (4)
C7—C81.514 (4)C22—C231.384 (4)
C7—H7A0.9700C22—H220.9300
C7—H7B0.9700C23—C241.378 (4)
C8—N21.485 (4)C23—H230.9300
C8—H8A0.9700C24—C251.380 (5)
C8—H8B0.9700C24—I12.101 (3)
C9—N21.465 (5)C25—C261.381 (4)
C9—C101.503 (5)C25—H250.9300
C9—H9A0.9700C26—H260.9300
C9—H9B0.9700C27—O11.238 (4)
C10—N11.477 (4)C27—O21.258 (4)
C10—H10A0.9700C28—C291.385 (4)
C10—H10B0.9700C28—C331.387 (4)
C11—C121.384 (5)C28—C341.506 (5)
C11—C161.403 (5)C29—C301.384 (5)
C11—N31.415 (4)C29—H290.9300
C12—C131.394 (5)C30—C311.380 (5)
C12—H120.9300C30—H300.9300
C13—C141.378 (6)C31—C321.366 (4)
C13—H130.9300C31—I22.109 (3)
C14—C151.358 (5)C32—C331.386 (4)
C14—H140.9300C32—H320.9300
C15—C161.381 (5)C33—H330.9300
C15—H150.9300C34—O31.237 (4)
C16—H160.9300C34—O41.253 (4)
C17—N31.463 (4)N2—H21N0.877 (18)
C17—C181.503 (5)N2—H22N0.897 (18)
C17—H17A0.9700N4—H41N0.869 (18)
C17—H17B0.9700N4—H42N0.851 (18)
C2—C1—C6117.7 (3)N3—C19—C20110.5 (3)
C2—C1—N1124.0 (3)N3—C19—H19A109.5
C6—C1—N1118.3 (3)C20—C19—H19A109.5
C1—C2—C3120.8 (3)N3—C19—H19B109.5
C1—C2—H2119.6C20—C19—H19B109.5
C3—C2—H2119.6H19A—C19—H19B108.1
C4—C3—C2120.6 (4)N4—C20—C19112.5 (3)
C4—C3—H3119.7N4—C20—H20A109.1
C2—C3—H3119.7C19—C20—H20A109.1
C3—C4—C5119.0 (4)N4—C20—H20B109.1
C3—C4—H4120.5C19—C20—H20B109.1
C5—C4—H4120.5H20A—C20—H20B107.8
C6—C5—C4120.4 (4)C26—C21—C22118.3 (3)
C6—C5—H5119.8C26—C21—C27120.6 (3)
C4—C5—H5119.8C22—C21—C27121.0 (3)
C5—C6—C1121.5 (3)C21—C22—C23120.9 (3)
C5—C6—H6119.3C21—C22—H22119.5
C1—C6—H6119.3C23—C22—H22119.5
N1—C7—C8110.7 (3)C24—C23—C22119.5 (3)
N1—C7—H7A109.5C24—C23—H23120.3
C8—C7—H7A109.5C22—C23—H23120.3
N1—C7—H7B109.5C23—C24—C25120.6 (3)
C8—C7—H7B109.5C23—C24—I1120.8 (2)
H7A—C7—H7B108.1C25—C24—I1118.5 (3)
N2—C8—C7110.1 (3)C24—C25—C26118.8 (3)
N2—C8—H8A109.6C24—C25—H25120.6
C7—C8—H8A109.6C26—C25—H25120.6
N2—C8—H8B109.6C21—C26—C25121.8 (3)
C7—C8—H8B109.6C21—C26—H26119.1
H8A—C8—H8B108.2C25—C26—H26119.1
N2—C9—C10111.1 (3)O1—C27—O2125.0 (3)
N2—C9—H9A109.4O1—C27—C21118.0 (3)
C10—C9—H9A109.4O2—C27—C21116.9 (3)
N2—C9—H9B109.4C29—C28—C33118.1 (3)
C10—C9—H9B109.4C29—C28—C34120.8 (3)
H9A—C9—H9B108.0C33—C28—C34121.1 (3)
N1—C10—C9110.6 (3)C30—C29—C28121.3 (3)
N1—C10—H10A109.5C30—C29—H29119.3
C9—C10—H10A109.5C28—C29—H29119.3
N1—C10—H10B109.5C31—C30—C29119.1 (3)
C9—C10—H10B109.5C31—C30—H30120.5
H10A—C10—H10B108.1C29—C30—H30120.5
C12—C11—C16117.8 (3)C32—C31—C30120.8 (3)
C12—C11—N3123.1 (3)C32—C31—I2120.2 (2)
C16—C11—N3119.1 (3)C30—C31—I2119.0 (3)
C11—C12—C13120.8 (4)C31—C32—C33119.5 (3)
C11—C12—H12119.6C31—C32—H32120.2
C13—C12—H12119.6C33—C32—H32120.2
C14—C13—C12120.1 (4)C32—C33—C28121.1 (3)
C14—C13—H13119.9C32—C33—H33119.5
C12—C13—H13119.9C28—C33—H33119.5
C15—C14—C13119.7 (4)O3—C34—O4124.4 (3)
C15—C14—H14120.1O3—C34—C28119.7 (3)
C13—C14—H14120.1O4—C34—C28115.9 (3)
C14—C15—C16120.9 (4)C1—N1—C7115.5 (3)
C14—C15—H15119.5C1—N1—C10112.3 (3)
C16—C15—H15119.5C7—N1—C10111.1 (3)
C15—C16—C11120.6 (4)C9—N2—C8110.8 (3)
C15—C16—H16119.7C9—N2—H21N113 (2)
C11—C16—H16119.7C8—N2—H21N106 (2)
N3—C17—C18110.5 (3)C9—N2—H22N108 (2)
N3—C17—H17A109.5C8—N2—H22N110 (2)
C18—C17—H17A109.5H21N—N2—H22N109 (3)
N3—C17—H17B109.5C11—N3—C19116.9 (3)
C18—C17—H17B109.5C11—N3—C17114.5 (3)
H17A—C17—H17B108.1C19—N3—C17109.1 (3)
N4—C18—C17112.4 (3)C18—N4—C20111.3 (3)
N4—C18—H18A109.1C18—N4—H41N108 (2)
C17—C18—H18A109.1C20—N4—H41N108 (2)
N4—C18—H18B109.1C18—N4—H42N112 (3)
C17—C18—H18B109.1C20—N4—H42N109 (3)
H18A—C18—H18B107.9H41N—N4—H42N109 (3)
C6—C1—C2—C30.2 (5)C33—C28—C29—C302.8 (5)
N1—C1—C2—C3179.4 (3)C34—C28—C29—C30175.8 (3)
C1—C2—C3—C40.6 (6)C28—C29—C30—C311.7 (5)
C2—C3—C4—C50.6 (6)C29—C30—C31—C321.0 (5)
C3—C4—C5—C60.2 (6)C29—C30—C31—I2179.0 (3)
C4—C5—C6—C11.1 (6)C30—C31—C32—C332.6 (5)
C2—C1—C6—C51.1 (5)I2—C31—C32—C33177.5 (3)
N1—C1—C6—C5179.7 (3)C31—C32—C33—C281.4 (5)
N1—C7—C8—N256.9 (4)C29—C28—C33—C321.3 (5)
N2—C9—C10—N156.4 (4)C34—C28—C33—C32177.3 (3)
C16—C11—C12—C130.5 (5)C29—C28—C34—O3174.3 (3)
N3—C11—C12—C13177.5 (3)C33—C28—C34—O34.3 (5)
C11—C12—C13—C141.1 (6)C29—C28—C34—O45.8 (5)
C12—C13—C14—C150.8 (6)C33—C28—C34—O4175.6 (3)
C13—C14—C15—C160.2 (6)C2—C1—N1—C77.2 (4)
C14—C15—C16—C110.8 (5)C6—C1—N1—C7172.0 (3)
C12—C11—C16—C150.5 (5)C2—C1—N1—C10121.7 (3)
N3—C11—C16—C15178.5 (3)C6—C1—N1—C1059.2 (4)
N3—C17—C18—N456.1 (4)C8—C7—N1—C1173.3 (3)
N3—C19—C20—N455.9 (4)C8—C7—N1—C1057.3 (3)
C26—C21—C22—C230.4 (5)C9—C10—N1—C1172.1 (3)
C27—C21—C22—C23176.6 (3)C9—C10—N1—C756.8 (4)
C21—C22—C23—C240.3 (5)C10—C9—N2—C856.7 (4)
C22—C23—C24—C250.6 (5)C7—C8—N2—C956.5 (4)
C22—C23—C24—I1176.5 (2)C12—C11—N3—C193.6 (5)
C23—C24—C25—C260.2 (5)C16—C11—N3—C19174.3 (3)
I1—C24—C25—C26177.0 (3)C12—C11—N3—C17125.8 (4)
C22—C21—C26—C250.9 (5)C16—C11—N3—C1756.2 (4)
C27—C21—C26—C25176.2 (3)C20—C19—N3—C11167.4 (3)
C24—C25—C26—C210.6 (5)C20—C19—N3—C1760.7 (4)
C26—C21—C27—O113.6 (5)C18—C17—N3—C11165.9 (3)
C22—C21—C27—O1169.4 (3)C18—C17—N3—C1960.9 (4)
C26—C21—C27—O2164.6 (3)C17—C18—N4—C2050.0 (4)
C22—C21—C27—O212.4 (5)C19—C20—N4—C1849.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O30.972.633.218 (4)119
N2—H21N···O1i0.88 (2)1.94 (2)2.780 (4)160 (3)
N2—H22N···O40.90 (2)1.74 (2)2.627 (4)173 (3)
N4—H41N···O10.87 (2)2.63 (3)3.285 (4)133 (3)
N4—H41N···O20.87 (2)1.78 (2)2.643 (4)169 (3)
N4—H42N···O3ii0.85 (2)1.97 (2)2.809 (4)169 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z.
4-Phenylpiperazin-1-ium 4-nitrobenzoate (5) top
Crystal data top
C10H15N2+·C7H4NO4F(000) = 696
Mr = 329.35Dx = 1.343 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.0683 (9) ÅCell parameters from 4084 reflections
b = 15.7868 (9) Åθ = 2.6–27.9°
c = 7.9255 (5) ŵ = 0.10 mm1
β = 95.137 (6)°T = 293 K
V = 1628.52 (18) Å3Prism, yellow
Z = 40.48 × 0.44 × 0.16 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
2088 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.035
Rotation method data acquisition using ω scans.θmax = 28.0°, θmin = 2.9°
Absorption correction: multi-scan
(CrysalisRED; Oxford Diffraction, 2007)
h = 1217
Tmin = 0.790, Tmax = 1.000k = 1920
11699 measured reflectionsl = 1010
3587 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: mixed
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0406P)2 + 0.2296P]
where P = (Fo2 + 2Fc2)/3
3587 reflections(Δ/σ)max < 0.001
251 parametersΔρmax = 0.15 e Å3
83 restraintsΔρmin = 0.13 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.31713 (11)0.63737 (9)0.06853 (18)0.0443 (4)
N20.42384 (12)0.61812 (10)0.3978 (2)0.0497 (4)
H210.4059 (14)0.5640 (10)0.412 (2)0.060*
H220.4650 (13)0.6358 (11)0.493 (2)0.060*
C10.25304 (14)0.61655 (11)0.0794 (2)0.0451 (5)
C20.16112 (15)0.66029 (13)0.1177 (3)0.0592 (5)
H20.1419770.7024370.0447760.071*
C30.09843 (17)0.64191 (16)0.2618 (3)0.0711 (7)
H30.0376010.6719650.2850790.085*
C40.12406 (19)0.58034 (18)0.3709 (3)0.0786 (7)
H40.0809840.5679360.4675620.094*
C50.21412 (19)0.53709 (16)0.3360 (3)0.0769 (7)
H50.2323090.4950420.4099260.092*
C60.27853 (16)0.55500 (13)0.1925 (2)0.0603 (6)
H60.3397890.5252510.1716610.072*
C70.41360 (13)0.59047 (11)0.0927 (2)0.0482 (5)
H7A0.4503910.5963510.0076250.058*
H7B0.3988420.5308230.1071190.058*
C80.48078 (14)0.62161 (12)0.2451 (2)0.0546 (5)
H8A0.5418770.5866420.2618200.066*
H8B0.5021440.6794040.2260490.066*
C90.33189 (14)0.67211 (12)0.3727 (2)0.0551 (5)
H9A0.3521640.7301740.3534620.066*
H9B0.2949130.6708100.4734270.066*
C100.26333 (14)0.64092 (12)0.2229 (2)0.0525 (5)
H10A0.2381740.5848490.2474400.063*
H10B0.2044950.6782990.2042550.063*
O10.54550 (10)0.66915 (8)0.67450 (17)0.0659 (4)
O20.62576 (10)0.55694 (8)0.58251 (17)0.0596 (4)
N30.9330 (8)0.6415 (18)1.2296 (16)0.0790 (18)0.62 (3)
O30.9183 (12)0.6862 (8)1.3520 (19)0.108 (3)0.62 (3)
O41.0096 (8)0.5973 (11)1.2186 (12)0.095 (2)0.62 (3)
N3A0.9219 (15)0.647 (3)1.244 (3)0.082 (3)0.38 (3)
O3A0.8898 (15)0.6659 (14)1.380 (2)0.095 (3)0.38 (3)
O4A1.0127 (12)0.6352 (18)1.223 (2)0.101 (3)0.38 (3)
C110.70169 (13)0.62778 (10)0.8251 (2)0.0422 (4)
C120.68311 (14)0.67242 (11)0.9690 (2)0.0505 (5)
H120.6201570.6992320.9748250.061*
C130.75707 (16)0.67767 (12)1.1045 (3)0.0591 (5)
H130.7441750.7066021.2025740.071*
C140.84977 (16)0.63922 (13)1.0907 (3)0.0567 (5)
C150.87192 (15)0.59666 (13)0.9479 (3)0.0603 (6)
H150.9361140.5721840.9406870.072*
C160.79686 (14)0.59106 (12)0.8155 (2)0.0523 (5)
H160.8103770.5620650.7177500.063*
C170.61816 (14)0.61734 (11)0.6823 (2)0.0465 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0417 (9)0.0431 (8)0.0468 (9)0.0018 (7)0.0038 (7)0.0015 (7)
N20.0525 (10)0.0434 (9)0.0505 (10)0.0009 (7)0.0110 (8)0.0029 (8)
C10.0461 (11)0.0442 (10)0.0437 (11)0.0081 (8)0.0027 (8)0.0094 (9)
C20.0514 (12)0.0637 (13)0.0606 (13)0.0023 (10)0.0057 (10)0.0071 (11)
C30.0526 (14)0.0923 (17)0.0657 (16)0.0093 (12)0.0104 (11)0.0187 (14)
C40.0733 (17)0.112 (2)0.0476 (14)0.0251 (15)0.0141 (12)0.0100 (14)
C50.092 (2)0.0928 (18)0.0446 (13)0.0129 (14)0.0014 (12)0.0059 (12)
C60.0661 (14)0.0663 (13)0.0472 (12)0.0008 (10)0.0018 (10)0.0001 (11)
C70.0458 (11)0.0493 (10)0.0489 (12)0.0022 (9)0.0014 (8)0.0022 (9)
C80.0457 (12)0.0565 (12)0.0603 (13)0.0002 (9)0.0025 (10)0.0042 (10)
C90.0561 (12)0.0510 (11)0.0562 (12)0.0111 (9)0.0070 (9)0.0086 (10)
C100.0478 (12)0.0564 (12)0.0522 (12)0.0093 (9)0.0026 (9)0.0065 (9)
O10.0597 (9)0.0622 (8)0.0710 (10)0.0133 (7)0.0213 (7)0.0130 (7)
O20.0715 (10)0.0475 (7)0.0567 (9)0.0020 (7)0.0117 (7)0.0087 (7)
N30.068 (4)0.100 (5)0.065 (3)0.018 (4)0.019 (3)0.005 (3)
O30.106 (5)0.126 (5)0.084 (5)0.009 (4)0.036 (4)0.028 (4)
O40.056 (3)0.140 (6)0.084 (3)0.000 (4)0.0213 (18)0.014 (4)
N3A0.064 (5)0.105 (6)0.071 (5)0.007 (5)0.024 (5)0.007 (5)
O3A0.091 (7)0.124 (7)0.066 (5)0.011 (5)0.025 (4)0.011 (5)
O4A0.050 (4)0.146 (8)0.102 (5)0.018 (6)0.023 (3)0.020 (6)
C110.0450 (11)0.0361 (9)0.0444 (11)0.0045 (8)0.0029 (8)0.0032 (8)
C120.0491 (12)0.0475 (11)0.0538 (12)0.0021 (9)0.0014 (9)0.0022 (9)
C130.0690 (15)0.0557 (12)0.0510 (12)0.0014 (11)0.0046 (10)0.0104 (10)
C140.0520 (13)0.0599 (13)0.0550 (13)0.0116 (10)0.0127 (10)0.0058 (10)
C150.0414 (12)0.0722 (14)0.0664 (15)0.0017 (10)0.0008 (10)0.0060 (12)
C160.0500 (12)0.0564 (12)0.0500 (12)0.0033 (10)0.0016 (9)0.0033 (9)
C170.0498 (12)0.0389 (10)0.0492 (12)0.0040 (9)0.0044 (9)0.0045 (9)
Geometric parameters (Å, º) top
N1—C11.417 (2)C9—H9A0.9700
N1—C71.460 (2)C9—H9B0.9700
N1—C101.466 (2)C10—H10A0.9700
N2—C91.472 (2)C10—H10B0.9700
N2—C81.477 (3)O1—C171.250 (2)
N2—H210.896 (14)O2—C171.248 (2)
N2—H220.931 (14)N3—O41.229 (10)
C1—C61.383 (3)N3—O31.229 (9)
C1—C21.395 (3)N3—C141.477 (8)
C2—C31.376 (3)N3A—O4A1.229 (10)
C2—H20.9300N3A—O3A1.229 (9)
C3—C41.363 (3)N3A—C141.474 (14)
C3—H30.9300C11—C161.380 (2)
C4—C51.367 (3)C11—C121.381 (2)
C4—H40.9300C11—C171.510 (2)
C5—C61.383 (3)C12—C131.381 (3)
C5—H50.9300C12—H120.9300
C6—H60.9300C13—C141.368 (3)
C7—C81.510 (2)C13—H130.9300
C7—H7A0.9700C14—C151.370 (3)
C7—H7B0.9700C15—C161.374 (3)
C8—H8A0.9700C15—H150.9300
C8—H8B0.9700C16—H160.9300
C9—C101.504 (2)
C1—N1—C7115.50 (14)N2—C9—H9A109.7
C1—N1—C10114.03 (14)C10—C9—H9A109.7
C7—N1—C10112.51 (13)N2—C9—H9B109.7
C9—N2—C8109.43 (15)C10—C9—H9B109.7
C9—N2—H21110.4 (12)H9A—C9—H9B108.2
C8—N2—H21107.1 (13)N1—C10—C9112.01 (16)
C9—N2—H22110.0 (11)N1—C10—H10A109.2
C8—N2—H22110.9 (12)C9—C10—H10A109.2
H21—N2—H22108.9 (16)N1—C10—H10B109.2
C6—C1—C2117.37 (17)C9—C10—H10B109.2
C6—C1—N1122.71 (16)H10A—C10—H10B107.9
C2—C1—N1119.91 (17)O4—N3—O3124.7 (4)
C3—C2—C1120.9 (2)O4—N3—C14118.9 (9)
C3—C2—H2119.6O3—N3—C14116.4 (9)
C1—C2—H2119.6O4A—N3A—O3A124.6 (5)
C4—C3—C2121.0 (2)O4A—N3A—C14115.4 (12)
C4—C3—H3119.5O3A—N3A—C14120.0 (12)
C2—C3—H3119.5C16—C11—C12119.07 (16)
C3—C4—C5118.9 (2)C16—C11—C17120.49 (17)
C3—C4—H4120.5C12—C11—C17120.42 (17)
C5—C4—H4120.5C11—C12—C13120.68 (18)
C4—C5—C6120.9 (2)C11—C12—H12119.7
C4—C5—H5119.5C13—C12—H12119.7
C6—C5—H5119.5C14—C13—C12118.33 (19)
C5—C6—C1120.9 (2)C14—C13—H13120.8
C5—C6—H6119.6C12—C13—H13120.8
C1—C6—H6119.6C13—C14—C15122.52 (18)
N1—C7—C8111.92 (15)C13—C14—N3A113.8 (8)
N1—C7—H7A109.2C15—C14—N3A123.7 (8)
C8—C7—H7A109.2C13—C14—N3121.9 (5)
N1—C7—H7B109.2C15—C14—N3115.6 (5)
C8—C7—H7B109.2C14—C15—C16118.29 (19)
H7A—C7—H7B107.9C14—C15—H15120.9
N2—C8—C7110.09 (16)C16—C15—H15120.9
N2—C8—H8A109.6C15—C16—C11121.07 (19)
C7—C8—H8A109.6C15—C16—H16119.5
N2—C8—H8B109.6C11—C16—H16119.5
C7—C8—H8B109.6O2—C17—O1124.86 (16)
H8A—C8—H8B108.2O2—C17—C11117.72 (16)
N2—C9—C10109.78 (15)O1—C17—C11117.41 (17)
C7—N1—C1—C61.1 (2)C11—C12—C13—C141.5 (3)
C10—N1—C1—C6131.49 (19)C12—C13—C14—C150.6 (3)
C7—N1—C1—C2177.35 (16)C12—C13—C14—N3A179 (2)
C10—N1—C1—C250.0 (2)C12—C13—C14—N3179.8 (14)
C6—C1—C2—C30.6 (3)O4A—N3A—C14—C13160 (3)
N1—C1—C2—C3179.11 (18)O3A—N3A—C14—C1318 (5)
C1—C2—C3—C40.2 (3)O4A—N3A—C14—C1521 (5)
C2—C3—C4—C50.6 (3)O3A—N3A—C14—C15161 (3)
C3—C4—C5—C60.1 (4)O4—N3—C14—C13171.1 (17)
C4—C5—C6—C10.7 (3)O3—N3—C14—C137 (3)
C2—C1—C6—C51.0 (3)O4—N3—C14—C159 (3)
N1—C1—C6—C5179.50 (18)O3—N3—C14—C15173.1 (18)
C1—N1—C7—C8175.30 (15)C13—C14—C15—C161.5 (3)
C10—N1—C7—C851.4 (2)N3A—C14—C15—C16177 (2)
C9—N2—C8—C760.00 (19)N3—C14—C15—C16178.8 (13)
N1—C7—C8—N255.4 (2)C14—C15—C16—C110.4 (3)
C8—N2—C9—C1060.4 (2)C12—C11—C16—C151.5 (3)
C1—N1—C10—C9173.98 (14)C17—C11—C16—C15176.86 (17)
C7—N1—C10—C952.0 (2)C16—C11—C17—O220.4 (3)
N2—C9—C10—N156.4 (2)C12—C11—C17—O2157.93 (17)
C16—C11—C12—C132.5 (3)C16—C11—C17—O1160.75 (18)
C17—C11—C12—C13175.88 (17)C12—C11—C17—O120.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···O2i0.90 (1)1.96 (2)2.846 (2)173 (2)
N2—H22···O10.93 (1)1.78 (2)2.7135 (19)179 (2)
N2—H22···O20.93 (1)2.49 (2)3.057 (2)120 (1)
C8—H8B···O1ii0.972.503.468 (2)176
C10—H10B···O4Aiii0.972.613.276 (15)126
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z1/2; (iii) x1, y, z1.
