research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of MgK0.5[B6O10](OH)0.5·0.5H2O, poly[dimagnesium potassium bis­(hexa­borate) hy­droxide monohydrate]

crossmark logo

aSchool of Science, China University of Geosciences, Beijing 100083, People's Republic of China, and bBeijing Chaoyang Foreign Language School, Beijing 100101, People's Republic of China
*Correspondence e-mail: qiuqiming890521@163.com

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 31 August 2022; accepted 7 September 2022; online 8 September 2022)

The solvothermal reaction of H3BO3, KCF3SO3, Mg(CF3SO3)2 and pyridine led to a new alkali- and alkaline-earth-metal borate, MgK0.5[B6O10](OH)0.5·0.5H2O. Its structure features an intricate three-dimensional framework built from [B6O13]8− clusters, thus resulting in a six-connected achiral net with high symmetry. Each [B6O13]8− building block is composed of three trigonal BO3 and three tetra­hedral BO4 units, with these BO4 units being further connected to neighboring BO3 units, giving rise to an oxoboron cluster of the general formula [B6O10]2−.

1. Chemical context

As inorganic materials, borates are an important class of non-linear optical crystals, mainly because they can easily crystallize in non-centrosymmetric space groups and such structures often show a large second-harmonic generation response (Qiu et al., 2021a[Qiu, Q.-M., Li, X.-Y., Chen, C.-A., Sun, K.-N. & Yang, G. Y. (2021a). J. Solid State Chem. 299, 122193.]; Qui & Yang, 2021a[Qiu, Q.-M. & Yang, G. Y. (2021a). J. Solid State Chem. 301, 122303.]). The combination of BO3-trigonal and BO4-tetra­hedral units makes it possible to form a variety of isolated anionic clusters. Extended chains, layers and three-dimensional frameworks can be formed between clusters through the dehydration and condensation of the terminal hydroxyl groups of oxoboron clusters (Wang et al., 2017[Wang, J.-J., Wei, Q. & Yang, G.-Y. (2017). ChemistrySelect 2, 5311-5315.]). In addition, negatively charged oxoboron clusters can also combine with a variety of counter-cations, making the structure of borates more complex and diverse. Here, single crystals of MgK0.5[B6O10](OH)0.5·0.5H2O with alkali- and alkaline-earth metals have been obtained under solvothermal conditions.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound consists of 2 B, 10/3 O, 1/3 Mg, 1/6 K, 1/6 OH, and 1/6 H2O. The Mg, K, O4, O5 and O6 atoms are located on special positions with occupancy of 1/3 or 1/6, while the remaining B and O atoms are located at general positions with an occupancy of 1. Bond-valence-sum calculations show that Mg, K and B are consistent with the expected oxidation states (Brown & Altermatt, 1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]; Brese & O'Keeffe, 1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]). Three BO4 units are joined together through corner-sharing of the O4 atom and three BO4 units are connected with three neighboring BO3 units to form a [B6O13]8− oxoboron cluster (Fig. 1[link]). To the best of our knowledge, this is the first example of a mixed alkali- and alkaline-earth-metal borate crystal with the [B6O13]8− cluster anion. In this cluster, the B—O4 bonds are unique because their bond distances [1.529 (2) Å] are longer than other B—O bonds [1.359 (2)–1.453 (2) Å] in the BO3 and BO4 units. Each [B6O13]8− unit is further connected to six other clusters by corner-sharing O atoms, resulting in a three-dimensional framework (Fig. 2[link]).

[Figure 1]
Figure 1
The asymmetric unit of the [B6O13]8− oxoboron cluster. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
View of the three-dimensional supra­molecular framework along the [100] direction. Color code: BO3 trigonal, yellow, orange and brown; BO4 tetra­hedral, blue.

3. Supra­molecular features

In the title compound, the Mg and K atoms are six-coord­inated, with Mg—O and distances in the range 2.332 (1)–2.374 (1) Å and K—O = 2.845 (1) Å. The three-dimensional structure is stabilized by a water cluster formed by O5—H5⋯O5, O5—H5⋯O6 and O6—H6A⋯O2 hydrogen bonds involving the water mol­ecule, hydroxyl group and oxoboron cluster (Table 1[link]). The channels of the compound are filled with ions/mol­ecules (Mg2+, K+, OH and H2O). The title structure is similar to previously reported analogues NH4NaB6O10 (Wang et al., 2014[Wang, J.-H., Cheng, J.-W., Wei, Q., He, H., Yang, B.-F. & Yang, G.-Y. (2014). Eur. J. Inorg. Chem. pp. 4079-4083.]), K0.5[B6O10]·H2O·1.5H3O (Qiu & Yang, 2021b[Qiu, Q.-M. & Yang, G. Y. (2021b). CrystEngComm, 23, 5200-5207.]), and NaRb0.5[B6O10]·0.5H3O (Qiu et al., 2021b[Qiu, Q.-M., Sun, K. & Yang, G. (2021b). CrystEngComm, 23, 7081-7089.]), so the simultaneous use of NH4 and Na or K or Na and Rb or Mg and K cations as templates has no effect on the crystallization of the oxoboron three-dimensional framework. However, after the introduction of Cl (Wu et al., 2011[Wu, H., Pan, S., Poeppelmeier, K. R., Li, H., Jia, D., Chen, Z., Fan, X., Yang, Y., Rondinelli, J. M. & Luo, H. (2011). J. Am. Chem. Soc. 133, 7786-7790.]) or Br (Al-Ama et al., 2006[Al-Ama, A. G., Belokoneva, E. L., Stefanovich, S. Y., Dimitrova, O. V. & Mochenova, N. N. (2006). Crystallogr. Rep. 51, 225-230.]), the new compounds crystallize in the trigonal space group R3m with a large second-harmonic generation response. The introduction of different anions can therefore play a key role in changing the crystalline structure to a non-centrosymmetric system.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O5i 0.85 1.67 2.42 (3) 145
O6—H6A⋯O2i 0.85 2.58 3.276 (15) 140
O5—H5⋯O6i 0.85 1.78 2.484 (19) 139
O5—H5⋯O5ii 0.85 2.30 3.06 (3) 150
Symmetry codes: (i) [y+{\script{1\over 2}}, -z+{\script{1\over 2}}, -x+1]; (ii) [-x+1, -y, -z+1].

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.43, update June 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the [B6O13]8− oxoboron cluster gave 23 hits. The terminal oxygen atoms of this type of [B6Ox] unit can be completely deprotonated [B6O13]8−, partially protonated [B6O11(OH)2]6− or completely protonated [B6O7(OH)6]2−. Among the above 23 compounds, most of them are inorganic–organic hybrid solids, which contain transition-metal complexes and the [B6O7(OH)6]2− cluster (refcodes: CAFYIV, CAFYOB, Altahan et al., 2021[Altahan, M. A., Beckett, M. A., Coles, S. J. & Horton, P. N. (2021). Inorganics 9, 68.]; CECWEM, Heller & Schellhaas, 1983[Heller, G. & Schellhaas, J. (1983). Z. Kristallogr. 164, 237-246.]; EMEHIP, Li et al., 2016[Li, P., Fan, C. H. & Ge, J.-F. (2016). Z. Kristallogr. New Cryst. Struct. 231, 533-535.]; HIXNAF, Jamai et al., 2014[Jamai, N., Rzaigui, M. & Toumi, S. A. (2014). Acta Cryst. E70, m167-m168.]; JOCCUC, JOCDAJ, Altahan et al., 2019a[Altahan, M. A., Beckett, M. A., Coles, S. J. & Horton, P. N. (2019a). J. Clust Sci. 30, 599-605.]; JUZLIC, Altahan et al., 2020[Altahan, M. A., Beckett, M. A., Coles, S. J. & Horton, P. N. (2020). Phosphorus Sulfur Silicon, 195, 952-956.]; MEBQUI, MEBRET, Altahan et al., 2017[Altahan, M. A., Beckett, M. A., Coles, S. J. & Horton, P. N. (2017). Polyhedron, 135, 247-257.]; POJVIW, POJVOC, Altahan et al., 2019b[Altahan, M. A., Beckett, M. A., Coles, S. J. & Horton, P. N. (2019b). Inorganics 7, 44.]; TAFROI, Natarajan et al., 2003[Natarajan, S., Klein, W., Panthöfer, M., van Wüllen, L. & Jansen, M. (2003). Z. Anorg. Allg. Chem. 629, 959-962.]; VUVLOP, Jemai et al., 2015[Jemai, N., Rzaigui, M. & Akriche, S. (2015). J. Clust Sci. 26, 2051-2064.]; BATCUY, Jamai et al., 2022[Jamai, N., Othmani, A., Wang, K., Qian, S. & Akriche, S. T. (2022). J. Solid State Chem. 310, 123065.]; SAZVEY, Xin et al., 2022[Xin, S.-S., Deng, Y.-L. & Pan, C.-Y. (2022). Dalton Trans. 51, 6007-6013.]). It is worth noting that this oxoboron cluster contains too many active hydroxyl groups and therefore tends to form isolated structures. In the crystal of [Cd(1,2-dap)]·[B6O11(OH)2]·H2O (1,2-dap = 1,2-di­amino­propane, refcode: LOZZUY, Deng et al., 2020[Deng, J.-X., Zhou, K. & Pan, C.-Y. (2020). J. Solid State Chem. 281, 121042.]) and Cd3[B6O9(OH)2]2·2NO3·4H2O (refcode: ZUXLIQ, He et al., 2020[He, Y., Liu, Y., Xin, S.-S. & Pan, C.-Y. (2020). Dalton Trans. 49, 14640-14646.]), partially protonated [B6O11(OH)2]6− was successfully extended to layered structures via B—O—B bonds. In the crystal of NaRb0.5[B6O10]·0.5H3O (refcode: UCEXOT, Qiu et al., 2021b[Qiu, Q.-M., Sun, K. & Yang, G. (2021b). CrystEngComm, 23, 7081-7089.]), each completely deprotonated [B6O13]8− unit was linked to six nearest neighbors by bridging O atoms, leading to a 3D framework, similar to that of the title compound.

5. Synthesis and crystallization

A mixture of H3BO3 (0.618 g, 10 mmol), KCF3SO3 (0.188 g, 1 mmol) and Mg(CF3SO3)2 (0.322 g, 1 mmol) was added to pyridine (3.0 mL). After stirring for 20 min, the resulting mixture was sealed in a 25 mL Teflon-lined stainless steel autoclave, heated at 488 K for 9 d, and then slowly cooled to room temperature and colorless block-shaped crystals MgK0.5[B6O10](OH)0.5·0.5H2O were obtained (yield 56% based on H3BO3). Infrared (KBr pallet, cm−1): 3190vs, 1631s, 1360s, 1268m, 1188m, 1134m, 1099m, 964s, 845m, 781m, 741m, 718m, 630w, 564w, 540w, 480w, 455w.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms were positioned geometrically (O—H = 0.85 Å) and refined as riding with Uiso(H) 1.2Ueq(O).

Table 2
Experimental details

Crystal data
Chemical formula Mg2K[B6O10]2(OH)·H2O
Mr 572.46
Crystal system, space group Cubic, Pa[\overline{3}]
Temperature (K) 296
a (Å) 12.2966 (2)
V3) 1859.32 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.47
Crystal size (mm) 0.10 × 0.08 × 0.08
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.762, 0.936
No. of measured, independent and observed [I > 2σ(I)] reflections 23808, 952, 828
Rint 0.056
(sin θ/λ)max−1) 0.714
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.116, 1.16
No. of reflections 952
No. of parameters 72
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.66, −0.64
Computer programs: APEX2 and SAINT (Bruker, 2006[Bruker (2006). SMART and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/3 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXT2018/3 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Poly[dimagnesium potassium bis(hexaborate) hydroxide monohydrate] top
Crystal data top
MgK0.5[B6O10](OH)0.5·0.5H2OMo Kα radiation, λ = 0.71073 Å
Mr = 572.46Cell parameters from 5324 reflections
Cubic, Pa3θ = 2.9–30.3°
a = 12.2966 (2) ŵ = 0.47 mm1
V = 1859.32 (9) Å3T = 296 K
Z = 4Block, colorless
F(000) = 11280.10 × 0.08 × 0.08 mm
Dx = 2.045 Mg m3
Data collection top
Bruker APEXII CCD
diffractometer
828 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube, Bruker (Mo) X-ray SourceRint = 0.056
φ and ω scansθmax = 30.5°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1617
Tmin = 0.762, Tmax = 0.936k = 1616
23808 measured reflectionsl = 1617
952 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0658P)2 + 0.9552P]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max < 0.001
952 reflectionsΔρmax = 0.66 e Å3
72 parametersΔρmin = 0.64 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The structure was solved by direct methods and refined by the full-matrix least-squares method on F2 using the SHELXL programs (Bruker, 2006; Sheldrick, 2015a). All non-hydrogen atoms in the complex were refined anisotropically.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mg0.33884 (5)0.33884 (5)0.33884 (5)0.0205 (3)
K0.5000000.5000000.5000000.0257 (3)
O10.52065 (8)0.28854 (8)0.29782 (8)0.0110 (3)
O20.22982 (9)0.18931 (8)0.38027 (8)0.0118 (3)
O30.36386 (8)0.68000 (8)0.55091 (8)0.0113 (3)
O40.18887 (7)0.18887 (7)0.18887 (7)0.0057 (3)
O50.4745 (13)0.1216 (14)0.5078 (12)0.066 (4)0.1667
H50.5044190.0613540.5236140.099*0.1667
O60.544 (2)0.0524 (17)0.5575 (10)0.080 (6)0.1667
H6A0.5480700.0654360.6252590.121*0.1667
H6B0.5875600.0972460.5284190.121*0.1667
B10.21526 (12)0.22026 (12)0.48534 (12)0.0084 (3)
B20.16682 (11)0.13303 (11)0.29771 (11)0.0067 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg0.0205 (3)0.0205 (3)0.0205 (3)0.0007 (2)0.0007 (2)0.0007 (2)
K0.0257 (3)0.0257 (3)0.0257 (3)0.0071 (2)0.0071 (2)0.0071 (2)
O10.0060 (4)0.0113 (5)0.0156 (5)0.0015 (3)0.0031 (3)0.0047 (4)
O20.0141 (5)0.0157 (5)0.0055 (4)0.0039 (4)0.0005 (3)0.0023 (3)
O30.0138 (5)0.0134 (5)0.0066 (4)0.0060 (4)0.0017 (4)0.0027 (3)
O40.0057 (3)0.0057 (3)0.0057 (3)0.0007 (3)0.0007 (3)0.0007 (3)
O50.058 (8)0.074 (11)0.067 (9)0.005 (7)0.011 (7)0.018 (8)
O60.123 (19)0.101 (16)0.017 (5)0.029 (12)0.018 (7)0.002 (6)
B10.0094 (6)0.0091 (6)0.0065 (6)0.0007 (5)0.0008 (5)0.0009 (5)
B20.0067 (6)0.0067 (6)0.0067 (6)0.0003 (4)0.0006 (4)0.0005 (5)
Geometric parameters (Å, º) top
Mg—O2i2.3319 (12)O2—B11.3587 (16)
Mg—O2ii2.3319 (12)O2—B21.4525 (16)
Mg—O22.3319 (12)O3—B1vii1.3570 (18)
Mg—O1i2.3738 (10)O3—B2viii1.4519 (16)
Mg—O1ii2.3738 (10)O4—B2i1.5285 (15)
Mg—O12.3738 (10)O4—B2ii1.5285 (15)
Mg—B12.7714 (15)O4—B21.5285 (15)
Mg—B1i2.7715 (15)O5—O6ix0.96 (2)
Mg—B1ii2.7715 (15)O5—O6x1.27 (3)
Mg—K3.4324 (11)O5—O61.35 (3)
K—O32.8450 (10)O5—H50.8500
K—O3iii2.8450 (10)O5—H6B1.4451
K—O3i2.8450 (10)O5—H6Aix0.70 (3)
K—O3iv2.8450 (10)O6—O6ix1.20 (3)
K—O3v2.8450 (10)O6—O6xi1.20 (3)
K—O3ii2.8450 (10)O6—H50.6476
O1—B1ii1.3821 (18)O6—H6A0.8500
O1—B2vi1.4531 (16)O6—H6B0.8500
O2i—Mg—O2ii81.06 (5)B1ii—O1—B2vi123.77 (11)
O2i—Mg—O281.06 (5)B1ii—O1—Mg91.19 (8)
O2ii—Mg—O281.06 (5)B2vi—O1—Mg144.28 (8)
O2i—Mg—O1i112.48 (4)B1—O2—B2136.70 (11)
O2ii—Mg—O1i132.64 (4)B1—O2—Mg93.59 (8)
O2—Mg—O1i58.46 (3)B2—O2—Mg121.98 (8)
O2i—Mg—O1ii58.46 (3)B1vii—O3—B2viii122.23 (11)
O2ii—Mg—O1ii112.48 (4)B1vii—O3—K125.09 (8)
O2—Mg—O1ii132.64 (4)B2viii—O3—K110.32 (7)
O1i—Mg—O1ii112.97 (3)B2i—O4—B2ii117.97 (4)
O2i—Mg—O1132.64 (4)B2i—O4—B2117.97 (4)
O2ii—Mg—O158.46 (3)B2ii—O4—B2117.97 (4)
O2—Mg—O1112.48 (4)O6ix—O5—O659 (2)
O1i—Mg—O1112.96 (3)O6x—O5—O689.1 (19)
O1ii—Mg—O1112.96 (3)O6ix—O5—H547.9
O2i—Mg—B193.22 (5)O6x—O5—H567.1
O2ii—Mg—B1109.26 (5)O6—O5—H522.1
O2—Mg—B129.29 (4)O6ix—O5—H6B94.6
O1i—Mg—B129.91 (4)O6x—O5—H6B104.1
O1ii—Mg—B1123.25 (4)O6—O5—H6B35.2
O1—Mg—B1121.16 (4)H5—O5—H6B50.4
O2i—Mg—B1i29.30 (4)O5xi—O6—O6ix71 (3)
O2ii—Mg—B1i93.22 (5)O5xi—O6—O6xi77 (3)
O2—Mg—B1i109.26 (5)O6ix—O6—O6xi101 (2)
O1i—Mg—B1i121.16 (4)O5xi—O6—O5xii114 (2)
O1ii—Mg—B1i29.90 (4)O6ix—O6—O5xii136.9 (16)
O1—Mg—B1i123.25 (4)O6xi—O6—O5xii45.7 (12)
B1—Mg—B1i114.20 (3)O5xi—O6—O5107 (3)
O2i—Mg—B1ii109.26 (5)O6ix—O6—O543.9 (9)
O2ii—Mg—B1ii29.30 (4)O6xi—O6—O5133.5 (16)
O2—Mg—B1ii93.22 (5)O5xii—O6—O5134.5 (17)
O1i—Mg—B1ii123.25 (4)O5xi—O6—H5104.1
O1ii—Mg—B1ii121.16 (4)O6ix—O6—H533.1
O1—Mg—B1ii29.91 (4)O6xi—O6—H5103.9
B1—Mg—B1ii114.20 (3)O5xii—O6—H5117.5
B1i—Mg—B1ii114.20 (3)O5—O6—H529.6
O2i—Mg—K131.38 (3)O5xi—O6—H6A44.8
O2ii—Mg—K131.38 (3)O6ix—O6—H6A101.0
O2—Mg—K131.38 (3)O6xi—O6—H6A103.2
O1i—Mg—K74.30 (3)O5xii—O6—H6A111.4
O1ii—Mg—K74.30 (3)O5—O6—H6A111.4
O1—Mg—K74.30 (3)H5—O6—H6A130.2
B1—Mg—K104.19 (4)O5xi—O6—H6B149.2
B1i—Mg—K104.19 (4)O6ix—O6—H6B122.2
B1ii—Mg—K104.19 (4)O6xi—O6—H6B122.0
O3—K—O3iii65.411 (16)O5xii—O6—H6B76.7
O3—K—O3i114.589 (16)O5—O6—H6B78.5
O3iii—K—O3i180.0H5—O6—H6B95.3
O3—K—O3iv65.410 (16)H6A—O6—H6B104.5
O3iii—K—O3iv114.590 (15)O5xi—O6—H5xi58.1 (15)
O3i—K—O3iv65.410 (15)O6ix—O6—H5xi74 (3)
O3—K—O3ii114.590 (16)O6xi—O6—H5xi28.4 (18)
O3iii—K—O3ii65.410 (15)O5xii—O6—H5xi74 (3)
O3i—K—O3ii114.590 (15)O5—O6—H5xi114 (3)
O3iv—K—O3ii180.0H5—O6—H5xi87.3
O3v—K—O3ii65.410 (16)H6A—O6—H5xi97.8
O3—K—Mgv76.32 (2)H6B—O6—H5xi148.0
O3iii—K—Mgv103.68 (2)O3xiii—B1—O2123.87 (12)
O3i—K—Mgv76.32 (2)O3xiii—B1—O1i122.17 (12)
O3iv—K—Mgv103.68 (2)O2—B1—O1i113.96 (12)
O3v—K—Mgv103.68 (2)O3xiii—B1—Mg166.22 (10)
O3ii—K—Mgv76.32 (2)O2—B1—Mg57.12 (7)
O3—K—Mg103.68 (2)O1i—B1—Mg58.91 (7)
O3iii—K—Mg76.32 (2)O3xiv—B2—O2112.28 (11)
O3i—K—Mg103.68 (2)O3xiv—B2—O1xv109.48 (11)
O3iv—K—Mg76.32 (2)O2—B2—O1xv110.35 (11)
O3v—K—Mg76.32 (2)O3xiv—B2—O4109.12 (10)
O3ii—K—Mg103.68 (2)O2—B2—O4107.66 (11)
Mgv—K—Mg180.000 (17)O1xv—B2—O4107.83 (10)
O6ix—O5—O6—O5xi36 (3)B1—O2—B2—O3xiv21.1 (2)
O6x—O5—O6—O5xi94.9 (17)Mg—O2—B2—O3xiv119.29 (10)
O6x—O5—O6—O6ix59 (2)B1—O2—B2—O1xv101.35 (17)
O6ix—O5—O6—O6xi52 (3)Mg—O2—B2—O1xv118.27 (10)
O6x—O5—O6—O6xi7 (5)B1—O2—B2—O4141.21 (14)
O6ix—O5—O6—O5xii117 (3)Mg—O2—B2—O40.84 (12)
O6x—O5—O6—O5xii58 (4)B2i—O4—B2—O3xiv45.6 (2)
B2—O2—B1—O3xiii16.3 (2)B2ii—O4—B2—O3xiv162.41 (10)
Mg—O2—B1—O3xiii163.52 (12)B2i—O4—B2—O276.54 (15)
B2—O2—B1—O1i163.39 (13)B2ii—O4—B2—O275.49 (15)
Mg—O2—B1—O1i16.21 (12)B2i—O4—B2—O1xv164.40 (10)
B2—O2—B1—Mg147.18 (17)B2ii—O4—B2—O1xv43.6 (2)
Symmetry codes: (i) y, z, x; (ii) z, x, y; (iii) y+1, z+1, x+1; (iv) z+1, x+1, y+1; (v) x+1, y+1, z+1; (vi) y+1/2, z, x+1/2; (vii) x+1/2, y+1/2, z; (viii) y+1/2, z+1, x+1/2; (ix) y+1/2, z1/2, x; (x) z+1, x1/2, y+1/2; (xi) z, x+1/2, y+1/2; (xii) y+1/2, z+1/2, x+1; (xiii) x+1/2, y1/2, z; (xiv) z1/2, x+1/2, y+1; (xv) z+1/2, x1/2, y.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O5xii0.851.672.42 (3)145
O6—H6A···O2xii0.852.583.276 (15)140
O6—H5···O6ix0.650.741.20 (3)119
O6—H5···O6x0.651.231.84 (2)158
O6—H5···O6xvi0.651.822.19 (3)118
O6—H5···O5ix0.651.792.34 (3)143
O6—H5···O5x0.652.092.484 (19)121
O6—H5···O50.650.851.35 (3)128
O5—H5···O6xii0.851.782.484 (19)139
O5—H5···O6xi0.851.492.34 (3)179
O5—H5···O6xvi0.851.822.30 (2)114
O5—H5···O5xii0.851.672.42 (3)145
O5—H5···O5xi0.851.281.88 (3)122
O5—H5···O5xvi0.852.303.06 (3)150
Symmetry codes: (ix) y+1/2, z1/2, x; (x) z+1, x1/2, y+1/2; (xi) z, x+1/2, y+1/2; (xii) y+1/2, z+1/2, x+1; (xvi) x+1, y, z+1.
 

Funding information

We gratefully acknowledge support by the Fundamental Research Funds for the Central Universities (grant No. 2–9-2021–008).

References

First citationAl-Ama, A. G., Belokoneva, E. L., Stefanovich, S. Y., Dimitrova, O. V. & Mochenova, N. N. (2006). Crystallogr. Rep. 51, 225–230.  CAS Google Scholar
First citationAltahan, M. A., Beckett, M. A., Coles, S. J. & Horton, P. N. (2017). Polyhedron, 135, 247–257.  Web of Science CSD CrossRef CAS Google Scholar
First citationAltahan, M. A., Beckett, M. A., Coles, S. J. & Horton, P. N. (2019a). J. Clust Sci. 30, 599–605.  Web of Science CSD CrossRef CAS Google Scholar
First citationAltahan, M. A., Beckett, M. A., Coles, S. J. & Horton, P. N. (2019b). Inorganics 7, 44.  Web of Science CSD CrossRef Google Scholar
First citationAltahan, M. A., Beckett, M. A., Coles, S. J. & Horton, P. N. (2020). Phosphorus Sulfur Silicon, 195, 952–956.  Web of Science CSD CrossRef CAS Google Scholar
First citationAltahan, M. A., Beckett, M. A., Coles, S. J. & Horton, P. N. (2021). Inorganics 9, 68.  Web of Science CSD CrossRef Google Scholar
First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2006). SMART and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeng, J.-X., Zhou, K. & Pan, C.-Y. (2020). J. Solid State Chem. 281, 121042.  Web of Science CSD CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHe, Y., Liu, Y., Xin, S.-S. & Pan, C.-Y. (2020). Dalton Trans. 49, 14640–14646.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHeller, G. & Schellhaas, J. (1983). Z. Kristallogr. 164, 237–246.  CSD CrossRef CAS Web of Science Google Scholar
First citationJamai, N., Othmani, A., Wang, K., Qian, S. & Akriche, S. T. (2022). J. Solid State Chem. 310, 123065.  Web of Science CSD CrossRef Google Scholar
First citationJamai, N., Rzaigui, M. & Toumi, S. A. (2014). Acta Cryst. E70, m167–m168.  CSD CrossRef IUCr Journals Google Scholar
First citationJemai, N., Rzaigui, M. & Akriche, S. (2015). J. Clust Sci. 26, 2051–2064.  Web of Science CSD CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLi, P., Fan, C. H. & Ge, J.-F. (2016). Z. Kristallogr. New Cryst. Struct. 231, 533–535.  Web of Science CSD CrossRef CAS Google Scholar
First citationNatarajan, S., Klein, W., Panthöfer, M., van Wüllen, L. & Jansen, M. (2003). Z. Anorg. Allg. Chem. 629, 959–962.  Web of Science CSD CrossRef CAS Google Scholar
First citationQiu, Q.-M., Li, X.-Y., Chen, C.-A., Sun, K.-N. & Yang, G. Y. (2021a). J. Solid State Chem. 299, 122193.  Web of Science CSD CrossRef Google Scholar
First citationQiu, Q.-M., Sun, K. & Yang, G. (2021b). CrystEngComm, 23, 7081–7089.  Web of Science CSD CrossRef CAS Google Scholar
First citationQiu, Q.-M. & Yang, G. Y. (2021a). J. Solid State Chem. 301, 122303.  Web of Science CSD CrossRef Google Scholar
First citationQiu, Q.-M. & Yang, G. Y. (2021b). CrystEngComm, 23, 5200–5207.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, J.-H., Cheng, J.-W., Wei, Q., He, H., Yang, B.-F. & Yang, G.-Y. (2014). Eur. J. Inorg. Chem. pp. 4079–4083.  Web of Science CrossRef ICSD Google Scholar
First citationWang, J.-J., Wei, Q. & Yang, G.-Y. (2017). ChemistrySelect 2, 5311–5315.  Web of Science CrossRef ICSD CAS Google Scholar
First citationWu, H., Pan, S., Poeppelmeier, K. R., Li, H., Jia, D., Chen, Z., Fan, X., Yang, Y., Rondinelli, J. M. & Luo, H. (2011). J. Am. Chem. Soc. 133, 7786–7790.  Web of Science CrossRef ICSD CAS PubMed Google Scholar
First citationXin, S.-S., Deng, Y.-L. & Pan, C.-Y. (2022). Dalton Trans. 51, 6007–6013.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds