research communications
0.5[B6O10](OH)0.5·0.5H2O, poly[dimagnesium potassium bis(hexaborate) hydroxide monohydrate]
of MgKaSchool of Science, China University of Geosciences, Beijing 100083, People's Republic of China, and bBeijing Chaoyang Foreign Language School, Beijing 100101, People's Republic of China
*Correspondence e-mail: qiuqiming890521@163.com
The solvothermal reaction of H3BO3, KCF3SO3, Mg(CF3SO3)2 and pyridine led to a new alkali- and alkaline-earth-metal borate, MgK0.5[B6O10](OH)0.5·0.5H2O. Its structure features an intricate three-dimensional framework built from [B6O13]8− clusters, thus resulting in a six-connected achiral net with high symmetry. Each [B6O13]8− building block is composed of three trigonal BO3 and three tetrahedral BO4 units, with these BO4 units being further connected to neighboring BO3 units, giving rise to an oxoboron cluster of the general formula [B6O10]2−.
Keywords: alkali–earth-metal borate; alkaline-earth-metal borate; solvothermal synthesis; three-dimensional framework; crystal structure.
CCDC reference: 2205808
1. Chemical context
As inorganic materials, borates are an important class of non-linear optical crystals, mainly because they can easily crystallize in non-centrosymmetric space groups and such structures often show a large second-harmonic generation response (Qiu et al., 2021a; Qui & Yang, 2021a). The combination of BO3-trigonal and BO4-tetrahedral units makes it possible to form a variety of isolated anionic clusters. Extended chains, layers and three-dimensional frameworks can be formed between clusters through the dehydration and condensation of the terminal hydroxyl groups of oxoboron clusters (Wang et al., 2017). In addition, negatively charged oxoboron clusters can also combine with a variety of counter-cations, making the structure of borates more complex and diverse. Here, single crystals of MgK0.5[B6O10](OH)0.5·0.5H2O with alkali- and alkaline-earth metals have been obtained under solvothermal conditions.
2. Structural commentary
The 2O. The Mg, K, O4, O5 and O6 atoms are located on special positions with occupancy of 1/3 or 1/6, while the remaining B and O atoms are located at general positions with an occupancy of 1. Bond-valence-sum calculations show that Mg, K and B are consistent with the expected oxidation states (Brown & Altermatt, 1985; Brese & O'Keeffe, 1991). Three BO4 units are joined together through corner-sharing of the O4 atom and three BO4 units are connected with three neighboring BO3 units to form a [B6O13]8− oxoboron cluster (Fig. 1). To the best of our knowledge, this is the first example of a mixed alkali- and alkaline-earth-metal borate crystal with the [B6O13]8− cluster anion. In this cluster, the B—O4 bonds are unique because their bond distances [1.529 (2) Å] are longer than other B—O bonds [1.359 (2)–1.453 (2) Å] in the BO3 and BO4 units. Each [B6O13]8− unit is further connected to six other clusters by corner-sharing O atoms, resulting in a three-dimensional framework (Fig. 2).
of the title compound consists of 2 B, 10/3 O, 1/3 Mg, 1/6 K, 1/6 OH, and 1/6 H3. Supramolecular features
In the title compound, the Mg and K atoms are six-coordinated, with Mg—O and distances in the range 2.332 (1)–2.374 (1) Å and K—O = 2.845 (1) Å. The three-dimensional structure is stabilized by a water cluster formed by O5—H5⋯O5, O5—H5⋯O6 and O6—H6A⋯O2 hydrogen bonds involving the water molecule, hydroxyl group and oxoboron cluster (Table 1). The channels of the compound are filled with ions/molecules (Mg2+, K+, OH− and H2O). The title structure is similar to previously reported analogues NH4NaB6O10 (Wang et al., 2014), K0.5[B6O10]·H2O·1.5H3O (Qiu & Yang, 2021b), and NaRb0.5[B6O10]·0.5H3O (Qiu et al., 2021b), so the simultaneous use of NH4 and Na or K or Na and Rb or Mg and K cations as templates has no effect on the crystallization of the oxoboron three-dimensional framework. However, after the introduction of Cl (Wu et al., 2011) or Br (Al-Ama et al., 2006), the new compounds crystallize in the trigonal R3m with a large second-harmonic generation response. The introduction of different anions can therefore play a key role in changing the crystalline structure to a non-centrosymmetric system.
4. Database survey
A search of the Cambridge Structural Database (CSD, version 5.43, update June 2022; Groom et al., 2016) for the [B6O13]8− oxoboron cluster gave 23 hits. The terminal oxygen atoms of this type of [B6Ox] unit can be completely deprotonated [B6O13]8−, partially protonated [B6O11(OH)2]6− or completely protonated [B6O7(OH)6]2−. Among the above 23 compounds, most of them are inorganic–organic hybrid solids, which contain transition-metal complexes and the [B6O7(OH)6]2− cluster (refcodes: CAFYIV, CAFYOB, Altahan et al., 2021; CECWEM, Heller & Schellhaas, 1983; EMEHIP, Li et al., 2016; HIXNAF, Jamai et al., 2014; JOCCUC, JOCDAJ, Altahan et al., 2019a; JUZLIC, Altahan et al., 2020; MEBQUI, MEBRET, Altahan et al., 2017; POJVIW, POJVOC, Altahan et al., 2019b; TAFROI, Natarajan et al., 2003; VUVLOP, Jemai et al., 2015; BATCUY, Jamai et al., 2022; SAZVEY, Xin et al., 2022). It is worth noting that this oxoboron cluster contains too many active hydroxyl groups and therefore tends to form isolated structures. In the crystal of [Cd(1,2-dap)]·[B6O11(OH)2]·H2O (1,2-dap = 1,2-diaminopropane, refcode: LOZZUY, Deng et al., 2020) and Cd3[B6O9(OH)2]2·2NO3·4H2O (refcode: ZUXLIQ, He et al., 2020), partially protonated [B6O11(OH)2]6− was successfully extended to layered structures via B—O—B bonds. In the crystal of NaRb0.5[B6O10]·0.5H3O (refcode: UCEXOT, Qiu et al., 2021b), each completely deprotonated [B6O13]8− unit was linked to six nearest neighbors by bridging O atoms, leading to a 3D framework, similar to that of the title compound.
5. Synthesis and crystallization
A mixture of H3BO3 (0.618 g, 10 mmol), KCF3SO3 (0.188 g, 1 mmol) and Mg(CF3SO3)2 (0.322 g, 1 mmol) was added to pyridine (3.0 mL). After stirring for 20 min, the resulting mixture was sealed in a 25 mL Teflon-lined stainless steel autoclave, heated at 488 K for 9 d, and then slowly cooled to room temperature and colorless block-shaped crystals MgK0.5[B6O10](OH)0.5·0.5H2O were obtained (yield 56% based on H3BO3). Infrared (KBr pallet, cm−1): 3190vs, 1631s, 1360s, 1268m, 1188m, 1134m, 1099m, 964s, 845m, 781m, 741m, 718m, 630w, 564w, 540w, 480w, 455w.
6. Refinement
Crystal data, data collection and structure . Hydrogen atoms were positioned geometrically (O—H = 0.85 Å) and refined as riding with Uiso(H) 1.2Ueq(O).
details are summarized in Table 2Supporting information
CCDC reference: 2205808
https://doi.org/10.1107/S2056989022008982/tx2057sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022008982/tx2057Isup2.hkl
Data collection: APEX2 (Bruker, 2006); cell
SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXT2018/3 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).MgK0.5[B6O10](OH)0.5·0.5H2O | Mo Kα radiation, λ = 0.71073 Å |
Mr = 572.46 | Cell parameters from 5324 reflections |
Cubic, Pa3 | θ = 2.9–30.3° |
a = 12.2966 (2) Å | µ = 0.47 mm−1 |
V = 1859.32 (9) Å3 | T = 296 K |
Z = 4 | Block, colorless |
F(000) = 1128 | 0.10 × 0.08 × 0.08 mm |
Dx = 2.045 Mg m−3 |
Bruker APEXII CCD diffractometer | 828 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube, Bruker (Mo) X-ray Source | Rint = 0.056 |
φ and ω scans | θmax = 30.5°, θmin = 3.3° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −16→17 |
Tmin = 0.762, Tmax = 0.936 | k = −16→16 |
23808 measured reflections | l = −16→17 |
952 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | H-atom parameters constrained |
wR(F2) = 0.116 | w = 1/[σ2(Fo2) + (0.0658P)2 + 0.9552P] where P = (Fo2 + 2Fc2)/3 |
S = 1.16 | (Δ/σ)max < 0.001 |
952 reflections | Δρmax = 0.66 e Å−3 |
72 parameters | Δρmin = −0.64 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The structure was solved by direct methods and refined by the full-matrix least-squares method on F2 using the SHELXL programs (Bruker, 2006; Sheldrick, 2015a). All non-hydrogen atoms in the complex were refined anisotropically. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Mg | 0.33884 (5) | 0.33884 (5) | 0.33884 (5) | 0.0205 (3) | |
K | 0.500000 | 0.500000 | 0.500000 | 0.0257 (3) | |
O1 | 0.52065 (8) | 0.28854 (8) | 0.29782 (8) | 0.0110 (3) | |
O2 | 0.22982 (9) | 0.18931 (8) | 0.38027 (8) | 0.0118 (3) | |
O3 | 0.36386 (8) | 0.68000 (8) | 0.55091 (8) | 0.0113 (3) | |
O4 | 0.18887 (7) | 0.18887 (7) | 0.18887 (7) | 0.0057 (3) | |
O5 | 0.4745 (13) | 0.1216 (14) | 0.5078 (12) | 0.066 (4) | 0.1667 |
H5 | 0.504419 | 0.061354 | 0.523614 | 0.099* | 0.1667 |
O6 | 0.544 (2) | 0.0524 (17) | 0.5575 (10) | 0.080 (6) | 0.1667 |
H6A | 0.548070 | 0.065436 | 0.625259 | 0.121* | 0.1667 |
H6B | 0.587560 | 0.097246 | 0.528419 | 0.121* | 0.1667 |
B1 | 0.21526 (12) | 0.22026 (12) | 0.48534 (12) | 0.0084 (3) | |
B2 | 0.16682 (11) | 0.13303 (11) | 0.29771 (11) | 0.0067 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mg | 0.0205 (3) | 0.0205 (3) | 0.0205 (3) | 0.0007 (2) | 0.0007 (2) | 0.0007 (2) |
K | 0.0257 (3) | 0.0257 (3) | 0.0257 (3) | 0.0071 (2) | 0.0071 (2) | 0.0071 (2) |
O1 | 0.0060 (4) | 0.0113 (5) | 0.0156 (5) | 0.0015 (3) | −0.0031 (3) | −0.0047 (4) |
O2 | 0.0141 (5) | 0.0157 (5) | 0.0055 (4) | −0.0039 (4) | 0.0005 (3) | −0.0023 (3) |
O3 | 0.0138 (5) | 0.0134 (5) | 0.0066 (4) | 0.0060 (4) | −0.0017 (4) | −0.0027 (3) |
O4 | 0.0057 (3) | 0.0057 (3) | 0.0057 (3) | 0.0007 (3) | 0.0007 (3) | 0.0007 (3) |
O5 | 0.058 (8) | 0.074 (11) | 0.067 (9) | 0.005 (7) | 0.011 (7) | −0.018 (8) |
O6 | 0.123 (19) | 0.101 (16) | 0.017 (5) | 0.029 (12) | −0.018 (7) | −0.002 (6) |
B1 | 0.0094 (6) | 0.0091 (6) | 0.0065 (6) | 0.0007 (5) | −0.0008 (5) | −0.0009 (5) |
B2 | 0.0067 (6) | 0.0067 (6) | 0.0067 (6) | 0.0003 (4) | 0.0006 (4) | 0.0005 (5) |
Mg—O2i | 2.3319 (12) | O2—B1 | 1.3587 (16) |
Mg—O2ii | 2.3319 (12) | O2—B2 | 1.4525 (16) |
Mg—O2 | 2.3319 (12) | O3—B1vii | 1.3570 (18) |
Mg—O1i | 2.3738 (10) | O3—B2viii | 1.4519 (16) |
Mg—O1ii | 2.3738 (10) | O4—B2i | 1.5285 (15) |
Mg—O1 | 2.3738 (10) | O4—B2ii | 1.5285 (15) |
Mg—B1 | 2.7714 (15) | O4—B2 | 1.5285 (15) |
Mg—B1i | 2.7715 (15) | O5—O6ix | 0.96 (2) |
Mg—B1ii | 2.7715 (15) | O5—O6x | 1.27 (3) |
Mg—K | 3.4324 (11) | O5—O6 | 1.35 (3) |
K—O3 | 2.8450 (10) | O5—H5 | 0.8500 |
K—O3iii | 2.8450 (10) | O5—H6B | 1.4451 |
K—O3i | 2.8450 (10) | O5—H6Aix | 0.70 (3) |
K—O3iv | 2.8450 (10) | O6—O6ix | 1.20 (3) |
K—O3v | 2.8450 (10) | O6—O6xi | 1.20 (3) |
K—O3ii | 2.8450 (10) | O6—H5 | 0.6476 |
O1—B1ii | 1.3821 (18) | O6—H6A | 0.8500 |
O1—B2vi | 1.4531 (16) | O6—H6B | 0.8500 |
O2i—Mg—O2ii | 81.06 (5) | B1ii—O1—B2vi | 123.77 (11) |
O2i—Mg—O2 | 81.06 (5) | B1ii—O1—Mg | 91.19 (8) |
O2ii—Mg—O2 | 81.06 (5) | B2vi—O1—Mg | 144.28 (8) |
O2i—Mg—O1i | 112.48 (4) | B1—O2—B2 | 136.70 (11) |
O2ii—Mg—O1i | 132.64 (4) | B1—O2—Mg | 93.59 (8) |
O2—Mg—O1i | 58.46 (3) | B2—O2—Mg | 121.98 (8) |
O2i—Mg—O1ii | 58.46 (3) | B1vii—O3—B2viii | 122.23 (11) |
O2ii—Mg—O1ii | 112.48 (4) | B1vii—O3—K | 125.09 (8) |
O2—Mg—O1ii | 132.64 (4) | B2viii—O3—K | 110.32 (7) |
O1i—Mg—O1ii | 112.97 (3) | B2i—O4—B2ii | 117.97 (4) |
O2i—Mg—O1 | 132.64 (4) | B2i—O4—B2 | 117.97 (4) |
O2ii—Mg—O1 | 58.46 (3) | B2ii—O4—B2 | 117.97 (4) |
O2—Mg—O1 | 112.48 (4) | O6ix—O5—O6 | 59 (2) |
O1i—Mg—O1 | 112.96 (3) | O6x—O5—O6 | 89.1 (19) |
O1ii—Mg—O1 | 112.96 (3) | O6ix—O5—H5 | 47.9 |
O2i—Mg—B1 | 93.22 (5) | O6x—O5—H5 | 67.1 |
O2ii—Mg—B1 | 109.26 (5) | O6—O5—H5 | 22.1 |
O2—Mg—B1 | 29.29 (4) | O6ix—O5—H6B | 94.6 |
O1i—Mg—B1 | 29.91 (4) | O6x—O5—H6B | 104.1 |
O1ii—Mg—B1 | 123.25 (4) | O6—O5—H6B | 35.2 |
O1—Mg—B1 | 121.16 (4) | H5—O5—H6B | 50.4 |
O2i—Mg—B1i | 29.30 (4) | O5xi—O6—O6ix | 71 (3) |
O2ii—Mg—B1i | 93.22 (5) | O5xi—O6—O6xi | 77 (3) |
O2—Mg—B1i | 109.26 (5) | O6ix—O6—O6xi | 101 (2) |
O1i—Mg—B1i | 121.16 (4) | O5xi—O6—O5xii | 114 (2) |
O1ii—Mg—B1i | 29.90 (4) | O6ix—O6—O5xii | 136.9 (16) |
O1—Mg—B1i | 123.25 (4) | O6xi—O6—O5xii | 45.7 (12) |
B1—Mg—B1i | 114.20 (3) | O5xi—O6—O5 | 107 (3) |
O2i—Mg—B1ii | 109.26 (5) | O6ix—O6—O5 | 43.9 (9) |
O2ii—Mg—B1ii | 29.30 (4) | O6xi—O6—O5 | 133.5 (16) |
O2—Mg—B1ii | 93.22 (5) | O5xii—O6—O5 | 134.5 (17) |
O1i—Mg—B1ii | 123.25 (4) | O5xi—O6—H5 | 104.1 |
O1ii—Mg—B1ii | 121.16 (4) | O6ix—O6—H5 | 33.1 |
O1—Mg—B1ii | 29.91 (4) | O6xi—O6—H5 | 103.9 |
B1—Mg—B1ii | 114.20 (3) | O5xii—O6—H5 | 117.5 |
B1i—Mg—B1ii | 114.20 (3) | O5—O6—H5 | 29.6 |
O2i—Mg—K | 131.38 (3) | O5xi—O6—H6A | 44.8 |
O2ii—Mg—K | 131.38 (3) | O6ix—O6—H6A | 101.0 |
O2—Mg—K | 131.38 (3) | O6xi—O6—H6A | 103.2 |
O1i—Mg—K | 74.30 (3) | O5xii—O6—H6A | 111.4 |
O1ii—Mg—K | 74.30 (3) | O5—O6—H6A | 111.4 |
O1—Mg—K | 74.30 (3) | H5—O6—H6A | 130.2 |
B1—Mg—K | 104.19 (4) | O5xi—O6—H6B | 149.2 |
B1i—Mg—K | 104.19 (4) | O6ix—O6—H6B | 122.2 |
B1ii—Mg—K | 104.19 (4) | O6xi—O6—H6B | 122.0 |
O3—K—O3iii | 65.411 (16) | O5xii—O6—H6B | 76.7 |
O3—K—O3i | 114.589 (16) | O5—O6—H6B | 78.5 |
O3iii—K—O3i | 180.0 | H5—O6—H6B | 95.3 |
O3—K—O3iv | 65.410 (16) | H6A—O6—H6B | 104.5 |
O3iii—K—O3iv | 114.590 (15) | O5xi—O6—H5xi | 58.1 (15) |
O3i—K—O3iv | 65.410 (15) | O6ix—O6—H5xi | 74 (3) |
O3—K—O3ii | 114.590 (16) | O6xi—O6—H5xi | 28.4 (18) |
O3iii—K—O3ii | 65.410 (15) | O5xii—O6—H5xi | 74 (3) |
O3i—K—O3ii | 114.590 (15) | O5—O6—H5xi | 114 (3) |
O3iv—K—O3ii | 180.0 | H5—O6—H5xi | 87.3 |
O3v—K—O3ii | 65.410 (16) | H6A—O6—H5xi | 97.8 |
O3—K—Mgv | 76.32 (2) | H6B—O6—H5xi | 148.0 |
O3iii—K—Mgv | 103.68 (2) | O3xiii—B1—O2 | 123.87 (12) |
O3i—K—Mgv | 76.32 (2) | O3xiii—B1—O1i | 122.17 (12) |
O3iv—K—Mgv | 103.68 (2) | O2—B1—O1i | 113.96 (12) |
O3v—K—Mgv | 103.68 (2) | O3xiii—B1—Mg | 166.22 (10) |
O3ii—K—Mgv | 76.32 (2) | O2—B1—Mg | 57.12 (7) |
O3—K—Mg | 103.68 (2) | O1i—B1—Mg | 58.91 (7) |
O3iii—K—Mg | 76.32 (2) | O3xiv—B2—O2 | 112.28 (11) |
O3i—K—Mg | 103.68 (2) | O3xiv—B2—O1xv | 109.48 (11) |
O3iv—K—Mg | 76.32 (2) | O2—B2—O1xv | 110.35 (11) |
O3v—K—Mg | 76.32 (2) | O3xiv—B2—O4 | 109.12 (10) |
O3ii—K—Mg | 103.68 (2) | O2—B2—O4 | 107.66 (11) |
Mgv—K—Mg | 180.000 (17) | O1xv—B2—O4 | 107.83 (10) |
O6ix—O5—O6—O5xi | −36 (3) | B1—O2—B2—O3xiv | 21.1 (2) |
O6x—O5—O6—O5xi | −94.9 (17) | Mg—O2—B2—O3xiv | −119.29 (10) |
O6x—O5—O6—O6ix | −59 (2) | B1—O2—B2—O1xv | −101.35 (17) |
O6ix—O5—O6—O6xi | 52 (3) | Mg—O2—B2—O1xv | 118.27 (10) |
O6x—O5—O6—O6xi | −7 (5) | B1—O2—B2—O4 | 141.21 (14) |
O6ix—O5—O6—O5xii | 117 (3) | Mg—O2—B2—O4 | 0.84 (12) |
O6x—O5—O6—O5xii | 58 (4) | B2i—O4—B2—O3xiv | 45.6 (2) |
B2—O2—B1—O3xiii | 16.3 (2) | B2ii—O4—B2—O3xiv | −162.41 (10) |
Mg—O2—B1—O3xiii | 163.52 (12) | B2i—O4—B2—O2 | −76.54 (15) |
B2—O2—B1—O1i | −163.39 (13) | B2ii—O4—B2—O2 | 75.49 (15) |
Mg—O2—B1—O1i | −16.21 (12) | B2i—O4—B2—O1xv | 164.40 (10) |
B2—O2—B1—Mg | −147.18 (17) | B2ii—O4—B2—O1xv | −43.6 (2) |
Symmetry codes: (i) y, z, x; (ii) z, x, y; (iii) −y+1, −z+1, −x+1; (iv) −z+1, −x+1, −y+1; (v) −x+1, −y+1, −z+1; (vi) y+1/2, z, −x+1/2; (vii) −x+1/2, y+1/2, z; (viii) −y+1/2, −z+1, x+1/2; (ix) −y+1/2, z−1/2, x; (x) −z+1, x−1/2, −y+1/2; (xi) z, −x+1/2, y+1/2; (xii) y+1/2, −z+1/2, −x+1; (xiii) −x+1/2, y−1/2, z; (xiv) z−1/2, −x+1/2, −y+1; (xv) −z+1/2, x−1/2, y. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5···O5xii | 0.85 | 1.67 | 2.42 (3) | 145 |
O6—H6A···O2xii | 0.85 | 2.58 | 3.276 (15) | 140 |
O6—H5···O6ix | 0.65 | 0.74 | 1.20 (3) | 119 |
O6—H5···O6x | 0.65 | 1.23 | 1.84 (2) | 158 |
O6—H5···O6xvi | 0.65 | 1.82 | 2.19 (3) | 118 |
O6—H5···O5ix | 0.65 | 1.79 | 2.34 (3) | 143 |
O6—H5···O5x | 0.65 | 2.09 | 2.484 (19) | 121 |
O6—H5···O5 | 0.65 | 0.85 | 1.35 (3) | 128 |
O5—H5···O6xii | 0.85 | 1.78 | 2.484 (19) | 139 |
O5—H5···O6xi | 0.85 | 1.49 | 2.34 (3) | 179 |
O5—H5···O6xvi | 0.85 | 1.82 | 2.30 (2) | 114 |
O5—H5···O5xii | 0.85 | 1.67 | 2.42 (3) | 145 |
O5—H5···O5xi | 0.85 | 1.28 | 1.88 (3) | 122 |
O5—H5···O5xvi | 0.85 | 2.30 | 3.06 (3) | 150 |
Symmetry codes: (ix) −y+1/2, z−1/2, x; (x) −z+1, x−1/2, −y+1/2; (xi) z, −x+1/2, y+1/2; (xii) y+1/2, −z+1/2, −x+1; (xvi) −x+1, −y, −z+1. |
Funding information
We gratefully acknowledge support by the Fundamental Research Funds for the Central Universities (grant No. 2–9-2021–008).
References
Al-Ama, A. G., Belokoneva, E. L., Stefanovich, S. Y., Dimitrova, O. V. & Mochenova, N. N. (2006). Crystallogr. Rep. 51, 225–230. CAS Google Scholar
Altahan, M. A., Beckett, M. A., Coles, S. J. & Horton, P. N. (2017). Polyhedron, 135, 247–257. Web of Science CSD CrossRef CAS Google Scholar
Altahan, M. A., Beckett, M. A., Coles, S. J. & Horton, P. N. (2019a). J. Clust Sci. 30, 599–605. Web of Science CSD CrossRef CAS Google Scholar
Altahan, M. A., Beckett, M. A., Coles, S. J. & Horton, P. N. (2019b). Inorganics 7, 44. Web of Science CSD CrossRef Google Scholar
Altahan, M. A., Beckett, M. A., Coles, S. J. & Horton, P. N. (2020). Phosphorus Sulfur Silicon, 195, 952–956. Web of Science CSD CrossRef CAS Google Scholar
Altahan, M. A., Beckett, M. A., Coles, S. J. & Horton, P. N. (2021). Inorganics 9, 68. Web of Science CSD CrossRef Google Scholar
Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197. CrossRef CAS Web of Science IUCr Journals Google Scholar
Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (2006). SMART and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Deng, J.-X., Zhou, K. & Pan, C.-Y. (2020). J. Solid State Chem. 281, 121042. Web of Science CSD CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
He, Y., Liu, Y., Xin, S.-S. & Pan, C.-Y. (2020). Dalton Trans. 49, 14640–14646. Web of Science CSD CrossRef CAS PubMed Google Scholar
Heller, G. & Schellhaas, J. (1983). Z. Kristallogr. 164, 237–246. CSD CrossRef CAS Web of Science Google Scholar
Jamai, N., Othmani, A., Wang, K., Qian, S. & Akriche, S. T. (2022). J. Solid State Chem. 310, 123065. Web of Science CSD CrossRef Google Scholar
Jamai, N., Rzaigui, M. & Toumi, S. A. (2014). Acta Cryst. E70, m167–m168. CSD CrossRef IUCr Journals Google Scholar
Jemai, N., Rzaigui, M. & Akriche, S. (2015). J. Clust Sci. 26, 2051–2064. Web of Science CSD CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Li, P., Fan, C. H. & Ge, J.-F. (2016). Z. Kristallogr. New Cryst. Struct. 231, 533–535. Web of Science CSD CrossRef CAS Google Scholar
Natarajan, S., Klein, W., Panthöfer, M., van Wüllen, L. & Jansen, M. (2003). Z. Anorg. Allg. Chem. 629, 959–962. Web of Science CSD CrossRef CAS Google Scholar
Qiu, Q.-M., Li, X.-Y., Chen, C.-A., Sun, K.-N. & Yang, G. Y. (2021a). J. Solid State Chem. 299, 122193. Web of Science CSD CrossRef Google Scholar
Qiu, Q.-M., Sun, K. & Yang, G. (2021b). CrystEngComm, 23, 7081–7089. Web of Science CSD CrossRef CAS Google Scholar
Qiu, Q.-M. & Yang, G. Y. (2021a). J. Solid State Chem. 301, 122303. Web of Science CSD CrossRef Google Scholar
Qiu, Q.-M. & Yang, G. Y. (2021b). CrystEngComm, 23, 5200–5207. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Wang, J.-H., Cheng, J.-W., Wei, Q., He, H., Yang, B.-F. & Yang, G.-Y. (2014). Eur. J. Inorg. Chem. pp. 4079–4083. Web of Science CrossRef ICSD Google Scholar
Wang, J.-J., Wei, Q. & Yang, G.-Y. (2017). ChemistrySelect 2, 5311–5315. Web of Science CrossRef ICSD CAS Google Scholar
Wu, H., Pan, S., Poeppelmeier, K. R., Li, H., Jia, D., Chen, Z., Fan, X., Yang, Y., Rondinelli, J. M. & Luo, H. (2011). J. Am. Chem. Soc. 133, 7786–7790. Web of Science CrossRef ICSD CAS PubMed Google Scholar
Xin, S.-S., Deng, Y.-L. & Pan, C.-Y. (2022). Dalton Trans. 51, 6007–6013. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.