4-Phenylpiperazin-1-ium 2-hydroxy-4,6-dinitrophenolate (6) top
Crystal data top
C10H15N2+·C7H3N2O7F(000) = 816
Mr = 390.35Dx = 1.444 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.779 (3) ÅCell parameters from 1200 reflections
b = 7.411 (3) Åθ = 2.6–27.9°
c = 31.357 (9) ŵ = 0.11 mm1
β = 96.82 (3)°T = 293 K
V = 1794.9 (11) Å3Prism, yellow
Z = 40.20 × 0.18 × 0.12 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
1590 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.055
Rotation method data acquisition using ω scans.θmax = 28.0°, θmin = 2.6°
Absorption correction: multi-scan
(CrysalisRED; Oxford Diffraction, 2007)
h = 99
Tmin = 0.959, Tmax = 1.000k = 99
7737 measured reflectionsl = 4026
3882 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.085Hydrogen site location: mixed
wR(F2) = 0.155H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0396P)2 + 0.7929P]
where P = (Fo2 + 2Fc2)/3
3882 reflections(Δ/σ)max < 0.001
321 parametersΔρmax = 0.18 e Å3
288 restraintsΔρmin = 0.20 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.2174 (3)0.5690 (4)0.40623 (8)0.0678 (9)
O20.3815 (3)0.5542 (4)0.46760 (8)0.0644 (9)
H2O0.372 (5)0.581 (6)0.4933 (7)0.077*
O30.2737 (3)0.6604 (4)0.53481 (7)0.0538 (8)
N30.0028 (7)0.8237 (11)0.57913 (17)0.0504 (16)0.690 (11)
O40.1059 (7)0.7315 (9)0.60356 (18)0.069 (2)0.690 (11)
O50.0948 (7)0.9353 (9)0.5930 (2)0.0602 (19)0.690 (11)
N3A0.0015 (11)0.825 (2)0.5769 (3)0.053 (3)0.310 (11)
O4A0.1438 (10)0.818 (2)0.5983 (4)0.065 (4)0.310 (11)
O5A0.1263 (11)0.898 (2)0.5910 (5)0.053 (4)0.310 (11)
O60.4591 (3)0.9346 (4)0.45916 (8)0.0725 (9)
O70.3746 (3)0.8095 (4)0.40327 (8)0.0738 (9)
N40.3514 (4)0.8515 (5)0.44113 (10)0.0517 (9)
C110.0978 (4)0.6775 (5)0.46853 (11)0.0390 (9)
C120.1281 (4)0.7048 (5)0.51389 (11)0.0418 (9)
C130.0142 (4)0.7862 (5)0.53288 (10)0.0400 (9)
C140.1672 (4)0.8346 (5)0.50932 (11)0.0398 (9)
H140.2548870.8884300.5225790.048*
C150.1890 (4)0.8024 (5)0.46600 (11)0.0393 (9)
C160.0579 (4)0.7232 (5)0.44552 (11)0.0413 (10)
H160.0759200.7012220.4161280.050*
C170.2359 (5)0.5974 (5)0.44453 (12)0.0477 (10)
N10.6156 (4)0.6931 (4)0.70321 (9)0.0467 (8)
N20.4692 (4)0.6095 (6)0.61759 (11)0.0666 (11)
H210.387 (4)0.620 (5)0.5958 (9)0.080*
H220.548 (4)0.538 (4)0.6091 (11)0.080*
C10.7285 (5)0.6958 (7)0.74341 (14)0.0502 (14)0.687 (10)
C20.8534 (7)0.8298 (8)0.75105 (14)0.0631 (17)0.687 (10)
H2A0.8634270.9184780.7304950.076*0.687 (10)
C30.9631 (6)0.8314 (9)0.78940 (16)0.0671 (17)0.687 (10)
H3A1.0466620.9211150.7945140.081*0.687 (10)
C40.9481 (6)0.6989 (9)0.82012 (14)0.0613 (17)0.687 (10)
H4A1.0215620.6999930.8457810.074*0.687 (10)
C50.8233 (7)0.5649 (7)0.81248 (16)0.0652 (17)0.687 (10)
H5A0.8132280.4762320.8330280.078*0.687 (10)
C60.7135 (7)0.5633 (7)0.77412 (17)0.0585 (16)0.687 (10)
H6A0.6299920.4735920.7690090.070*0.687 (10)
C1A0.7263 (12)0.7159 (17)0.7414 (3)0.054 (2)0.313 (10)
C2A0.8039 (15)0.8840 (16)0.7482 (3)0.062 (2)0.313 (10)
H2AA0.7821980.9744770.7277120.075*0.313 (10)
C3A0.9139 (16)0.9170 (17)0.7856 (4)0.066 (2)0.313 (10)
H3AA0.9657781.0294540.7902190.080*0.313 (10)
C4A0.9463 (13)0.782 (2)0.8163 (3)0.064 (2)0.313 (10)
H4AA1.0199130.8037790.8413250.076*0.313 (10)
C5A0.8688 (16)0.6136 (17)0.8094 (4)0.059 (2)0.313 (10)
H5AA0.8904670.5231250.8299240.070*0.313 (10)
C6A0.7588 (16)0.5806 (15)0.7720 (4)0.059 (2)0.313 (10)
H6AA0.7068860.4681440.7674170.071*0.313 (10)
C70.5365 (5)0.5189 (6)0.69241 (12)0.0624 (12)
H7A0.4880240.4710540.7171890.075*
H7B0.6242640.4353140.6850380.075*
C80.3961 (5)0.5342 (6)0.65535 (12)0.0674 (13)
H8A0.3468100.4161570.6483710.081*
H8B0.3047490.6123210.6631220.081*
C90.5459 (5)0.7883 (6)0.62835 (12)0.0652 (13)
H9A0.4566010.8707770.6353730.078*
H9B0.5954820.8364620.6037640.078*
C100.6842 (5)0.7725 (6)0.66592 (12)0.0645 (13)
H10A0.7777850.6979050.6579620.077*
H10B0.7308820.8912560.6734250.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0641 (18)0.097 (2)0.0424 (17)0.0242 (16)0.0060 (13)0.0135 (18)
O20.0490 (17)0.099 (2)0.0463 (17)0.0219 (16)0.0089 (14)0.0024 (19)
O30.0412 (15)0.077 (2)0.0425 (16)0.0074 (14)0.0000 (12)0.0002 (15)
N30.047 (3)0.068 (4)0.037 (3)0.003 (3)0.006 (3)0.006 (3)
O40.062 (3)0.104 (5)0.040 (3)0.015 (3)0.000 (2)0.005 (3)
O50.059 (3)0.070 (4)0.053 (3)0.002 (3)0.015 (3)0.018 (3)
N3A0.045 (5)0.072 (6)0.042 (6)0.001 (5)0.003 (5)0.006 (6)
O4A0.053 (5)0.093 (8)0.045 (6)0.009 (6)0.008 (5)0.005 (6)
O5A0.049 (5)0.078 (8)0.032 (6)0.002 (5)0.006 (5)0.021 (6)
O60.0612 (18)0.096 (2)0.0589 (19)0.0335 (17)0.0024 (14)0.0098 (18)
O70.074 (2)0.103 (3)0.0416 (17)0.0259 (17)0.0089 (13)0.0162 (18)
N40.049 (2)0.059 (2)0.047 (2)0.0105 (18)0.0045 (16)0.004 (2)
C110.041 (2)0.039 (2)0.037 (2)0.0007 (18)0.0059 (17)0.001 (2)
C120.040 (2)0.044 (2)0.042 (2)0.0043 (19)0.0037 (17)0.001 (2)
C130.048 (2)0.043 (3)0.030 (2)0.0043 (19)0.0082 (17)0.007 (2)
C140.041 (2)0.036 (2)0.044 (2)0.0019 (18)0.0103 (17)0.002 (2)
C150.038 (2)0.043 (2)0.037 (2)0.0041 (18)0.0025 (16)0.002 (2)
C160.051 (2)0.040 (3)0.032 (2)0.0016 (19)0.0056 (17)0.0001 (19)
C170.042 (2)0.056 (3)0.046 (3)0.006 (2)0.0065 (19)0.001 (2)
N10.0485 (18)0.055 (2)0.0368 (18)0.0090 (17)0.0049 (14)0.0003 (18)
N20.054 (2)0.103 (3)0.042 (2)0.022 (2)0.0011 (16)0.015 (2)
C10.047 (3)0.067 (3)0.038 (3)0.006 (3)0.010 (2)0.006 (3)
C20.061 (3)0.076 (4)0.050 (3)0.016 (3)0.004 (3)0.007 (3)
C30.065 (3)0.080 (4)0.055 (3)0.019 (3)0.001 (3)0.008 (3)
C40.069 (3)0.076 (4)0.038 (3)0.015 (3)0.003 (2)0.004 (3)
C50.064 (3)0.089 (4)0.043 (3)0.020 (3)0.011 (3)0.009 (3)
C60.057 (3)0.081 (3)0.038 (3)0.014 (3)0.008 (2)0.007 (3)
C1A0.051 (4)0.075 (4)0.037 (4)0.011 (4)0.011 (4)0.003 (4)
C2A0.058 (4)0.081 (5)0.049 (4)0.014 (4)0.010 (4)0.004 (4)
C3A0.062 (4)0.084 (5)0.053 (4)0.013 (4)0.007 (4)0.001 (4)
C4A0.064 (4)0.084 (5)0.043 (4)0.025 (4)0.011 (4)0.002 (4)
C5A0.060 (4)0.080 (4)0.037 (4)0.023 (4)0.008 (4)0.009 (4)
C6A0.057 (4)0.079 (4)0.041 (4)0.020 (4)0.005 (4)0.005 (4)
C70.073 (3)0.067 (3)0.046 (3)0.008 (2)0.001 (2)0.003 (2)
C80.069 (3)0.081 (4)0.051 (3)0.013 (2)0.002 (2)0.009 (3)
C90.059 (3)0.086 (4)0.050 (3)0.001 (3)0.0037 (19)0.018 (3)
C100.058 (3)0.089 (4)0.045 (2)0.013 (2)0.0022 (19)0.015 (3)
Geometric parameters (Å, º) top
O1—C171.211 (4)C1—C61.3900
O2—C171.309 (4)C2—C31.3900
O2—H2O0.841 (18)C2—H2A0.9300
O3—C121.283 (4)C3—C41.3900
N3—O51.236 (4)C3—H3A0.9300
N3—O41.246 (5)C4—C51.3900
N3—C131.467 (6)C4—H4A0.9300
N3A—O5A1.237 (4)C5—C61.3900
N3A—O4A1.246 (5)C5—H5A0.9300
N3A—C131.401 (10)C6—H6A0.9300
O6—N41.230 (3)C1A—C2A1.3900
O7—N41.220 (3)C1A—C6A1.3900
N4—C151.450 (4)C2A—C3A1.3900
C11—C161.376 (4)C2A—H2AA0.9300
C11—C121.428 (4)C3A—C4A1.3900
C11—C171.505 (5)C3A—H3AA0.9300
C12—C131.449 (5)C4A—C5A1.3900
C13—C141.372 (4)C4A—H4AA0.9300
C14—C151.370 (4)C5A—C6A1.3900
C14—H140.9300C5A—H5AA0.9300
C15—C161.398 (4)C6A—H6AA0.9300
C16—H160.9300C7—C81.501 (5)
N1—C1A1.399 (9)C7—H7A0.9700
N1—C11.448 (5)C7—H7B0.9700
N1—C71.453 (5)C8—H8A0.9700
N1—C101.465 (4)C8—H8B0.9700
N2—C91.476 (5)C9—C101.503 (5)
N2—C81.482 (5)C9—H9A0.9700
N2—H210.884 (18)C9—H9B0.9700
N2—H220.874 (18)C10—H10A0.9700
C1—C21.3900C10—H10B0.9700
C17—O2—H2O108 (3)C4—C3—H3A120.0
O5—N3—O4121.9 (4)C5—C4—C3120.0
O5—N3—C13119.2 (5)C5—C4—H4A120.0
O4—N3—C13118.7 (5)C3—C4—H4A120.0
O5A—N3A—O4A121.8 (6)C6—C5—C4120.0
O5A—N3A—C13118.4 (8)C6—C5—H5A120.0
O4A—N3A—C13118.4 (8)C4—C5—H5A120.0
O7—N4—O6123.1 (3)C5—C6—C1120.0
O7—N4—C15118.5 (3)C5—C6—H6A120.0
O6—N4—C15118.4 (3)C1—C6—H6A120.0
C16—C11—C12121.2 (3)C2A—C1A—C6A120.0
C16—C11—C17118.1 (3)C2A—C1A—N1116.8 (8)
C12—C11—C17120.7 (3)C6A—C1A—N1123.1 (8)
O3—C12—C11120.3 (3)C1A—C2A—C3A120.0
O3—C12—C13124.6 (3)C1A—C2A—H2AA120.0
C11—C12—C13115.1 (3)C3A—C2A—H2AA120.0
C14—C13—N3A115.6 (4)C4A—C3A—C2A120.0
C14—C13—C12122.9 (3)C4A—C3A—H3AA120.0
N3A—C13—C12121.5 (4)C2A—C3A—H3AA120.0
C14—C13—N3117.0 (3)C3A—C4A—C5A120.0
C12—C13—N3120.1 (3)C3A—C4A—H4AA120.0
C15—C14—C13119.1 (3)C5A—C4A—H4AA120.0
C15—C14—H14120.5C4A—C5A—C6A120.0
C13—C14—H14120.5C4A—C5A—H5AA120.0
C14—C15—C16121.2 (3)C6A—C5A—H5AA120.0
C14—C15—N4119.1 (3)C5A—C6A—C1A120.0
C16—C15—N4119.7 (3)C5A—C6A—H6AA120.0
C11—C16—C15120.5 (3)C1A—C6A—H6AA120.0
C11—C16—H16119.8N1—C7—C8111.2 (3)
C15—C16—H16119.8N1—C7—H7A109.4
O1—C17—O2119.9 (3)C8—C7—H7A109.4
O1—C17—C11123.8 (3)N1—C7—H7B109.4
O2—C17—C11116.2 (3)C8—C7—H7B109.4
C1A—N1—C7120.5 (6)H7A—C7—H7B108.0
C1—N1—C7114.3 (3)N2—C8—C7109.5 (3)
C1A—N1—C10112.9 (5)N2—C8—H8A109.8
C1—N1—C10116.6 (3)C7—C8—H8A109.8
C7—N1—C10110.8 (3)N2—C8—H8B109.8
C9—N2—C8109.8 (3)C7—C8—H8B109.8
C9—N2—H21109 (3)H8A—C8—H8B108.2
C8—N2—H21110 (3)N2—C9—C10110.0 (4)
C9—N2—H22109 (3)N2—C9—H9A109.7
C8—N2—H22111 (3)C10—C9—H9A109.7
H21—N2—H22107 (4)N2—C9—H9B109.7
C2—C1—C6120.0C10—C9—H9B109.7
C2—C1—N1119.9 (3)H9A—C9—H9B108.2
C6—C1—N1120.1 (3)N1—C10—C9111.2 (3)
C3—C2—C1120.0N1—C10—H10A109.4
C3—C2—H2A120.0C9—C10—H10A109.4
C1—C2—H2A120.0N1—C10—H10B109.4
C2—C3—C4120.0C9—C10—H10B109.4
C2—C3—H3A120.0H10A—C10—H10B108.0
C16—C11—C12—O3179.6 (3)C7—N1—C1—C2159.1 (3)
C17—C11—C12—O30.4 (5)C10—N1—C1—C227.7 (5)
C16—C11—C12—C131.2 (5)C7—N1—C1—C620.2 (4)
C17—C11—C12—C13178.8 (3)C10—N1—C1—C6151.6 (3)
O5A—N3A—C13—C140.4 (19)C6—C1—C2—C30.0
O4A—N3A—C13—C14166.2 (13)N1—C1—C2—C3179.3 (4)
O5A—N3A—C13—C12178.7 (12)C1—C2—C3—C40.0
O4A—N3A—C13—C1212 (2)C2—C3—C4—C50.0
O3—C12—C13—C14179.0 (4)C3—C4—C5—C60.0
C11—C12—C13—C140.2 (5)C4—C5—C6—C10.0
O3—C12—C13—N3A0.8 (10)C2—C1—C6—C50.0
C11—C12—C13—N3A178.4 (9)N1—C1—C6—C5179.3 (4)
O3—C12—C13—N30.2 (6)C7—N1—C1A—C2A176.7 (5)
C11—C12—C13—N3179.0 (5)C10—N1—C1A—C2A42.6 (8)
O5—N3—C13—C1418.9 (9)C7—N1—C1A—C6A4.1 (9)
O4—N3—C13—C14155.4 (6)C10—N1—C1A—C6A138.2 (6)
O5—N3—C13—C12160.0 (6)C6A—C1A—C2A—C3A0.0
O4—N3—C13—C1225.7 (9)N1—C1A—C2A—C3A179.2 (8)
N3A—C13—C14—C15179.4 (9)C1A—C2A—C3A—C4A0.0
C12—C13—C14—C151.1 (5)C2A—C3A—C4A—C5A0.0
N3—C13—C14—C15179.9 (5)C3A—C4A—C5A—C6A0.0
C13—C14—C15—C160.6 (6)C4A—C5A—C6A—C1A0.0
C13—C14—C15—N4179.3 (3)C2A—C1A—C6A—C5A0.0
O7—N4—C15—C14174.3 (4)N1—C1A—C6A—C5A179.2 (9)
O6—N4—C15—C146.1 (5)C1A—N1—C7—C8168.3 (6)
O7—N4—C15—C165.6 (5)C1—N1—C7—C8168.9 (3)
O6—N4—C15—C16174.0 (3)C10—N1—C7—C856.9 (4)
C12—C11—C16—C151.7 (5)C9—N2—C8—C758.8 (4)
C17—C11—C16—C15178.3 (3)N1—C7—C8—N258.3 (5)
C14—C15—C16—C110.8 (6)C8—N2—C9—C1058.3 (4)
N4—C15—C16—C11179.3 (3)C1A—N1—C10—C9165.4 (6)
C16—C11—C17—O10.9 (6)C1—N1—C10—C9170.9 (4)
C12—C11—C17—O1179.1 (4)C7—N1—C10—C956.1 (5)
C16—C11—C17—O2179.4 (3)N2—C9—C10—N157.0 (5)
C12—C11—C17—O20.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O30.84 (2)1.69 (2)2.487 (3)156 (4)
N2—H21···O30.88 (2)2.03 (2)2.873 (4)159 (3)
N2—H21···O40.88 (2)2.37 (3)2.950 (6)123 (3)
N2—H21···O4A0.88 (2)2.40 (4)2.966 (10)122 (3)
N2—H22···O1i0.87 (2)2.10 (2)2.947 (4)164 (4)
N2—H22···O2i0.87 (2)2.62 (3)3.270 (4)132 (3)
C8—H8A···O7ii0.972.363.134 (5)137
C8—H8B···O40.972.443.000 (6)116
C9—H9A···O4A0.972.603.166 (8)118
C9—H9B···O5iii0.972.583.311 (8)132
C9—H9B···O5Aiii0.972.293.040 (13)133
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x+1, y, z.
4-Phenylpiperazin-1-ium 2-hydroxy-4,6-dinitrophenolate (7) top
Crystal data top
C10H15N2+·C7H3N2O6Z = 2
Mr = 374.35F(000) = 392
Triclinic, P1Dx = 1.379 Mg m3
a = 5.707 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.505 (3) ÅCell parameters from 838 reflections
c = 13.116 (3) Åθ = 3.1–28.1°
α = 97.41 (2)°µ = 0.11 mm1
β = 93.28 (2)°T = 293 K
γ = 102.82 (2)°Needle, yellow
V = 901.5 (4) Å30.48 × 0.08 × 0.04 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
2647 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.087
Rotation method data acquisition using ω scans.θmax = 28.1°, θmin = 3.2°
Absorption correction: multi-scan
(CrysalisRED; Oxford Diffraction, 2007)
h = 77
Tmin = 0.647, Tmax = 1.000k = 1615
7800 measured reflectionsl = 1617
7800 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.147Hydrogen site location: mixed
wR(F2) = 0.297H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.0451P)2 + 3.195P]
where P = (Fo2 + 2Fc2)/3
7800 reflections(Δ/σ)max < 0.001
251 parametersΔρmax = 0.28 e Å3
2 restraintsΔρmin = 0.30 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.122 (2)0.6276 (12)0.8824 (9)0.051 (4)
C21.091 (2)0.7342 (12)0.9003 (10)0.062 (4)
H20.9545360.7504400.8693060.074*
C31.256 (3)0.8180 (14)0.9629 (11)0.089 (5)
H31.2291410.8890540.9749390.107*
C41.462 (3)0.7954 (17)1.0076 (11)0.090 (6)
H41.5771460.8505711.0491260.108*
C51.491 (3)0.6892 (17)0.9888 (11)0.084 (5)
H51.6264160.6726641.0197090.101*
C61.329 (2)0.6064 (13)0.9265 (10)0.066 (4)
H61.3580120.5358030.9139690.079*
C70.956 (2)0.4298 (10)0.8199 (9)0.055 (4)
H7A0.9738030.4163890.8908280.066*
H7B1.0952570.4152180.7863060.066*
C80.729 (2)0.3532 (10)0.7652 (9)0.056 (4)
H8A0.7382190.2767500.7659360.067*
H8B0.5907030.3654390.8003900.067*
C90.700 (2)0.4918 (11)0.6524 (9)0.063 (4)
H9A0.5570860.5082100.6812560.076*
H9B0.6948300.5044870.5809790.076*
C100.920 (2)0.5662 (10)0.7114 (9)0.055 (4)
H10A1.0614810.5551140.6775310.066*
H10B0.9115690.6427260.7111070.066*
C110.018 (2)0.1731 (10)0.4335 (9)0.041 (3)
C120.037 (2)0.0713 (10)0.4039 (8)0.046 (3)
H120.1695580.0536460.4362020.055*
C130.106 (2)0.0027 (11)0.3270 (10)0.046 (3)
C140.307 (2)0.0161 (10)0.2780 (9)0.054 (4)
H140.4062310.0365840.2279340.065*
C150.353 (2)0.1182 (12)0.3079 (10)0.052 (4)
C160.219 (2)0.1950 (10)0.3858 (9)0.047 (3)
H160.2644400.2610540.4060960.056*
C170.144 (3)0.2554 (12)0.5164 (10)0.056 (4)
N10.9454 (16)0.5450 (8)0.8180 (7)0.046 (3)
N20.7030 (19)0.3750 (10)0.6575 (9)0.060 (3)
H210.585 (14)0.323 (8)0.625 (8)0.072*
H220.817 (15)0.354 (9)0.624 (8)0.072*
N30.040 (2)0.1092 (10)0.2942 (9)0.063 (3)
N40.560 (2)0.1460 (14)0.2536 (10)0.075 (4)
O10.0892 (15)0.3455 (7)0.5441 (7)0.069 (3)
O20.3327 (15)0.2290 (7)0.5475 (7)0.071 (3)
O30.1442 (18)0.1237 (7)0.3359 (7)0.076 (3)
O40.1697 (18)0.1757 (8)0.2251 (7)0.099 (4)
O50.5922 (18)0.2403 (11)0.2752 (8)0.094 (4)
O60.6948 (17)0.0739 (10)0.1901 (8)0.090 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.045 (9)0.059 (11)0.043 (8)0.005 (8)0.004 (7)0.001 (7)
C20.068 (10)0.053 (11)0.064 (10)0.012 (9)0.006 (8)0.005 (8)
C30.102 (14)0.073 (13)0.072 (11)0.006 (12)0.001 (10)0.014 (9)
C40.074 (13)0.108 (17)0.057 (10)0.029 (12)0.011 (9)0.012 (11)
C50.082 (13)0.111 (16)0.055 (10)0.012 (13)0.004 (9)0.017 (10)
C60.054 (10)0.080 (13)0.053 (9)0.002 (9)0.004 (8)0.001 (8)
C70.058 (9)0.061 (11)0.052 (8)0.023 (8)0.007 (7)0.012 (7)
C80.064 (10)0.039 (9)0.062 (9)0.008 (7)0.011 (8)0.000 (7)
C90.069 (10)0.055 (11)0.062 (9)0.011 (8)0.010 (8)0.006 (7)
C100.055 (9)0.047 (9)0.058 (9)0.013 (7)0.005 (7)0.005 (7)
C110.035 (7)0.026 (8)0.058 (8)0.002 (6)0.010 (7)0.006 (6)
C120.048 (8)0.048 (9)0.036 (8)0.000 (7)0.004 (7)0.013 (6)
C130.035 (8)0.055 (10)0.050 (8)0.015 (7)0.001 (7)0.010 (7)
C140.050 (9)0.038 (10)0.061 (9)0.012 (8)0.004 (8)0.000 (7)
C150.039 (9)0.067 (11)0.047 (8)0.001 (8)0.006 (7)0.018 (8)
C160.038 (8)0.042 (9)0.068 (9)0.019 (7)0.016 (7)0.010 (7)
C170.058 (10)0.050 (11)0.052 (9)0.004 (8)0.016 (8)0.008 (8)
N10.048 (7)0.045 (8)0.045 (7)0.015 (6)0.001 (6)0.004 (5)
N20.050 (8)0.058 (10)0.061 (9)0.005 (6)0.005 (6)0.015 (6)
N30.078 (10)0.053 (9)0.062 (8)0.026 (8)0.003 (7)0.002 (7)
N40.055 (9)0.111 (14)0.069 (9)0.028 (10)0.012 (8)0.028 (9)
O10.070 (7)0.048 (7)0.083 (7)0.008 (5)0.019 (5)0.009 (5)
O20.051 (6)0.063 (7)0.087 (7)0.012 (5)0.013 (6)0.021 (5)
O30.079 (8)0.056 (7)0.096 (8)0.028 (6)0.000 (6)0.001 (5)
O40.136 (9)0.061 (8)0.083 (7)0.022 (7)0.022 (7)0.032 (6)
O50.077 (8)0.130 (12)0.100 (9)0.060 (8)0.019 (6)0.042 (8)
O60.056 (7)0.132 (11)0.080 (7)0.017 (7)0.009 (6)0.029 (7)
Geometric parameters (Å, º) top
C1—C61.377 (15)C10—N11.461 (13)
C1—C21.377 (16)C10—H10A0.9700
C1—N11.418 (14)C10—H10B0.9700
C2—C31.384 (17)C11—C161.374 (14)
C2—H20.9300C11—C121.390 (15)
C3—C41.385 (19)C11—C171.507 (15)
C3—H30.9300C12—C131.367 (14)
C4—C51.37 (2)C12—H120.9300
C4—H40.9300C13—C141.363 (14)
C5—C61.365 (18)C13—N31.481 (15)
C5—H50.9300C14—C151.373 (16)
C6—H60.9300C14—H140.9300
C7—N11.459 (13)C15—C161.372 (14)
C7—C81.507 (14)C15—N41.473 (15)
C7—H7A0.9700C16—H160.9300
C7—H7B0.9700C17—O11.251 (14)
C8—N21.479 (15)C17—O21.256 (14)
C8—H8A0.9700N2—H210.87 (3)
C8—H8B0.9700N2—H220.87 (3)
C9—N21.475 (16)N3—O31.219 (11)
C9—C101.492 (14)N3—O41.230 (12)
C9—H9A0.9700N4—O51.233 (15)
C9—H9B0.9700N4—O61.234 (14)
C6—C1—C2118.0 (13)N1—C10—H10B109.2
C6—C1—N1122.7 (14)C9—C10—H10B109.2
C2—C1—N1119.3 (13)H10A—C10—H10B107.9
C1—C2—C3121.9 (15)C16—C11—C12118.5 (11)
C1—C2—H2119.1C16—C11—C17122.3 (12)
C3—C2—H2119.1C12—C11—C17119.2 (12)
C2—C3—C4119.5 (17)C13—C12—C11119.5 (11)
C2—C3—H3120.2C13—C12—H12120.2
C4—C3—H3120.2C11—C12—H12120.2
C5—C4—C3117.8 (16)C14—C13—C12123.6 (13)
C5—C4—H4121.1C14—C13—N3117.6 (12)
C3—C4—H4121.1C12—C13—N3118.7 (12)
C6—C5—C4122.9 (17)C13—C14—C15115.2 (12)
C6—C5—H5118.5C13—C14—H14122.4
C4—C5—H5118.5C15—C14—H14122.4
C5—C6—C1119.8 (15)C16—C15—C14123.7 (13)
C5—C6—H6120.1C16—C15—N4118.4 (14)
C1—C6—H6120.1C14—C15—N4117.9 (13)
N1—C7—C8110.1 (10)C15—C16—C11119.2 (12)
N1—C7—H7A109.6C15—C16—H16120.4
C8—C7—H7A109.6C11—C16—H16120.4
N1—C7—H7B109.6O1—C17—O2125.5 (13)
C8—C7—H7B109.6O1—C17—C11118.5 (14)
H7A—C7—H7B108.2O2—C17—C11115.8 (13)
N2—C8—C7109.2 (10)C1—N1—C7117.2 (11)
N2—C8—H8A109.8C1—N1—C10113.8 (10)
C7—C8—H8A109.8C7—N1—C10110.0 (9)
N2—C8—H8B109.8C9—N2—C8111.8 (9)
C7—C8—H8B109.8C9—N2—H21119 (9)
H8A—C8—H8B108.3C8—N2—H21107 (8)
N2—C9—C10109.9 (10)C9—N2—H22112 (8)
N2—C9—H9A109.7C8—N2—H22109 (8)
C10—C9—H9A109.7H21—N2—H2296 (10)
N2—C9—H9B109.7O3—N3—O4124.1 (13)
C10—C9—H9B109.7O3—N3—C13117.2 (12)
H9A—C9—H9B108.2O4—N3—C13118.6 (13)
N1—C10—C9111.9 (11)O5—N4—O6123.1 (15)
N1—C10—H10A109.2O5—N4—C15118.1 (15)
C9—C10—H10A109.2O6—N4—C15118.8 (15)
C6—C1—C2—C32 (2)C16—C11—C17—O11.7 (18)
N1—C1—C2—C3179.6 (12)C12—C11—C17—O1178.2 (12)
C1—C2—C3—C41 (2)C16—C11—C17—O2174.2 (12)
C2—C3—C4—C51 (2)C12—C11—C17—O25.8 (17)
C3—C4—C5—C61 (3)C6—C1—N1—C715.3 (16)
C4—C5—C6—C12 (2)C2—C1—N1—C7166.4 (11)
C2—C1—C6—C52.3 (19)C6—C1—N1—C10115.1 (13)
N1—C1—C6—C5179.3 (12)C2—C1—N1—C1063.3 (15)
N1—C7—C8—N258.8 (12)C8—C7—N1—C1168.3 (10)
N2—C9—C10—N155.4 (13)C8—C7—N1—C1059.6 (12)
C16—C11—C12—C131.7 (17)C9—C10—N1—C1167.8 (10)
C17—C11—C12—C13178.4 (11)C9—C10—N1—C758.3 (13)
C11—C12—C13—C141.8 (18)C10—C9—N2—C855.0 (13)
C11—C12—C13—N3178.0 (11)C7—C8—N2—C956.9 (13)
C12—C13—C14—C152.8 (18)C14—C13—N3—O3177.5 (12)
N3—C13—C14—C15177.0 (12)C12—C13—N3—O32.3 (17)
C13—C14—C15—C164.0 (19)C14—C13—N3—O40.4 (18)
C13—C14—C15—N4176.5 (11)C12—C13—N3—O4179.8 (12)
C14—C15—C16—C114.2 (19)C16—C15—N4—O55.4 (18)
N4—C15—C16—C11176.4 (11)C14—C15—N4—O5175.0 (14)
C12—C11—C16—C152.8 (16)C16—C15—N4—O6173.4 (13)
C17—C11—C16—C15177.3 (11)C14—C15—N4—O66.1 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O3i0.972.433.250 (14)142
C10—H10B···O5ii0.972.583.366 (16)138
N2—H21···O20.87 (3)1.81 (4)2.672 (13)172 (13)
N2—H22···O1iii0.87 (3)1.94 (4)2.792 (13)166 (12)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z+1; (iii) x+1, y, z.
4-Phenylpiperazin-1-ium 2,4,6-trinitrophenolate (8) top
Crystal data top
C10H15N2+·C6H2N3O7F(000) = 816
Mr = 391.34Dx = 1.484 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.517 (1) ÅCell parameters from 2640 reflections
b = 6.825 (1) Åθ = 2.6–27.9°
c = 30.265 (4) ŵ = 0.12 mm1
β = 95.33 (1)°T = 293 K
V = 1751.7 (4) Å3Prism, yellow
Z = 40.50 × 0.36 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
2389 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.076
ω and φ scansθmax = 28.0°, θmin = 2.6°
Absorption correction: multi-scan
(CrysalisRED; Oxford Diffraction, 2007)
h = 1010
Tmin = 0.835, Tmax = 1.000k = 84
12427 measured reflectionsl = 3438
3893 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.064H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.149 w = 1/[σ2(Fo2) + (0.0504P)2 + 0.8725P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3893 reflectionsΔρmax = 0.26 e Å3
260 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: dualExtinction coefficient: 0.0131 (17)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7177 (3)0.4179 (4)0.26101 (7)0.0433 (6)
C20.7900 (3)0.5991 (4)0.25921 (9)0.0570 (7)
H20.7805070.6902610.2816490.068*
C30.8768 (3)0.6449 (5)0.22386 (10)0.0688 (9)
H30.9230050.7680120.2226780.083*
C40.8954 (3)0.5133 (6)0.19100 (10)0.0694 (9)
H40.9535810.5458680.1675350.083*
C50.8277 (3)0.3334 (5)0.19292 (9)0.0669 (8)
H50.8414870.2419290.1708350.080*
C60.7388 (3)0.2847 (4)0.22725 (8)0.0556 (7)
H60.6924750.1614510.2277960.067*
C70.6520 (3)0.1721 (4)0.31432 (9)0.0593 (7)
H7A0.7532770.1714290.3318750.071*
H7B0.6564120.0772860.2905900.071*
C80.5257 (3)0.1140 (4)0.34299 (9)0.0608 (8)
H8A0.4251990.1062590.3251540.073*
H8B0.5492720.0142050.3557560.073*
C90.4869 (3)0.4552 (5)0.35981 (10)0.0659 (8)
H9A0.4853330.5503410.3835770.079*
H9B0.3849230.4579270.3426520.079*
C100.6136 (3)0.5090 (4)0.33044 (9)0.0574 (7)
H10A0.5912450.6371890.3175280.069*
H10B0.7144970.5158720.3481220.069*
C110.1176 (3)0.2795 (3)0.46054 (8)0.0401 (5)
C120.0517 (3)0.2586 (3)0.46416 (7)0.0378 (5)
C130.1453 (3)0.2289 (3)0.50261 (8)0.0403 (5)
H130.2536350.2128350.5022470.048*
C140.0762 (3)0.2232 (3)0.54215 (7)0.0393 (5)
C150.0855 (3)0.2447 (3)0.54264 (8)0.0406 (6)
H150.1311750.2425230.5693770.049*
C160.1766 (3)0.2689 (3)0.50371 (8)0.0395 (5)
N10.6227 (2)0.3663 (3)0.29532 (6)0.0426 (5)
N20.5157 (3)0.2589 (4)0.37874 (8)0.0600 (7)
H210.446 (4)0.227 (4)0.3950 (10)0.072*
H220.614 (4)0.265 (4)0.3984 (10)0.072*
N30.1308 (3)0.2645 (3)0.42356 (7)0.0491 (5)
N40.1728 (3)0.1928 (3)0.58323 (7)0.0551 (6)
N50.3455 (3)0.2877 (4)0.50670 (8)0.0561 (6)
O10.1980 (2)0.3022 (3)0.42443 (6)0.0645 (6)
O20.2413 (2)0.1487 (3)0.42128 (6)0.0648 (6)
O30.0884 (3)0.3800 (3)0.39444 (6)0.0705 (6)
O40.3160 (3)0.1892 (4)0.58218 (7)0.0770 (7)
O50.1098 (3)0.1737 (3)0.61764 (6)0.0763 (7)
O60.3873 (3)0.3692 (4)0.53943 (8)0.0982 (9)
O70.4365 (2)0.2218 (4)0.47735 (8)0.0836 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0335 (12)0.0615 (16)0.0346 (12)0.0028 (11)0.0017 (10)0.0009 (11)
C20.0524 (16)0.0688 (19)0.0505 (16)0.0122 (14)0.0088 (13)0.0012 (14)
C30.0500 (17)0.092 (2)0.0650 (19)0.0185 (15)0.0072 (14)0.0147 (18)
C40.0457 (16)0.117 (3)0.0474 (17)0.0019 (17)0.0123 (13)0.0096 (18)
C50.0599 (18)0.098 (3)0.0439 (16)0.0138 (17)0.0087 (13)0.0068 (16)
C60.0541 (16)0.0721 (19)0.0410 (14)0.0017 (13)0.0066 (12)0.0043 (14)
C70.0650 (18)0.0619 (18)0.0530 (16)0.0100 (14)0.0154 (13)0.0096 (14)
C80.0599 (17)0.0671 (19)0.0548 (17)0.0037 (14)0.0028 (13)0.0169 (15)
C90.0609 (18)0.079 (2)0.0621 (18)0.0024 (15)0.0273 (15)0.0079 (16)
C100.0589 (17)0.0638 (18)0.0524 (16)0.0096 (13)0.0198 (13)0.0097 (14)
C110.0419 (13)0.0392 (13)0.0393 (13)0.0045 (10)0.0040 (10)0.0039 (10)
C120.0437 (13)0.0337 (12)0.0375 (12)0.0070 (10)0.0114 (10)0.0035 (10)
C130.0387 (12)0.0326 (12)0.0501 (14)0.0034 (10)0.0059 (10)0.0017 (11)
C140.0481 (14)0.0324 (12)0.0369 (13)0.0025 (10)0.0012 (10)0.0030 (10)
C150.0519 (14)0.0337 (12)0.0377 (13)0.0024 (10)0.0119 (11)0.0022 (10)
C160.0401 (12)0.0337 (12)0.0458 (14)0.0007 (10)0.0094 (10)0.0039 (10)
N10.0411 (11)0.0501 (12)0.0374 (10)0.0014 (9)0.0082 (8)0.0003 (9)
N20.0369 (12)0.102 (2)0.0419 (13)0.0107 (12)0.0070 (10)0.0129 (13)
N30.0497 (13)0.0538 (14)0.0456 (13)0.0141 (11)0.0136 (10)0.0062 (11)
N40.0633 (15)0.0533 (14)0.0476 (13)0.0044 (11)0.0016 (11)0.0095 (11)
N50.0466 (13)0.0710 (16)0.0522 (14)0.0037 (11)0.0115 (11)0.0040 (12)
O10.0492 (11)0.0992 (16)0.0439 (11)0.0128 (10)0.0022 (8)0.0049 (10)
O20.0475 (11)0.0813 (15)0.0695 (13)0.0011 (10)0.0256 (9)0.0093 (11)
O30.0900 (16)0.0759 (15)0.0487 (11)0.0030 (11)0.0225 (11)0.0104 (11)
O40.0533 (13)0.1053 (18)0.0699 (14)0.0007 (11)0.0073 (10)0.0184 (12)
O50.0829 (15)0.1026 (18)0.0430 (11)0.0078 (12)0.0044 (10)0.0215 (11)
O60.0651 (15)0.161 (3)0.0722 (15)0.0199 (15)0.0266 (12)0.0310 (16)
O70.0460 (12)0.131 (2)0.0738 (15)0.0125 (12)0.0081 (11)0.0182 (14)
Geometric parameters (Å, º) top
C1—C21.385 (4)C10—N11.449 (3)
C1—C61.392 (3)C10—H10A0.9700
C1—N11.419 (3)C10—H10B0.9700
C2—C31.391 (4)C11—O11.244 (3)
C2—H20.9300C11—C121.443 (3)
C3—C41.361 (4)C11—C161.445 (3)
C3—H30.9300C12—C131.363 (3)
C4—C51.359 (4)C12—N31.456 (3)
C4—H40.9300C13—C141.382 (3)
C5—C61.382 (4)C13—H130.9300
C5—H50.9300C14—C151.386 (3)
C6—H60.9300C14—N41.441 (3)
C7—N11.457 (3)C15—C161.360 (3)
C7—C81.497 (4)C15—H150.9300
C7—H7A0.9700C16—N51.455 (3)
C7—H7B0.9700N2—H210.83 (3)
C8—N21.474 (4)N2—H220.98 (3)
C8—H8A0.9700N3—O31.212 (3)
C8—H8B0.9700N3—O21.236 (3)
C9—N21.469 (4)N4—O51.222 (3)
C9—C101.506 (3)N4—O41.223 (3)
C9—H9A0.9700N5—O71.210 (3)
C9—H9B0.9700N5—O61.218 (3)
C2—C1—C6117.8 (2)N1—C10—H10B109.4
C2—C1—N1122.4 (2)C9—C10—H10B109.4
C6—C1—N1119.8 (2)H10A—C10—H10B108.0
C1—C2—C3120.1 (3)O1—C11—C12122.9 (2)
C1—C2—H2120.0O1—C11—C16126.2 (2)
C3—C2—H2120.0C12—C11—C16110.8 (2)
C4—C3—C2121.3 (3)C13—C12—C11125.5 (2)
C4—C3—H3119.3C13—C12—N3116.4 (2)
C2—C3—H3119.3C11—C12—N3118.1 (2)
C5—C4—C3119.1 (3)C12—C13—C14118.7 (2)
C5—C4—H4120.4C12—C13—H13120.6
C3—C4—H4120.4C14—C13—H13120.6
C4—C5—C6120.9 (3)C13—C14—C15120.6 (2)
C4—C5—H5119.6C13—C14—N4119.7 (2)
C6—C5—H5119.6C15—C14—N4119.6 (2)
C5—C6—C1120.8 (3)C16—C15—C14119.4 (2)
C5—C6—H6119.6C16—C15—H15120.3
C1—C6—H6119.6C14—C15—H15120.3
N1—C7—C8111.3 (2)C15—C16—C11124.8 (2)
N1—C7—H7A109.4C15—C16—N5116.4 (2)
C8—C7—H7A109.4C11—C16—N5118.7 (2)
N1—C7—H7B109.4C1—N1—C10116.3 (2)
C8—C7—H7B109.4C1—N1—C7115.2 (2)
H7A—C7—H7B108.0C10—N1—C7109.9 (2)
N2—C8—C7110.0 (2)C9—N2—C8110.2 (2)
N2—C8—H8A109.7C9—N2—H21112 (2)
C7—C8—H8A109.7C8—N2—H21111 (2)
N2—C8—H8B109.7C9—N2—H22107.5 (17)
C7—C8—H8B109.7C8—N2—H22111.7 (17)
H8A—C8—H8B108.2H21—N2—H22105 (3)
N2—C9—C10110.5 (2)O3—N3—O2123.5 (2)
N2—C9—H9A109.6O3—N3—C12120.1 (2)
C10—C9—H9A109.6O2—N3—C12116.3 (2)
N2—C9—H9B109.6O5—N4—O4122.5 (2)
C10—C9—H9B109.6O5—N4—C14119.4 (2)
H9A—C9—H9B108.1O4—N4—C14118.1 (2)
N1—C10—C9111.0 (2)O7—N5—O6123.4 (2)
N1—C10—H10A109.4O7—N5—C16119.4 (2)
C9—C10—H10A109.4O6—N5—C16117.1 (2)
C6—C1—C2—C31.7 (4)O1—C11—C16—N50.6 (4)
N1—C1—C2—C3177.4 (2)C12—C11—C16—N5179.8 (2)
C1—C2—C3—C41.3 (4)C2—C1—N1—C104.1 (3)
C2—C3—C4—C50.1 (5)C6—C1—N1—C10176.8 (2)
C3—C4—C5—C61.1 (5)C2—C1—N1—C7134.9 (3)
C4—C5—C6—C10.7 (4)C6—C1—N1—C746.0 (3)
C2—C1—C6—C50.7 (4)C9—C10—N1—C1169.3 (2)
N1—C1—C6—C5178.5 (2)C9—C10—N1—C757.6 (3)
N1—C7—C8—N258.0 (3)C8—C7—N1—C1168.0 (2)
N2—C9—C10—N157.4 (3)C8—C7—N1—C1058.3 (3)
O1—C11—C12—C13178.4 (2)C10—C9—N2—C856.6 (3)
C16—C11—C12—C131.2 (3)C7—C8—N2—C956.8 (3)
O1—C11—C12—N30.0 (3)C13—C12—N3—O3141.4 (2)
C16—C11—C12—N3179.6 (2)C11—C12—N3—O340.1 (3)
C11—C12—C13—C142.0 (3)C13—C12—N3—O237.9 (3)
N3—C12—C13—C14179.6 (2)C11—C12—N3—O2140.6 (2)
C12—C13—C14—C150.8 (3)C13—C14—N4—O5174.7 (2)
C12—C13—C14—N4179.8 (2)C15—C14—N4—O54.7 (3)
C13—C14—C15—C160.9 (3)C13—C14—N4—O46.0 (3)
N4—C14—C15—C16178.5 (2)C15—C14—N4—O4174.6 (2)
C14—C15—C16—C111.7 (4)C15—C16—N5—O7146.1 (3)
C14—C15—C16—N5179.1 (2)C11—C16—N5—O734.6 (3)
O1—C11—C16—C15179.7 (2)C15—C16—N5—O633.4 (3)
C12—C11—C16—C150.6 (3)C11—C16—N5—O6145.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···O4i0.972.423.265 (4)145
C9—H9A···O4ii0.972.603.353 (4)134
C9—H9A···O6iii0.972.613.455 (4)146
N2—H21···O20.83 (3)2.06 (3)2.871 (3)166 (3)
N2—H21···O7iv0.83 (3)2.60 (3)2.985 (3)110 (2)
N2—H22···O1iv0.98 (3)1.74 (3)2.705 (3)168 (3)
N2—H21···O7iv0.83 (3)2.60 (3)2.985 (3)110 (2)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x, y+1, z+1; (iv) x+1, y, z.
4-Phenylpiperazin-1-ium benzoate monohydrate (9) top
Crystal data top
C10H15N2+·C7H5O2·H2OF(000) = 648
Mr = 302.36Dx = 1.236 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.202 (2) ÅCell parameters from 885 reflections
b = 34.573 (9) Åθ = 2.7–27.8°
c = 7.596 (2) ŵ = 0.09 mm1
β = 93.83 (2)°T = 293 K
V = 1625.1 (8) Å3Rod, colourless
Z = 40.32 × 0.20 × 0.16 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
1387 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.039
ω and φ scansθmax = 27.8°, θmin = 2.9°
Absorption correction: multi-scan
(CrysalisRED; Oxford Diffraction, 2007)
h = 78
Tmin = 0.985, Tmax = 1.000k = 3244
6075 measured reflectionsl = 89
3492 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: mixed
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 0.95 w = 1/[σ2(Fo2) + (0.0549P)2]
where P = (Fo2 + 2Fc2)/3
3492 reflections(Δ/σ)max < 0.001
211 parametersΔρmax = 0.24 e Å3
4 restraintsΔρmin = 0.16 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2813 (3)0.60989 (6)0.7704 (3)0.0434 (6)
N20.2143 (4)0.52769 (7)0.7340 (3)0.0540 (7)
H210.175 (4)0.5046 (6)0.776 (3)0.065*
H220.244 (4)0.5249 (8)0.621 (2)0.065*
C10.3322 (4)0.64902 (8)0.7364 (3)0.0458 (7)
C20.1985 (5)0.67263 (9)0.6301 (4)0.0732 (9)
H20.0735190.6623040.5741430.088*
C30.2469 (6)0.71136 (9)0.6050 (5)0.0890 (11)
H30.1533210.7265090.5334160.107*
C40.4287 (7)0.72754 (10)0.6834 (5)0.0871 (11)
H40.4608340.7534860.6662730.105*
C50.5623 (6)0.70463 (10)0.7878 (5)0.0849 (11)
H50.6870620.7152660.8426930.102*
C60.5172 (5)0.66585 (9)0.8144 (4)0.0684 (9)
H60.6125510.6509630.8855710.082*
C70.4623 (4)0.58257 (7)0.7779 (4)0.0500 (7)
H7A0.5798520.5929600.8542890.060*
H7B0.5136360.5797100.6607520.060*
C80.4003 (4)0.54349 (7)0.8453 (4)0.0554 (8)
H8A0.5222960.5259950.8429230.067*
H8B0.3614080.5457490.9664980.067*
C90.0303 (4)0.55502 (8)0.7319 (4)0.0586 (8)
H9A0.0187770.5574180.8499820.070*
H9B0.0885190.5450410.6555910.070*
C100.0951 (4)0.59416 (8)0.6670 (4)0.0544 (7)
H10A0.1292890.5921000.5445910.065*
H10B0.0256990.6118340.6725700.065*
O10.0826 (4)0.45352 (6)0.8352 (3)0.0739 (6)
O20.3636 (4)0.44271 (8)0.6833 (4)0.1271 (11)
C110.1746 (4)0.38836 (9)0.7732 (3)0.0488 (7)
C120.3158 (5)0.36281 (11)0.6979 (4)0.0710 (9)
H120.4341000.3725290.6431800.085*
C130.2834 (6)0.32351 (12)0.7030 (4)0.0850 (11)
H130.3785780.3069800.6505760.102*
C140.1131 (7)0.30867 (10)0.7841 (5)0.0841 (10)
H140.0927720.2820410.7886170.101*
C150.0285 (5)0.33305 (10)0.8592 (4)0.0758 (10)
H150.1454420.3229460.9144080.091*
C160.0017 (4)0.37282 (8)0.8532 (4)0.0566 (8)
H160.0960280.3891400.9037610.068*
C170.2108 (5)0.43133 (10)0.7647 (4)0.0605 (8)
O30.7231 (3)0.47794 (7)0.6283 (3)0.0737 (7)
H310.816 (5)0.4679 (11)0.697 (4)0.111*
H320.609 (4)0.4665 (9)0.645 (5)0.111*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0406 (13)0.0418 (14)0.0472 (14)0.0004 (11)0.0012 (10)0.0001 (11)
N20.0689 (17)0.0449 (15)0.0493 (16)0.0092 (14)0.0112 (14)0.0018 (14)
C10.0524 (17)0.0389 (16)0.0463 (17)0.0012 (14)0.0049 (13)0.0033 (14)
C20.074 (2)0.050 (2)0.092 (2)0.0010 (17)0.0224 (19)0.0050 (19)
C30.109 (3)0.048 (2)0.106 (3)0.004 (2)0.026 (2)0.010 (2)
C40.133 (3)0.044 (2)0.082 (3)0.014 (2)0.012 (2)0.000 (2)
C50.105 (3)0.060 (2)0.086 (3)0.031 (2)0.024 (2)0.000 (2)
C60.074 (2)0.054 (2)0.075 (2)0.0112 (18)0.0153 (17)0.0072 (17)
C70.0442 (16)0.0485 (18)0.0566 (18)0.0019 (14)0.0008 (13)0.0016 (15)
C80.0595 (18)0.0498 (18)0.0556 (18)0.0000 (15)0.0066 (15)0.0025 (15)
C90.0512 (17)0.0590 (19)0.0659 (19)0.0085 (16)0.0071 (14)0.0031 (17)
C100.0434 (16)0.0507 (18)0.068 (2)0.0008 (14)0.0024 (14)0.0025 (16)
O10.0960 (16)0.0529 (14)0.0741 (15)0.0102 (12)0.0157 (13)0.0002 (12)
O20.0889 (17)0.104 (2)0.195 (3)0.0264 (15)0.0568 (19)0.035 (2)
C110.0447 (16)0.0594 (19)0.0417 (16)0.0016 (15)0.0014 (13)0.0053 (15)
C120.062 (2)0.089 (3)0.063 (2)0.017 (2)0.0069 (16)0.0160 (19)
C130.106 (3)0.077 (3)0.072 (2)0.040 (2)0.007 (2)0.002 (2)
C140.125 (3)0.053 (2)0.073 (2)0.003 (2)0.009 (2)0.004 (2)
C150.087 (2)0.062 (2)0.079 (2)0.023 (2)0.0130 (19)0.000 (2)
C160.0602 (18)0.055 (2)0.0557 (18)0.0061 (16)0.0122 (15)0.0043 (15)
C170.056 (2)0.066 (2)0.059 (2)0.0128 (18)0.0014 (16)0.0198 (18)
O30.0697 (16)0.0830 (17)0.0700 (15)0.0213 (13)0.0159 (12)0.0070 (13)
Geometric parameters (Å, º) top
N1—C11.417 (3)C8—H8B0.9700
N1—C101.458 (3)C9—C101.504 (3)
N1—C71.465 (3)C9—H9A0.9700
N2—C91.481 (3)C9—H9B0.9700
N2—C81.488 (3)C10—H10A0.9700
N2—H210.898 (17)C10—H10B0.9700
N2—H220.893 (16)O1—C171.251 (3)
C1—C61.384 (3)O2—C171.230 (3)
C1—C21.384 (3)C11—C161.376 (3)
C2—C31.388 (4)C11—C121.393 (4)
C2—H20.9300C11—C171.504 (4)
C3—C41.360 (4)C12—C131.375 (4)
C3—H30.9300C12—H120.9300
C4—C51.362 (4)C13—C141.358 (4)
C4—H40.9300C13—H130.9300
C5—C61.387 (4)C14—C151.369 (4)
C5—H50.9300C14—H140.9300
C6—H60.9300C15—C161.389 (4)
C7—C81.504 (3)C15—H150.9300
C7—H7A0.9700C16—H160.9300
C7—H7B0.9700O3—H310.830 (18)
C8—H8A0.9700O3—H320.826 (18)
C1—N1—C10115.8 (2)C7—C8—H8B109.7
C1—N1—C7116.32 (19)H8A—C8—H8B108.2
C10—N1—C7110.9 (2)N2—C9—C10110.8 (2)
C9—N2—C8109.8 (2)N2—C9—H9A109.5
C9—N2—H21110.3 (17)C10—C9—H9A109.5
C8—N2—H21110.0 (17)N2—C9—H9B109.5
C9—N2—H22105.5 (17)C10—C9—H9B109.5
C8—N2—H22112.5 (17)H9A—C9—H9B108.1
H21—N2—H22109 (3)N1—C10—C9112.3 (2)
C6—C1—C2116.7 (3)N1—C10—H10A109.2
C6—C1—N1120.8 (2)C9—C10—H10A109.2
C2—C1—N1122.5 (3)N1—C10—H10B109.2
C1—C2—C3121.5 (3)C9—C10—H10B109.2
C1—C2—H2119.3H10A—C10—H10B107.9
C3—C2—H2119.3C16—C11—C12117.6 (3)
C4—C3—C2121.2 (3)C16—C11—C17121.8 (3)
C4—C3—H3119.4C12—C11—C17120.6 (3)
C2—C3—H3119.4C13—C12—C11121.2 (3)
C3—C4—C5118.0 (3)C13—C12—H12119.4
C3—C4—H4121.0C11—C12—H12119.4
C5—C4—H4121.0C14—C13—C12120.4 (3)
C4—C5—C6121.7 (3)C14—C13—H13119.8
C4—C5—H5119.1C12—C13—H13119.8
C6—C5—H5119.1C13—C14—C15119.7 (3)
C1—C6—C5120.9 (3)C13—C14—H14120.1
C1—C6—H6119.5C15—C14—H14120.1
C5—C6—H6119.5C14—C15—C16120.3 (3)
N1—C7—C8112.3 (2)C14—C15—H15119.9
N1—C7—H7A109.1C16—C15—H15119.9
C8—C7—H7A109.1C11—C16—C15120.8 (3)
N1—C7—H7B109.1C11—C16—H16119.6
C8—C7—H7B109.1C15—C16—H16119.6
H7A—C7—H7B107.9O2—C17—O1123.5 (3)
N2—C8—C7110.0 (2)O2—C17—C11117.4 (3)
N2—C8—H8A109.7O1—C17—C11119.1 (3)
C7—C8—H8A109.7H31—O3—H32106 (4)
N2—C8—H8B109.7
C10—N1—C1—C6173.8 (2)C8—N2—C9—C1057.0 (3)
C7—N1—C1—C640.8 (3)C1—N1—C10—C9170.5 (2)
C10—N1—C1—C28.5 (3)C7—N1—C10—C954.1 (3)
C7—N1—C1—C2141.5 (3)N2—C9—C10—N156.0 (3)
C6—C1—C2—C30.8 (4)C16—C11—C12—C130.1 (4)
N1—C1—C2—C3177.0 (3)C17—C11—C12—C13179.3 (3)
C1—C2—C3—C40.4 (5)C11—C12—C13—C140.8 (5)
C2—C3—C4—C50.1 (5)C12—C13—C14—C150.9 (5)
C3—C4—C5—C60.2 (5)C13—C14—C15—C160.2 (5)
C2—C1—C6—C50.8 (4)C12—C11—C16—C150.5 (4)
N1—C1—C6—C5177.0 (3)C17—C11—C16—C15179.9 (3)
C4—C5—C6—C10.6 (5)C14—C15—C16—C110.5 (5)
C1—N1—C7—C8170.0 (2)C16—C11—C17—O2176.6 (3)
C10—N1—C7—C854.7 (3)C12—C11—C17—O22.8 (4)
C9—N2—C8—C757.2 (3)C16—C11—C17—O11.4 (4)
N1—C7—C8—N256.6 (3)C12—C11—C17—O1179.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···O10.90 (2)1.92 (2)2.813 (3)173 (2)
N2—H21···O20.90 (2)2.56 (2)3.112 (4)121 (2)
N2—H22···O3i0.89 (2)1.92 (2)2.812 (3)173 (2)
C9—H9A···O1ii0.972.483.420 (4)164
C9—H9B···O3iii0.972.603.340 (4)133
O3—H31···O1iv0.83 (2)1.96 (2)2.772 (3)166 (4)
O3—H32···O20.83 (2)1.77 (2)2.599 (3)179 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+2; (iii) x1, y, z; (iv) x+1, y, z.
4-Phenylpiperazin-1-ium 4-methylbenzenesulfonate (10) top
Crystal data top
C10H15N2+·C7H7O3SF(000) = 712
Mr = 334.42Dx = 1.325 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 8.325 (1) ÅCell parameters from 2252 reflections
b = 10.949 (2) Åθ = 2.9–27.6°
c = 18.418 (4) ŵ = 0.21 mm1
β = 92.67 (2)°T = 293 K
V = 1677.0 (5) Å3Plate, colourless
Z = 40.50 × 0.36 × 0.14 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
2767 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.044
Rotation method data acquisition using ω scans.θmax = 27.7°, θmin = 2.9°
Absorption correction: multi-scan
(CrysalisRED; Oxford Diffraction, 2007)
h = 109
Tmin = 0.696, Tmax = 1.000k = 1411
6123 measured reflectionsl = 2420
4918 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.126H-atom parameters constrained
wR(F2) = 0.298 w = 1/[σ2(Fo2) + (0.0541P)2 + 11.2654P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
4918 reflectionsΔρmax = 1.08 e Å3
480 parametersΔρmin = 0.41 e Å3
853 restraintsAbsolute structure: Flack x determined using 597 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: dualAbsolute structure parameter: 0.00 (11)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.3198 (15)0.0451 (12)0.1981 (8)0.044 (3)
N20.3315 (13)0.0070 (11)0.0453 (8)0.041 (3)
H21N0.3011000.0087720.0007330.050*
H22N0.4008660.0688540.0456580.050*
C10.345 (5)0.050 (4)0.2756 (14)0.056 (4)0.49 (7)
C20.244 (4)0.010 (4)0.322 (2)0.058 (4)0.49 (7)
H20.1637070.0616320.3024570.069*0.49 (7)
C30.263 (4)0.006 (5)0.3965 (19)0.060 (4)0.49 (7)
H30.1955470.0349650.4272600.073*0.49 (7)
C40.383 (5)0.082 (4)0.4252 (14)0.062 (4)0.49 (7)
H40.3959780.0927490.4752150.074*0.49 (7)
C50.484 (6)0.143 (3)0.3791 (18)0.061 (4)0.49 (7)
H50.5645730.1937970.3983680.074*0.49 (7)
C60.465 (5)0.127 (4)0.3044 (17)0.058 (4)0.49 (7)
H60.5327360.1671320.2735650.070*0.49 (7)
C1A0.338 (4)0.047 (3)0.2748 (13)0.055 (3)0.51 (7)
C2A0.259 (5)0.042 (4)0.3132 (19)0.057 (4)0.51 (7)
H2A0.2046600.1047590.2884260.069*0.51 (7)
C3A0.261 (4)0.038 (4)0.3887 (19)0.061 (4)0.51 (7)
H3A0.2079720.0973230.4143720.073*0.51 (7)
C4A0.342 (5)0.056 (4)0.4258 (13)0.062 (4)0.51 (7)
H4A0.3429130.0593060.4762460.075*0.51 (7)
C5A0.420 (7)0.146 (2)0.3874 (18)0.060 (4)0.51 (7)
H5A0.4745430.2085010.4121730.072*0.51 (7)
C6A0.418 (5)0.141 (3)0.3119 (18)0.059 (4)0.51 (7)
H6A0.4712330.2010670.2862260.070*0.51 (7)
C70.4521 (18)0.0840 (15)0.1564 (9)0.049 (4)
H7A0.5372450.0237330.1615210.059*
H7B0.4936470.1602910.1763890.059*
C80.411 (2)0.1017 (15)0.0780 (9)0.052 (4)
H8A0.3394290.1715090.0718580.063*
H8B0.5077440.1191640.0527900.063*
C90.1907 (17)0.0413 (16)0.0857 (9)0.046 (4)
H9A0.1444780.1159150.0655280.056*
H9B0.1101260.0225160.0807750.056*
C100.2369 (19)0.0603 (15)0.1653 (10)0.049 (4)
H10A0.1406310.0766960.1913540.059*
H10B0.3062040.1313450.1703310.059*
S10.1579 (4)0.7481 (4)0.1011 (2)0.0439 (10)
O10.1787 (12)0.6159 (9)0.0944 (6)0.049 (3)
O20.2928 (18)0.8175 (11)0.0705 (7)0.076 (4)
O30.0028 (16)0.7862 (13)0.0762 (7)0.082 (5)
C110.1506 (16)0.7750 (13)0.1938 (8)0.036 (3)
C120.2354 (19)0.8746 (17)0.2240 (10)0.054 (4)
H120.2984180.9254810.1939380.065*
C130.224 (2)0.8952 (19)0.2971 (11)0.067 (5)
H130.2832220.9593990.3151600.081*
C140.133 (2)0.830 (2)0.3450 (11)0.070 (5)
C150.042 (2)0.735 (2)0.3146 (10)0.069 (5)
H150.0255240.6879270.3447070.083*
C160.051 (2)0.7130 (15)0.2414 (9)0.060 (5)
H160.0135320.6520690.2233310.072*
C170.121 (3)0.853 (3)0.4249 (11)0.101 (8)
H17A0.1384380.7783290.4505280.152*
H17B0.2008380.9119240.4372270.152*
H17C0.0159700.8842990.4383190.152*
N30.2216 (15)0.5462 (13)0.1956 (8)0.046 (3)
N40.1795 (13)0.4911 (11)0.0439 (8)0.041 (3)
H41N0.1108530.4289610.0457630.049*
H42N0.2001800.5040890.0024200.049*
C180.212 (4)0.553 (3)0.2730 (13)0.052 (3)0.53 (7)
C190.321 (4)0.490 (4)0.3187 (18)0.055 (4)0.53 (7)
H190.3956690.4375350.2992890.066*0.53 (7)
C200.319 (3)0.506 (4)0.3935 (17)0.058 (4)0.53 (7)
H200.3921160.4645590.4241390.070*0.53 (7)
C210.208 (5)0.585 (3)0.4226 (13)0.060 (4)0.53 (7)
H210.2067860.5961770.4726060.071*0.53 (7)
C220.099 (6)0.648 (3)0.3768 (17)0.058 (4)0.53 (7)
H220.0250070.7007720.3962240.070*0.53 (7)
C230.101 (5)0.632 (3)0.3020 (16)0.056 (4)0.53 (7)
H230.0285570.6737490.2713740.067*0.53 (7)
C18A0.222 (5)0.547 (4)0.2737 (15)0.053 (3)0.47 (7)
C19A0.308 (5)0.459 (4)0.313 (2)0.054 (4)0.47 (7)
H19A0.3558870.3948650.2890120.065*0.47 (7)
C20A0.322 (4)0.466 (4)0.388 (2)0.057 (4)0.47 (7)
H20A0.3794510.4066320.4148260.069*0.47 (7)
C21A0.250 (6)0.562 (4)0.4245 (15)0.059 (4)0.47 (7)
H21A0.2593180.5662510.4749110.071*0.47 (7)
C22A0.164 (7)0.650 (3)0.385 (2)0.058 (4)0.47 (7)
H22A0.1156210.7141050.4091830.070*0.47 (7)
C23A0.150 (6)0.643 (3)0.310 (2)0.057 (4)0.47 (7)
H23A0.0920560.7023410.2833680.068*0.47 (7)
C240.2995 (19)0.4424 (17)0.1647 (10)0.053 (4)
H24A0.2331280.3705130.1703010.064*
H24B0.4015900.4283100.1908160.064*
C250.3281 (16)0.4609 (14)0.0851 (9)0.042 (3)
H25A0.4052630.5263140.0798550.051*
H25B0.3733580.3869480.0655000.051*
C260.107 (2)0.6013 (14)0.0745 (9)0.049 (4)
H26A0.0053790.6185670.0486460.058*
H26B0.1777150.6706320.0683500.058*
C270.0796 (19)0.5836 (16)0.1541 (9)0.050 (4)
H27A0.0408820.6596320.1739880.059*
H27B0.0034430.5224920.1592580.059*
S20.3197 (4)0.2483 (4)0.1000 (2)0.0434 (10)
O40.4827 (15)0.2874 (13)0.0758 (7)0.082 (5)
O50.1897 (18)0.3143 (12)0.0704 (7)0.076 (4)
O60.3029 (13)0.1184 (10)0.0925 (6)0.055 (3)
C280.3101 (15)0.2744 (12)0.1926 (7)0.030 (3)
C290.398 (2)0.2104 (14)0.2397 (9)0.056 (4)
H290.4647480.1486260.2212690.067*
C300.393 (2)0.2318 (19)0.3126 (9)0.069 (5)
H300.4548200.1833650.3419420.083*
C310.299 (3)0.3227 (19)0.3444 (11)0.067 (5)
C320.213 (2)0.3916 (17)0.2971 (11)0.063 (5)
H320.1499720.4553030.3159930.076*
C330.2151 (19)0.3708 (15)0.2229 (11)0.051 (4)
H330.1546990.4197150.1931320.061*
C340.291 (3)0.347 (3)0.4236 (12)0.108 (9)
H34A0.2117150.4088030.4345360.163*
H34B0.2614930.2732690.4492340.163*
H34C0.3938780.3742980.4383930.163*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.035 (6)0.025 (6)0.073 (6)0.004 (5)0.003 (5)0.004 (5)
N20.022 (6)0.028 (7)0.075 (9)0.001 (5)0.003 (5)0.001 (6)
C10.057 (8)0.041 (8)0.070 (6)0.002 (7)0.006 (6)0.002 (6)
C20.060 (8)0.043 (8)0.070 (7)0.006 (7)0.006 (6)0.000 (7)
C30.065 (8)0.046 (9)0.071 (7)0.008 (8)0.007 (6)0.001 (7)
C40.065 (9)0.049 (9)0.072 (7)0.009 (8)0.005 (7)0.000 (7)
C50.062 (9)0.049 (8)0.073 (7)0.007 (8)0.006 (7)0.002 (7)
C60.059 (9)0.045 (8)0.071 (6)0.004 (7)0.007 (7)0.001 (7)
C1A0.056 (8)0.041 (7)0.070 (6)0.002 (7)0.007 (6)0.002 (6)
C2A0.058 (8)0.044 (8)0.071 (6)0.004 (7)0.007 (6)0.001 (7)
C3A0.065 (8)0.046 (9)0.071 (7)0.009 (8)0.007 (7)0.001 (7)
C4A0.065 (9)0.050 (8)0.072 (7)0.009 (8)0.005 (7)0.001 (7)
C5A0.061 (9)0.048 (8)0.072 (7)0.007 (8)0.006 (7)0.001 (7)
C6A0.059 (9)0.046 (8)0.071 (6)0.006 (7)0.007 (7)0.000 (6)
C70.033 (7)0.041 (10)0.073 (7)0.010 (7)0.004 (6)0.009 (8)
C80.051 (9)0.029 (8)0.077 (8)0.016 (7)0.004 (7)0.005 (8)
C90.031 (7)0.036 (9)0.073 (8)0.007 (6)0.009 (6)0.010 (8)
C100.038 (9)0.035 (9)0.076 (8)0.012 (7)0.012 (7)0.003 (7)
S10.042 (2)0.029 (2)0.061 (3)0.009 (2)0.0026 (17)0.003 (2)
O10.046 (7)0.018 (5)0.083 (8)0.002 (5)0.006 (5)0.004 (5)
O20.114 (10)0.036 (7)0.076 (9)0.037 (7)0.030 (8)0.007 (7)
O30.077 (8)0.095 (11)0.078 (8)0.057 (8)0.038 (7)0.019 (8)
C110.031 (4)0.034 (4)0.043 (4)0.001 (3)0.002 (3)0.003 (3)
C120.037 (9)0.057 (10)0.068 (8)0.018 (8)0.000 (7)0.005 (8)
C130.064 (12)0.068 (13)0.070 (9)0.016 (9)0.011 (8)0.013 (9)
C140.067 (12)0.080 (13)0.062 (9)0.005 (9)0.002 (8)0.000 (9)
C150.076 (11)0.064 (12)0.067 (8)0.009 (10)0.017 (8)0.012 (9)
C160.069 (10)0.039 (11)0.069 (8)0.017 (8)0.013 (8)0.002 (7)
C170.108 (19)0.13 (2)0.068 (10)0.026 (17)0.009 (11)0.013 (12)
N30.033 (6)0.037 (7)0.067 (5)0.005 (5)0.002 (5)0.001 (6)
N40.024 (6)0.023 (6)0.076 (8)0.006 (5)0.006 (5)0.005 (6)
C180.048 (8)0.040 (7)0.067 (6)0.001 (7)0.002 (5)0.004 (6)
C190.052 (7)0.044 (8)0.068 (6)0.004 (7)0.003 (6)0.002 (7)
C200.058 (8)0.046 (9)0.069 (6)0.007 (8)0.002 (6)0.003 (7)
C210.058 (9)0.049 (8)0.071 (7)0.008 (8)0.002 (6)0.003 (7)
C220.055 (9)0.048 (8)0.071 (7)0.007 (8)0.003 (7)0.000 (7)
C230.051 (8)0.045 (7)0.071 (6)0.005 (7)0.003 (6)0.001 (7)
C18A0.049 (8)0.041 (7)0.067 (6)0.001 (7)0.002 (6)0.003 (6)
C19A0.051 (8)0.043 (8)0.068 (6)0.002 (7)0.002 (6)0.003 (7)
C20A0.057 (8)0.045 (9)0.069 (6)0.008 (8)0.003 (6)0.003 (7)
C21A0.058 (9)0.048 (8)0.071 (7)0.009 (8)0.001 (7)0.002 (7)
C22A0.056 (9)0.047 (8)0.072 (7)0.007 (8)0.002 (7)0.000 (7)
C23A0.053 (9)0.045 (7)0.071 (6)0.003 (8)0.003 (7)0.000 (6)
C240.029 (8)0.052 (10)0.079 (8)0.010 (7)0.000 (7)0.004 (8)
C250.022 (6)0.022 (8)0.083 (8)0.004 (6)0.003 (6)0.005 (7)
C260.052 (9)0.021 (7)0.073 (8)0.012 (7)0.003 (7)0.008 (7)
C270.047 (4)0.047 (5)0.054 (4)0.005 (3)0.001 (3)0.002 (3)
S20.041 (2)0.030 (2)0.059 (3)0.014 (2)0.0019 (17)0.002 (2)
O40.072 (7)0.087 (11)0.082 (9)0.056 (7)0.035 (6)0.031 (8)
O50.107 (10)0.048 (8)0.076 (9)0.008 (7)0.035 (8)0.000 (7)
O60.058 (7)0.026 (6)0.082 (9)0.017 (5)0.004 (6)0.009 (6)
C280.025 (4)0.025 (4)0.039 (4)0.008 (3)0.002 (3)0.003 (3)
C290.075 (11)0.033 (10)0.061 (8)0.011 (7)0.011 (8)0.004 (7)
C300.097 (13)0.053 (12)0.059 (8)0.003 (9)0.018 (8)0.015 (8)
C310.069 (12)0.063 (12)0.068 (9)0.021 (8)0.005 (8)0.005 (8)
C320.058 (12)0.044 (11)0.087 (9)0.000 (8)0.008 (8)0.019 (9)
C330.035 (8)0.031 (8)0.087 (9)0.005 (6)0.001 (8)0.007 (8)
C340.11 (2)0.13 (2)0.076 (10)0.039 (18)0.012 (11)0.022 (13)
Geometric parameters (Å, º) top
N1—C1A1.41 (3)N3—C181.43 (3)
N1—C11.44 (3)N3—C271.437 (19)
N1—C71.437 (19)N3—C18A1.44 (3)
N1—C101.461 (19)N3—C241.44 (2)
N2—C91.467 (18)N4—C251.459 (19)
N2—C81.475 (19)N4—C261.473 (18)
N2—H21N0.8900N4—H41N0.8900
N2—H22N0.8900N4—H42N0.8900
C1—C21.3900C18—C191.3900
C1—C61.3900C18—C231.3900
C2—C31.3900C19—C201.3900
C2—H20.9300C19—H190.9300
C3—C41.3900C20—C211.3900
C3—H30.9300C20—H200.9300
C4—C51.3900C21—C221.3900
C4—H40.9300C21—H210.9300
C5—C61.3900C22—C231.3900
C5—H50.9300C22—H220.9300
C6—H60.9300C23—H230.9300
C1A—C2A1.3900C18A—C19A1.3900
C1A—C6A1.3900C18A—C23A1.3900
C2A—C3A1.3900C19A—C20A1.3900
C2A—H2A0.9300C19A—H19A0.9300
C3A—C4A1.3900C20A—C21A1.3900
C3A—H3A0.9300C20A—H20A0.9300
C4A—C5A1.3900C21A—C22A1.3900
C4A—H4A0.9300C21A—H21A0.9300
C5A—C6A1.3900C22A—C23A1.3900
C5A—H5A0.9300C22A—H22A0.9300
C6A—H6A0.9300C23A—H23A0.9300
C7—C81.48 (2)C24—C251.51 (2)
C7—H7A0.9700C24—H24A0.9700
C7—H7B0.9700C24—H24B0.9700
C8—H8A0.9700C25—H25A0.9700
C8—H8B0.9700C25—H25B0.9700
C9—C101.51 (2)C26—C271.51 (2)
C9—H9A0.9700C26—H26A0.9700
C9—H9B0.9700C26—H26B0.9700
C10—H10A0.9700C27—H27A0.9700
C10—H10B0.9700C27—H27B0.9700
S1—O21.448 (12)S2—O51.430 (13)
S1—O31.451 (12)S2—O61.436 (11)
S1—O11.462 (11)S2—O41.473 (11)
S1—C111.731 (15)S2—C281.728 (14)
C11—C161.358 (19)C28—C291.355 (19)
C11—C121.43 (2)C28—C331.42 (2)
C12—C131.36 (2)C29—C301.36 (2)
C12—H120.9300C29—H290.9300
C13—C141.34 (3)C30—C311.38 (3)
C13—H130.9300C30—H300.9300
C14—C151.41 (3)C31—C321.38 (3)
C14—C171.49 (3)C31—C341.48 (3)
C15—C161.37 (2)C32—C331.39 (3)
C15—H150.9300C32—H320.9300
C16—H160.9300C33—H330.9300
C17—H17A0.9600C34—H34A0.9600
C17—H17B0.9600C34—H34B0.9600
C17—H17C0.9600C34—H34C0.9600
C1A—N1—C7118.8 (19)C18—N3—C27115.7 (18)
C1—N1—C7116.1 (19)C27—N3—C18A119 (2)
C1A—N1—C10116.9 (19)C18—N3—C24118.7 (19)
C1—N1—C10119.1 (19)C27—N3—C24112.9 (14)
C7—N1—C10111.9 (13)C18A—N3—C24115 (2)
C9—N2—C8110.6 (13)C25—N4—C26109.8 (13)
C9—N2—H21N109.5C25—N4—H41N109.7
C8—N2—H21N109.5C26—N4—H41N109.7
C9—N2—H22N109.5C25—N4—H42N109.7
C8—N2—H22N109.5C26—N4—H42N109.7
H21N—N2—H22N108.1H41N—N4—H42N108.2
C2—C1—C6120.0C19—C18—C23120.0
C2—C1—N1122 (2)C19—C18—N3121 (2)
C6—C1—N1118 (2)C23—C18—N3119 (2)
C3—C2—C1120.0C20—C19—C18120.0
C3—C2—H2120.0C20—C19—H19120.0
C1—C2—H2120.0C18—C19—H19120.0
C2—C3—C4120.0C21—C20—C19120.0
C2—C3—H3120.0C21—C20—H20120.0
C4—C3—H3120.0C19—C20—H20120.0
C3—C4—C5120.0C22—C21—C20120.0
C3—C4—H4120.0C22—C21—H21120.0
C5—C4—H4120.0C20—C21—H21120.0
C6—C5—C4120.0C21—C22—C23120.0
C6—C5—H5120.0C21—C22—H22120.0
C4—C5—H5120.0C23—C22—H22120.0
C5—C6—C1120.0C22—C23—C18120.0
C5—C6—H6120.0C22—C23—H23120.0
C1—C6—H6120.0C18—C23—H23120.0
C2A—C1A—C6A120.0C19A—C18A—C23A120.0
C2A—C1A—N1118 (2)C19A—C18A—N3119 (3)
C6A—C1A—N1122 (2)C23A—C18A—N3120 (3)
C1A—C2A—C3A120.0C20A—C19A—C18A120.0
C1A—C2A—H2A120.0C20A—C19A—H19A120.0
C3A—C2A—H2A120.0C18A—C19A—H19A120.0
C4A—C3A—C2A120.0C19A—C20A—C21A120.0
C4A—C3A—H3A120.0C19A—C20A—H20A120.0
C2A—C3A—H3A120.0C21A—C20A—H20A120.0
C3A—C4A—C5A120.0C20A—C21A—C22A120.0
C3A—C4A—H4A120.0C20A—C21A—H21A120.0
C5A—C4A—H4A120.0C22A—C21A—H21A120.0
C6A—C5A—C4A120.0C23A—C22A—C21A120.0
C6A—C5A—H5A120.0C23A—C22A—H22A120.0
C4A—C5A—H5A120.0C21A—C22A—H22A120.0
C5A—C6A—C1A120.0C22A—C23A—C18A120.0
C5A—C6A—H6A120.0C22A—C23A—H23A120.0
C1A—C6A—H6A120.0C18A—C23A—H23A120.0
N1—C7—C8114.2 (13)N3—C24—C25111.9 (14)
N1—C7—H7A108.7N3—C24—H24A109.2
C8—C7—H7A108.7C25—C24—H24A109.2
N1—C7—H7B108.7N3—C24—H24B109.2
C8—C7—H7B108.7C25—C24—H24B109.2
H7A—C7—H7B107.6H24A—C24—H24B107.9
N2—C8—C7111.8 (13)N4—C25—C24111.5 (12)
N2—C8—H8A109.3N4—C25—H25A109.3
C7—C8—H8A109.3C24—C25—H25A109.3
N2—C8—H8B109.3N4—C25—H25B109.3
C7—C8—H8B109.3C24—C25—H25B109.3
H8A—C8—H8B107.9H25A—C25—H25B108.0
N2—C9—C10110.8 (12)N4—C26—C27110.5 (13)
N2—C9—H9A109.5N4—C26—H26A109.6
C10—C9—H9A109.5C27—C26—H26A109.6
N2—C9—H9B109.5N4—C26—H26B109.6
C10—C9—H9B109.5C27—C26—H26B109.6
H9A—C9—H9B108.1H26A—C26—H26B108.1
N1—C10—C9112.7 (13)N3—C27—C26113.3 (13)
N1—C10—H10A109.1N3—C27—H27A108.9
C9—C10—H10A109.1C26—C27—H27A108.9
N1—C10—H10B109.1N3—C27—H27B108.9
C9—C10—H10B109.1C26—C27—H27B108.9
H10A—C10—H10B107.8H27A—C27—H27B107.7
O2—S1—O3114.3 (10)O5—S2—O6112.7 (8)
O2—S1—O1113.6 (8)O5—S2—O4116.2 (9)
O3—S1—O1111.2 (8)O6—S2—O4110.6 (8)
O2—S1—C11106.6 (7)O5—S2—C28106.9 (8)
O3—S1—C11105.8 (7)O6—S2—C28105.0 (7)
O1—S1—C11104.5 (7)O4—S2—C28104.5 (7)
C16—C11—C12115.3 (15)C29—C28—C33116.1 (14)
C16—C11—S1123.0 (12)C29—C28—S2123.0 (12)
C12—C11—S1121.3 (12)C33—C28—S2120.7 (12)
C13—C12—C11119.8 (17)C28—C29—C30123.4 (16)
C13—C12—H12120.1C28—C29—H29118.3
C11—C12—H12120.1C30—C29—H29118.3
C14—C13—C12124.9 (19)C29—C30—C31122.3 (18)
C14—C13—H13117.5C29—C30—H30118.9
C12—C13—H13117.5C31—C30—H30118.9
C13—C14—C15115.2 (19)C30—C31—C32115.3 (19)
C13—C14—C17124 (2)C30—C31—C34123 (2)
C15—C14—C17120 (2)C32—C31—C34121 (2)
C16—C15—C14121.0 (18)C31—C32—C33123.4 (18)
C16—C15—H15119.5C31—C32—H32118.3
C14—C15—H15119.5C33—C32—H32118.3
C11—C16—C15123.5 (17)C32—C33—C28119.5 (16)
C11—C16—H16118.3C32—C33—H33120.2
C15—C16—H16118.3C28—C33—H33120.2
C14—C17—H17A109.5C31—C34—H34A109.5
C14—C17—H17B109.5C31—C34—H34B109.5
H17A—C17—H17B109.5H34A—C34—H34B109.5
C14—C17—H17C109.5C31—C34—H34C109.5
H17A—C17—H17C109.5H34A—C34—H34C109.5
H17B—C17—H17C109.5H34B—C34—H34C109.5
C7—N1—C1—C2165 (2)C27—N3—C18—C19163 (2)
C10—N1—C1—C226 (3)C24—N3—C18—C1923 (3)
C7—N1—C1—C621 (3)C27—N3—C18—C2323 (3)
C10—N1—C1—C6159 (2)C24—N3—C18—C23162 (2)
C6—C1—C2—C30.0C23—C18—C19—C200.0
N1—C1—C2—C3174 (3)N3—C18—C19—C20174 (3)
C1—C2—C3—C40.0C18—C19—C20—C210.0
C2—C3—C4—C50.0C19—C20—C21—C220.0
C3—C4—C5—C60.0C20—C21—C22—C230.0
C4—C5—C6—C10.0C21—C22—C23—C180.0
C2—C1—C6—C50.0C19—C18—C23—C220.0
N1—C1—C6—C5174 (3)N3—C18—C23—C22174 (3)
C7—N1—C1A—C2A147 (2)C27—N3—C18A—C19A146 (2)
C10—N1—C1A—C2A8 (3)C24—N3—C18A—C19A6 (3)
C7—N1—C1A—C6A39 (3)C27—N3—C18A—C23A41 (3)
C10—N1—C1A—C6A178 (2)C24—N3—C18A—C23A180 (2)
C6A—C1A—C2A—C3A0.0C23A—C18A—C19A—C20A0.0
N1—C1A—C2A—C3A174 (3)N3—C18A—C19A—C20A174 (3)
C1A—C2A—C3A—C4A0.0C18A—C19A—C20A—C21A0.0
C2A—C3A—C4A—C5A0.0C19A—C20A—C21A—C22A0.0
C3A—C4A—C5A—C6A0.0C20A—C21A—C22A—C23A0.0
C4A—C5A—C6A—C1A0.0C21A—C22A—C23A—C18A0.0
C2A—C1A—C6A—C5A0.0C19A—C18A—C23A—C22A0.0
N1—C1A—C6A—C5A174 (3)N3—C18A—C23A—C22A174 (3)
C1A—N1—C7—C8168 (2)C18—N3—C24—C25168.7 (18)
C1—N1—C7—C8168 (2)C27—N3—C24—C2551.1 (17)
C10—N1—C7—C850.7 (18)C18A—N3—C24—C25167 (2)
C9—N2—C8—C754.6 (17)C26—N4—C25—C2457.4 (16)
N1—C7—C8—N252.8 (19)N3—C24—C25—N454.9 (17)
C8—N2—C9—C1055.4 (17)C25—N4—C26—C2756.2 (16)
C1A—N1—C10—C9167 (2)C18—N3—C27—C26167.3 (19)
C1—N1—C10—C9169 (2)C18A—N3—C27—C26169 (2)
C7—N1—C10—C951.2 (17)C24—N3—C27—C2651.3 (19)
N2—C9—C10—N154.4 (18)N4—C26—C27—N353.6 (19)
O2—S1—C11—C16171.6 (14)O5—S2—C28—C29168.7 (13)
O3—S1—C11—C1666.3 (15)O6—S2—C28—C2948.8 (14)
O1—S1—C11—C1651.1 (15)O4—S2—C28—C2967.7 (14)
O2—S1—C11—C1216.1 (15)O5—S2—C28—C3315.2 (14)
O3—S1—C11—C12105.9 (14)O6—S2—C28—C33135.1 (12)
O1—S1—C11—C12136.7 (13)O4—S2—C28—C33108.5 (13)
C16—C11—C12—C135 (2)C33—C28—C29—C303 (2)
S1—C11—C12—C13178.3 (14)S2—C28—C29—C30178.9 (14)
C11—C12—C13—C142 (3)C28—C29—C30—C311 (3)
C12—C13—C14—C152 (3)C29—C30—C31—C321 (3)
C12—C13—C14—C17180 (2)C29—C30—C31—C34179.4 (19)
C13—C14—C15—C162 (3)C30—C31—C32—C331 (3)
C17—C14—C15—C16179.9 (19)C34—C31—C32—C33178.8 (19)
C12—C11—C16—C156 (3)C31—C32—C33—C280 (3)
S1—C11—C16—C15178.4 (15)C29—C28—C33—C322 (2)
C14—C15—C16—C112 (3)S2—C28—C33—C32178.3 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21N···O60.892.072.884 (18)151
N2—H22N···O4i0.891.922.774 (17)161
C9—H9B···O1ii0.972.643.534 (19)154
N4—H41N···O3ii0.891.922.788 (16)163
N4—H42N···O10.892.092.890 (18)149
N4—H42N···O50.892.432.865 (18)111
C25—H25A···O6iii0.972.633.520 (18)153
Symmetry codes: (i) x+1, y1/2, z; (ii) x, y1/2, z; (iii) x+1, y+1/2, z.
4-Phenylpiperazin-1-ium 4-carboxy-2,3-dihydroxybutanoate monohydrate (11) top
Crystal data top
C10H15N2+·C4H5O6·H2ODx = 1.367 Mg m3
Mr = 330.33Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 3790 reflections
a = 7.1185 (7) Åθ = 2.9–27.8°
b = 7.5255 (8) ŵ = 0.11 mm1
c = 29.955 (3) ÅT = 293 K
V = 1604.7 (3) Å3Prism, colourless
Z = 40.42 × 0.32 × 0.24 mm
F(000) = 704
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
2808 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.019
Rotation method data acquisition using ω scans.θmax = 27.8°, θmin = 2.9°
Absorption correction: multi-scan
(CrysalisRED; Oxford Diffraction, 2007)
h = 99
Tmin = 0.883, Tmax = 1.000k = 69
6773 measured reflectionsl = 3638
3354 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0359P)2 + 0.5036P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
3354 reflectionsΔρmax = 0.20 e Å3
260 parametersΔρmin = 0.16 e Å3
211 restraintsAbsolute structure: Flack x determined using 912 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: dualAbsolute structure parameter: 0.2 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.2138 (4)0.3376 (4)0.69293 (7)0.0428 (6)
N20.0481 (4)0.3028 (5)0.60649 (9)0.0515 (8)
H210.057 (6)0.189 (3)0.6004 (13)0.062*
H220.007 (5)0.338 (5)0.5825 (9)0.062*
C10.3025 (8)0.3071 (7)0.7352 (2)0.0393 (16)0.611 (13)
C20.4926 (8)0.2687 (11)0.73967 (16)0.0489 (16)0.611 (13)
H20.5661670.2508790.7144170.059*0.611 (13)
C30.5726 (8)0.2568 (12)0.78189 (19)0.0596 (18)0.611 (13)
H30.6997690.2310940.7848850.071*0.611 (13)
C40.4626 (12)0.2834 (8)0.81965 (16)0.0629 (19)0.611 (13)
H40.5161400.2754360.8478930.076*0.611 (13)
C50.2725 (11)0.3218 (11)0.8152 (2)0.0565 (19)0.611 (13)
H50.1989080.3395640.8404340.068*0.611 (13)
C60.1925 (8)0.3336 (10)0.7730 (3)0.0469 (17)0.611 (13)
H60.0653030.3593510.7699670.056*0.611 (13)
C1A0.3005 (14)0.3277 (13)0.7366 (4)0.044 (2)0.389 (13)
C2A0.4913 (13)0.3634 (19)0.7408 (3)0.054 (2)0.389 (13)
H2A0.5611660.3957530.7158280.065*0.389 (13)
C3A0.5777 (13)0.3508 (18)0.7823 (3)0.058 (2)0.389 (13)
H3A0.7052910.3747290.7850920.069*0.389 (13)
C4A0.4732 (18)0.3026 (13)0.8196 (3)0.060 (3)0.389 (13)
H4A0.5310210.2941260.8473280.073*0.389 (13)
C5A0.2825 (18)0.2669 (16)0.8154 (4)0.052 (2)0.389 (13)
H5A0.2126260.2345470.8403000.062*0.389 (13)
C6A0.1961 (13)0.2795 (15)0.7739 (5)0.044 (2)0.389 (13)
H6A0.0684970.2555700.7710370.053*0.389 (13)
C70.0322 (4)0.2513 (6)0.68665 (10)0.0600 (10)
H7A0.0443780.2695460.7130320.072*
H7B0.0510460.1244800.6830190.072*
C80.0694 (5)0.3230 (6)0.64654 (11)0.0615 (11)
H8A0.1866320.2592770.6425100.074*
H8B0.0984450.4475730.6511230.074*
C90.2345 (5)0.3864 (6)0.61270 (11)0.0626 (11)
H9A0.2194000.5139760.6154950.075*
H9B0.3118520.3633360.5866720.075*
C100.3310 (4)0.3153 (6)0.65361 (9)0.0516 (9)
H10A0.3587430.1902240.6494450.062*
H10B0.4489940.3775450.6579410.062*
O10.3807 (3)0.8465 (3)0.42742 (7)0.0391 (5)
O20.0905 (3)0.9424 (3)0.44164 (9)0.0536 (6)
O30.0601 (3)0.6256 (3)0.44303 (8)0.0403 (5)
H3O0.097 (5)0.721 (3)0.4540 (10)0.048*
O40.1952 (3)0.6293 (3)0.51830 (6)0.0405 (5)
H4O0.091 (3)0.613 (5)0.5267 (11)0.049*
O50.0826 (3)0.2841 (3)0.51284 (7)0.0513 (6)
O60.1893 (3)0.2612 (2)0.44300 (6)0.0369 (5)
H6O0.153 (4)0.156 (3)0.4444 (11)0.044*
C110.2097 (4)0.8232 (3)0.43575 (9)0.0323 (6)
C120.1380 (3)0.6322 (3)0.43867 (9)0.0277 (5)
H120.1735380.5697090.4112250.033*
C130.2286 (4)0.5366 (3)0.47836 (8)0.0284 (6)
H130.3646700.5336120.4733740.034*
C140.1588 (4)0.3466 (4)0.48051 (8)0.0311 (6)
O70.3916 (4)0.5658 (4)0.39633 (9)0.0629 (7)
H71O0.286 (4)0.586 (6)0.4077 (13)0.075*
H72O0.462 (5)0.649 (4)0.4054 (14)0.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0367 (13)0.0643 (16)0.0275 (11)0.0036 (13)0.0040 (10)0.0023 (12)
N20.0418 (14)0.083 (2)0.0299 (13)0.0080 (17)0.0080 (11)0.0064 (15)
C10.042 (3)0.047 (3)0.029 (3)0.000 (3)0.004 (3)0.009 (3)
C20.044 (3)0.067 (4)0.037 (2)0.012 (3)0.003 (2)0.001 (3)
C30.056 (3)0.075 (5)0.048 (3)0.012 (4)0.017 (2)0.003 (4)
C40.074 (4)0.079 (4)0.036 (3)0.007 (4)0.016 (3)0.002 (3)
C50.067 (3)0.069 (5)0.033 (3)0.005 (4)0.002 (3)0.002 (3)
C60.048 (3)0.056 (4)0.037 (3)0.009 (3)0.002 (2)0.005 (3)
C1A0.044 (4)0.051 (5)0.036 (4)0.003 (4)0.005 (4)0.010 (4)
C2A0.050 (4)0.072 (5)0.039 (4)0.001 (5)0.003 (3)0.006 (4)
C3A0.052 (4)0.078 (6)0.043 (4)0.000 (5)0.016 (3)0.001 (5)
C4A0.068 (5)0.078 (5)0.036 (4)0.001 (5)0.017 (4)0.002 (4)
C5A0.065 (4)0.058 (5)0.032 (4)0.005 (4)0.001 (4)0.001 (4)
C6A0.048 (4)0.048 (5)0.036 (4)0.002 (4)0.001 (3)0.003 (4)
C70.0388 (17)0.108 (3)0.0335 (16)0.015 (2)0.0016 (13)0.0005 (19)
C80.0405 (18)0.101 (3)0.0431 (18)0.007 (2)0.0058 (14)0.010 (2)
C90.051 (2)0.097 (3)0.0398 (17)0.023 (2)0.0084 (15)0.0173 (19)
C100.0357 (16)0.085 (3)0.0343 (15)0.0079 (18)0.0012 (12)0.0073 (17)
O10.0305 (10)0.0412 (11)0.0458 (11)0.0059 (9)0.0039 (9)0.0013 (10)
O20.0379 (12)0.0274 (10)0.0954 (18)0.0020 (9)0.0058 (12)0.0045 (12)
O30.0255 (10)0.0319 (10)0.0635 (14)0.0007 (9)0.0047 (10)0.0087 (11)
O40.0355 (11)0.0538 (12)0.0323 (10)0.0080 (11)0.0028 (9)0.0162 (10)
O50.0641 (15)0.0544 (13)0.0354 (11)0.0131 (12)0.0138 (10)0.0052 (10)
O60.0472 (12)0.0257 (9)0.0379 (10)0.0018 (9)0.0084 (9)0.0025 (9)
C110.0325 (14)0.0308 (14)0.0336 (14)0.0019 (13)0.0026 (12)0.0016 (12)
C120.0231 (12)0.0276 (13)0.0326 (13)0.0017 (11)0.0013 (11)0.0044 (12)
C130.0249 (13)0.0353 (14)0.0248 (12)0.0001 (12)0.0015 (11)0.0045 (11)
C140.0291 (14)0.0349 (14)0.0293 (13)0.0013 (12)0.0002 (11)0.0009 (12)
O70.0411 (13)0.0784 (19)0.0691 (16)0.0049 (14)0.0092 (12)0.0320 (15)
Geometric parameters (Å, º) top
N1—C11.434 (6)C5A—H5A0.9300
N1—C1A1.448 (9)C6A—H6A0.9300
N1—C101.453 (4)C7—C81.502 (5)
N1—C71.459 (4)C7—H7A0.9700
N2—C81.470 (4)C7—H7B0.9700
N2—C91.480 (4)C8—H8A0.9700
N2—H210.88 (2)C8—H8B0.9700
N2—H220.86 (2)C9—C101.503 (4)
C1—C21.3900C9—H9A0.9700
C1—C61.3900C9—H9B0.9700
C2—C31.3900C10—H10A0.9700
C2—H20.9300C10—H10B0.9700
C3—C41.3900O1—C111.255 (3)
C3—H30.9300O2—C111.247 (3)
C4—C51.3900O3—C121.417 (3)
C4—H40.9300O3—H3O0.83 (2)
C5—C61.3900O4—C131.405 (3)
C5—H50.9300O4—H4O0.79 (2)
C6—H60.9300O5—C141.205 (3)
C1A—C2A1.3900O6—C141.312 (3)
C1A—C6A1.3900O6—H6O0.83 (2)
C2A—C3A1.3900C11—C121.528 (4)
C2A—H2A0.9300C12—C131.532 (4)
C3A—C4A1.3900C12—H120.9800
C3A—H3A0.9300C13—C141.516 (4)
C4A—C5A1.3900C13—H130.9800
C4A—H4A0.9300O7—H71O0.84 (2)
C5A—C6A1.3900O7—H72O0.85 (2)
C1—N1—C10116.4 (3)N1—C7—C8111.7 (3)
C1A—N1—C10118.8 (5)N1—C7—H7A109.3
C1—N1—C7115.6 (3)C8—C7—H7A109.3
C1A—N1—C7118.1 (5)N1—C7—H7B109.3
C10—N1—C7110.7 (2)C8—C7—H7B109.3
C8—N2—C9111.3 (3)H7A—C7—H7B107.9
C8—N2—H21108 (3)N2—C8—C7110.0 (3)
C9—N2—H21112 (3)N2—C8—H8A109.7
C8—N2—H22113 (3)C7—C8—H8A109.7
C9—N2—H22112 (3)N2—C8—H8B109.7
H21—N2—H2299 (4)C7—C8—H8B109.7
C2—C1—C6120.0H8A—C8—H8B108.2
C2—C1—N1123.2 (5)N2—C9—C10111.2 (3)
C6—C1—N1116.6 (5)N2—C9—H9A109.4
C1—C2—C3120.0C10—C9—H9A109.4
C1—C2—H2120.0N2—C9—H9B109.4
C3—C2—H2120.0C10—C9—H9B109.4
C4—C3—C2120.0H9A—C9—H9B108.0
C4—C3—H3120.0N1—C10—C9110.9 (3)
C2—C3—H3120.0N1—C10—H10A109.5
C3—C4—C5120.0C9—C10—H10A109.5
C3—C4—H4120.0N1—C10—H10B109.5
C5—C4—H4120.0C9—C10—H10B109.5
C4—C5—C6120.0H10A—C10—H10B108.0
C4—C5—H5120.0C12—O3—H3O109 (2)
C6—C5—H5120.0C13—O4—H4O111 (3)
C5—C6—C1120.0C14—O6—H6O112 (2)
C5—C6—H6120.0O2—C11—O1126.0 (3)
C1—C6—H6120.0O2—C11—C12116.2 (2)
C2A—C1A—C6A120.0O1—C11—C12117.8 (2)
C2A—C1A—N1119.3 (7)O3—C12—C11111.7 (2)
C6A—C1A—N1120.7 (7)O3—C12—C13109.3 (2)
C1A—C2A—C3A120.0C11—C12—C13110.2 (2)
C1A—C2A—H2A120.0O3—C12—H12108.5
C3A—C2A—H2A120.0C11—C12—H12108.5
C4A—C3A—C2A120.0C13—C12—H12108.5
C4A—C3A—H3A120.0O4—C13—C14112.1 (2)
C2A—C3A—H3A120.0O4—C13—C12110.9 (2)
C3A—C4A—C5A120.0C14—C13—C12109.7 (2)
C3A—C4A—H4A120.0O4—C13—H13108.0
C5A—C4A—H4A120.0C14—C13—H13108.0
C4A—C5A—C6A120.0C12—C13—H13108.0
C4A—C5A—H5A120.0O5—C14—O6124.9 (3)
C6A—C5A—H5A120.0O5—C14—C13123.3 (2)
C5A—C6A—C1A120.0O6—C14—C13111.8 (2)
C5A—C6A—H6A120.0H71O—O7—H72O105 (4)
C1A—C6A—H6A120.0
C10—N1—C1—C23.8 (6)N1—C1A—C6A—C5A178.6 (8)
C7—N1—C1—C2136.3 (5)C1—N1—C7—C8166.9 (4)
C10—N1—C1—C6178.1 (4)C1A—N1—C7—C8160.3 (5)
C7—N1—C1—C649.5 (5)C10—N1—C7—C858.0 (4)
C6—C1—C2—C30.0C9—N2—C8—C754.9 (5)
N1—C1—C2—C3174.0 (5)N1—C7—C8—N256.7 (5)
C1—C2—C3—C40.0C8—N2—C9—C1054.9 (5)
C2—C3—C4—C50.0C1—N1—C10—C9168.4 (4)
C3—C4—C5—C60.0C1A—N1—C10—C9161.7 (5)
C4—C5—C6—C10.0C7—N1—C10—C956.8 (4)
C2—C1—C6—C50.0N2—C9—C10—N155.5 (4)
N1—C1—C6—C5174.4 (5)O2—C11—C12—O36.3 (3)
C10—N1—C1A—C2A23.7 (8)O1—C11—C12—O3173.2 (2)
C7—N1—C1A—C2A162.3 (6)O2—C11—C12—C13115.4 (3)
C10—N1—C1A—C6A154.9 (6)O1—C11—C12—C1365.1 (3)
C7—N1—C1A—C6A16.3 (9)O3—C12—C13—O466.8 (3)
C6A—C1A—C2A—C3A0.0C11—C12—C13—O456.4 (3)
N1—C1A—C2A—C3A178.6 (8)O3—C12—C13—C1457.7 (3)
C1A—C2A—C3A—C4A0.0C11—C12—C13—C14179.2 (2)
C2A—C3A—C4A—C5A0.0O4—C13—C14—O50.4 (4)
C3A—C4A—C5A—C6A0.0C12—C13—C14—O5123.3 (3)
C4A—C5A—C6A—C1A0.0O4—C13—C14—O6179.5 (2)
C2A—C1A—C6A—C5A0.0C12—C13—C14—O655.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···O7i0.88 (2)1.95 (2)2.808 (5)164 (4)
N2—H22···O1ii0.86 (2)2.52 (3)3.069 (4)122 (3)
N2—H22···O50.86 (2)2.22 (3)2.820 (3)127 (3)
N2—H22···O6iii0.86 (2)2.41 (3)2.992 (3)125 (3)
C9—H9B···O2iv0.972.613.276 (4)126
O3—H3O···O20.83 (2)2.17 (3)2.614 (3)114 (3)
O3—H3O···O4ii0.83 (2)2.04 (2)2.789 (3)150 (3)
O4—H4O···O1ii0.79 (2)2.06 (3)2.773 (3)151 (3)
O6—H6O···O2v0.83 (2)1.67 (2)2.501 (3)174 (3)
O7—H71O···O30.84 (2)1.95 (2)2.780 (3)171 (4)
O7—H72O···O1vi0.85 (2)1.97 (2)2.821 (3)178 (4)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x1/2, y+3/2, z+1; (iii) x1/2, y+1/2, z+1; (iv) x+1/2, y+3/2, z+1; (v) x, y1, z; (vi) x1, y, z.
4-Phenylpiperazin-1-ium fumarate (12) top
Crystal data top
C10H15N2+·C4H3O4Dx = 1.287 Mg m3
Mr = 278.30Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 6248 reflections
a = 26.702 (1) Åθ = 2.7–27.8°
b = 7.9626 (3) ŵ = 0.10 mm1
c = 6.7571 (3) ÅT = 293 K
V = 1436.68 (10) Å3Prism, light brown
Z = 40.48 × 0.44 × 0.40 mm
F(000) = 592
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
2770 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.018
Rotation method data acquisition using ω scans.θmax = 27.9°, θmin = 3.0°
Absorption correction: multi-scan
(CrysalisRED; Oxford Diffraction, 2007)
h = 3333
Tmin = 0.894, Tmax = 1.000k = 105
9534 measured reflectionsl = 88
3127 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0296P)2 + 0.3161P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.077(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.17 e Å3
3127 reflectionsΔρmin = 0.13 e Å3
191 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
4 restraintsExtinction coefficient: 0.024 (5)
Primary atom site location: dualAbsolute structure: Flack x determined using 1130 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.3 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.07139 (6)0.0974 (2)0.4560 (3)0.0396 (4)
N20.15289 (7)0.1889 (2)0.2018 (3)0.0359 (4)
H210.1639 (9)0.258 (3)0.111 (3)0.043*
H220.1758 (8)0.112 (3)0.231 (4)0.043*
C10.02675 (7)0.1920 (3)0.4495 (3)0.0341 (5)
C20.01118 (8)0.1565 (3)0.3155 (4)0.0460 (5)
H20.0065240.0728420.2212090.055*
C30.05581 (9)0.2442 (3)0.3210 (5)0.0554 (6)
H30.0808370.2177750.2304690.066*
C40.06407 (10)0.3685 (3)0.4555 (5)0.0581 (8)
H40.0941440.4273430.4572310.070*
C50.02681 (11)0.4041 (4)0.5880 (5)0.0605 (8)
H50.0318730.4881660.6814920.073*
C60.01794 (9)0.3187 (3)0.5862 (4)0.0493 (6)
H60.0426190.3461940.6777850.059*
C70.11662 (9)0.1763 (4)0.5335 (4)0.0516 (7)
H7A0.1400740.0897290.5738460.062*
H7B0.1081450.2421290.6495450.062*
C80.14116 (9)0.2881 (3)0.3825 (4)0.0453 (6)
H8A0.1188870.3800290.3489760.054*
H8B0.1717220.3350980.4367820.054*
C90.10846 (8)0.0982 (3)0.1241 (3)0.0406 (5)
H9A0.1184620.0255120.0159350.049*
H9B0.0842440.1783640.0737470.049*
C100.08503 (8)0.0048 (3)0.2859 (4)0.0458 (6)
H10A0.0553210.0600370.2349690.055*
H10B0.1084000.0911750.3274480.055*
O10.28279 (5)0.92767 (16)0.2019 (3)0.0457 (4)
O20.20615 (5)1.03469 (16)0.1699 (3)0.0403 (4)
H2O0.2217 (8)1.136 (3)0.190 (4)0.048*
O30.24248 (5)0.31442 (15)0.2281 (3)0.0395 (4)
O40.17409 (5)0.41963 (17)0.0874 (3)0.0411 (4)
C110.23766 (7)0.9127 (2)0.1764 (3)0.0298 (4)
C120.21444 (7)0.7446 (2)0.1522 (4)0.0324 (5)
H120.1812180.7384360.1114630.039*
C130.23863 (7)0.6049 (2)0.1857 (3)0.0297 (4)
H130.2719210.6117390.2252480.036*
C140.21578 (7)0.4351 (2)0.1639 (3)0.0283 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0316 (9)0.0426 (10)0.0447 (11)0.0009 (8)0.0062 (8)0.0066 (9)
N20.0258 (9)0.0317 (9)0.0504 (12)0.0015 (7)0.0070 (8)0.0071 (9)
C10.0292 (10)0.0343 (10)0.0389 (11)0.0044 (8)0.0063 (9)0.0047 (10)
C20.0385 (11)0.0495 (12)0.0502 (14)0.0029 (10)0.0001 (12)0.0091 (13)
C30.0355 (11)0.0636 (15)0.0670 (17)0.0042 (11)0.0095 (14)0.0038 (16)
C40.0364 (13)0.0466 (14)0.091 (2)0.0085 (11)0.0081 (15)0.0066 (16)
C50.0538 (16)0.0474 (15)0.080 (2)0.0057 (12)0.0095 (15)0.0165 (15)
C60.0423 (13)0.0489 (14)0.0567 (16)0.0027 (11)0.0030 (12)0.0138 (13)
C70.0339 (13)0.0817 (19)0.0391 (13)0.0062 (13)0.0057 (10)0.0027 (14)
C80.0279 (10)0.0477 (13)0.0604 (16)0.0049 (10)0.0010 (10)0.0136 (12)
C90.0338 (12)0.0459 (13)0.0419 (13)0.0004 (10)0.0034 (10)0.0075 (11)
C100.0368 (11)0.0295 (10)0.0709 (17)0.0033 (9)0.0130 (12)0.0028 (12)
O10.0309 (7)0.0259 (7)0.0802 (13)0.0035 (6)0.0087 (9)0.0026 (9)
O20.0367 (7)0.0188 (6)0.0654 (11)0.0011 (6)0.0051 (8)0.0038 (8)
O30.0374 (8)0.0208 (6)0.0604 (11)0.0016 (6)0.0103 (7)0.0015 (7)
O40.0305 (8)0.0258 (7)0.0671 (11)0.0008 (6)0.0107 (7)0.0088 (7)
C110.0332 (10)0.0224 (9)0.0338 (11)0.0009 (7)0.0011 (9)0.0004 (9)
C120.0297 (9)0.0231 (8)0.0443 (12)0.0037 (8)0.0045 (9)0.0019 (9)
C130.0297 (9)0.0224 (8)0.0369 (11)0.0028 (7)0.0024 (9)0.0029 (9)
C140.0283 (9)0.0201 (8)0.0365 (10)0.0003 (7)0.0024 (9)0.0033 (9)
Geometric parameters (Å, º) top
N1—C11.411 (3)C7—H7A0.9700
N1—C101.455 (3)C7—H7B0.9700
N1—C71.459 (3)C8—H8A0.9700
N2—C91.485 (3)C8—H8B0.9700
N2—C81.487 (3)C9—C101.504 (3)
N2—H210.87 (2)C9—H9A0.9700
N2—H220.89 (2)C9—H9B0.9700
C1—C21.388 (3)C10—H10A0.9700
C1—C61.388 (3)C10—H10B0.9700
C2—C31.382 (3)O1—C111.223 (2)
C2—H20.9300O2—C111.286 (2)
C3—C41.361 (4)O2—H2O0.921 (19)
C3—H30.9300O3—C141.273 (2)
C4—C51.368 (4)O4—C141.234 (2)
C4—H40.9300C11—C121.485 (2)
C5—C61.375 (4)C12—C131.306 (3)
C5—H50.9300C12—H120.9300
C6—H60.9300C13—C141.490 (2)
C7—C81.505 (4)C13—H130.9300
C1—N1—C10119.1 (2)H7A—C7—H7B107.9
C1—N1—C7118.8 (2)N2—C8—C7109.53 (19)
C10—N1—C7108.50 (18)N2—C8—H8A109.8
C9—N2—C8112.35 (16)C7—C8—H8A109.8
C9—N2—H21109.1 (17)N2—C8—H8B109.8
C8—N2—H21108.3 (17)C7—C8—H8B109.8
C9—N2—H22107.1 (16)H8A—C8—H8B108.2
C8—N2—H22109.1 (17)N2—C9—C10109.9 (2)
H21—N2—H22111 (2)N2—C9—H9A109.7
C2—C1—C6117.3 (2)C10—C9—H9A109.7
C2—C1—N1121.9 (2)N2—C9—H9B109.7
C6—C1—N1120.7 (2)C10—C9—H9B109.7
C3—C2—C1120.6 (2)H9A—C9—H9B108.2
C3—C2—H2119.7N1—C10—C9111.91 (17)
C1—C2—H2119.7N1—C10—H10A109.2
C4—C3—C2121.7 (3)C9—C10—H10A109.2
C4—C3—H3119.2N1—C10—H10B109.2
C2—C3—H3119.2C9—C10—H10B109.2
C3—C4—C5118.0 (2)H10A—C10—H10B107.9
C3—C4—H4121.0C11—O2—H2O111.3 (14)
C5—C4—H4121.0O1—C11—O2125.17 (17)
C4—C5—C6121.6 (3)O1—C11—C12120.99 (17)
C4—C5—H5119.2O2—C11—C12113.83 (16)
C6—C5—H5119.2C13—C12—C11122.85 (17)
C5—C6—C1120.8 (2)C13—C12—H12118.6
C5—C6—H6119.6C11—C12—H12118.6
C1—C6—H6119.6C12—C13—C14123.57 (17)
N1—C7—C8111.8 (2)C12—C13—H13118.2
N1—C7—H7A109.3C14—C13—H13118.2
C8—C7—H7A109.3O4—C14—O3124.92 (16)
N1—C7—H7B109.3O4—C14—C13120.10 (17)
C8—C7—H7B109.3O3—C14—C13114.97 (16)
C10—N1—C1—C218.6 (3)C10—N1—C7—C860.7 (3)
C7—N1—C1—C2154.6 (2)C9—N2—C8—C753.1 (3)
C10—N1—C1—C6165.3 (2)N1—C7—C8—N257.3 (3)
C7—N1—C1—C629.3 (3)C8—N2—C9—C1052.9 (2)
C6—C1—C2—C30.4 (4)C1—N1—C10—C979.8 (2)
N1—C1—C2—C3175.8 (2)C7—N1—C10—C960.2 (3)
C1—C2—C3—C40.5 (4)N2—C9—C10—N156.7 (2)
C2—C3—C4—C50.5 (4)O1—C11—C12—C1310.5 (4)
C3—C4—C5—C60.4 (5)O2—C11—C12—C13168.7 (2)
C4—C5—C6—C10.3 (5)C11—C12—C13—C14179.4 (2)
C2—C1—C6—C50.3 (4)C12—C13—C14—O49.5 (3)
N1—C1—C6—C5176.0 (3)C12—C13—C14—O3170.9 (2)
C1—N1—C7—C879.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···O40.87 (2)1.88 (2)2.741 (2)168 (2)
N2—H22···O1i0.89 (2)1.89 (2)2.775 (2)172 (2)
C7—H7A···O2ii0.972.513.317 (3)141
C8—H8B···O3iii0.972.553.203 (3)124
C9—H9A···O2iv0.972.663.318 (3)126
O2—H2O···O3v0.92 (2)1.54 (2)2.4610 (18)174 (2)
Symmetry codes: (i) x+1/2, y1, z+1/2; (ii) x, y1, z+1; (iii) x+1/2, y, z+1/2; (iv) x, y1, z; (v) x, y+1, z.
 

Acknowledgements

SDA is grateful to the University of Mysore for research facilities. HSY thanks UGC for a BSR Faculty fellowship for three years.

References

First citationAl-Alshaikh, M. A., El-Emam, A. A., Al-Deeb, O. A., Abdelbaky, M. S. M. & Garcia-Granda, S. (2015). Acta Cryst. E71, 956–959.  CSD CrossRef IUCr Journals Google Scholar
First citationAlhaider, A. A. (1992). J. Pharm. Sci. 81, 99–103.  CrossRef PubMed CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationArcher, S., Wylie, D. W., Harris, L. S., Lewis, T. R., Schulenberg, J. W., Bell, M. R., Kullnig, R. K. & Arnold, A. (1962). J. Am. Chem. Soc. 84, 1306–1307.  CrossRef CAS Google Scholar
First citationBatsanov, A. S., Anderson, C. E. & Dyer, P. W. (2006). Private Communication (refcode JEHXIE). CCDC, Cambridge, England.  Google Scholar
First citationBattaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L. & Pellacani, G. C. (1979). Inorg. Chem. 18, 148–152.  CSD CrossRef CAS Web of Science Google Scholar
First citationChothia, C. & Pauling, P. (1978). Acta Cryst. B34, 2986–2989.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationCohen, M. R., Hinsch, E., Palkoski, Z., Vergona, R., Urbano, S. & Sztokalo, J. (1982). J. Pharmacol. Exp. Ther. 223, 110–119.  CAS PubMed Web of Science Google Scholar
First citationConrado, D. J., Verli, H., Neves, G., Fraga, C. A., Barreiro, E. J., Rates, S. M. & Costa, T. D. (2010). J. Pharm. Pharmacol. 60, 699–707.  CrossRef Google Scholar
First citationDemirci, S., Hayal, T. B., Kıratlı, B., Şişli, H. B., Demirci, S., Şahin, F. & Doğan, A. (2019). Chem. Biol. Drug Des. 94, 1584–1595.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDhieb, A. C., Janzen, D. E., Rzaigui, M. & Smirani Sta, W. (2014). Acta Cryst. E70, m139.  CSD CrossRef IUCr Journals Google Scholar
First citationDhieb, A. C., Valkonen, A., Rzaigui, M. & Smirani, W. (2015). J. Mol. Struct. 1102, 50–56.  CSD CrossRef CAS Google Scholar
First citationEssid, M., Marouani, H., Rzaigui, M. & Al-Deyab, S. S. (2010). Acta Cryst. E66, o2244–o2245.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationGarbia, I. B., Kefi, R., Rayes, A. & Nasr, C. B. (2005). Z. Kristallogr. New Cryst. Struct. 220, 333–334.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHanano, T., Adachi, K., Aoki, Y., Morimoto, H., Naka, Y., Hisadome, M., Fukuda, T. & Sumichika, H. (2000). Bioorg. Med. Chem. Lett. 10, 875–879.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHarish Chinthal, C., Kavitha, C. N., Yathirajan, H. S., Foro, S., Rathore, R. S. & Glidewell, C. (2020). Acta Cryst. E76, 1779–1793.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKavitha, S. J., Panchanatheswaran, K., Low, J. N., Ferguson, G. & Glidewell, C. (2006). Acta Cryst. C62, o165–o169.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKhedhiri, L., Hamdi, A., Soudani, S., Kaminsky, W., Lefebvre, F., Jelsch, C., Wojtaś, M. & Ben Nasr, C. (2018). J. Mol. Struct. 1171, 429–437.  CSD CrossRef CAS Google Scholar
First citationKiran Kumar, H., Yathirajan, H. S., Foro, S. & Glidewell, C. (2019a). Acta Cryst. E75, 1494–1506.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKiran Kumar, H., Yathirajan, H. S., Harish Chinthal, C., Foro, S. & Glidewell, C. (2020). Acta Cryst. E76, 488–495.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKiran Kumar, H., Yathirajan, H. S., Sagar, B. K., Foro, S. & Glidewell, C. (2019b). Acta Cryst. E75, 1253–1260.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLahbib, I., Valkonen, A., Rzaigui, M. & Smirani, W. (2017). J. Clust Sci. 28, 2239–2252.  CSD CrossRef CAS Google Scholar
First citationLo, K. M., Lee, S. M. & Tiekink, E. R. T. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1309–1311.  CSD CrossRef CAS Google Scholar
First citationMahesha, N., Kumar, H. K., Akkurt, M., Yathirajan, H. S., Foro, S., Abdelbaky, M. S. M. & Garcia-Granda, S. (2022). Acta Cryst. E78, 709–715.  CSD CrossRef IUCr Journals Google Scholar
First citationMarouani, H., Raouafi, N., Akriche, S. T., Al-Deyab, S. S. & Rzaigui, M. (2012). E-J. Chem. 9, 772–779.  CSD CrossRef CAS Google Scholar
First citationMarouani, H., Rzaigui, M. & Al-Deyab, S. S. (2010). Acta Cryst. E66, o2613.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMathlouthi, M., Dhieb, A. C., Valkonen, A., Rzaigui, M. & Smirani, W. (2017). J. Clust Sci. 28, 3159–3174.  CSD CrossRef CAS Google Scholar
First citationMüller-Buschbaum, K. & Zurawski, A. (2007). Z. Anorg. Allg. Chem. 633, 2300–2304.  Google Scholar
First citationNasr, C. B., Kaminsky, W., Khediri, L., Hamdi, A. & Lefebvre, F. (2018). CSD Communication (recode SICGUJ). CCDC, Cambridge, England.  Google Scholar
First citationNeves, G., Fenner, R., Heckler, A. P., Viana, A. F., Tasso, L., Menegatti, R., Fraga, C. A. M., Barreiro, E. J., Dalla-Costa, T. & Rates, S. M. K. (2003). Braz. J. Med. Biol. Res. 36, 625–629.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOueslati, Y., Kansız, S., Valkonen, A., Sahbani, T., Dege, N. & Smirani, W. (2019). J. Mol. Struct. 1196, 499–507.  CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPang, Y., Xing, P., Geng, X., Zhu, Y., Liu, F. & Wang, L. (2015). RSC Adv. 5, 40912–40923.  CSD CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPike, R. D., Dziura, T. M., deButts, J. C., Murray, C. A., Kerr, A. T. & Cahill, C. L. (2014). J. Chem. Crystallogr. 44, 42–50.  CSD CrossRef CAS Google Scholar
First citationQuitmann, C. C. & Müller-Buschbaum, K. (2005). Z. Anorg. Allg. Chem. 631, 350–354.  CSD CrossRef CAS Google Scholar
First citationSagar, B. K., Girisha, M., Yathirajan, H. S., Rathore, R. S. & Glidewell, C. (2017). Acta Cryst. E73, 1320–1325.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShaibah, M. A. E., Sagar, B. K., Yathirajan, H. S., Kumar, S. M. & Glidewell, C. (2017a). Acta Cryst. E73, 1513–1516.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShaibah, M. A. E., Yathirajan, H. S., Kumar, S. M., Byrappa, K. & Glidewell, C. (2017b). Acta Cryst. E73, 1488–1492.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShin, J., Kang, J., Ok, K. M. & Do, J. (2020). Z. Kristallogr. New Cryst. Struct. 235, 511–513.  CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStocker, F. B., Staeva, T. B., Rienstra, C. M. & Britton, D. (1999). Inorg. Chem. 38, 984–991.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWu, X., Meng, X. & Cheng, G. (2009). J. Incl Phenom. Macrocycl Chem. 64, 325–329.  CSD CrossRef CAS Google Scholar
First citationZong, Y., Shao, H., Pang, Y., Wang, D., Liu, K. & Wang, L. (2016). J. Mol. Struct. 1115, 187–198.  Web of Science CSD CrossRef CAS Google Scholar
First citationZouari, F., Ben Salah, A. & Hovestreydt, E. R. (1995). Acta Cryst. C51, 1563–1565.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationZurawski, A. & Müller-Buschbaum, K. (2008). Z. Anorg. Allg. Chem. 634, 1427–1433.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds